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Equilibrium Selection in Experimental Games on Networks*  

 

Gary Charness†, Francesco Feri‡, Miguel A. Meléndez-Jiménez§, 

and Matthias Sutter# 

 

Abstract. We study behavior and equilibrium selection in experimental network games. We vary 
two important factors: (a) actions are either strategic substitutes or strategic complements, and 
(b) subjects have either complete or incomplete information about the structure of a random 
network. Play conforms strongly to the theoretical predictions, providing an impressive 
behavioral confirmation of the Galeotti, Goyal, Jackson, Vega-Redondo, and Yariv (2010) 
model. The degree of equilibrium play is striking, even with incomplete information. We find 
that under complete information, subjects typically play the stochastically-stable (inefficient) 
equilibrium when the game involves strategic substitutes, but play the efficient one with strategic 
complements.  Our results suggest that equilibrium multiplicity may not be a major concern. 
Subjects’ actions and realized outcomes under incomplete information depend strongly on both 
the degree and the connectivity. When there are multiple equilibria, subjects begin by playing the 
efficient equilibrium, but eventually converge to the inefficient one.  
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1. Introduction 
 

Social networks are a prominent feature of the economic landscape. A network is a non-

market institution, but has important market-like characteristics. In a sense it can be considered 

to be an intermediate case between bilateral bargaining and matching in a large centralized 

market. Network structure affects choices in a wide variety of environments and network 

analysis has been applied to many important environments.1 It has been applied, for example, to 

systems compatibility (Katz and Shapiro 1994), airline route design (Hendricks, Piccione and 

Tan 1995), matching markets (Gale and Shapley 1962, Kelso and Crawford 1982, Roth 1984, 

Crawford and Rochford 1986, Roth and Sotomayor 1989), bargaining (Kranton and Minehart 

2001), and friendship (Currarini, Jackson and Pin, 2009).  Job search and labor-market issues are 

also quite suitable for network analysis, since workers frequently find jobs through personal 

contacts and employers value the additional enforcement channel available through these 

personal intermediaries (Montgomery 1991, Calvó-Armengol 2004, Calvó-Armengol and 

Jackson 2004, 2007).2  

A growing empirical literature has documented the effects of social networks on 

behavior; the information gleaned from these has motivated theoretical work. Since social 

networks are so prevalent in economic settings, modeling these networks is essential in order to 

understand how network structure affects behavior and which networks are likely to arise and be 

stable. However, it is very difficult (if not impossible) to cleanly test theoretical predictions using 

field data, since there are many confounding features in the environment.3 In this respect, 

controlled laboratory experiments are often viewed as the ideal tool for qualitatively testing 

theory (e.g., Runkel and McGrath, 1972; Falk and Heckman, 2009). 

In this paper, we design a laboratory experiment that implements specific examples of a 

more general network structure in which the agents’ actions are either strategic complements or 

substitutes. Economic environments typically have a considerable degree of either 

                                                           
1 Jackson (2010, p. 512) states that network structure “influences patterns of decisions regarding education, career, 
hobbies, criminal activity, and even participation in micro-finance. Beyond the role of ‘social’ networks in 
determining various economic behaviors, there are also many business and political interactions that are networked. 
Networks of relationships among various firms and political organizations affect research and development, patent 
activity, trade patterns, and political alliances.”  
2 For an exhaustive review of social and economic networks, with particular attention to theoretical models, see 
Jackson (2008). 
3 Typical problems with field data are the use of idiosyncratic data sets, a snapshot of a static environment, or the 
issue of measurement error. 
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complementarity or substitutability, so that this notion applies to a wide variety of economic 

environments and includes perhaps most of the game-theoretic applications in the network 

literature.  

In addition to the broad applicability of our setting, to the best of our knowledge we are 

the very first to experimentally study an environment in which the agents are uncertain about the 

precise network structure. This enhances the applicability and the external validity of our 

experiment, as there are many economic situations in which individuals have a good sense of the 

number of other people with whom they are interacting in some form of network, but know 

neither the identity of these others nor how these others are connected to still others. As 

examples for such situations, Galeotti, Goyal, Jackson, Vega-Redondo and Yariv (2010) mention 

choosing which languages to study before embarking on a career in diplomacy, researchers 

choosing software based on compatibility, and choosing whether to receive a vaccination. 

A critical problem in relation to network theory is that even simple games have multiple 

equilibria, so that a great variety of outcomes are consistent with theoretical analysis. This 

naturally limits the predictive power of the theory and the scope of policy recommendations, 

since multiple equilibria make it difficult-to-impossible to offer definitive advice regarding how 

such labor markets, search markets, etc. should be organized. To make meaningful policy 

recommendations, it is very important to try to determine which of the equilibria are likely to 

occur.  One way to achieve this is theoretical work. In fact, a central goal in network analysis is 

to refine the set of equilibria to be able to make better predictions about the likely outcomes; in 

some cases with networks on games, there is the rather surprising and non-intuitive result (at 

least at first sight) that uncertainty about elements of the network reduces the equilibrium 

multiplicity that arises under complete information, as shown by Galeotti et alii (2010). Another 

way to examine equilibrium selection is through experimental testing. This is our approach, since 

experimental work should be useful in identifying which of the multiple equilibria tends to 

actually prevail behaviorally. 

Galeotti et alii (2010) mainly focus on two classes of games: strategic complements and 

strategic substitutes. Strategic complements (positive network externalities) arise when the 

benefit that an individual obtains from choosing an action is greater as more of her neighbors do 

the same. An example of strategic complements is human capital investment, whereby one’s own 
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investment is more beneficial if others also make this investment.4 Strategic substitutes arise 

when the benefit that an individual obtains from choosing an action is greater as more of her 

neighbors do the opposite. An example of strategic substitutes is that of a best-shot game, 

wherein it pays an individual to free-ride on the contributions or actions of others. Another 

example is choosing routes to avoid congested roads.  

In our paper, we adapt the Galeotti et alii (2010) model to a specific experimental 

environment that includes three different five-person networks. In the case of complete 

information, each person knows the network structure and the node to which she has been 

assigned. In contrast, with incomplete information each person only knows the probability that 

each of the three possible networks has been randomly drawn and her degree (the number of 

connections to others). This probability is a treatment variable. Again, to the best of our 

knowledge this is the first experiment on networks to ever consider behavior under incomplete 

information and the concomitant increased complexity of the environment. In fact, a major 

challenge was to create a design that matched the Galeotti et alii (2010) theoretical model and 

yet was comprehensible for the participants. By explaining the game very carefully and by 

having participants play for 40 periods to allow – and control for – learning, we are confident 

that the participants understood the game quite well. 

Our experimental results are striking. In fact, we find a great deal of support for every 

one of the theoretical predictions.  Participants are, to a large extent, active in the network (which 

can be interpreted as purchasing a particular good) when the prediction is that they will be and 

they are inactive (not purchasing) when the prediction is that they won’t be.  In all scenarios, the 

modal behavior by every individual is consistent with the observed equilibrium outcome, and the 

overall rate of such equilibrium play is quite high. 

In the simpler case of complete information, behaviorally we do not observe a 

multiplicity of equilibria. Behavior consistent with a unique equilibrium is seen in each and 

every independent group. With strategic substitutes and complete information, this equilibrium is 

not the efficient one, but in a certain sense it is ‘risk dominant’, as a deviation from the selected 

equilibrium is less harmful than a deviation from the efficient equilibrium. In other words, there 

is a trade-off between efficiency and the cost of a mistake (stability), since the efficient 

                                                           
4 In fact, positive network externalities may be large enough to more than offset inferior quality or efficiency. A 
familiar example is that of the QWERTY keyboard; another is the general adoption of the VHS format over the 
Betamax format around 1980 despite the fact that the Betamax format was widely acknowledged to be superior. 
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equilibrium results in a higher cost for agents’ errors. With strategic complements and complete 

information, the efficient equilibrium is selected. Remarkably, the predictions are borne out 

qualitatively for every node and quantitatively (within 10 percentage points of the extreme point-

prediction) for most nodes, for both strategic substitutes and strategic complements. 

With incomplete information, the only information provided is one’s degree, so we do 

not distinguish amongst positions with the same degree. Despite the more complex game, 

subjects do seem to grasp the essential elements of play very well. As with complete 

information, the qualitative predictions of the model are supported for both strategic 

complements and strategic substitutes. As theory predicts, we observe that participants do use 

monotone (threshold) strategies.  Regarding increased connectivity, the frequency of active 

players increases for degree 2 and 3 with both strategic substitutes and strategic complements.  In 

scenarios where incomplete information induces a unique equilibrium, we see that participants 

make the choice that is consistent with this equilibrium an overwhelming majority of the time.  

There is only one case with incomplete information where the theoretical prediction 

involves multiple equilibria, i.e., with strategic complements and a high degree of connectivity. 

In contrast to the parallel case with complete information, the efficient equilibrium is not played. 

We offer some possible explanations, relying on bounded rationality and subjects being forward 

looking, regarding the behavioral influences that could generate this asymmetry between 

complete and incomplete information in the case of strategic complements.  

The remainder of the paper is organized as follows. We discuss the relevant literature in 

section 2, and present the equilibrium analysis for our set-up in section 3. The experimental 

design and implementation comprise section 4, and we present our experimental results in 

section 5. We offer a discussion of our results and their implications in section 6, and conclude in 

section 7. 

 

2. Literature review 

In this section we review related theoretical and experimental work. We refer the 

interested reader to Jackson (2008) for a comprehensive overview of theoretical work on and 

applications of social and economic networks.  
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2.1       Theoretical work 

Our study relates to exogenous networks, as agents have no control over the structure of 

the network. Thus, we do not consider the issue of how networks were formed, but simply 

presume that the links are already in place due to some relationships that have (or had) value, and 

that the cost of (endogenous) change is prohibitive. In this sense, the networks we use are 

effectively stable.  

A handful of papers show that the outcomes of games in general depend on the specific 

network structures, when there are either strategic substitutes or complements. In the case of 

complete information, Goyal and Moraga-Gonzalez (2001) analyze research collaboration when 

there is either rivalry or no rivalry amongst firms. Calvó-Armengol and Jackson (2004) develop 

a model in which agents receive information about job opportunities only through a network of 

social contacts. Ballester, Calvó-Armengol and Zenou (2006) consider the choice of committing 

a crime in a network setting with strategic complementarities, and Bramoullé and Kranton (2007) 

consider public-goods provision. 

In the case of incomplete information, Jackson and Yariv (2005) show that diffusion 

depends on the network structure. Sundararajan (2006) presents a model of local network effects 

in which agents value the adoption of a product by a heterogeneous subset of neighbors, and 

have incomplete information about the structure and strength of adoption complementarities 

between all other agents; he finds that the symmetric Bayes-Nash equilibria of this network game 

are in monotone strategies. Galeotti and Vega-Redondo (2011) examine how local externalities 

affect behavior in a complex random network where agents choose investment levels that impose 

a payoff externality on neighbors; in the unique interior equilibrium, whether this externality is 

positive or negative depends on investment costs, while the investment strategy is increasing in 

degree. 

Galeotti et alii (2010) obtain general results in games with incomplete information about 

the degrees of one’s neighbors, where one’s payoffs depend not only on one’s action, but also on 

the actions of neighbors; they consider both strategic substitutes and strategic complements. The 

multiplicity present is substantially reduced under incomplete information. 
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2.2 Experimental work 

Overall, there is a relative dearth of research in experimental economics on network 

games, particularly when one considers the wealth of theoretical contributions in this area.5  Here 

we restrict our discussion of the literature in experimental economics to designs with exogenous 

networks (where the participants have no control of the network structure), as in our own 

environment.6 Some research has examined the consequences of network structure on 

equilibrium selection in coordination games, which is relevant for our settings with a multiplicity 

of equilibria. Keser, Ehrhart and Berninghaus (1998) is the first paper in experimental economics 

to consider the effect of network structure. They use a 3-person coordination game. In one 

treatment, each participant is connected to two neighbors on an 8-player circle; in the other 

treatment, people play within closed 3-person groups. They find that the 3-person group quickly 

coordinates on the payoff-dominant equilibrium while the circular group eventually coordinates 

on the risk-dominant equilibrium. Berninghaus, Ehrhart and Keser (2002) modify the payoff 

function in the network coordination game, reducing the riskiness of the efficient equilibrium. 

They find that if the efficient Nash equilibrium becomes less risky, populations that interact 

locally on the circle also converge to efficient play in most cases. However, in contrast to these 

studies, Boun My, Willinger and Ziegelmeyer (2006) do not find that players who interact 

locally on the circle coordinate more frequently on the risk-dominant equilibrium. 

Corbae and Duffy (2008) consider a two-player, 2x2 coordination game with groups of 

four people in three configurations: the complete network, the circle, and two isolated pairs. In 

their game, the efficient equilibrium is also the risk-dominant one; in almost every case the group 

achieved the efficient equilibrium. After 10 periods, the game is changed so that the efficient 

outcome is no longer risk dominant. Groups continue to play the efficient equilibrium, unless one 

player is obligated to play the risk-dominant strategy; in this case, there is convergence to the 

risk-dominant equilibrium when the interaction is more ‘local’ (the circle and the isolated pairs), 

but not as much with the global interaction of the complete network. Cassar (2007) compares 

                                                           
5 Researchers in sociology have long been interested in studying networks in experiments (see the seminal studies by 
Stolte and Emerson, 1977, or Cook and Emerson, 1978; see also surveys of Willer, 1999, or Burt, 2000). Note, 
however, that sociologists have been in particular interested in studying the exercise of power in networks, 
something with which the literature in experimental economics has not yet been concerned. 
6 There are other experiments on networks in other environments, including buyer-seller networks (Charness, 
Corominas-Bosch, and Fréchette 2007), the prisoner’s dilemma (Riedl and Ule 2002; Kirchkamp and Nagel 2007), 
and endogenous networks (Falk and Kosfeld 2003; Deck and Johnson 2004; Callander and Plott 2005; Berninghaus, 
Ehrhart, and Ott 2006; Berninghaus, Ehrhart, Ott, and Vogt 2007). 
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convergence to equilibrium across three different network structures: a local interaction network, 

a random network, and a “small-world” network (each link in the circle has a probability of 

being re-wired to a ‘short cut’ of a chord across the circle). She finds that participants converge 

to the efficient equilibrium in the small-world network, but less so in the other networks.7  

To the best of our knowledge, there is only one experimental paper that considers 

network effects primarily in relation to the voluntary-contribution mechanism.8  Fatas, 

Meléndez-Jiménez and Solaz (2010) have 4-person groups repeatedly play a standard VCM in 

four different network structures: the line, the circle, the star, and the complete network. 

Information about another person’s contribution is only transmitted if and only if there is a direct 

link between the parties. Contributions are in fact affected by the network structure, with the 

complete network and the star leading to 30-40 percent higher contributions than with the line 

and the circle, which have similar contribution levels. It is clear that there is at least one person 

with a degree of three in each of the networks with higher contributions; such a person knows the 

contribution of every other player and every other player observes their choice, with this being 

common information. The degree of an individual does not appear to affect contributions, 

however.  

Kearns et alii (2006, 2009) develop a series of experiments aimed to determine what 

strategies people use when they are given local information about a large network and are asked 

to work together, without communicating.  Kearns et alii (2006) consider a game of substitutes 

(framed as a graph-coloring problem), and Kearns et alii (2009) examine a game of complements 

(framed as a voting game). The crucial difference between their design and ours is that in their 

case, the individual payoffs depend on the global performance of the network whereas in our 

case, only a subject’s actions and those of her neighbors affect her payoff.  Another difference is 

that Kearns et alii (2009) consider heterogeneity of preferences among players whereas in our 

                                                           
7 Charness and Jackson (2007) frame a Stag Hunt as the choice of adding a link between two players in a pre-
existing network, where this link can be added by either mutual consent or unilateral consent. Whether the payoff-
dominant or the risk-dominant equilibrium prevails depends primarily on the degree of consent required. 
8 Carpenter (2007) mainly considers the issue of group size in the VCM, but also has treatments in which people are 
only allowed to punish their closest neighbors. He finds that, relative to not punishing at all, both the possibility to 
monitor either the complete or half of the group yields significantly more contributions, and the possibility to punish 
only a single player elicits significantly fewer contributions. 
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(complements) setup the preferences are homogeneous. In the case of substitutes, each action has 

a different cost in our design, whereas in Kearns et alii (2006) all the actions have the same cost.9 

Our experiment can be seen as venturing into some new realms. We contrast strategic 

complements and strategic substitutes, considering both complete and incomplete information 

concerning aspects of the network structure.  

 

3. Model and equilibrium analysis 

 

3.1       The Game 

In the experiment we focus on the two specific games that Galeotti et alii (2010) use in 

their Section 2 in order to introduce and motivate their results, which we now briefly summarize. 

Consider a player who can choose between being active (e.g., buying a product) or inactive (e.g., 

not buying the product). Being active has costs c > 0, while an inactive player bears no cost. For 

the following analysis, we will fix c = 1/2, as is the case in our experiment. 

• In the case of strategic substitutes, a player earns 1 if either she or at least one of her 

neighbors is active, and earns 0 otherwise. Note that she pays the cost c only in case she 

has been active.  

• In the case of strategic complements, if a player is inactive, she earns 0 and, if she is 

active she earns a scalar α > 0 times the number of neighbors that are active, and pays the 

cost c.  

 

3.2        Networks and connectivity 

 We consider the three five-player networks (gO, gG, and gP – Orange, Green and Purple, 

respectively) presented in Figure 1. Since each of gG and gP can be obtained by deleting a single 

link from gO, the Orange network has a higher connectivity than the other two. We analyze the 

cases of both complete and incomplete information about the network structure.  

 

Figure 1 about here 

                                                           
9 In a recent paper, Kovarik et alii (2011) analyze experimental anti-coordination games played in fixed networks. 
They find that the more-connected players are able to impose their preferred Nash equilibrium, which they 
rationalize using the fact that highly-connected players tend to have more stable best-responses. 
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 For each player i ∈ N = {1, 2, 3, 4, 5}, let Ni ⊂ N be the set of her neighbors in the 

realized network (gO, gG or gP). Player i’s action is denoted by xi ∈ {0,1}, where x = 1 indicates 

being active (“buy”), while x = 0 stands for being inactive (“not buy”). 

 

3.3       Complete information scenario 

There are five players arranged in one of the three networks defined in Figure 1. Initially, 

one of the three networks (gO, gG, or gP) is randomly drawn with equal probability. Each player 

knows which network is in force (and knows it is the same network for all players) and the node 

(A, B, C, D, or E) to which she is assigned. Hence, she also knows her own degree (the number 

of neighbors she has, either 1, 2 or 3). With this information in hand, each player decides 

whether to be active (action 1) or inactive (action 0). Let a strategy profile be s = (sA, sB, sC, sD, 

sE), where si, with i ∈ {A, B, C, D, E} denotes the probability that a player in position i is active. 

We first examine the case of strategic substitutes. Player i’s payoffs (assuming c = 1/2) 

are defined in equation (1): 

iNj jii xxxI
i

⋅−≥+= ∑ ∈
)()1( 2

1π      (1) 

where I(.) is an indicator function that takes value 1 if 1≥+∑ ∈ iNj ji xx , and that takes value 0 

otherwise. In Propositions 1, 2 and 3 we characterize the equilibria for the Orange, Green and 

Purple networks, respectively. All proofs of the propositions in this paper are in Appendix C. 

 

Proposition 1. Consider the scenario of strategic substitutes and complete information with 

network gO.  

a) There are three pure-strategy Nash equilibria: (1,0,1,0,1), (1,0,0,1,0), and (0,1,0,0,1).  

b) The following strategy profiles, where agents use mixed strategies, are Nash equilibria: 

)1,0,1,5.0,( 1
5.0

AmAm −−  with ]5.0,0(∈Am , ),5.0,1,0,1( 1
5.0

Em m
E−−  with mE ∈(0,0.5] , 

(0,0.5,0.5,0,1), (1,0,0.5,0.5,1), and (0,0.5,0,0.5,0). 

c) There are no other Nash equilibria. 
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Proposition 2. Consider the scenario of strategic substitutes and complete information with 

network gG.  

a) There are four pure-strategy Nash equilibria: (1,0,1,0,1), (0,1,0,1,0), (1,0,0,1,0), and 

(0,1,0,0,1). 

b) The following strategy profiles, where agents use mixed strategies, are Nash equilibria: 

)1,0,1,5.0,( 1
5.0

AmAm −−  with )5.0,0(∈Am , ),5.0,1,0,1( 1
5.0

Em m
E−−  with mE ∈(0,0.5] , 

(0.5,0.5,0,0.5,0.5), (0.5,0.5,0,1,0), (0.5,0.5,0,0,1), (0,1,0,0.5,0.5), (1,0,0,0.5,0.5), 

(0,0.5,0.5,0,1), and (1,0,0.5,0.5,0). 

c) There are no other Nash equilibria. 

 

Proposition 3. Consider the scenario of strategic substitutes and complete information with 

network gP.  

a) There are three pure-strategy Nash equilibria: (1,0,1,0,1), (1,0,1,1,0), and (0,1,0,0,1). 

b) The following strategy profiles, where agents use mixed strategies, are Nash equilibria: 

)1,0,1,5.0,( 1
5.0

AmAm −−  with )5.0,0(∈Am , ),5.0,1,0,1( 1
5.0

Em m
E−−  with mE ∈ (0,0.5] , 

(0,0.5,0,0.5,0), and (1,0,1,0.5,0.5).  

c) There are no other Nash equilibria. 

 

   We next examine the case of strategic complements.  Consistent with our experimental 

design (cf. Section 4), we assume α = 1/3. Hence, player i’s payoffs (assuming c = 1/2) become: 

i

x

i xiNj j ⋅−= ∑ ∈ )( 2
1

3π      (2) 

In Proposition 4 we characterize the equilibria for the Orange network, and in Proposition 5 we 

characterize the equilibria for the Green and Purple networks.  

 

Proposition 4. Consider the scenario of strategic complements and complete information with 

network gO.  

a) There are two pure-strategy Nash equilibria: (0,0,0,0,0), and (0,1,1,1,0). 

b) The following strategy profiles, where agents use mixed strategies, are Nash equilibria: 

(0,1,0.5,0.5,0), (0,0.5,1,0.5,0), (0,0.5,0.5,1.0), and (0,0.75,0.75,0.75,0). 

c) There are no other Nash equilibria. 
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Proposition 5. Consider the scenario of strategic complements and complete information. If the 

network is either gG or gP, there is a unique Nash equilibrium: (0, 0, 0, 0, 0).  

 

 

3.4 Incomplete-information scenario 

 Again, there are five players arranged in one of the three networks defined in Figure 1. 

We modulate the connectivity through a parameter p ∈ (0,1). Initially one of the three networks 

(gO, gG, or gP) is randomly drawn, where Pr(gO) = p and Pr(gG) = Pr(gP) = (1-p)/2.  Note that, 

since gO is more connected than gG and gP, by increasing parameter p we increase the expected 

connectivity of the network. In our design, in the sessions with incomplete information either  

p = 0.2 or p = 0.8. 

The five players are then randomly allocated (with uniform probability) to the five nodes 

of the resulting network. Players are not informed about which network has been drawn, but they 

know their own degree (the number of neighbors they have, either 1, 2 or 3). With this 

information in hand, each player decides whether to be active (action 1) or not (action 0).10 Since 

each player only learns her degree (and the prior p), she can only condition her behavior on this 

information. In this sense, a (symmetric) strategy profile is represented by a vector s = (s1, s2, s3), 

where sk ∈[0,1] is the probability such that the agent with degree k∈{1,2,3} chooses action 1. 

We first consider strategic substitutes, with payoffs defined in equation (1) above.  In the 

following proposition we analyze the equilibria. 

 

  

                                                           
10 Note that connectivity is modulated in a different way in the examples proposed by Galeotti et alii (2010). In their 
case, each potential link between two players is formed independently with probability p (Erdös-Rényi network), so 
several different networks can arise. Our approach leads to the same theoretical predictions (meaning that players 
use threshold strategies and that the effects of connectivity go in opposite directions in strategic substitutes and 
strategic complements), but is considerably easier to understand for experimental participants.  
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Proposition 6. Let p ∈(0,1). In the scenario of strategic substitutes and incomplete information 

there exists an equilibrium (1,s2
* (p),0), where 

��∗��� =
	


�



� 0								��	� ≤ 12
1 − �2 − 3�1 − � 		��	 12 < � < 23

1							��	� ≥ 23	
� 

Moreover, there are no other pure-strategy equilibria and, if p ≥ 0.2, the equilibrium (1,s2
* (p),0)

is unique.11 

 

The proof is in Appendix C. Note that function s2
* ( p) is continuous and (weakly) 

increasing in p.  Hence, our equilibrium is in line with Galeotti et alii’s (2010) general result: In 

the case of strategic substitutes, there exists an equilibrium that involves monotone (symmetric) 

strategies where the equilibrium actions are non-increasing in players’ degrees; and by increasing 

the connectivity, the set of degrees for which players are active increases. 

 We next turn to the case of strategic complements, with payoffs defined in equation (2) 

above. In the following proposition we characterize the equilibria. 

 

Proposition 7. Let ,32/)13105(' +=p  and consider the scenario of strategic complements and 

incomplete information.12 If p<1/2, there is a unique equilibrium: (0, 0, 0). If ,2/1≥p  there are 

three equilibria: (0, 0, 0), (0, 1, 1) and )),(),(,0( ,
3
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The proof is in Appendix C.  We observe that by increasing the connectivity from p < 1/2 

to p ≥ 1/2, there are new equilibria in which the set of degrees with which players are active 

                                                           
11 For p < 0.2, additional mixed-strategy equilibria can be found. 
12 Note that p’ = 0.72647 > 1/2 and that both s2’(p) and s3’(p) are continuous for p > 1/2.  
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increases.  In equilibrium, the probability that a player is active is increasing in the degree, in line 

with the Galeotti et alii (2010) results. 

 

4. Experimental design 

4.1 Predictions  

In our design, we vary the information scenario (complete and incomplete), the game 

(substitutes and complements) and, in the incomplete information scenario, the connectivity (p = 

0.2 or p = 0.8). Based on the results of Propositions 1-7, we summarize the equilibrium 

predictions for each case in Tables 1 and 2. In the case of complete information, given the 

considerable multiplicity of mixed-strategy Nash equilibria, in Table 1 we only report the pure-

strategy ones.  

 

Table 1 and Table 2 about here 

 

Regarding the case of complete information and strategic substitutes (Table 1), there are 

equilibria in which two nodes are active and equilibria in which three nodes are inactive. The 

former are more efficient by having the lowest total cost, but the latter are stochastically stable.  

 With incomplete information and strategic substitutes (Table 2), the theoretical prediction 

is that players with low degree will be active and those with high degree will be inactive; 

furthermore, the threshold should increase (from degree 1 to degree 2) when we increase p from 

0.2 to 0.8. With incomplete information and strategic complements, the theoretical prediction is 

that no one will be active when p = 0.2, but that there is room for players with high degree 

(degrees 2 and 3) to be active when p = 0.8.13  We can also compare across strategic substitutes 

and complements. Players with low degree (degree 1) should always be active with substitutes, 

but should never be active with complements.  Moreover the equilibrium moves in different 

directions for substitutes and complements when p increases; with substitutes the prediction is 

that an increase in p increases the threshold, while with complements the prediction is reversed. 

Comparing across Tables 1 and 2, it becomes clear that the equilibrium multiplicity with 

complete information and strategic substitutes is fully resolved with incomplete information; this 

                                                           
13 New equilibria appear such that the threshold can decrease from degree 3 to degree 1. 
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is also the case with strategic complements and p = 0.2, but not with p = 0.8, where multiple 

equilibria remain. 

 

4.1 Implementation and experimental treatments 

 We conducted our computerized experimental sessions at the University of Innsbruck in 

March of 2011, using the software zTree (Fischbacher 2007). A total of 240 undergraduate 

students from various academic disciplines were recruited with the help of ORSEE (Greiner 

2004) from a pool of 3,800 students registered for experiments. No subject was allowed to 

participate in more than one session. We had 12 sessions with 20 participants in each. There 

were two sessions and thus 40 subjects in each of our six treatments that were as follows:  

• strategic substitutes with complete information; 

• strategic complements with complete information; 

• strategic substitutes with incomplete information and p = 0.2; 

• strategic substitutes with incomplete information and p = 0.8; 

• strategic complements with incomplete information and p = 0.2; 

• strategic complements with incomplete information and p = 0.8.  

In each session, the 20 participants were split randomly into two matching groups of 10 

subjects, and this was common information to the participants.  In each of 40 periods (plus five 

unpaid trial periods), the members of a matching group were randomly assigned to groups of five 

subjects who played the stage game of a given treatment.  On average, a session lasted about 80 

minutes, with an average payoff of 16 Euro per subject (including a 5 Euro show-up fee). 

 The experimental instructions are provided in Appendix D.14 In treatments with complete 

information, participants were always informed at the beginning of a period about the chosen 

network (which was re-drawn each period) and the participant’s position in it. At the end of a 

period, each person received feedback about her neighbors’ decisions and the payoff resulting 

from her choice and those of her neighbors. Before a new period began, participants also 

received the respective feedback for all prior periods. In treatments with incomplete information, 

subjects were informed about their degree at the beginning of a period. At the end of the period, 

each person received information about the actual network that was in effect, her position in it, 

                                                           
14 We only provide the instructions for “complete information – substitutes” and “incomplete information – 
complements – p = 0.8”. The remaining cases are analogous.  
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the number of her neighbors who chose to be active, and the payoff resulting from her choice and 

those of her neighbors.15 

Since behavior could potentially be affected by risk preferences, we also tested for these 

after the 40 rounds of play, using the method described in Charness and Gneezy (2010). Each 

person received an endowment of 100 tokens and could invest as many of these as desired in a 

risky asset. This asset had a 50 percent chance of success, in which case it paid 2.5 times the 

number of tokens invested; the investment was lost if the asset failed. Whatever was not invested 

was kept. This method is easy for people to comprehend and gives a specific risk parameter, 

except for people who invest 100, since both risk-neutral and risk-seeking subjects should fully 

invest.16 

 

5. Results 

5.1       Measurement 

The data are analyzed with an econometric model to control for robustness of our stated 

results. We estimate the probability of being active as a logistic function of explanatory variables 

listed below. We have arranged the data as a panel where the unit of observation is a participant 

who is observed for 40 periods. The models are estimated using random effects and are shown in 

Appendix A.  

For the analysis of the data from complete information sessions, the explanatory variables 

of the econometric model are period, dummies for player position and network, all interactions 

between period and these dummies, and the measured level of risk aversion. One model is 

estimated using data from sessions with substitutes and another model is estimated using data 

from sessions with complements. The results are summarized by the marginal probabilities 

computed relative to position A in each network (see Table 4 below and the underlying models 

in Appendix A). 

                                                           
15 Regarding the payoff transformations used in the sessions, during the experiment payoffs were given in ECUs 
(Experimental Currency Units). In order to facilitate calculations by the participants, in the cases of strategic 
substitutes, the payoffs in ECUs corresponded to those in equations (1) and (2) of section 3, but multiplied by 100. 
In the cases of strategic complements, in addition to multiplying payoffs by 100, we also added 50 ECUs to all the 
payoffs in order to avoid the possibility of losses (so that we do not need to control for loss aversion). Note that 
these linear transformations on the payoffs have no effects at all on the equilibrium predictions. 
16 Previous work has indicated that the proportion of risk-seeking people in experiments is 10 percent or less (e.g., 
see Holt and Laury, 2002). 
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For the analysis of the data with incomplete-information sessions, the explanatory 

variables of the econometric model are period, a dummy for the connectivity (with p = 0.2 as 

benchmark), dummies for a subject’s degree and all interactions across these variables; moreover 

each model is estimated a second time adding the measured level of risk aversion as an 

explanatory variable. The results of this model are summarized by the marginal probabilities 

computed with respect to connectivity, degree, and risk aversion (see Table 6 below and the 

underlying models in Appendix A). 

 

5.2       Complete information 

Table 3 presents the summary statistics for behavior in the three networks under complete 

information and Figure 2 shows the evolution per network and position across the 40 rounds.17 

 

Table 3 about here 

 

For strategic substitutes the main observation is that the equilibrium where A, C and E 

are active, and B and D inactive (denoted ACE/BD henceforth) is focal in all networks. We 

observe that participants in positions A and E are active more than 90 percent of the time in all 

networks.  Subjects in position C are active almost 70% of the time (note that position C has 

degree 2, in comparison to positions A and E, which have degree 1).  Participants in positions B 

and D are inactive with a frequency higher than 80 percent in all networks. Averaging across 

nodes the absolute difference between the theoretical prediction and the observed behavior, 

individual play is consistent with the equilibrium ACE/BD in 87 percent of all cases. There is 

clearly no support for any of the other equilibria, so that it appears that the problem of 

equilibrium multiplicity is not present in a behavioral sense. In 52.5 percent of the observations 

the groups coordinate on this equilibrium (with a 54.1 percent rate of perfect coordination across 

all equilibria). 

 

Figure 2 and Table 4 about here 

 

                                                           
17 There are eight subjects in each network position in this treatment. Thus, the maximum number of observations 
behind each circle in Figure 2 is eight. 
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The econometric analysis confirms our previous impressions. Table 4 provides, for each 

network, the estimated probability that the player in position A chooses active (Prob_pA) and the 

estimated difference of probabilities of choosing active between the remaining positions and 

position A (Dif_pi-pA). In all networks with strategic substitutes the estimated probability of 

position A choosing active is close to 100 percent and the differences from position E are never 

significant (see row Dif_pE-pA). Moreover positions B and D have a significantly lower 

probability of being active in all cases, with a difference of more than 90 percent.  Position C has 

a significantly lower probability than position A in networks Orange and Green, but the 

difference is much lower (around 20 percent) and hence, being active is still the most likely 

outcome in position C.  Thus, the equilibrium ACE/BD prevails in all networks. In Figure B.1 (in 

Appendix B), we observe that this regularity is present in all groups of subjects participating in 

the experiment. 

Note that, across all different possible equilibria, ACE/BD is the equilibrium that 

involves a maximum number of active players; i.e. it is not efficient, since three people pay the 

cost instead of two, with complete coverage in both cases (the net social benefit is 3.5, compared 

to the social benefit of 4.0 with only two purchases). However, in this context a deviation from 

the selected equilibrium is much less harmful (and thus safer) then a deviation from the efficient 

equilibrium. To see this, consider any of the three efficient networks and the inefficient (but 

stable) equilibrium ACE/BD. If any player who is active, i.e. A, C or E, deviates to inactive, only 

the deviating player incurs a loss (of 1/2). On the other hand, in the efficient equilibrium more 

people benefit from an active agent, so that a deviation to inactive is more costly. For example, 

consider the equilibrium BE/ACD: If B deviates, each of A, B and C incur a loss of 1/2; 

therefore, a deviation is more deleterious on average.  

Summarizing, there is a trade-off between efficiency and the cost of a mistake (stability). 

The efficient equilibrium results in a higher cost of agents’ errors. Interestingly, the equilibrium 

ACE/BD is also the stable one in a (perturbed) dynamic set-up.18 Boncinelli and Pin (2011) show 

that in Best Shot Games, the equilibrium that involves a maximum number of active players is 

the unique stochastically stable one. This result applies directly to our set-up. 

                                                           
18 It is the only stable one in the Orange and Green networks, and there is an additional stable equilibrium in the 
Purple network: ACD/BE (which is also inefficient).  
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For complements (see the lower part of Figure 2 and the lower part of Table 3), we see an 

impressive rate of play (96 percent) consistent with the unique equilibrium (nobody is active) in 

the Green and Purple networks.19 The Orange network admits two equilibria, with either three 

active players (B, C, and D) or none. Here the play resembles the former equilibrium, as players 

B, C, and D are active about 74 percent of the time, and players A and E remain inactive over 95 

percent of the time. This is also the more efficient equilibrium, since players B, C, and D each 

earn a positive amount (1/6). Overall, the rate of play consistent with this equilibrium is over 90 

percent. All the five agents jointly coordinate on the efficient equilibrium 42 percent of the time. 

Thus, we find strong support for the theoretical predictions, with successful coordination by 

players at three nodes to achieve the efficient equilibrium in the one case where this can involve 

a profit.  Refining this analysis at the group level (see Figure B2 in Appendix B), we observe that 

three of the four matching groups coordinate quite well on the efficient equilibrium; however, 

the other group, although it first tries to coordinate on this equilibrium, finally fails to do so: in 

the last periods all subjects choose inactive. In general we conclude that the majority of groups 

playing in the Orange network coordinate on the efficient equilibrium (in which subjects with 

more than one link become active). 

The marginal effects in Table 4 (computed by estimating the econometric model in 

Appendix A) confirm our previous impressions. In all networks the estimated probability of 

position A choosing active is close to 0 and the differences to position E in the Orange network 

and to positions B, C, D, and E in the other networks are never significant. In the Orange 

network, positions B, C and D show a much higher probability of being active (respectively 83, 

73 and 80 percent, and significant at the 1% level).20 Interestingly this equilibrium is very robust 

since it is not only a Nash equilibrium but also a strong Nash equilibrium (it is immune to 

deviations from any coalition of players). In contrast, the other equilibrium (all inactive) is 

clearly not strong Nash. We summarize these findings in our first result: 

 

RESULT 1: In the game of substitutes, agents’ behavior in all three networks is 

consistent with the inefficient, but stochastically-stable and relatively riskless, 

equilibrium ACE/BD. In the game of complements, players in the Green and Purple 

                                                           
19 Of course, A and E will never wish to be active, since the maximum possible gain is less than the cost. 
20 A Wald test cannot reject the null hypothesis that Dif_pB-pA = Dif_pC-pA = Dif_pD – pA. This suggests that players 
B, D, and D are equally likely to play the efficient strategy. 
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networks play in accordance with the unique equilibrium. In the Orange network subjects 

behave consistently with the efficient equilibrium BCD/AE.  

 

Note the difference in outcomes between the two treatments: while in substitutes subjects 

select the inefficient equilibrium, in complements they select the efficient one. We can explain 

this difference by looking at the relation between efficiency and private incentives.  In the game 

of substitutes, efficiency is achieved when players B and D are active; however, they strictly 

prefer the inefficient equilibrium ACE/BD that provides them a higher payoff. So they can 

implicitly coordinate on inactivity in order to force players A, C and E to be active.21 With 

complements the private incentives are more in line with efficiency, given that the efficiency 

gains are earned from those subjects who are active in producing the efficient outcome.   

We also explore whether equilibrium play becomes more frequent over time.  In Figure 3, 

we plot across periods the average frequency of equilibrium play. At each period, we measure 

the frequency of groups such that all the members are coordinated on an equilibrium. We 

observe that this frequency has a positive tendency over time. For substitutes (complements) the 

correlation coefficient between the period and the average frequency of equilibrium play is 0.724 

(0.622), with a significance level of one percent in both cases. In other words, coordination 

failure becomes much less frequent in later periods.  

 

Figure 3 about here 

 

Finally we look at the role of risk aversion. Examining all previous econometric results, 

we can see that they are robust to the inclusion of risk aversion. Theoretically we could expect 

that in both treatments, a greater degree of risk aversion is correlated with less activity in the case 

of strategic complements and more activity in the case of strategic substitutes. In Appendix A, 

we see that the marginal effect of risk aversion on the probability of being active is significant 

(and in the right direction) only for complements.  This yields our next result: 

                                                           
21 The reverse is also true: players A, C and E could implicitly coordinate on the inactivity to force players B and D 
to be active. But the implicit coordination could be more difficult to get across three subjects than across two, as 
evidence from coordination games suggests that coordination is less likely in larger groups (Weber, 2006).  Note 
that in this set-up (strategic substitutes with complete information), the more-connected players tend to have more 
stable best-responses, as defined by Kovarik et alii (2011), which also indicates that the preferred equilibrium of the 
more-connected agents is played. 
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RESULT 2: Both treatments of substitutes and complements display increasing 

coordination over the time. The effect of the level of risk aversion is small and significant 

only for complements. 

 

5.3       Incomplete information 

Table 5 presents the summary statistics for behavior with incomplete information and 

strategic substitutes or complements under each probability regime. In strategic substitutes we 

observe that, in each case (p = 0.2 and p = 0.8), modal play coincides with play in the unique 

equilibrium. The proportions are 94.81 percent, 71.84 percent and 98.91 percent of the time, 

respectively, for degree 1, 2 and 3 when p = 0.2, and 92.90 percent, 59.52 percent and 89.93 

percent when p = 0.8. The correspondence is excellent for degrees 1 and 3, but less so for degree 

2. Overall, 87.56 percent of all choices were consistent with equilibrium play when p = 0.2 and 

84.00 percent when p = 0.8. 

 

Table 5 and Table 6 about here 

 

This descriptive evidence is confirmed by the econometric analysis that is summarized in 

Table 6. It reports marginal effects (full estimations are in Appendix A). First, regarding the 

effect of connectivity within a particular degree (recall that the Orange network has higher 

connectivity, so the higher value of p implies higher connectivity), the behavior of players with 

degree 1 does not significantly differ across the values of p. For players with degree 2, the 

probability of being active is significantly higher with the higher value of p, with a marginal 

effect of 0.547 (in the model including controls for risk aversion). Finally, the probability of 

being active for players with degree 3 is marginally-significantly higher with the higher value of 

p, but the marginal effect is close to 0 (it is 0.024). Hence, our data are quite consistent with the 

equilibrium prediction. 

Next we consider the effect of having different degrees. Having degree 2 significantly 

reduces the probability of being active with respect to degree 1, but the decrease is quite large 

when p = 0.2 (the marginal effect is -0.816), and much smaller when p = 0.8 (the marginal effect 

is -0.273).  People with degree 3 have a significantly lower probability of choosing to be active 
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than do people with degree 1, with a very large difference both when p = 0.2 (the marginal effect 

is -0.980), and when p = 0.8 (the marginal effect is -0.961).  Comparing degree 3 to degree 2 we 

find a significantly lower probability of choosing to be active for people with degree 3, with a 

large difference when p = 0.8 (the marginal effect is -0.687), and a much lower one when p = 0.2 

(the marginal effect is -0.164).  All of the differences across the two probability values are 

qualitatively in the direction of the theoretical prediction.  Hence, our analysis suggests that the 

expected effects of connectivity and degree are observed in the lab. The first two columns in 

Table 6 show that including risk aversion as an independent control variable leaves the estimated 

marginal effects of different degrees and connectivity almost identical. The risk-aversion 

parameter itself shows that more risk-averse subjects are less likely to be active, although the 

marginal effects are only marginally significant or non-significant.  We summarize these 

findings in the following result: 

 

RESULT 3: In the game of strategic substitutes under incomplete information: a) 

subjects play consistently with the unique equilibrium; b) the probability of being active 

is decreasing with the degree and increasing with the connectivity.  

 

One reason why subjects with degree 2 play equilibrium strategies less frequently than 

subjects with degrees 1 and 3 may be due to the fact that they have a lower cost from deviating: 

(I) Consider the case p = 0.2, where players with both degree 2 and degree 3 are inactive in 

equilibrium. A player with degree 3 has more chances of being linked with an active player than 

does a player with degree 2 (i.e. the cost of deviation for a player with degree 2 is lower).22 In 

this sense, if the frequency of deviation is inversely related to the cost of deviation, we expect 

more deviations of players with degree 2. (II) Consider the case p = 0.8. Here players with both 

degree 2 and degree 1 are active in equilibrium. Similarly, in this case, the cost of deviating to 

become inactive is lower for players with degree 2 than for players with degree 1 (a deviating 

                                                           
22 In this case, the expected value of being inactive in equilibrium for player with degree 3 is 100 (note that he is 
always linked with a player with degree 1) whereas the expected value of being inactive for a player with degree 2 is 
lower than 100. Note that a deviating player (with degree either 2 or 3) always earns 50. 
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player with degree 2 is more likely to be linked to an active player), and we could expect more 

deviations from them.23 

Now consider the case of strategic complements. When p = 0.2, there is a unique 

equilibrium (all inactive), and play by people with degrees 1 and 2 is strongly consistent with the 

equilibrium prediction (98.03 percent and 82.11 percent). However, subjects with degree 3 are 

inactive only a bit more than half the time (55.65 percent), the greatest deviation from 

equilibrium play that we see in all of our treatments. Still, in the aggregate, individual play is 

consistent with the equilibrium prediction six out of seven times. When p = 0.8 there are three 

equilibria, with two of these in pure strategies.  Players with degree 1 are never active; in one 

pure-strategy equilibrium, players with both degrees 2 and 3 are active, while in the other pure-

strategy equilibrium these players are inactive; in other words, it is worthwhile for players of 

higher degrees to coordinate on activity. The high-activity equilibrium is the efficient one, with 

players of higher degree making positive profits in expectation, but it is also riskier.  Perhaps the 

tension between these two equilibria leads to only two-thirds of the overall choices being 

consistent with this equilibrium. 

Attending to the econometric model on the right hand side of Table 6, regarding the 

effect of connectivity within a particular degree, the behavior of players with degree 1 does not 

significantly differ across the values of p. For players with degrees 2 and 3, the probability of 

being active is significantly higher with the higher value of p. Most likely this reflects the 

presence of other equilibria involving activity when p = 0.8, so that it appears that some players 

try to coordinate, although without much success, on the efficient equilibrium. The results are 

robust to the inclusion of risk attitudes, as the marginal effects are very small and insignificant. 

Thus, risk attitudes do not appear to play much of a role here.  

Concerning the effect of the degree we see that a person with degree 2 is significantly 

more likely to be active than a person of degree 1, but the increase is considerably higher with p 

= 0.8 than with p = 0.2 (respectively the marginal effects are 0.153 and 0.041). This is 

qualitatively in the direction of the theoretical prediction (in contrast to the case p = 0.2, p = 0.8 
                                                           
23 In this case, a player with degree 2 is located in the Orange network with a probability of 2/3 and in this case, if 
she deviates, she earns 0, whereas with a probability 1/3 if she deviates, she earns 100. On the other hand, if a player 
with degree 1 deviates, with a probability of 18/21, she earns 0 and with a probability of 3/21, she earns 100. Note 
that a non-deviating player (with degree 1 or 2) always earns 50. Hence, if a player with degree 1 deviates she 
switches a fixed payoff of 50 to an expected payoff of 100*3/21; whereas if a player with degree 2 deviates, she 
switches a fixed payoff of 50 to an expected payoff of 100*1/3. Thus the cost of deviating is lower for a player with 
degree 2 than for a player with degree 1. 
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allows for players with degree 2 to be active in equilibrium). Perhaps unsurprisingly, since 

players of degrees 2 and 3 make the same choice in either of the pure-strategy equilibria in this 

environment, the same relationship holds between subjects with degrees 1 and 3, with a higher 

marginal effect (0.562 versus 0.328) when p = 0.8. Finally we find significant evidence in both 

treatments that players of degree 3 are more active than players of degree 2. This evidence, not 

predicted by theory, could be explained by the greater incentive for players of degree 3 to get 

coordination on the efficient equilibrium. We summarize this evidence in our next result. 

 

RESULT 4: In the game of strategic complements under incomplete information: a) with 

lower connectivity the modal play coincides with the unique equilibrium; b) the 

probability of being active increases with the degree and connectivity. 

 

We now analyze the evolution of average behavior across the 40 periods. Figure 4 

suggests that, for substitutes, behavior is quite stable for players with degrees 1 and 3 (and very 

close to the equilibrium prediction). The frequency of choosing to be active for players with 

degree 2 is always below 1/2 when p = 0.2, and mostly above 1/2 when p = 0.8, which 

qualitatively follows the equilibrium prediction, although deviations are observed. We note that 

when p = 0.8, players of degree 2 display a convergence to the equilibrium. For complements the 

pattern is revealing. It seems that subjects with higher degrees attempt to coordinate on being 

active and making some profits; this is particularly true for players of degree 3. But this more 

efficient play erodes over time, with low or very low rates of activity for everyone by the end of 

the session. So it seems that the inefficient (but safe) equilibrium would prevail in the long run. 

Our interpretation is that coordination problems lead participants to eventually play the risk-

dominant equilibrium. In any event, modal play (in the aggregate) corresponds to this no-activity 

case. 

 

Figure 4 and Figure 5 about here 

 

In Figure 5 we examine whether there is a trend over time toward equilibrium play. We 

plot across periods the average frequency of equilibrium play. At each period, we measure the 

frequency of groups such that all the members are coordinated on an equilibrium. We observe 
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that this frequency is significantly positive over time, which suggests movement towards 

equilibrium.24  We can state our final result: 

 

RESULT 5: a) When players face a game of strategic substitutes with low connectivity, 

individual play and the level of coordination is stable over time. With higher connectivity 

there is a trend to the unique equilibrium and an increasing level of coordination. b) 

When players face a game of strategic complements, individual play with low 

connectivity converges to the unique equilibrium with an increasing level of 

coordination; individual play with higher connectivity converges to the inefficient 

equilibrium with an increasing level of coordination. 

 

6. Discussion 

In this section, we address the extent to which the experimental data fits the theoretical 

prediction, the equilibrium selection in the different scenarios and how convergence to the 

equilibrium evolves over time. 

 

6.1 Conformance of the experimental results to the theoretical predictions 

Our experimental results are quite consistent with the theoretical predictions for behavior 

in network games. These results not only provide very strong qualitative support, but also 

surprisingly strong quantitative support. With complete information, subjects on average make 

choices that correspond to a specific equilibrium 87 percent of the time when the game involves 

strategic substitutes, even though there are theoretically multiple equilibria for each of the three 

networks. When the game involves strategic complements, play corresponds to the same specific 

equilibrium 96 percent of the time when there is a unique equilibrium and 74 percent of the time 

when there are two equilibria (overall, more than 90 percent of the time). In this latter case, the 

equilibrium is the efficient one. If we consider only the last 10 periods of the sessions, play 

corresponds to the efficient equilibrium in the Orange network 81 percent of the time, and to the 

unique equilibrium in the other networks a full 100 percent of the time (see Table 7). 

                                                           
24 For substitutes the correlation coefficient between the period and the average frequency of equilibrium play is 
0.233 (and non significant) with p = 0.2 and it is 0.594 (with a significance level of one percent) with p = 0.8. For 
complements the correlation coefficient between the period and the average frequency of equilibrium play is 0.926 
with p = 0.2 and 0.639 with p = 0.8, with a significance level of one percent in both cases. 
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Table 7 about here 

 

With incomplete information and substitutes, play is consistent with the unique 

equilibrium 89 percent of the time when p = 0.2 and 81 percent of the time when p = 0.8. These 

percentages are relatively low for subjects with degree 2, as there is a substantially lower 

expected cost if one deviates from equilibrium play. With incomplete information and 

complements, play is consistent with the unique equilibrium 79 percent of the time when p = 0.2 

and with the same equilibrium 72 percent of the time when p = 0.8 and there are multiple 

theoretical equilibria (in this case the equilibrium is inefficient). However, these rates with 

complements are much higher if we consider only the last 10 periods of the sessions, as there is 

strong convergence to this equilibrium over time (95 percent and 94 percent consistency for p = 

0.2 and p = 0.8, respectively; see Table 7). These results with incomplete information are 

particularly striking, given the far greater complexity of this environment.  

In addition, the effects of degree and connectivity on activity are entirely consistent with 

the theoretical predictions. Proposition 6 predicts a negative relationship between degree and 

activity with strategic substitutes, while Proposition 7 predicts a positive relationship with 

strategic complements. Furthermore, activity rates for agents with degrees 2 or 3 are higher for 

both complements and substitutes with higher connectivity (agents with degree 1 should never be 

active with complements for either p-value, but should always be active with substitutes for 

either p-value). Indeed, these qualitative predictions are borne out by the data, as can be seen in 

Table 5.25 Thus, we find that the main regularities derived from theory (in line with Galeotti et 

alii  2010), both within treatments and across treatments are confirmed by the experimental data.  

 

6.2 Equilibrium selection 

A key issue for policy is that of equilibrium selection, where theory is typically silent and 

experimental work is particularly useful. In our setup, we have multiplicity of equilibria in five 

                                                           
25 Summarizing, the activity rates for degrees 1, 2, and 3, respectively, the rates with substitutes drop from 95 to 28 
to 1 percent with p = 0.2 and from 93 to 60 to 10 percent for p = 0.8. The activity rates with complements increase 
from 2 to 18 to 44 percent with p = 0.2 and from 2 to 31 to 51 percent for p = 0.8. Concerning connectivity, the 
comparisons with substitutes across p = 0.2 and p = 0.8 are 28 versus 60 percent for degree 2 and 1 versus 10 
percent for degree 3; the respective comparisons with complements are 18 versus 31 percent for degree 2 and 44 
versus 51 percent for degree 3. 
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scenarios:26 (i) complete information + substitutes + Orange network, (ii) complete information 

+ substitutes + Green network, (iii) complete information + substitutes + Purple network, (iv) 

complete information + complements + Orange network, and (v) incomplete information + 

complements + p = 0.8.  While the inefficient equilibrium (which is less risky and stochastically 

stable) is prominently played in the lab in cases (i), (ii), (iii) and (v), we observe that most groups 

adhere to the efficient equilibrium in case (iv).  

These results raise the question of what reasons lie behind the observed asymmetry 

between complete and incomplete information in the case of complements –i.e., between cases 

(iv) and (v)– that is not addressed by the theory (and so is behavioral in nature). Note that in both 

cases, there is an efficient equilibrium (where players with degrees 2 and 3 are active) and an 

inefficient one (where all players are inactive). However, if subjects know with certainty that 

they are in the Orange network –case (iv)– , they mostly play the efficient equilibrium whereas, 

if we introduce a little bit of uncertainty –case (v)– and they are in the Orange network with high 

probability (p = 0.8), the pattern of play converges to the inefficient equilibrium.27 Hence, 

stochastic stability does not work to capture these differences in behavior (in both cases it would 

select the inefficient equilibrium). A closely related equilibrium concept proposed by Charness 

and Jackson (2007), that relies on stochastic stability but considers more sophisticated players 

(robust belief equilibrium), does not capture these observed differences in behavior.28 

In order to find a logic that explains the sharp difference in behavior across both 

scenarios, we need to rely on bounded memory (or rationality) and the ability of agents to be 

                                                           
26 The theoretical multiplicity problem is not (behaviorally) present with complete information. Even though there 
are at least three equilibria for each network in the case of strategic substitutes, only one of these receives any 
support. This appears to be the result of pragmatic decision-making:. While the ACE/BD equilibrium provides a 
slightly smaller social surplus than those with only two active players (3.5 versus 4.0), it is less risky to be active in 
the ACE/BD network. With respect to strategic complements, only the Orange network has multiple equilibria. In 
this case, the efficient equilibrium is reached in three of the four matching groups. 
27 Although, in the first 10 periods, the activity rate for subjects with degree 2 is 55 percent and an impressive 89 
percent for subjects with degree 3, this decreases precipitously to 4 percent and 15 percent, respectively, in the last 
10 periods. Thus, the ambiguity regarding one’s position in the network appears to erode one’s belief in the 
possibility of coordination, so that the initial optimism about coordination on the efficient equilibrium does not last. 
28 In a robust-belief equilibrium, basically, agents incorporate the possibility that others make errors in their best 
responses. This assumption may reduce the number of absorbing sets or the number of states in an absorbing set and, 
as a consequence, the stochastically-stable states can change. However, in our setup, both in incomplete and 
complete information (with complements), this refinement does not cause any reduction in the number of absorbing 
sets nor in the number of states in each absorbing set and, therefore, the robust-belief equilibrium and the 
stochastically- stable state coincide: no one becomes active. 
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forward looking (at least to some extent).29 Regarding bounded memory and rationality, we can 

observe that, if players are not completely Bayesian and update their payoff using past 

experience, in case (v) the efficient (and risky) equilibrium is not an absorbing state. To see this, 

note that in this treatment (with incomplete information) subjects can get payoffs below the 

secure payoff of 50 provided by inactivity, even if all players are fully coordinated on the 

efficient equilibrium.30 If subjects have limited memory and update their expected payoffs with 

past (and recent) experiences, a few periods of experiencing payoffs below 50 suffice to move to 

coordination on the inefficient (and less risky) equilibrium (without the necessity of mistakes or 

mutations).31 Hence, when individuals are fully coordinated on the inefficient (and less risky) 

equilibrium, the bounded memory is not enough to move out from this equilibrium without the 

presence of mutations. This could explain why we observe the convergence to the inefficient 

equilibrium in the treatment with complements and p = 0.8 (incomplete information).   

However, in case (iv) –complete information– the efficient equilibrium is not affected by 

bounded memory, and it is absorbing. This happens because the efficient equilibrium is not risky 

(if players are not making mistakes) and, when individuals are fully coordinated on some 

equilibrium, individuals never experience payoffs below 50. Therefore, with complete 

information (in the Orange network) both equilibria are absorbing, which raises the question of 

why people coordinate more on the efficient equilibrium. We put forward two explanations: 

First, there is substantial evidence that people in experiments like efficiency/payoff 

dominance (e.g., Charness and Rabin 2002; Engelmann and Strobel 2004), particularly without 

uncertainty.32 Relatedly, note that in the Orange network the efficient equilibrium just requires 

the coordination of three individuals in a game with only two actions, and there is experimental 

evidence that shows that small groups of individuals coordinate more often on the efficient 

                                                           
29 Indeed, an estimation of an EWA learning model (Camerer and Ho, 1999) using our experimental data (not 
reported here, but available upon request) suggests that: (i) individuals consider the foregone payoffs as well as the 
realized ones in their updating process (they are not completely stuck to their strategy), and (ii) individuals use a 
limited number of past experience in their updating process. 
30 It could happen, for example, to a player with degree 3 when the Purple network is realized. 
31 Note that, even if p = 0.8, this is not a really unlikely event. In equilibrium, although for players with degree 3 it 
happens only six percent of the times, for players with degree 2 there is a 25 percent chance of payoffs below 50. 
With a bit of noise, this percentage rises rapidly. Moreover, we also observe evidence of this in the data. It seems 
that subjects skip from active to inactive after some experience of low payoffs. For example, if we look at the 
average payoff in the rounds before subjects skip from active to inactive, their payoffs are around 21-22 (50 is the 
sure payoff from inactivity). 
32 Under complete information, everyone knows that everyone else knows the network structure and one’s position 
in it (and with respect to the Orange network, knowing one’s degree is equivalent to knowing one’s position) and 
this induces a higher comfort level for making risky attempts at coordination. 
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equilibria than large groups, and that efficient coordination is more likely the fewer the number 

of available strategies (e.g., Weber, 2006; Feri, Irlenbusch and Sutter, 2010). Moreover, even 

though there is anonymity in both case (iv) and case (v), complete information has more of a feel 

of being in a known group, perhaps triggering a sense of group membership.33 In some sense, 

there may be a parallel with the effectiveness of anonymous communication in achieving the 

payoff-dominant equilibrium (Cooper, DeJong, Forsythe, and Ross, 1992; Charness, 2000).  

Here tacit ‘communication’ may be present with known positions, but not otherwise. 

A second, and complementary, explanation relies on the consideration that, to some 

extent, individuals are forward looking (i.e., not completely myopic), which may have a 

significant impact when studying stochastic stability, as proposed by Mengel (2011).34,35 For 

example consider a coordination game with three players, two actions and suppose that the 

efficient action is preferred only if all players are fully coordinated on it. These are the 

elementary ingredients of case (iv), in which the players with degrees 2 and 3 are those who can 

coordinate on being active.  

Consider first the traditional stochastic-stability analysis: If players are fully coordinated 

on the inefficient equilibrium, at least two mutations are needed to transit to the efficient 

equilibrium. On the contrary, if players are coordinated on the efficient equilibrium, one 

mutation is enough to transit to the inefficient one. Therefore the inefficient equilibrium is a 

stochastically-stable state. Suppose now that players are forward looking and believe that others 

are myopic. Assume first that there is full coordination on the inefficient state. If an agent 

mutates to the efficient action, the best response of a forward looking agent is to change her 

action, because she knows that the best response of the subsequent players will be to play the 

efficient action as well (provided there are two players playing it). Therefore one mutation is 

enough to move the system to the efficient equilibrium. With the same kind of reasoning we can 

state that one mutation is not enough to move the system from the efficient equilibrium to the 

inefficient one. Hence, the introduction of forward-looking considerations allows for the 

selection of the efficient equilibrium. 
                                                           
33 See, for example, Goette, Hufmann and Meier (2006), Charness, Rigotti, and Rustichini (2007) and Chen and Li 
(2009). 
34 Note that this presumes a different kind of sophistication for best-responders in the analysis of the stochastic 
stability than Charness and Jackson (2007): Instead of assuming that agents incorporate the possibility that others 
make errors in their best responses, it presumes that players are forward-looking but believe that others are myopic. 
35 In a recent experiment, Mantovani et alii (2011) show that, in a network formation setup, agents are forward-
looking rather than myopic. 
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6.3 Convergence towards equilibrium 

A final important point is that the rate of conformance to the equilibrium increases 

dramatically over time. Perhaps the data would match the theoretical predictions even more 

closely over a longer number of periods. Table 7 shows the deviation rates in the last 10 periods 

from the predicted equilibrium in every treatment. 

Play conforms very closely to what would be expected in the equilibrium that we observe 

in each case. Remarkably, there are absolutely no deviations from equilibrium play in 12 of the 

30 cells for complete information, and in three of the 12 cells for incomplete information. The 

Orange network has a high average deviation rate of about 19 percent, mainly because of one 

group (out of four) who largely played the inefficient equilibrium. Overall, the rate of 

conformance with the claimed equilibrium is 94 percent in the final 10 periods with complete 

information and complements and 93 percent with complete information and substitutes. A real 

surprise is that this rate of conformance is equally as high with incomplete information, at 95 

percent with complements and 91 percent with substitutes. 

 

7. Conclusion 

Networks are a very prevalent feature of the social and economic landscape, with 

important applications in the areas of bargaining, job search, political interactions, and systems 

compatibility, among others. The question of how network structure affects behavior is a vital 

one for business decisions and governmental policy. We conduct an experiment designed to test 

the theoretical predictions (adapted from Galeotti et alii 2010) for behavior in the cases of 

strategic complements and strategic substitutes, which are general to many economic 

environments. We include the case of incomplete information in our experimental design, as 

theory predicts this should ameliorate the problem of equilibrium multiplicity. In fact, to the best 

of our knowledge, we are the first to consider experimentally the challenging case of uncertainty 

regarding aspects of the network structure. In our view, there is almost always a degree of 

uncertainty concerning the prevailing network structure in the field, so this is a very relevant 

design choice.  

We find that play conforms very strongly to the qualitative and quantitative theoretical 

predictions for whether agents are active or inactive. The degree to which this is true is 

impressive with complete information, and is somewhat startling with incomplete information, 
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considering the cognitive challenges of making decisions under uncertainty. When we restrict 

our attention to the more ‘settled’ behavior in the last 10 periods of the sessions, we observe 

strong convergence to an equilibrium. In the case of incomplete information, we also find strong 

qualitative support for the predicted relationships between degree and activity and connectivity 

and activity.  

A central issue in network theory is that of equilibrium selection, since it is more difficult 

to make informed policy decisions when one cannot predict the effects of network structure on 

outcomes. Considerable theoretical research has been conducted on trying to refine these or to 

gain insight into how to predict which of a multiplicity of equilibria actually prevails. Galeotti et 

alii  (2010) refine away some more delicate equilibria by considering the case of incomplete 

information, while others, such as Boncinelli and Pin (2011), consider selection based on 

concepts such as stochastic stability. In fact, our results suggest that the problem of equilibrium 

multiplicity may in practice not be so severe. Even with the numerous pure-strategy equilibria 

with substitutes and complete information, there is a strong adherence to a specific equilibrium 

in each of three different networks. While this equilibrium is not the most efficient one, it is 

much more stable.  

Thus, people seem to choose to trade off a relatively small difference in potential gain 

against the likelihood of actually receiving a gain. In the case of complements, there is 

multiplicity just in the Orange network scenario. In this case, the equilibrium selected is the 

efficient one, which can be rationalized relying on bounded memory and forward looking 

arguments, along with the fact that people in experiments are attracted by payoff dominance, 

particularly without uncertainty. With incomplete information, when there is more than one 

equilibrium (in the case of strategic complements), the prevailing one is the stochastically-stable 

(inefficient) equilibrium. 

Overall, we feel that experimental research such as this shall be extremely useful in 

making pragmatic choices regarding which network structure to implement and in predicting 

outcomes for an already-existing network structure. Given the uncertainty in the field 

environment, incorporating incomplete information and uncertainty will certainly increase the 

external validity of such research.  Improved behavioral network theory may well be the result of 

the knowledge gleaned from laboratory experiments. We encourage others to pursue this 

research as well.  



 31

References 

Ballester, C., A. Calvó-Armengol, and Y. Zenou (2006): “Who’s who in Networks. Wanted: The 
Key Player,” Econometrica 74(5), 1403-1417. 

Berninghaus, S.K., Ehrhart, K. and Keser, C. (2002): “Conventions and Local Interaction 
Structures,” Games and Economic Behavior 39(2), 177-205. 

Berninghaus, S.K., Ehrhart, K. and Ott, M. (2006): “A Network Experiment in Continuous Time: 
The Influence of Link Costs,” Experimental Economics 9(3), 237-251. 

Berninghaus, S.K., Ehrhart, K., Ott, M. and Vogt, B. (2007): “Evolution of Networks – An 
Experimental Analysis,” Journal of Evolutionary Economics 17(3), 317-347. 

Boncinelli, L. and Pin, P. (2011): “Stochastic Stability in Best Shot Network Games,” mimeo. 
Boun My, K., Willinger, M. and Ziegelmeyer, A. (2006): “Structure d'interactions et problème 

de coordination: une approche expérimentale,” Revue d'Economie Industrielle 114-115, 245-
266. 

Bramoullé, Y. and Kranton, R. (2007): “Public Goods in Networks,” Journal of Economic 
Theory 135(1), 478-494. 

Burt, R. (2000): “The Network Structure of Social Capital,” in B. Staw and Sutton, R. (Ed.), 
Research in Organizational Behavior (Vol. 22). New York, NY, JAI Press. 

Callander, S. and Plott, C.R. (2005): “Principles of Network Development and Evolution: An 
Experimental Study,” Journal of Public Economics 89(8), 1469-1495. 

Calvó-Armengol, A. (2004): “Job Contact Networks,” Journal of Economic Theory 115(1), 191-
206. 

Calvó-Armengol, A. and Jackson, M.O. (2004): “The Effects of Social Networks on 
Employment and Inequality,” American Economic Review 94(3), 426-454. 

Calvó-Armengol, A. and Jackson, M.O. (2007): “Networks in Labor Markets: Wage and 
Employment Dynamics and Inequality,” Journal of Economic Theory 132(1), 27-46. 

Camerer, C. F. and Ho, T.-H. (1999): “Experience-Weighted Attraction Learning in Normal 
Form Games,” Econometrica 67(4), 827-874. 

Carpenter, J.P. (2007): “Punishing Free-riders: How Group Size Affects Mutual Monitoring and 
the Provision of Public Goods,” Games and Economic Behavior 60(1), 31-55. 

Cassar, A. (2007): “Coordination and Cooperation in Local, Random and Small World 
Networks: Experimental Evidence,” Games and Economic Behavior 58(2), 209-230. 

Charness, G. (2000): “Self-Serving Cheap Talk: A Test Of Aumann's Conjecture,” Games and 
Economic Behavior 33(2), 177-194. 

Charness, G., Corominas-Bosch, M. and Fréchette, G.R. (2007): “Bargaining and Network 
Structure: An Experiment.” Journal of Economic Theory 136(1), 28-65. 

Charness, G. and Gneezy, U. (2010): “Portfolio Choice and Risk Attitudes: An Experiment,” 
Economic Inquiry 48(1), 133-146. 

Charness, G. and Jackson, M.O. (2007): “Group play in games and the role of consent in 
network formation,” Journal of Economic Theory 136(1), 417-445. 

Charness, G. and Rabin, M. (2002): “Understanding Social Preferences with Simple Tests,” 
Quarterly Journal of Economics 117(3), 817-869. 

Charness, G., Rigotti, L. and Rustichini, A. (2007): “Individual Behavior and Group 
Membership,” American Economic Review 97(4), 1340-1352. 

Chen, Y. and Li, S.X. (2009): “Group Identity and Social Preferences,” American Economic 
Review 99(1), 431-457. 



 32

Cook, K.S. and Emerson, R.M. (1978): “Power, Equity and Commitment in Exchange 
Networks,” American Sociological Review 43(5), 721-739. 

Cooper, R.W., Dejong, D.V., Forsythe, R. and Ross, T. (1992): “Communication in Coordination 
Games,” Quarterly Journal of Economics 107(2), 739-771. 

Corbae, D. and Duffy, J. (2008): “Experiments with network formation,” Games and Economic 
Behavior 64(1), 81-120. 

Crawford, V.P. and Rochford, S.C. (1986): “Bargaining and Competition in Matching Markets,” 
International Economic Review 27(2), 329-348. 

Currarini, S., Jackson, M., Pin, P. (2009): “An Economic Model of Friendship: Homophily, 
Minorities, and Segregation,” Econometrica 77(4), 1003-1045. 

Deck, C. and Johnson, C. (2004): “Link Bidding in a Laboratory Experiment,” Review of 
Economic Design 8(4), 359-372. 

Engelmann, D. and Strobel, M. (2004): “Inequality Aversion, Efficiency, and Maximin 
Preferences in Simple Distribution Experiments,” American Economic Review 94(4), 857-
869. 

Falk, A. and Heckman, J. (2009): “Lab Experiments are a Major Source of Knowledge in the 
Social Sciences,” Science 326(5952), 535-538. 

Falk, A. and Kosfeld, M. (2003): “It’s all about Connections: Evidence on Network Formation,” 
IZA discussion paper no. 777. 

Fatas, E., Meléndez-Jiménez, M.A. and Solaz, H. (2010): “An Experimental Analysis of Team 
Production in Networks,” Experimental Economics 13(4), 399-411. 

Feri, F., Irlenbusch, B. and Sutter, M. (2010): “Efficiency Gains from Team-Based Coordination 
– Large-Scale Experimental Evidence,” American Economic Review 100(4), 1892-1912. 

Fischbacher, U. (2007): “z-Tree: Zurich Toolbox for Ready-Made Economic Experiments,” 
Experimental Economics 10(2), 171-178. 

Gale, D., and Shapley, L.S. (1962): “College Admissions and the Stability of Marriage,” The 
American Mathematical Monthly 69(1), 9-15. 

Galeotti, A., Goyal, S., Jackson, M.O., Vega-Redondo, F. and Yariv, L. (2010): “Network 
Games,” Review of Economic Studies 77(1), 218-244. 

Galeotti, A. and Vega-Redondo, F. (2011): “Complex Networks and Local Externalities: A 
Strategic Approach,” International Journal of Economic Theory 7(1), 77-92. 

Goette, L., Huffman, D. and Meier, S. (2006): “The Impact of Group Membership on 
Cooperation and Norm Enforcement: Evidence Using Random Assignment to Real Social 
Groups.” American Economic Review 96(2), 212-216. 

Goyal, S. and Moraga-Gonzalez, J. L. (2001): “R&D Networks,” Rand Journal of Economics 
32(4), 686-707. 

Greiner, B. (2004): “The Online Recruitment System ORSEE 2.0 - A Guide for the Organization 
of Experiments in Economics,” Working Paper Series in Economics 10, University of 
Cologne, Department of Economics. 

Hendricks, K., Piccione, M. and Tan, G. (1995): “The Economics of Hubs: The Case of 
Monopoly,” Review of Economic Studies 62(1), 83-99. 

Holt, C. A., and Laury, S. K. (2002): “Risk Aversion and Incentive Effects,” The American 
Economic Review 92(5), 1644–1655.  

Jackson, M.O. (2008): Social and Economic Networks, Princeton University Press: NJ. 



 33

Jackson, M.O. (2010): “An Overview of Social Networks and Economic Applications,” in the 
The Handbook of Social Economics, edited by J. Benhabib, A. Bisin, and M.O. Jackson, 
North Holland Press, 511-586. 

Jackson, M. O. and Yariv, L. (2005): “Diffusion on Social Networks,” Économie Publique, 
16(1), 3-16. 

Katz, M. and Shapiro, C. (1994): “Systems Competition and Network Effects,” Journal of 
Economic Perspectives 8(2), 93-115. 

Kearns, M., Suri, S. and Montfort, N. (2006): “An Experimental Study of the Coloring Problem 
on Human Subject Networks,” Science 313(5788), 824-827. 

Kearns, M., Judd, S., Tan, J. and Wortman, J. (2009): “Behavioral Experiments on Biased 
Voting in Networks,” PNAS 106(5), 1347-1352. 

Kelso. A.S., and Crawford, V.P. (1982): “Job Matching, Coalition Formation, and Gross 
Substitutes,” Econometrica 50(6), 1483-1504. 

Keser, C., Ehrhart, K. and Berninghaus, S.K. (1998): “Coordination and Local Interaction: 
Experimental Evidence,” Economics Letters 58(3), 269-275. 

Kirchkamp, O. and Nagel, R. (2007): “Naive Learning and Cooperation in Network 
Experiments,” Games and Economic Behavior 58(2), 269-292. 

Kovarik, J., Romero, J.G. and Mengel, F. (2011): “(Anti-) Coordination in Networks,” Meteor 
Research Memorandum, Maastricht University. 

Kranton, R.E. and Minehart, D.F. (2001): “A Theory of Buyer-Seller Networks,” American 
Economic Review 91(3), 485-508. 

Mantovani, M., Kirchsteiger, G., Mauelon, A. and Vannetelbosch, V. (2011): “Myopic or 
Farsighted? An Experiment on Network Formation,” Fondazione Eni Enrico Mattei, Nota di 
lavoro 45. 

Mengel, F. (2011): “Learning by (Limited) Forward Looking Players,” Meteor Research 
Memorandum, Maastricht University. 

Montgomery, J.D. (1991): “Social Networks and Labor-Market Outcomes: Toward an Economic 
Analysis,” The American Economic Review, 81(5), 1408-1418. 

Riedl, A. and Ule, A. (2002): “Exclusion and Cooperation in Social Network Experiments,” 
mimeo, University of Amsterdam. 

Roth, A.E. (1984): “The Evolution of the Labor Market for Medical Interns and Residents: A 
Case Study in Game Theory,” Journal of Political Economy 92(6), 991-1016. 

Roth, A. and Sotomayor, M. (1989): Two Sided Matching, Econometric Society Monographs No. 
18: Cambridge University Press, Cambridge, UK. 

Runkel, P. J. and McGrath, J. E. (1972): Research on Human Behavior: A Systematic Guide. 
New York: Holt, Rinehart & Winston. 

Stolte, J. and Emerson, R. (1977): “Structural Inequality: Position and Power in Network 
Structures” in Behavioral Theory in Sociology (Pp. 117-38), ed. R. Hamblin and J. Kunkel, 
New Brunswick, NJ: Transaction Books. 

Sundararajan, A. (2007): “Local Network Effects and Complex Network Structure,” The B.E. 
Journal of Theoretical Economics 7(1), Article 46. 

Weber, R. A. (2006): “Managing Growth to Achieve Efficient Coordination in Large Groups,” 
American Economic Review 96(1), 114-126. 

Willer, D. (1999): Network Exchange Theory, New York: Praeger. 
 



 34

Tables and Figures 
 

Table 1: Equilibria with complete information 

 Network Active nodes Inactive nodes 

Substitutes 

Orange 

A, C, E B, D 

B, E A, C, D 

A, D B, C, E 

Green 

A, C, E B, D 

B, D A, C, E 

B, E A, C, D 

A, D B, C, E 

Purple 

A, C, D B, E 

A, C, E B, D 

B, E A, C, D 

Complements 

Orange 
B, C, D A, E 

- A, B, C, D, E 

Green - A, B, C, D, E 

Purple - A, B, C, D, E 

 

 

 

Table 2: Equilibria with incomplete information 

 Probability of gO Degree profile 

Substitutes 
0.2 (1, 0, 0) 

0.8 (1, 1, 0) 

Complements 

0.2 (0, 0, 0) 

 (0, 0, 0) 

0.8 (0, 1, 1) 

 (0, 0.65, 0.91) 

Note: (x, y, z) represents the probability that participants with degree 1, 2, or 3, respectively, are active. 
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Table 3: Frequencies (and relative frequencies, %) of choices by network and position – 
Complete information 

 Orange Green Purple 
Total  

Choices 
Active  

(%) 
Total  

Choices 
Active  

(%) 
Total  

Choices 
Active  

(%) 

Substitutes 

A 
93 88 105 96 122 113 

 (94.62)  (91.43)  (92.62) 

B 
93 8 105 16 122 6 

 (8.60)  (15.24)  (4.92) 

C 
93 63 105 70 122 115 

 (67.74)  (66.67)  (94.26) 

D 
93 10 105 18 122 22 

 (10.75)  (17.14)  (18.03) 

E 
93 85 105 99 122 112 

 (91.40)  (94.29)  (91.80) 

Total 
465 254 525 299 610 368 

 (54.62)  (56.95)  (60.33) 

Complements 

A 
114 4 105 1 101 1 

 (3.51)  (0.95)  (0.99) 

B 
114 85 105 4 101 13 

 (74.56)  (3.81)  (12.87) 

C 
114 83 105 11 101 1 

 (72.81)  (10.48)  (94.26) 

D 
114 85 105 2 101 5 

 (74.56)  (1.90)  (18.03) 

E 
114 6 105 1 101 1 

 (5.26)  (0.95)  (0.99) 

Total 
570 263 525 19 505 21 

 (54.62)  (3.62)  (4.16) 
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Table 4: Marginal effects by player position, network and treatment – Complete information 

  Substitutes Complements 
 Orange Green Purple Orange Green Purple 

Prob_pA 
0.989*** 0.975*** 0.977*** 0.010 0.000 0.000 
(-0.007) (-0.014) (-0.013) (-0.007) (0.000) (0.000) 

Dif_ pB-pA 
-0.978*** -0.927*** -0.965*** 0.833*** 0.007 0.050* 
(-0.010) (-0.026) (-0.014) (-0.050) (-0.007) (-0.027) 

Dif_pC-pA 
-0.222*** -0.221*** 0.012 0.736*** 0.01 0.000 
(-0.074) (-0.074) (-0.013) (-0.066) (-0.009) (0.000) 

Dif_pD-pA 
-0.967*** -0.884*** -0.880*** 0.803*** 0.001 0.006 
(-0.015) (-0.037) (-0.037) (-0.056) (-0.002) (-0.007) 

Dif_pE-pA 
-0.001 0.012 -0.007 -0.010 0.001 0.000 
(-0.014) (-0.015) (-0.016) (-0.007) (-0.002) (0.000) 

Notes: Prob_pA is the estimated probability that position = A chooses active. Dif_pi-pA is the  estimated 
difference (position i - position A) of probabilities of choosing active, standard errors are reported in 
parenthesis. 
***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively, two-tailed 
tests. 
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Table 5: Frequencies (and relative frequencies, %) of choices by connectivity (p) and degree – 
Incomplete information 

 Degree 

p = 0.2 p = 0.8 

Total  
Choices 

Active  
(%) 

Total  
Choices 

Active 
 (%) 

Substitutes 

1 
771 731 676 628 

 (94.81)  (92.90) 

2 
554 156 378 225 

 (28.16)  (59.52) 

3 
275 3 546 55 

 (1.09)  (10.07) 

Total 
1600 890 1600 908 

 (55.63)  (56.75) 

Complements 

1 
763 15 681 12 

 (1.97)  (1.76) 

2 
598 107 374 116 

 (17.89)  (31.02) 

3 
239 106 546 278 

 (44.35)  (51.01) 

Total 
1600 228 1600 908 

 (14.25)  (25.37) 
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Table 6: Marginal effects on the choices of connectivity, degree and risk – Incomplete 
information 

 Substitutes Complements 

 (I) (II) (III) (IV) 

p = 0.8 and degree = 1 
0.002   
(.009) 

0.004 
(0.009) 

-0.000   
(0.001) 

-0.000 
(0.001) 

p = 0.8 and degree = 2  
0.521*** 
(0.087) 

0.547*** 
(0.083) 

0.111** 
(0.056) 

0.111** 
(0.056) 

p = 0.8 and degree = 3  
0.021** 
(0.009) 

0.024* 
(0.010) 

0.233* 
(0.132) 

0.233* 
(0.132) 

degree 2 (compared to degree 
1) and p = 0.2 

-0.805*** 
(0.045) 

-0.816*** 
(0.041) 

0.041** 
(0.017) 

0.041** 
(0.017) 

degree 2 (compared to degree 
1) and p = 0.8 

-0.287*** 
(0.068) 

-0.273*** 
(0.064) 

0.152*** 
(0.053) 

0.153*** 
(0.053) 

degree 3 (compared to degree 
1) and p = 0.2 

-0.981*** 
(0.007) 

-0.980*** 
(0.007) 

0.328*** 
(0.091) 

0.328*** 
(0.091) 

degree 3 (compared to degree 
1) and p = 0.8 

-0.962*** 
(0.009) 

-0.961*** 
(0.009) 

0.562*** 
(0.095) 

0.562*** 
(0.095) 

degree 3 (compared to degree 
2) and p = 0.2 

-0.176*** 
(0.049) 

-0.164*** 
(0.045) 

0.287*** 
(0.079) 

0.287*** 
(0.079) 

degree 3 (compared to degree 
2) and p = 0.8 

-0.675*** 
(0.067) 

-0.687*** 
(0.063) 

0.409** 
(0.061) 

0.409*** 
(0.061) 

Marginal effect of risk aversion 
when p = 0.2 and degree = 1 

 
-0.000* 
(0.000) 

 
-0.000 
(0.000) 

Marginal effect of risk aversion 
when p = 0.2 and degree = 2 

 
-0.002** 
(0.001) 

 
-0.000 
(0.000) 

Marginal effect of risk aversion 
when p = 0.2 and degree = 3 

 
-0.000 
0.000) 

 
-0.000 
(0.002) 

Marginal effect of risk aversion 
when p = 0.8 and degree = 1 

 
-0.000* 
(0.000) 

 
-0.000 
(0.000) 

Marginal effect of risk aversion 
when p = 0.8 and degree = 2 

 
-0.003** 
(0.001) 

 
-0.000 
(0.001) 

Marginal effect of risk aversion 
when p = 0.8 and degree = 3 

 
-0.000* 
(.000) 

 
-0.000 
(0.002) 

Notes: standard errors are reported in parenthesis, ***, **, and * indicate statistical significance at the 
1%, 5%, and 10% levels, respectively, two-tailed tests 
 
  



 39

Table 7: Deviation rates in last 10 periods from primary equilibrium  

 

 Substitutes Complements 
 Position  Position  

 A B C D E Avg. A B C D E Avg. 

Orange 0.05 0.05 0.27 0.05 0.00 0.08 0.06 0.30 0.27 0.30 0.00 0.19 
Green 0.07 0.07 0.20 0.10 0.03 0.09 0.00 0.00 0.00 0.00 0.00 0.00 
Purple 0.04 0.04 0.00 0.07 0.07 0.04 0.00 0.00 0.00 0.00 0.00 0.00 
 Degree Degree 

 1 2 3 Avg.* 1 2 3 Avg.* 

p = 0.2 0.02 0.27 0.00 0.10 0.00 0.04 0.10 0.03 
p = 0.8 0.05 0.22 0.05 0.09 0.00 0.04 0.15 0.06 

Notes: The average is calculated by weighting the rates with the number of observations in each cell. 
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Figure 1: The networks 
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Figure 2: Relative frequency of active choices across periods, by network player position and 
treatment – Complete information 
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Figure 3: Relative frequency of equilibrium play across period by treatment – Complete 

information 
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Figure 4: Relative frequencies of choices by degree, games, and connectivity (p) – 
Incomplete information 
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Figure 5: Relative frequencies of equilibrium play across periods by game and connectivity 
– Incomplete information 
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Appendix A: Econometric model (Variables and Estimations) 

Network:  

Orange = 1, 

Green = 2,  

Purple =3 

Position:  

A = 1,  

B = 2,  

C = 3,  

D = 4,  

E = 5. 

Complete information 

dij = 1 if network=i and position = j , 0 otherwise 

tij:  interaction between dij and period 

Incomplete information 

d1=1 if p=0.8, 0 otherwise 

degree2 = 1 if player’s degree=2, 0 otherwise 

degree3 = 1 if player’s degree=3, 0 otherwise 

d1_period: interaction between period and d1 

d1_degree2: interaction between d1 and degree2 

d1_degree2: interaction between d1 and degree3 

deg2_period: interaction between degree2 and period 

deg3_period: interaction between degree3 and period 

deg2_per_d1: interaction between degree2, period and d1 

deg3_per_d1: interaction between degree3, period and d1. 

 

d1_degree1: marginal effect of d1 when degree=1 

d1_degree2: marginal effect of d1 when degree=2 

d1_degree3: marginal effect of d1 when degree=3 

degree2_d1_0: marginal effect of degree 2 (with respect to degree 1) when d1=0 (p=0.2) 

degree2_d1_1: marginal effect of degree 2 (with respect to degree 1) when d1=1 (p=0.8) 

degree3_d1_0: marginal effect of degree 3 (with respect to degree 1) when d1=0 (p=0.2) 

degree3_d1_1: marginal effect of degree 3 (with respect to degree 1) when d1=1 (p=0.8) 

degree32_d1_0: marginal effect of degree 3 (with respect to degree 2) when d1=0 (p=0.2) 

degree32_d1_1: marginal effect of degree 3 (with respect to degree 2) when d1=1 (p=0.8) 

 

risk_0_0_0: marginal effect when d1=0 and degree==1    

risk_0_1_0: marginal effect when d1=0 and degree==2 

risk_0_0_1: marginal effect when d1=0 and degree==3 

risk_1_0_0: marginal effect when d1=1 and degree==1 

risk_1_1_0: marginal effect when d1=1 and degree==2 

risk_1_0_1: marginal effect when d1=1 and degree==3 
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Complete information - Strategic Substitutes 

 

Random-effects logistic regression Number of obs = 1600 

Group variable: id Number of groups = 40 

Random effects u_i ~ Gaussian Obs per group: min = 40 

 avg = 40 

 max = 40 

 Wald chi2(30) = 375.7 

Log likelihood  = -388.50483 Prob > chi2 = 0 

Choice Coef. Std. Err. z P>z [95% Conf.Interval] 

Period 0.030663 0.047141 0.65 0.515 -0.06173 0.123057 

d12 -8.40485 1.7711 -4.75 0 -11.8761 -4.93356 

d13 -3.90144 1.265561 -3.08 0.002 -6.38189 -1.42098 

d14 -6.95259 1.5288 -4.55 0 -9.94899 -3.9562 

d15 -1.80211 1.416295 -1.27 0.203 -4.578 0.973777 

d21 -2.43685 1.350567 -1.8 0.071 -5.08391 0.210213 

d22 -5.75513 1.357171 -4.24 0 -8.41514 -3.09512 

d23 -4.33103 1.260564 -3.44 0.001 -6.80169 -1.86037 

d24 -5.59522 1.326514 -4.22 0 -8.19514 -2.9953 

d25 -1.22466 1.440592 -0.85 0.395 -4.04816 1.598853 

d31 -0.87704 1.366207 -0.64 0.521 -3.55476 1.800676 

d32 -6.18386 1.418038 -4.36 0 -8.96316 -3.40455 

d33 -2.10023 1.34226 -1.56 0.118 -4.73101 0.530551 

d34 -4.85752 1.249787 -3.89 0 -7.30706 -2.40798 

d35 -1.86108 1.328373 -1.4 0.161 -4.46464 0.742488 

t12 -0.03139 0.073418 -0.43 0.669 -0.17528 0.112509 

t13 0.02826 0.053593 0.53 0.598 -0.07678 0.133299 

t14 -0.06707 0.065325 -1.03 0.305 -0.19511 0.060959 

t15 0.053105 0.068362 0.78 0.437 -0.08088 0.187091 

t21 0.078902 0.061831 1.28 0.202 -0.04228 0.200088 

t22 -0.0878 0.059385 -1.48 0.139 -0.20419 0.028597 

t23 0.046098 0.053475 0.86 0.389 -0.05871 0.150906 

t24 -0.0617 0.05645 -1.09 0.274 -0.17234 0.048942 

t25 0.050011 0.074264 0.67 0.501 -0.09554 0.195565 

t31 0.005485 0.061208 0.09 0.929 -0.11448 0.125452 

t32 -0.13539 0.06704 -2.02 0.043 -0.26678 -0.00399 

t33 0.106867 0.072718 1.47 0.142 -0.03566 0.249391 

t34 -0.09514 0.05377 -1.77 0.077 -0.20053 0.010246 

t35 0.040081 0.058256 0.69 0.491 -0.0741 0.154262 

Risk 0.008371 0.011682 0.72 0.474 -0.01453 0.031267 

_cons 3.491075 1.312174 2.66 0.008 0.919263 6.062888 

/lnsig2u 1.384996 0.274943   0.846118 1.923875 

sigma_u 1.998702 0.274765   1.526624 2.616761 

Rho 0.548385 0.068092   0.414661 0.675469 

Likelihood-ratio test of rho=0: chibar2(01) =   275.78 Prob >= chibar2 = 0.000 
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Marginal effects 

 

Choice Coef. Std. Err. z P>z [95% Conf. Interval] 

Period .0003294 .0005634 0.58 0.559 -.0007748 .0014336 

t12 -7.84e-06 .0006102 -0.01 0.990 -.0012038 .0011882 

t13 .0106987 .0051008 2.10 0.036 .0007014 .0206961 

t14 -.0008184 .0011067 -0.74 0.460 -.0029874 .0013507 

t15 .0018897 .0012482 1.51 0.130 -.0005567 .0043361 

t21 .0028018 .0014995 1.87 0.062 -.0001372 .0057408 

t22 -.0025522 .0017662 -1.45 0.148 -.0060138 .0009095 

t23 .0145285 .0055472 2.62 0.009 .0036562 .0254007 

t24 -.0025986 .0027381 -0.95 0.343 -.0079652 .002768 

t25 .0011056 .0007921 1.40 0.163 -.000447 .0026582 

t31 .000818 .0008963 0.91 0.361 -.0009386 .0025747 

t32 -.0013675 .0008659 -1.58 0.114 -.0030645 .0003296 

t33 .0015022 .0008646 1.74 0.082 -.0001923 .0031968 

t34 -.0054927 .0025946 -2.12 0.034 -.010578 -.0004075 

t35 .0021455 .0013144 1.63 0.103 -.0004306 .0047217 

Risk .0083711 .01168 0.72 0.474 -.014525 .031267 
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Complete information - Strategic Complements 

  

Random-effects logistic regression Number of obs = 1600 

Group variable: id Number of groups = 40 

Random effects u_i ~ Gaussian Obs per group: min = 40 

 Avg = 40 

 Max = 40 

 Wald chi2(30) = 234.49 

Log likelihood  = -280.54602 Prob > chi2 = 0 

Choice Coef. Std. Err. z P>z [95% Conf.Interval] 

Period 0.012517 0.045182 0.28 0.782 -0.07604 0.101071 

d12 7.203613 1.407627 5.12 0 4.444714 9.962512 

d13 5.912277 1.359848 4.35 0 3.247023 8.57753 

d14 7.21883 1.402497 5.15 0 4.469987 9.967673 

d15 4.015273 1.500287 2.68 0.007 1.074765 6.955781 

d21 1.862151 2.698071 0.69 0.49 -3.42597 7.150273 

d22 2.566745 1.610425 1.59 0.111 -0.58963 5.723119 

d23 5.055612 1.463772 3.45 0.001 2.186673 7.924552 

d24 2.257243 1.837471 1.23 0.219 -1.34413 5.85862 

d25 1.806821 2.147597 0.84 0.4 -2.40239 6.016034 

d31 4.098842 2.678017 1.53 0.126 -1.14998 9.347658 

d32 4.726608 1.400217 3.38 0.001 1.982232 7.470983 

d33 1.841959 2.148467 0.86 0.391 -2.36896 6.052878 

d34 3.49502 1.504369 2.32 0.02 0.546511 6.443529 

d35 3.505376 2.435331 1.44 0.15 -1.26779 8.278537 

t12 -0.04634 0.051205 -0.9 0.365 -0.1467 0.05402 

t13 -0.01217 0.050444 -0.24 0.809 -0.11104 0.086698 

t14 -0.05783 0.050785 -1.14 0.255 -0.15737 0.041705 

t15 -0.35341 0.138617 -2.55 0.011 -0.62509 -0.08172 

t21 -0.36076 0.413782 -0.87 0.383 -1.17175 0.450241 

t22 -0.1474 0.088299 -1.67 0.095 -0.32047 0.025659 

t23 -0.25116 0.083561 -3.01 0.003 -0.41494 -0.08738 

t24 -0.23798 0.174672 -1.36 0.173 -0.58033 0.104369 

t25 -0.2018 0.16164 -1.25 0.212 -0.51861 0.115004 

t31 -0.97318 0.975 -1 0.318 -2.88415 0.93778 

t32 -0.15397 0.062666 -2.46 0.014 -0.2768 -0.03115 

t33 -0.31792 0.270881 -1.17 0.241 -0.84884 0.212999 

t34 -0.20028 0.090852 -2.2 0.027 -0.37835 -0.02222 

t35 -0.61405 0.566495 -1.08 0.278 -1.72436 0.496265 

Risk 0.027471 0.007972 3.45 0.001 0.011846 0.043095 

_cons -6.23145 1.347641 -4.62 0 -8.87277 -3.59012 

/lnsig2u 0.778799 0.325834   0.140176 1.417423 

sigma_u 1.476094 0.240481   1.072602 2.031372 

Rho 0.398421 0.078097   0.259096 0.556403 

Likelihood-ratio test of rho=0: chibar2(01) =    75.62 Prob >= chibar2 = 0.000 



 49

 

Marginal effects 

 

Choice Coef. Std. Err. z P>z [95% Conf. Interval] 

Period .0001233 .0004298 0.29 0.774 -.0007191 .0009658 

t12 -.0044179 .0031186 -1.42 0.157 -.0105302 .0016944 

t13 .0000659 .0042203 0.02 0.988 -.0082058 .0083375 

t14 -.0067972 .0034897 -1.95 0.051 -.0136368 .0000424 

t15 -.0001938 .0003237 -0.60 0.549 -.0008283 .0004407 

t21 -.0000199 .0000978 -0.20 0.838 -.0002117 .0001718 

t22 -.0009829 .0006546 -1.50 0.133 -.0022659 .0003002 

t23 -.0027501 .0017791 -1.55 0.122 -.0062372 .0007369 

t24 -.0002091 .0003588 -0.58 0.560 -.0009123 .0004941 

t25 -.0002263 .0003052 -0.74 0.458 -.0008244 .0003719 

t31 -3.47e-09 . . . . . 

t32 -.0071486 .0028674 -2.49 0.013 -.0127686 -.0015287 

t33 -.0000395 .0001264 -0.31 0.755 -.0002873 .0002084 

t34 -.001237 .00095 -1.30 0.193 -.003099 .0006249 

t35 -1.29e-06 .0000114 -0.11 0.910 -.0000236 .000021 

Risk .0274705 .00797 3.45 0.001 .011846 .043095 
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Incomplete information - Strategic Substitutes 

 

   I) Non including the risk variable 

Random-effects logistic regression Number of obs = 3200 

Group variable: id Number of groups = 80 

Random effects u_i ~ Gaussian Obs per group: min = 40 

 Avg = 40 

 Max = 40 

 Wald chi2(11) = 668.46 

Log likelihood  = -837.60775                    Prob > chi2 = 0 

Choice Coef. Std. Err. z P>z [95% Conf.Interval] 

Period .0353394 .0157828 2.24 0.025 .0044056 .0662731 

d1 -.8188269 .6459138 -1.27 0.205 -2.084795 .4471409 

degree2 -4.566573 .4437865 -10.29 0.000 -5.436379 -3.696767 

degree3 -7.386604 1.027127 -7.19 0.000 -9.399737 -5.373472 

d1_period .0466305 .0242528 1.92 0.055 -.0009042 .0941651 

d1_degree2 1.648846 .6139654 2.69 0.007 .4454959 2.852196 

d1_degree3 2.438584 1.149082 2.12 0.034 .1864249 4.690743 

deg2_period -.050013 .0189049 -2.65 0.008 -.0870659 -.0129601 

deg3_period -.1621972 .0830486 -1.95 0.051 -.3249694 .000575 

deg2_per_d1 .0305168 .0289488 1.05 0.292 -.0262219 .0872555 

deg3_per_d1 .0142048 .0874948 0.16 0.871 -.1572819 .1856914 

_cons 3.323875 .4665528 7.12 0.000 2.409449 4.238302 

/lnsig2u 1.337087 .1957578   .9534084 1.720765 

sigma_u 1.951393 .1910002 1.610757 2.364065 sigma_u 1.951393 

Rho .5364948 .0486787 .4409175 .6294639 rho .5364948 

Likelihood-ratio test of rho=0: chibar2(01) =   490.93 Prob >= chibar2 = 0.000 

 

Marginal effect 

 

Choice Coef. Std. Err. z P>z [95% Conf. Interval] 

d1_degree1 .0018477 .0090151 0.20 0.838 -.0158217 .0195171 

d1_degree2 .5206969 .0873879 5.96 0.000 .3494198 .691974 

d1_degree3 .0213193 .0093988 2.27 0.023 .002898 .0397405 

degree2_d1_0 -.8054548 .0451776 -17.83 0.000 -.8940012 -.7169084 

degree2_d1_1 -.2866056 .067589 -4.24 0.000 -.4190775 -.1541336 

degree3_d1_0 -.9811888 .0065618 -149.53 0.000 -.9940496 -.9683279 

degree3_d1_1 -.9617172 .008591 -111.95 0.000 -.9785552 -.9448792 

degree32_d1_0 -.175734 .0488696 -3.60 0.000 -.2715167 -.0799512 

degree32_d1_1 -.6751116 .0667504 -10.11 0.000 -.8059401 -.5442832 
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   II) Including the risk variable 

Random-effects logistic regression Number of obs = 3200 

Group variable: id Number of groups = 80 

Random effects u_i ~ Gaussian Obs per group: min = 40 

 Avg = 40 

 Max = 40 

 Wald chi2(12) = 669.38 

Log likelihood  = -835.0852 Prob > chi2 = 0 

Choice Coef. Std. Err. z P>z [95% Conf.Interval] 

Period .0353746 .0157977 2.24 0.025 .0044117 .0663375 

d1 -.6814024 .6378184 -1.07 0.285 -1.931503 .5686988 

degree2 -4.581403 .4443026 -10.31 0.000 -5.45222 -3.710586 

degree3 -7.392577 1.027527 -7.19 0.000 -9.406494 -5.37866 

d1_period .0466369 .0242576 1.92 0.055 -.0009071 .094181 

d1_degree2 1.671407 .6139628 2.72 0.006 .4680618 2.874752 

d1_degree3 2.461545 1.148353 2.14 0.032 .210815 4.712274 

deg2_period -.0500117 .0189244 -2.64 0.008 -.0871029 -.0129206 

deg3_period -.162495 .0831316 -1.95 0.051 -.32543 .0004399 

deg2_per_d1 .0302095 .0289505 1.04 0.297 -.0265325 .0869514 

deg3_per_d1 .0148065 .0875422 0.17 0.866 -.1567731 .1863861 

Risk -.0158006 .0069383 -2.28 0.023 -.0293993 -.0022018 

_cons 4.136116 .5870075 7.05 0.000 2.985603 5.28663 

/lnsig2u 1.261315 .1973897 .8744378 1.648191 /lnsig2u 1.261315 

sigma_u 1.878845 .1854324 1.548395 2.279818 sigma_u 1.878845 

Rho .5176095 .0492862 .421551 .6123839 rho .5176095 

Likelihood-ratio test of rho=0: chibar2(01) =   453.07 Prob >= chibar2 = 0.000 
 

 

Marginal effect 

 

Choice Coef. Std. Err. z P>z [95% Conf. Interval] 

d1_degree1 .004092 .0089446 0.46 0.647 -.0134391 .0216232 

d1_degree2 .5471342 .0826837 6.62 0.000 .3850772 .7091913 

d1_degree3 .0235348 .0099948 2.35 0.019 .0039455 .0431242 

degree2_d1_0 -.8161774 .0414533 -19.69 0.000 -.8974244 -.7349305 

degree2_d1_1 -.2731352 .0642068 -4.25 0.000 -.3989783 -.1472921 

degree3_d1_0 -.980062 .0068608 -142.85 0.000 -.9935089 -.9666151 

degree3_d1_1 -.9606192 .0090874 -105.71 0.000 -.9784301 -.9428083 

degree32_d~0 -.1638846 .0451955 -3.63 0.000 -.252466 -.0753031 

degree32_d~1 -.687484 .0628339 -10.94 0.000 -.8106361 -.5643318 

risk_0_0_0 -.0002897 .0001697 -1.71 0.088 -.0006223 .0000429 

risk_0_1_0 -.0021784 .0010144 -2.15 0.032 -.0041666 -.0001901 

risk_0_0_1 -.0000198 .0000251 -0.79 0.431 -.000069 .0000294 

risk_1_0_0 -.0002272 .0001254 -1.81 0.070 -.0004729 .0000185 

risk_1_1_0 -.0032382 .0014454 -2.24 0.025 -.0060711 -.0004052 

risk_1_0_1 -.0003819 .0002303 -1.66 0.097 -.0008333 .0000695 
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Incomplete information - Strategic Complements 

   I) Non including the risk variable 

Random-effects logistic regression Number of obs = 3200 

Group variable: id Number of groups = 80 

Random effects u_i ~ Gaussian Obs per group: min = 40 

 avg = 40 

 max = 40 

 Wald chi2(11) = 453.63 

Log likelihood  = -708.10264 Prob > chi2 = 0 

Choice Coef. Std. Err. z P>z [95% Conf.Interval] 

Period -0.14473 0.040886 -3.54 0 -0.22487 -0.0646 

d1 -0.50301 0.892839 -0.56 0.573 -2.25295 1.246919 

degree2 4.341164 0.587702 7.39 0 3.18929 5.493038 

degree3 7.213044 0.756647 9.53 0 5.730044 8.696044 

d1_period 0.00959 0.059068 0.16 0.871 -0.10618 0.12536 

d1_degree2 1.386266 0.881645 1.57 0.116 -0.34173 3.114258 

d1_degree3 1.891964 1.030358 1.84 0.066 -0.1275 3.911429 

deg2_period -0.04366 0.044415 -0.98 0.326 -0.13071 0.043393 

deg3_period -0.0674 0.047183 -1.43 0.153 -0.15988 0.025075 

deg2_per_d1 0.01618 0.063925 0.25 0.8 -0.10911 0.141471 

deg3_per_d1 -0.03096 0.065662 -0.47 0.637 -0.15966 0.09773 

_cons -3.67977 0.62245 -5.91 0 -4.89975 -2.45979 

/lnsig2u 1.645845 0.207959   1.238252 2.053437 

sigma_u 2.277145 0.236777   1.857304 2.791889 

Rho 0.611827 0.049389   0.511849 0.703201 

Likelihood-ratio test of rho=0: chibar2(01) =   459.91 Prob >= chibar2 = 0.000 

 

Marginal effect 

 

Choice Coef. Std. Err. z P>z [95% Conf. Interval] 

d1_degree1 -.0003723 .0012022 -0.31 0.757 -.0027285 .0019839 

d1_degree2 .1106046 .0557568 1.98 0.047 .0013234 .2198859 

d1_degree3 .232949 .1322903 1.76 0.078 -.0263352 .4922333 

degree2_d1_0 .0414475 .0172073 2.41 0.016 .0077219 .0751732 

degree2_d1_1 .1524245 .0528636 2.88 0.004 .0488137 .2560353 

degree3_d1_0 .3283258 .0912503 3.60 0.000 .1494784 .5071731 

degree3_d1_1 .5616471 .0949516 5.92 0.000 .3755454 .7477488 

degree32_d~0 .2868782 .0791469 3.62 0.000 .1317532 .4420032 

degree32_d~1 .4092226 .0609084 6.72 0.000 .2898443 .5286009 
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  II) Including the risk variable 

Random-effects logistic regression Number of obs = 3200 

Group variable: id Number of groups = 80 

Random effects u_i ~ Gaussian Obs per group: min = 40 

 Avg = 40 

 Max = 40 

 Wald chi2(12) = 453.60 

Log likelihood  = -708.07396 Prob > chi2 = 0 

Choice Coef. Std. Err. z P>z [95% Conf.Interval] 

Period -.1447516 .0408935 -3.54 0.000 -.2249014 -.0646018 

d1 -.5010158 .8928432 -0.56 0.575 -2.250956 1.248925 

degree2 4.341514 .5878049 7.39 0.000 3.189437 5.49359 

degree3 7.213081 .7566286 9.53 0.000 5.730116 8.696045 

d1_period .0096085 .0590735 0.16 0.871 -.1061734 .1253905 

d1_degree2 1.385479 .8816709 1.57 0.116 -.3425639 3.113522 

d1_degree3 1.891547 1.03034 1.84 0.066 -.1278814 3.910976 

deg2_period -.0436345 .0444213 -0.98 0.326 -.1306986 .0434297 

deg3_period -.0674082 .047188 -1.43 0.153 -.1598949 .0250785 

deg2_per_d1 .016171 .0639297 0.25 0.800 -.1091288 .1414708 

deg3_per_d1 -.0309548 .0656667 -0.47 0.637 -.1596591 .0977496 

Risk -.0019786 .0082606 -0.24 0.811 -.0181691 .0142118 

_cons -3.559826 .797559 -4.46 0.000 -5.123013 -1.996639 

/lnsig2u 1.645359 .2079661 1.237753 2.052965 /lnsig2u 1.645359 

sigma_u 2.276592 .236727 1.856841 2.791231 sigma_u 2.276592 

Rho .6117114 .0493962 .5117242 .7031029 rho .6117114 

Likelihood-ratio test of rho=0: chibar2(01) =   459.57 Prob >= chibar2 = 0.000 
 

 

Marginal effect 

 

Choice Coef. Std. Err. z P>z [95% Conf. Interval] 

d1_degree1 -.0003694 .0012015 -0.31 0.759 -.0027243 .0019855 

d1_degree2 .1107319 .0557719 1.99 0.047 .0014209 .2200429 

d1_degree3 .2334398 .1322453 1.77 0.078 -.0257562 .4926359 

degree2_d1_0 .0414237 .0171952 2.41 0.016 .0077216 .0751257 

degree2_d1_1 .1525249 .0528829 2.88 0.004 .0488763 .2561735 

degree3_d1_0 .3279842 .0911988 3.60 0.000 .1492378 .5067307 

degree3_d1_1 .5617934 .0949291 5.92 0.000 .3757358 .7478511 

degree32_d~0 .2865606 .0791045 3.62 0.000 .1315186 .4416025 

degree32_d~1 .4092685 .0608862 6.72 0.000 .2899337 .5286033 

risk_0_0_0 -2.75e-06 .0000119 -0.23 0.817 -.000026 .0000205 

risk_0_1_0 -.0000811 .0003397 -0.24 0.811 -.000747 .0005848 

risk_0_0_1 -.0004371 .0018246 -0.24 0.811 -.0040132 .0031391 

risk_1_0_0 -2.02e-06 8.78e-06 -0.23 0.818 -.0000192 .0000152 

risk_1_1_0 -.0002572 .0010765 -0.24 0.811 -.002367 .0018527 

risk_1_0_1 -.0004869 .0020325 -0.24 0.811 -.0044706 .0034969 

  



 54

Appendix B: Figures by groups  

(x,y,z) means group x, network y position z where Network: Orange = 1, Green = 2, Purple =3 

Position: A = 1, B = 2, C = 3, D = 4, E = 5. 

 

Figure B.1: Complete information and substitutes: Relative frequencies of active choices 
across periods, by group, network and position.  
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Figure B.2: Complete information and complements: Relative frequencies of active choices 
across periods, by group and position in the Orange network.  
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Appendix C: Proofs 

 

Complete information scenario – Strategic substitutes 

For each � ∈ ��, �, �, �,  !, Let "# ∈ [0,1] be the probability to be active of the player in 
position �. Let &# = |(#|. 

A Nash equilibrium in mixed strategies is described by * ≡ �", , "- , ". , "/, "0�. We 
first state and prove some lemmas that shall be latter used in the proofs of Propositions 1, 2 and 
3. 
 
Lemma 1. Consider the scenario of strategic substitutes and complete information. In a Nash 
equilibrium either "# ∈ �[0, 0.5�] or "# = 1. 
 
Proof: Assume "# ∈ �0.5, 1�; then for all 2 ∈ (# the best response of player 2 is "3 = 0, because  3�0� > 0.5. However, in this case, the best response of player � implies that "# = 1, a 

contradiction. QED 
 
Lemma 2. Consider the scenario of strategic substitutes and complete information. In a Nash 
equilibrium  

a) If "# ∈ ��0, 0.5�],	then, ∏ �1 −"3�3∈67 = 0.5 and, for all ∈ (#, "3 ∈ [0, 0.5].  
b) "# = 1 if and only if, for all 2 ∈ (#, "3 = 0. 

c) "# = 0 if and only if ∏ �1 −"3�3∈67 ≤ 0.5 

 
Proof: Part (a). The condition  #�0� =  #�1� = 0.5 must hold. Hence,  #�0� = �1 −∏ 81 − "393∈67 � = 0.5, and the claim follows. Part (b). It directly follows from the best response 

of players 2, given that  3�0� = 1 and  3�1� = 0.5. Part (c). It must be the case that  #�0� =�1 − ∏ 81 − �393∈67 � ≥ 0.5. Hence, the claim follows. QED 

 
The following remark describes some special cases of Lemma 2. 
 
Remark 1. Let &# = 1, in a Nash equilibrium: 

a) If "# ∈ ��0, 0.5�] and 2 ∈ (#, then "3 = 0.5. 

b) If "# = 0 and 2 ∈ (# , then "3 = 1. 

 
Lemma 3. Let 2 ∈ (# and &3 = 1. In a Nash equilibrium, if "# ∈ ��0, 0.5�], then "# = 0.5. 

 
Proof: Let "# ∈ ��0, 0.5��, the best response of player 2 implies "3 = 1. Therefore, the best 

response of player �	implies "# = 1, a contradiction. QED 
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In the following proofs (Propositions 1-3), in order to compute the Nash equilibria in 

mixed strategies (the proofs are constructive), we start by assuming a Nash equilibrium where 
one player is using a mixed strategy. Then, we explore all strategy profiles consistent with a 
Nash equilibrium. Note that, when we are assuming that (in a Nash equilibrium) a player � is 
playing a mixed strategy, by Lemma 1 we know that "# ∈ ��0, 0.5�].  
 
Proof of Proposition 1. 
 
The characterization of the pure strategy Nash equilibria directly follows from part (b) of Lemma 
2. In order to characterize the mixed strategy equilibria, we analyze three cases (the other ones 
are symmetric): ", ∈ ��0, 0.5�], "- ∈ ��0, 0.5�], and  ". ∈ ��0, 0.5�]. 
 
Case 1: ", ∈ ��0, 0.5�]. 
By part (a) in Remark 1, we have that "- = 0.5 and, by part (a) in Lemma 2, 
 

(3) �1 − ",��1 −".��1 − "/� = 0.5 and ",, "., "/ ∈ [0, 0.5] 

 

By Lemmas 2 and 4, "/ ∈ �0, 0.5!. Assume "/ = 0, by (3) we have that ". = 1 − :.;<=>? and 

by part (b) of Remark 1, "0 = 1. Hence, the following set of strategy profiles are Nash 

equilibria: �",, 0.5, 1 − :.;<=>? 	 , 0, 1� with 0 < ", ≤ 0.5. By symmetry, the following set of 

strategy profiles are also Nash equilibria: (1, 0, 1 − :.;<=>@ 	 , 0.5,"0) with 0 < "0 ≤ 0.5. Assume 

now �/ = 0.5. Then, condition (3) is not satisfied. 
 
Case 2: "- ∈ ��0, 0.5�]. 
By Lemma 3, "- = 0.5. The case ", ∈ ��0, 0.5�] is discussed above. By part (a) of Lemma 2 we 
only need to discuss the case ", = 0. Moreover, by Lemmas 2 and 4, "/ ∈ �0, 0.5!. Assume "/ = 0, by (3) we have that ". = 0.5 and, by part (b) of Remark 1, "0 = 1. Hence, �0, 0.5, 0.5	, 0, 1�	is a Nash equilibrium. By symmetry, also �1, 0, 0.5	, 0.5, 0�	is a Nash 
equilibrium. Assume now "/ = 0.5. By (3), ". = 0 and, from part (a) of Lemma 2, "0 = 0. 
Hence, �0, 0.5, 0	, 0.5, 0�	is a Nash equilibrium. 
 
Case 3: ". ∈ ��0, 0.5�]. 
By part (a) of Lemma 2, "- , "/ ∈ [0, 0.5] and, by Lemma 3, "- , "/ ∈ �0, 0.5!. By part (a) of 
Lemma 2, "- = "/ = 0 and "- = "/ = 0.5 are not part of a Nash equilibrium. On the other 
hand, assuming either �- = 0.5	A&B	�/ = 0, or �- = 0	A&B	�/ = 0.5, we obtain the equilibria 
described in Case 1. This concludes the equilibrium characterization. QED 
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Proof of Proposition 2. 
 
The characterization of the pure strategy Nash equilibria directly follows from part (b) of Lemma 
2. In order to characterize the mixed strategy equilibria, we analyze three cases (the other ones 
are symmetric): ", ∈ ��0, 0.5�], "- ∈ ��0, 0.5�], and  ". ∈ ��0, 0.5�]. 
 
Case 1: ", ∈ ��0, 0.5�]. 
By part (a) of Remark 1, we have that "- = 0.5 and, by part (a) of Lemma 2, 
 

 (4) �1 − ",��1 −".� = 0.5 and ",, ". , "/ ∈ [0, 0.5] 

 

By condition (4), we have that ". = 1 − :.;<=>? . If ", = 0.5, then 	". = 0. Hence, �0.5, 0.5, 0	, 0.5, 0.5�, (0.5, 0.5, 0	, 1, 0), and �0.5, 0.5, 0	, 0, 1� are Nash equilibria. By symmetry, �0, 1, 0	, 0.5, 0.5� and �1, 0, 0	, 0.5, 0.5� are also Nash equilibria. If ", ∈ �0, 0.5�,	then 	". > 0. 
Then, by part (a) of Lemma 2, "/ = 0 and, by part (b) of Remark 1, "0 = 1. Hence, the 

following set of strategy profiles are Nash equilibria: �",, 0.5, 1 − :.;<=>? 	 , 0, 1� with 0 < ", <0.5	. By symmetry, the following set of strategy profiles are also Nash equilibria: (1, 0, 1 −:.;<=>@ 	 , 0.5,"0) where 0 < "0 < 0.5.  

 
Case 2: "- ∈ ��0, 0.5�]. 
By Lemma 3, "- = 0.5. The case ", ∈ ��0, 0.5�] is discussed above. By part (a) of Lemma 2, we 
only need to discuss the case	", = 0. By Lemma 2, ". = 0.5 and "/ = 0. Moreover, by part 
(b) of Remark 1, "0 = 1. Hence, �0, 0.5, 0.5	, 0, 1� is a Nash equilibrium. By symmetry, �1, 0, 0.5	, 0.5, 0� is also an equilibrium. 
 
Case 3: ". ∈ ��0, 0.5�]. 
By part (a) of Lemma 2, "- , "/ ∈ [0, 0.5] and, by Lemma 3, "- , "/ ∈ �0, 0.5!. By part a in 
Lemma 2, "- = "/ = 0 and "- = "/ = 0.5 cannot be part of a Nash equilibrium. Assuming 
either "- = 0.5	A&B	"/ = 0, or "- = 0	A&B	"/ = 0.5, we obtain the same equilibria 
described in the previous case. This concludes the equilibrium characterization. QED 
 
 
Proof of Proposition 3. 
 
The characterization of the pure strategy Nash equilibria directly follows from part (b) of Lemma 
2. In order to characterize the mixed strategy equilibria, we analyze four cases (the remaining 
one is symmetric): ", ∈ ��0, 0.5�], "- ∈ ��0, 0.5�], "/ ∈ ��0, 0.5�],	and "0 ∈ ��0, 0.5�]. 
 
Case 1: ", ∈ ��0, 0.5�]. 
By part (a) of Remark 1, "- = 0.5 and, by part (a) of Lemma 2: 
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(5)  �1 − ",��1 −".��1 − "/� = 0.5 and ",, "., "/ ∈ [0, 0.5] 

 

By Lemma 3, "/ ∈ �0, 0.5!. Assume "/ = 0.5. Condition (5) implies that ", = 0, a 

contradiction. Assume now "/ = 0. By condition (5), ". = 1 − :.;<=C?>? and, by part (b) of 

Remark 1, "0 = 1. Hence, the following set of strategy profiles are Nash equilibria: �",, 0.5, 1 − :.;<=>? 	 , 0, 1� with 0 < ", < 0.5. By symmetry, the following set of strategy 

profiles are also Nash equilibria: �1 − :.;<=>D , 0.5,". 	, 0, 1� with 0 < ". < 0.5. 

 
Case 2: "- ∈ ��0, 0.5�]. 
By Lemma 3, "- = 0.5 and "/ ∈ �0, 0.5!. If "/ = 0, by part (b) of Remark 1, "0 = 1 and, by 

part (a) of Lemma 2, ". = 1 − :.;<=>? with ", ∈ [0, 0.5]. Then, the following set of strategy 

profiles are Nash equilibria: �",, 0.5, 1 − :.;<=>? 	 , 0, 1� with ", ∈ [0, 0.5].	By symmetry, the 

following set of strategy profiles are also Nash equilibria: �1 − :.;<=>D , 0.5,". 	, 0, 1� where ". ∈ [0, 0.5]. (Note that these equilibria include the ones found in previous case). If "/ = 0.5, 
by part (a) of Lemma 2, �, = 0, �. = 0 and �0 = 0. Hence, �0, 0.5, 0	, 0.5, 0� is a Nash 
equilibrium. 
 
Case 3: "/ ∈ ��0, 0.5�]. 
By Lemma 3, "/ = 0.5. By part (a) of Lemma 2, 
 

(6) �1 − "-��1 − "0� = 0.5 and "- ,"0 ∈ [0, 0.5] 

 

By Lemma 3, "- ∈ �0, 0.5!. Assume "- = 0. By part (b) of Remark 1, ", = ". = 1. Then, by 
(6), "0 = 0.5. Hence, �1, 0, 1	, 0.5, 0.5� is a Nash equilibrium. Assume now "- = 0.5. By (6), �0 = 0. Then, by part (a) of Lemma 2, �, = 0 and �. = 0. Hence, �0, 0.5, 0	, 0.5, 0� is a Nash 
equilibrium. 
 
Case 4: "0 ∈ ��0, 0.5�]. 
By part (a) of Remark 1, "/ = 0.5. Then, by part (a) of Lemma 2,  

 

 (7) �1 − "-��1 − "0� = 0.5.  

 

Since "0 > 0, condition (7) implies "- < 0.5. Then, by Lemma 3, "- = 0 and, by part (b) of 
Lemma 2, ", = ". = 1. Finally, (7) implies "0 = 0.5. Hence, �1, 0, 1, 0.5, 0.5�	is a Nash 
equilibrium. This concludes the equilibrium characterization. QED 
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Complete information scenario – Strategic complements 

Proof of Proposition 4. 
 
For each i ∈ ��, �, �, �,  ! such that ni = 1, i’s best response implies "# = 0, since her payoff 
from choosing action 1 is 1/3 − 1/2 < 0. Hence, in all Nash equilibria, ", = "0 = 0.  
 
We first, characterize the pure strategy Nash equilibria. For each of the players B, C and D, in 
order to find optimal to choose action 1, it is requires that at least two of their neighbors also 
choose 1, otherwise they prefer action 0. Since A and E choose 0, in a pure-strategy Nash 
equilibrium either "- = ". = "/ = 1 or "- = ". = "/ = 0.  
 
Since ", = "0 = 0, in order to characterize the mixed strategy equilibria, we just need to 
analyze one case (the remaining ones are symmetric): "/ ∈ �0, 1��.  
 
Case 1: "/ ∈ �0, 1��. To be in a Nash equilibrium the following condition must be satisfied: 8�1 − ".�"- + �1 − "-�".9 <G+"-". �G = <�, that simplifies to: 

 

  (8) 
<G �"-+".� = 12 

 

Hence, "- , ". > 0. By (8), "- = 	". = 1 can not hold. Suppose "- = 1, then, by (8), ". = 0.5. A similar computation yields "/ = 0.5. Hence, �0, 1, 0.5, 0.5, 0� is a Nash 
equilibrium. By symmetry, �0, 0.5, 1, 0.5, 0�, �0, 0.5, 0.5, 1, 0� are also Nash equilibria. Suppose 
now "- < 1. If ". = 1, we obtain one of the previous equilibria. Hence, assume ". < 1. 
Then, the following conditions must hold: 

 

  (9) 
<G �",+".� = 0.5 

  (10) 
<G �",+"-� = 0.5 

 

Conditions (8), (9), and (10) imply "- = ". = "/ = 0.75. Hence, �0, 0.75, 0.75, 0.75, 0� is a 
Nash equilibrium. QED 

 
Proof of Proposition 5. 
 
For each i ∈ ��, �, �, �,  ! such that ni = 1 (A and E in gG, and A, C and E in gP), i’s best 
response implies "# = 0, since her payoff from choosing action 1 is 1/3 − 1/2 < 0. Hence, in a 
Nash equilibrium, players B and D in gG and player D in the gP also choose action 0, since they 
have degree 2 and one of their neighbors has degree 1 (and, therefore, chooses action 0). It 
follows that, in a Nash equilibrium, also player C in gG and player B in gP choose action 0, since 
all their neighbors also choose 0. QED 
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Incomplete information scenario  

 

We first define some conditional probabilities that shall be useful in the proofs of 
Propositions 6 and 7. Let q1(j; p) be the expected probability for an agent that, conditional on 
having degree 1, her neighbor has degree j. By applying Bayes’ rule we get36  

q1(2; p) = G�<=C�;�<=C�IJC and q1(3; p) = ��<=C�IJC;�<=C�IJC 
Let q2(j1,j2; p) be the expected probability for an agent that, conditional on having degree 

2, her neighbors have degrees j1 and j2. By applying Bayes’ rule we get  

q2(1,2; p) = ��<=C�J�<=C�I�C, q2(2,2; p) = <=CJ�<=C�I�C, q2(1,3; p) = <=CJ�<=C�I�C and q2(3,3; p) = �CJ�<=C�I�C. 
Let q3(j1,j2,j3; p) be the expected probability for an agent that, conditional on having degree 3, 

her neighbors have degrees j1, j2 and j3. By applying Bayes’ rule we get  

q3(1,1,2; p) = <=C<IGC and q3(1,2,3; p) = JC<IGC. 
Let K#3�L# , L=#� be the payoff of an agent (indexed by i	∈ () with degree j 	∈ �1,2,3!. 
 
Proof of Proposition 6. 
 

We start checking for pure strategy equilibria. There are 8 candidates: sI = (0,0,0), sII = (1,0,0), 
sIII  = (0,1,0), sIV = (0,0,1), sV = (1,1,0), sVI = (1,0,1), sVII  = (0,1,1) and sVIII  = (1,1,1). We first 
prove that candidates sI, sIII , sIV, sVI, sVII  and sVIII  cannot be equilibria: 

• For all � ∈ �0,1�, sI is not an equilibrium, since K#<�0, L=#M � = 0 < 1/2 = K#<�1, L=#M �. 
• Regarding sIII , in order to be an equilibrium, it would require K#<�0, L=#MMM� ≥ K#<�1, L=#MMM� and K#��1, L=#MMM� ≥ K#��0, L=#MMM�, i.e., q1(2; p) ≥ <� and 

<� ≥	q2(1,2; p) + q2(2,2; p), but these 

inequalities are incompatible for all � ∈ �0,1�. 
• Regarding sIV, in order to be an equilibrium, it would require K#��0, L=#MN� ≥ K#��1, L=#MN� and K#G�1, L=#MN� ≥ K#G�0, L=#MN�, i.e., q2(1,3; p) + q2(3,3; p) ≥ <� and 

<� ≥	q3(1,2,3; p), but these 

inequalities are incompatible for all � ∈ �0,1�. 
• For all � ∈ �0,1�, sVI is not an equilibrium, since K#G�1, L=#NM� = 1/2 < 1 = K#G�0, L=#NM�. 
• For all � ∈ �0,1�, sVII  is not an equilibrium, since K#��1, L=#NMM� = 1/2 < 1 = K#��0, L=#NMM�. 
• For all � ∈ �0,1�, sVIII  is not an equilibrium, since K#<�1, L=#NMMM� = 1/2 < 1 = K#<�0, L=#NMMM�. 

                                                           
36 Recall that with probability p, the orange network is selected whereas each of the other two networks is selected 
with probability (1-p)/2. Then the five players are randomly allocated in the network with uniform probability.   
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We now prove that candidates sII and sV are equilibria when � ≤ <� and � ≥ �G, respectively: 

• Candidate sII = (1,0,0). First, we observe that, for all � ∈ �0,1�, K#<�1, L=#MM � = 1/2 >0 = K#<�0, L=#MM � and K#G�0, L=#MM � = 1 > <� = K#G�1, L=#MM �. Hence, in order to be an equilibrium, 

it requires K#��0, L=#MM � ≥ K#��1, L=#MM �, i.e., q2(1,2; p) + q2(1,3; p) ≥ <�,	which simplifies to � ≤<�. 
• Candidate sV = (1,1,0). First, we observe that, for all � ∈ �0,1�, K#G�0, L=#N � = 1 ><� = K#G�1, L=#N �. Hence, in order to be an equilibrium, it requires both K#<�1, L=#N � ≥K#<�0, L=#N � and K#��1, L=#N � ≥ K#��0, L=#N �, i.e., 

<� ≥ q1(2; p) and 
<� ≥ q2(1,2; p) + q2(2,2; p) + 

q2(1,3; p). The second inequality imply the first one, and the equilibrium condition 

simplifies to � ≥ �G.  
Thus, we have shown that, when � ∈ O0, <�P ∪ R�G , 1S, the strategy profile (1, s₂

*(p), 0) is an 

equilibrium, and that for all � ∈ �0,1�, there are no other pure strategy equilibrium.  

We now check for equilibria where players use mixed strategies. First, consider a strategy 
profile sIX = (1, m, 0), with " ∈ �0,1�, i.e., players with degree 2 mix, and players with degrees 1 
and 3 choose actions 1 and 0, respectively. For sIX to be an equilibrium, it is required that K#��1, L=#MT� = K#��0, L=#MT�, i.e., 

<� = q2(1,2; p) + q2(1,3; p) + (m²+2m(1–m)) f2(2,2; p), which 

simplifies to " = 1−�−U�2−3���1−��1−� , i.e., " = 1 − V2−3�1−� . We get that m is a real number lying in 

the interval (0,1) when 
<� < � < �G.37 Note that, for all � ∈ �0,1�, K#G�0, L=#MT� = 1 > <� =K#G�1, L=#MT�. Thus, in order to show that, for all � ∈ O<� , �GS, sIX is an equilibrium, we just require 

that K#<�1, L=#MT� ≥ K#<�0, L=#MT�, i.e., 
<� ≥ m q1(2; p). Since m < 1, q1(2; p) is decreasing in p, and 

q1(2; 1/2) = 1/3, we get that when � ∈ O<� , �GS, the strategy profile (1, s₂
*(p), 0) is an equilibrium. 

Finally, using the software Mathematica we have checked that, if � ≥ 0.2, there is no other 
mixed strategy equilibrium.38 QED 

 
 

                                                           
37 When solving for m (a second degree equation), we select the root that provides m < 1. The condition p < 2/3 is 
obtained from imposing that the argument of the square root is positive, and p > 1/2 is obtained from imposing m > 
0. 
38 To check it analytically would be cumbersome, since it requires to check for various simultaneous inequalities, 
and there are a number of candidates: (m1,0,0), (m1,1,0), (m1,0,1), (m1,1,1), (0,m2,1), (1,m2,1), (0,0,m3) (1,0,m3), 
(0,1,m3), (1,1,m3), (m1,m2,0), (m1,m2,1), (m1,0,m3), (m1,1,m3), (0,m2,m3), (1,m2,m3) and (m1,m2, m3). The Mathematica 
file is available from the authors upon request [for the referees’ convenience, it is included in the technical document 
– not intended for publication].  
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Proof of Proposition 7. 
 

We start checking for pure strategy equilibria. There are 8 candidates: sI = (0,0,0), sII = 
(1,0,0), sIII  = (0,1,0), sIV = (0,0,1), sV = (1,1,0), sVI = (1,0,1), sVII  = (0,1,1) and sVIII  = (1,1,1).  

We first prove that candidates sII, sIII , sIV, sV, sVI, and sVIII  cannot be equilibria: 

• For all � ∈ �0,1�, sII is not an equilibrium, since K#<�1, L=#MM � = −1/2 < 0 = K#<�0, L=#MM �. 
• For all � ∈ �0,1�, sIII  is not an equilibrium, since K#��1, L=#MMM� = <G �W��1,2; 	�� + 2�W��2,2; 	��� − <� < 0 = K#��0, L=#MMM�. 
• Regarding sIV, in order to be an equilibrium, it would require K#G�1, L=#MN� ≥ K#G�0, L=#MN�, i.e., <G WG�1,2,3; 	�� − <� ≥ 0. However, the inequality does not hold since, for any ∈ �0,1�, WG�1,2,3; 	�� < 1. 

• Regarding sV, in order to be an equilibrium, it would require K#<�1, L=#N � ≥ K#<�0, L=#N �, i.e., <G W<�2; 	�� − <� ≥ 0. However, the inequality does not hold since, for ∈ �0,1�, W<�2; 	�� < 1. 

• Regarding sVI, in order to be an equilibrium, it would require K#<�1, L=#NM� ≥ K#<�0, L=#NM�, i.e., <G W<�2; 	�� − <� ≥ 0. However, the inequality does not hold since, for ∈ �0,1�, W<�2; 	�� < 1. 

• For all � ∈ �0,1�, sVIII  is not an equilibrium, since K#<�1, L=#NMMM� = −1/6 < 0 = K#<�0, L=#NMMM�. 
 

We now prove that candidates sI is an equilibrium for all � ∈ �0,1�, and that candidate sVII  is 
an equilibrium for all � ≥ 1/2. 
• Candidate sI = (0,0,0). For all � ∈ �0,1�, and Z ∈ �1,2,3!, K#[�0, L=#� = 0 > −1/2 =K�Z1,L−�. Hence sI is an equilibrium. 

• Candidate sVII  = (0,1,1). First, we observe that, for all � ∈ �0,1�, K#<�0, L=#NMM� = 0 >−1/6 = K#<�1, L=#NMM�. Hence, in order to be an equilibrium, it requires both K#��1, L=#NMM� ≥K#��0, L=#NMM� and K#��1, L=#NMM� ≥ K#��0, L=#NMM�, i.e., <G �W��1,2; 	�� + W��1,3; 	�� + 2W��2,2; 	�� + 2W��2,3; 	��� − <� ≥ 0	and  <G �WG�1,1,2; 	�� + 2WG�1,2,3; 	��� − <� ≥ 0.  

The first inequality simplifies to � ≥ 1/2 and the second one simplifies to � ≥ 1/5.	Since 
both conditions are necessary, the result follows. 
 
We now check for equilibria where players use mixed strategies. First note that, in any 

equilibrium profile, players with degree 1 necessarily choose the pure strategy 1, since K#<�1, L=#� ≤ <G− <� < 0 = K#<�0, L=#�. Hence, assuming "� ∈ �0,1� and "G ∈ �0,1�, the 

equilibrium candidates are sX = (0, "�, 0), sXI = (0, "�, 1), sXII  = (0, 0, "G), sXIII  = (0, 1, "G) and 
sXIV  = (0, "�, "G).   

We first prove that candidates sX, sXII  and sXIII  cannot be equilibria: 
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• Since, in sIII  = (0,1,0), for all � ∈ �0,1�, K#��1, L=#MMM� < 0 = K#��0, L=#MMM�, sX can neither be an 
equilibrium. 

• For all � ∈ �0,1�, sXII  is not an equilibrium, since K#G�1, L=#TMM� ≤ <G − <� < 0 = K#G�0, L=#� and, 

therefore, players with degree 2 cannot optimally mix.  

• Regarding sXIII , in order to be an equilibrium, it would require that K#G�1, L=#TMMM� =K#G�0, L=#TMMM�, i.e., 
<G (f3(1,1,2; p) + (1–"G) f3(1,2,3; p) + 2"G f3(1,2,3; p))	− <� = 0, which 

simplifies to "G = <IGC\C . Since "G > 1, it is needed that p > 1/5. Additionally, for sXIII  to be an 

equilibrium, we would need that K#��1, L=#TMMM� ≥ K#��0, L=#TMMM�, i.e., 
<G (f2(1,2; p) + 2f2(2,2; p) + 

"G	f2(1,3; p) + 2("G�² f2(3,3; p) +2"G(1–"G) f2(3,3; p))	− <� ≥ 0. If we substitute "G = <IGC\C , 

we obtain that the inequality is satisfied if and only if  � ∈ 80, 5 − 2√69 ∪ 85 + 2√6,∞9. Since 5 − 2√6 < 1/5, there is no � ∈ �0,1� such that sXIII  is an equilibrium. 
 

We finally prove that candidate sXI = (0, "�, 1), with "� = 5−6�4�1−��, is an equilibrium if 

� ∈ O<� , <GI√<:;G� S; and that sXIV  = (0, "�, "G), with "� = 3−30�+51�²2�5�−1�²  and "G = 3�+9�²�5�−1�² is an 

equilibrium if � ≥ √<:;I<GG� . 
• Candidate sXI = (0, "�, 1). In order to be an equilibrium, it requires that K#��1, L=#TM� =K#��0, L=#TM�, i.e., 

<G ("�	f2(1,2; p) + 2("��² f2(2,2; p) + 2"�(1–"�) f2(2,2; p) + f2(1,3; p) + 

2f2(3,3; p))	− <� = 0, which simplifies to "� = 5−6�4�1−��. Since we require "� ∈ �0,1�, it is needed 

that � ∈ O<� , ;bS. Additionally, for sXI to be an equilibrium, we need that K#G�1, L=#TM� ≥K#G�0, L=#TM�, i.e., 
<G ("�	f3(1,1,2; p) + (1–"�) f3(1,2,3; p) + 2"� f3(1,2,3; p))	− <� ≥ 0. If we 

substitute "� = 5−6�4�1−��, we obtain that the inequality is satisfied if and only if  � ∈
c13−√10532 , 13+√10532 d ∪ �1,∞�. Since 

<G=√<:;G� < 12 and 
<GI√<:;G� < 56, we get that sXI is an 

equilibrium if � ∈ O<� , <GI√<:;G� S. 
• Candidate sXIV  = (0, "�, "G). In order to be an equilibrium, it requires that both K#��1, L=#TMN� = K#��0, L=#TMN� and K#G�1, L=#TM� = K#G�0, L=#TM�, i.e., <G ("�	f2(1,2; p) + 2("��² f2(2,2; p) + 2"�(1–"�) f2(2,2; p) + "Gf2(1,3; p) + 2("G�² f2(3,3; p) + 

2"G(1–"G) f2(3,3; p))	− <� = 0 and <G ("�	f3(1,1,2; p) + �"G(1–"�)+ "�(1–"G�� f3(1,2,3; p) + 2"G"� f3(1,2,3; p))	− <� = 0. 
Solving for the system of equations, we get that "� = 3−30�+51�²2�5�−1�²  and "G = 3�+9�²�5�−1�². Finally, 

we get that "� ∈ �0,1� and "G ∈ �0,1� if and only if � > <GI√<:;G� . QED  



 

Appendix D: Experimental instructions 

 

I) Complete Information - Substitutes 

The aim of this Experiment is to study how individuals make decisions in certain contexts. The 
instructions are simple. If you follow them carefully you will earn a non
money in cash (Euros) at the end of the experiment. During the experiment, your earnings will be 
accounted in ECU (Experimental Currency Units). Individual payment
nobody will know the other participants’ payments. Any communication among you is strictly 
forbidden and will result in an immediate exclusion from the Experiment.

1.- The experiment consists of 40 rounds. In each round you will b
group of 5 participants. This group is determined randomly at the beginning of the round. 
Therefore, the group you are assigned to changes at each round. In this room, there are 10 
participants (including yourself) that are potenti
round your group of 5 participants is selected among these 10 participants, each of them being 
equally likely to be in your group. You will not know the identities of any of these participants. 

2.- At each round, the computer selects randomly a 
network, the green network 

Once a network is selected, you (and the other members of your group) are randomly assigned to 
a position: A, B, C, D or E, all of them being equally likely. The assignment process is 
At each round, you are equally likely to be located in each of the 5 positions. At each round, you 
will be informed of the selected network (color) and of your position (letter).

In a network, a link is represented by a line (connection) between tw
the orange network, position B
linked to position E). Summarizing:

- In the orange network there are two positions with 
with 2 links (position C), and two positions with 

- In the green network there are two positions with 
with 2 links (positions B, 

- In the purple network there are three positions with 
position with 2 links (position D
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Appendix D: Experimental instructions  

Substitutes  

The aim of this Experiment is to study how individuals make decisions in certain contexts. The 
structions are simple. If you follow them carefully you will earn a non

money in cash (Euros) at the end of the experiment. During the experiment, your earnings will be 
accounted in ECU (Experimental Currency Units). Individual payments will remain private, as 
nobody will know the other participants’ payments. Any communication among you is strictly 
forbidden and will result in an immediate exclusion from the Experiment. 

The experiment consists of 40 rounds. In each round you will be randomly assigned to a 
group of 5 participants. This group is determined randomly at the beginning of the round. 
Therefore, the group you are assigned to changes at each round. In this room, there are 10 
participants (including yourself) that are potential members of your group. That is, at every 
round your group of 5 participants is selected among these 10 participants, each of them being 
equally likely to be in your group. You will not know the identities of any of these participants. 

, the computer selects randomly a network for your group
 or the purple network: 

Once a network is selected, you (and the other members of your group) are randomly assigned to 
, all of them being equally likely. The assignment process is 

At each round, you are equally likely to be located in each of the 5 positions. At each round, you 
will be informed of the selected network (color) and of your position (letter).

is represented by a line (connection) between two positions. For example, in 
position B has three links: it is linked to positions A

). Summarizing: 

there are two positions with 1 link (positions A 
), and two positions with 3 links (positions B and 

there are two positions with 1 link (positions A 
 C and D), and no position with 3 links. 
there are three positions with 1 link (positions A

position D), and one position with 3 links (position

The aim of this Experiment is to study how individuals make decisions in certain contexts. The 
structions are simple. If you follow them carefully you will earn a non-negligible amount of 

money in cash (Euros) at the end of the experiment. During the experiment, your earnings will be 
s will remain private, as 

nobody will know the other participants’ payments. Any communication among you is strictly 
 

e randomly assigned to a 
group of 5 participants. This group is determined randomly at the beginning of the round. 
Therefore, the group you are assigned to changes at each round. In this room, there are 10 

al members of your group. That is, at every 
round your group of 5 participants is selected among these 10 participants, each of them being 
equally likely to be in your group. You will not know the identities of any of these participants.  

network for your group : the orange 

 

Once a network is selected, you (and the other members of your group) are randomly assigned to 
, all of them being equally likely. The assignment process is random: 

At each round, you are equally likely to be located in each of the 5 positions. At each round, you 
will be informed of the selected network (color) and of your position (letter). 

o positions. For example, in 
positions A, C and D (but it is not 

positions A and E), one position 
and D). 

positions A and E), three positions 

positions A, C and E), one 
position B).  
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You can notice that both the green and the purple network have one link less that the orange 
one: In the green network positions B and D are not linked, and in the purple network 
positions C and D are not linked.  

Your earnings of the round can only be affected by your decisions and the decisions of those 
participants located in positions that are linked to yours, as specified below.  

3.- At each round, knowing the selected network and your position, you will be asked to make a 
choice: to be ACTIVE  or INACTIVE  (the other participants are asked to make the same 
choice). Your payoff of the round will depend on your choice and on the choices of those 
participants of your group located in positions linked to yours: You earn 100 ECU if either you 
or at least one of the participants located in positions linked to yours choose to be ACTIVE. 
Being active has a cost of 50 ECU. Hence, 

• If you choose to be ACTIVE  your round payoff is ef ECU for sure [100	– 50]  
• If you choose to be INACTIVE  your round payoff can be:  

� hff ECU if at least one participant linked to you choose to be ACTIVE, or 
� f ECU if no participant linked to you choose to be ACTIVE.  

 

4.- At the end of every round, you will get information about current and past rounds. The 
information consists of: 
- The selected network. 
- Your position in the network. 
- Your choice (ACTIVE or INACTIVE). 
- The number of participants linked to you that chose to be ACTIVE. 
- Your (round) payoff. 
 
5.- Payoffs. At the end of the experiment, you will be paid the earnings that you achieved in 4 
rounds, that will be randomly selected across the 40 rounds of play (all rounds selected will the 
same probability). These earnings are transformed to cash at the exchange rate of 20 ECU = 1 €. 
In addition, just by showing up, you will also be paid a fee of 5 €. 
 
  



 

II) Incomplete Information –

[Note: The case p=0.2 is analogous (it just changes the virtual urn composition)]

The aim of this Experiment is to study how individuals make decisions in certain contexts. The 
instructions are simple. If you follow them carefully you will earn a non
money in cash (Euros) at the end of the experiment. During the experiment, your earnings will be 
accounted in ECU (Experimental Currency Units). Individual payments will remain private, as 
nobody will know the other participants’ payments. Any comm
forbidden and will result in an immediate exclusion from the Experiment.

1.- The experiment consists of 40 rounds. In each round you will be randomly assigned to a 
group of 5 participants. This group is determined randomly a
Therefore, the group you are assigned to changes at each round. In this room, there are 10 
participants (including yourself) that are potential members of your group. That is, at every 
round your group of 5 participants is sel
equally likely to be in your group. You will not know the identities of any of these participants. 

2.- At each round, the computer selects one color from a virtual urn. The virtual urn contains 10 
balls: 8 orange balls, 1 green ball

All the 10 balls of the virtual urn are equally likely to be selected by the computer. The 
the selected ball determines a 
network or the purple network
virtual urn. Thus, in each round the color selection process is identical (there are always 8 orange 
balls, 1 green ball and 1 purple ball, and one of them is randomly picked by the computer). The
three possible networks are: 

Once a network is selected, you (and the other members of your group) are randomly assigned to 
a position: A, B, C, D or E, all of them being equally likely. The assignment process is random: 
At each round, you are equally likely to be located in each of the 5 positions. At each round, you 
will neither be informed of the selected network (color) nor of your position (letter).
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– Complements – p=0.8 

he case p=0.2 is analogous (it just changes the virtual urn composition)]

The aim of this Experiment is to study how individuals make decisions in certain contexts. The 
instructions are simple. If you follow them carefully you will earn a non
money in cash (Euros) at the end of the experiment. During the experiment, your earnings will be 
accounted in ECU (Experimental Currency Units). Individual payments will remain private, as 
nobody will know the other participants’ payments. Any communication among you is strictly 
forbidden and will result in an immediate exclusion from the Experiment. 

The experiment consists of 40 rounds. In each round you will be randomly assigned to a 
group of 5 participants. This group is determined randomly at the beginning of the round. 
Therefore, the group you are assigned to changes at each round. In this room, there are 10 
participants (including yourself) that are potential members of your group. That is, at every 
round your group of 5 participants is selected among these 10 participants, each of them being 
equally likely to be in your group. You will not know the identities of any of these participants. 

At each round, the computer selects one color from a virtual urn. The virtual urn contains 10 
1 green ball and 1 purple ball.  

 

All the 10 balls of the virtual urn are equally likely to be selected by the computer. The 
the selected ball determines a network for your group : the orange network

purple network. Once the network has been selected, the ball is returned to the 
virtual urn. Thus, in each round the color selection process is identical (there are always 8 orange 
balls, 1 green ball and 1 purple ball, and one of them is randomly picked by the computer). The

Once a network is selected, you (and the other members of your group) are randomly assigned to 
, all of them being equally likely. The assignment process is random: 

At each round, you are equally likely to be located in each of the 5 positions. At each round, you 
will neither be informed of the selected network (color) nor of your position (letter).

he case p=0.2 is analogous (it just changes the virtual urn composition)] 

The aim of this Experiment is to study how individuals make decisions in certain contexts. The 
instructions are simple. If you follow them carefully you will earn a non-negligible amount of 
money in cash (Euros) at the end of the experiment. During the experiment, your earnings will be 
accounted in ECU (Experimental Currency Units). Individual payments will remain private, as 

unication among you is strictly 
 

The experiment consists of 40 rounds. In each round you will be randomly assigned to a 
t the beginning of the round. 

Therefore, the group you are assigned to changes at each round. In this room, there are 10 
participants (including yourself) that are potential members of your group. That is, at every 

ected among these 10 participants, each of them being 
equally likely to be in your group. You will not know the identities of any of these participants.  

At each round, the computer selects one color from a virtual urn. The virtual urn contains 10 

All the 10 balls of the virtual urn are equally likely to be selected by the computer. The color of 
orange network, the green 

the network has been selected, the ball is returned to the 
virtual urn. Thus, in each round the color selection process is identical (there are always 8 orange 
balls, 1 green ball and 1 purple ball, and one of them is randomly picked by the computer). The 

 

Once a network is selected, you (and the other members of your group) are randomly assigned to 
, all of them being equally likely. The assignment process is random: 

At each round, you are equally likely to be located in each of the 5 positions. At each round, you 
will neither be informed of the selected network (color) nor of your position (letter).  
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In a network, a link is represented by a line (connection) between two positions. For example, in 
the orange network, position B has three links: it is linked to positions A, C and D (but it is not 
linked to position E). Summarizing: 

- In the orange network there are two positions with 1 link (positions A and E), one position 
with 2 links (position C), and two positions with 3 links (positions B and D). 

- In the green network there are two positions with 1 link (positions A and E), three position 
with 2 links (positions B, C and D), and no position with 3 links. 

- In the purple network there are three positions with 1 link (positions A, C and E), one 
position with 2 links (position D), and one position with 3 links (position B).  

 

You can notice that both the green and the purple network have one link less that the orange 
one: In the green network positions B and D are not linked, and in the purple network 
positions C and D are not linked.  

Your earnings of the round can only be affected by your decisions and the decisions of those 
participants located in positions that are linked to yours, as specified below.  

3.- At each round, you will only be informed about how many links your assigned position has (1 
link, 2 links or 3 links) in the selected network, but you will neither know with certainty which is 
the selected network nor your exact position.  

For example, if at a particular round you are informed that your position has 3 links, there are 
different paths that could lead to this outcome: It may be the case that the selected network is the 
orange network and you have been assigned to position B or D, or it may be the case that the 
selected network is the purple network and you have been assigned to position B.  

4.- At each round, knowing the selected network and your position, you will be asked to make a 
choice: to be ACTIVE  or INACTIVE  (the other participants are asked to make the same 
choice). Your payoff of the round will depend on your choice and on the choices of those 
participants of your group located in positions linked to yours. If you choose to be INACTIVE, 
your round payoff is 50 ECU. If you choose to be ACTIVE, your round payoff is calculated as 
follows: First, add 100 ECU per participant linked to you that also chooses to be ACTIVE; then, 
divide the result by 3. Hence, 

• If you choose to be ACTIVE  your round payoff can be: 

� hff, ff ECU if 3 participants linked to you choose to be ACTIVE R<::I<::I<::G P, or 

� ii, ii	ECU if 2 participants linked to you choose to be ACTIVE R<::I<::G P, or 

� jj, jj ECU if 1 participants linked to you choose to be ACTIVE R<::G P, or 

� f, ff ECU if no participant linked to you choose to be ACTIVE. 
• If you choose to be INACTIVE  your round payoff is ef, ff ECU for sure. 
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5.- At the end of every round, you will get information about current and past rounds. The 
information consists of: 
- The selected network. 
- Your position in the network. 
- Your choice (ACTIVE or INACTIVE). 
- The number of participants linked to you that chose to be ACTIVE. 
- Your (round) payoff. 
 
6.- Payoffs. At the end of the experiment, you will be paid the earnings that you achieved in 4 
rounds, that will be randomly selected across the 40 rounds of play (all rounds selected with the 
same probability). These earnings are transformed to cash at the exchange rate of 20 ECU = 1 €. 
In addition, just by showing up, you will also be paid a fee of 5 €. 

 




