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Equilibrium Selection in Experimental Games on Netwrks’

Gary CharnessFrancesco FeriMiguel A. Meléndez-Jiménéz
and Matthias Suttér

Abstract. We study behavior and equilibrium selection in ekpental network games. We vary
two important factors: (a) actions are either sfyat substitutes or strategic complements, and
(b) subjects have either complete or incompletermétion about the structure of a random
network. Play conforms strongly to the theoretigakdictions, providing an impressive
behavioral confirmation of the Galeotti, Goyal, Ksan, Vega-Redondo, and Yariv (2010)
model. The degree of equilibrium play is strikiryen with incomplete information. We find
that under complete information, subjects typicallgy the stochastically-stable (inefficient)
equilibrium when the game involves strategic stibs, but play the efficient one with strategic
complements. Our results suggest that equilibrmaattiplicity may not be a major concern.
Subjects’ actions and realized outcomes under ipteta information depend strongly on both
the degree and the connectivity. When there aréipteiequilibria, subjects begin by playing the
efficient equilibrium, but eventually converge twtinefficient one.
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1. Introduction

Social networks are a prominent feature of the eooa landscape. A network is a non-
market institution, but has important market-likeaacteristics. In a sense it can be considered
to be an intermediate case between bilateral bargpiand matching in a large centralized
market. Network structure affects choices in a widgiety of environments and network
analysis has been applied to many important enriesms® It has been applied, for example, to
systems compatibility (Katz and Shapiro 1994),irérlroute design (Hendricks, Piccione and
Tan 1995), matching markets (Gale and Shapley 1R6B0 and Crawford 1982, Roth 1984,
Crawford and Rochford 1986, Roth and Sotomayor 1L988&rgaining (Kranton and Minehart
2001), and friendship (Currarini, Jackson and P@99). Job search and labor-market issues are
also quite suitable for network analysis, since ke frequently find jobs through personal
contacts and employers value the additional enfoec# channel available through these
personal intermediaries (Montgomery 1991, Calvo-@éngol 2004, Calvé-Armengol and
Jackson 2004, 2007).

A growing empirical literature has documented tHé&eats of social networks on
behavior; the information gleaned from these hagivaied theoretical work. Since social
networks are so prevalent in economic settings,atiogl these networks is essential in order to
understand how network structure affects behawndrvahich networks are likely to arise and be
stable. However, it is very difficult (if not impsible) to cleanly test theoretical predictions gsin
field data, since there are many confounding festun the environmefit.n this respect,
controlled laboratory experiments are often vievesdthe ideal tool for qualitatively testing
theory (e.g., Runkel and McGrath, 1972; Falk andkr®an, 2009).

In this paper, we design a laboratory experimeat implements specific examples of a
more general network structure in which the agesttions are either strategic complements or

substitutes. Economic environments typically have cansiderable degree of either

! Jackson (2010, p. 512) states that network strei¢influences patterns of decisions regarding atlan, career,
hobbies, criminal activity, and even participation micro-finance. Beyond the role of ‘social’ netks in
determining various economic behaviors, there B® many business and political interactions thatreetworked.
Networks of relationships among various firms aolitigal organizations affect research and develepimpatent
activity, trade patterns, and political alliances.”

2 For an exhaustive review of social and economisvorks, with particular attention to theoretical dets, see
Jackson (2008).

% Typical problems with field data are the use d@bsyncratic data sets, a snapshot of a static @mvient, or the
issue of measurement error.



complementarity or substitutability, so that thistion applies to a wide variety of economic
environments and includes perhaps most of the ghewretic applications in the network
literature.

In addition to the broad applicability of our segj to the best of our knowledge we are
the very first to experimentally study an enviromtm which the agents are uncertain about the
precise network structure. This enhances the aiplity and the external validity of our
experiment, as there are many economic situatiomaich individuals have a good sense of the
number of other people with whom they are interartin some form of network, but know
neither the identity of these others nor how theHeers are connected to still others. As
examples for such situations, Galeotti, Goyal, SankVega-Redondo and Yariv (2010) mention
choosing which languages to study before embarkimga career in diplomacy, researchers
choosing software based on compatibility, and cimgpghether to receive a vaccination.

A critical problem in relation to network theorytisat even simple games have multiple
equilibria, so that a great variety of outcomes emasistent with theoretical analysis. This
naturally limits the predictive power of the theapd the scope of policy recommendations,
since multiple equilibria make it difficult-to-imgsible to offer definitive advice regarding how
such labor markets, search markets, etc. shouldrganized. To make meaningful policy
recommendations, it is very important to try toedetine which of the equilibria are likely to
occur. One way to achieve this is theoretical wémkfact, a central goal in network analysis is
to refine the set of equilibria to be able to makdter predictions about the likely outcomes; in
some cases with networks on games, there is therratirprising and non-intuitive result (at
least at first sight) that uncertainty about eleteeof the network reduces the equilibrium
multiplicity that arises under complete informati@s shown by Galeottt alii (2010). Another
way to examine equilibrium selection is through exmental testing. This is our approach, since
experimental work should be useful in identifyindgpieh of the multiple equilibria tends to
actually prevail behaviorally.

Galeottiet alii (2010) mainly focus on two classes of games: esgratcomplements and
strategic substitutes. Strategic complements (pesihetwork externalities) arise when the
benefit that an individual obtains from choosinga&tion is greater as more of her neighbors do
the same. An example of strategic complementsnsanucapital investment, whereby one’s own



investment is more beneficial if others also mahis tnvestment. Strategic substitutes arise
when the benefit that an individual obtains frono@$ing an action is greater as more of her
neighbors do the opposite. An example of strategiostitutes is that of a best-shot game,
wherein it pays an individual to free-ride on thentibutions or actions of others. Another
example is choosing routes to avoid congested roads

In our paper, we adapt the Galeatti alii (2010) model to a specific experimental
environment that includes three different five-persnetworks. In the case of complete
information, each person knows the network strectand the node to which she has been
assigned. In contrast, with incomplete informaté&ach person only knows the probability that
each of the three possible networks has been rdgddrawn and her degree (the number of
connections to others). This probability is a tneatt variable. Again, to the best of our
knowledge this is the first experiment on netwaidisever consider behavior under incomplete
information and the concomitant increased compjerit the environment. In fact, a major
challenge was to create a design that matched #heotd et alii (2010) theoretical model and
yet was comprehensible for the participants. Bylarpg the game very carefully and by
having participants play for 40 periods to allovard control for — learning, we are confident
that the participants understood the game quité wel

Our experimental results are striking. In fact, fivel a great deal of support for every
one of the theoretical predictions. Participamés t a large extent, active in the network (which
can be interpreted as purchasing a particular gat@n the prediction is that they will be and
they are inactive (not purchasing) when the premhdis that they won't be. In all scenarios, the
modal behavior by every individual is consistenttwthe observed equilibrium outcome, and the
overall rate of such equilibrium play is quite high

In the simpler case of complete information, bebelly we do not observe a
multiplicity of equilibria. Behavior consistent \ita unique equilibrium is seen in each and
every independent group. With strategic substitatescomplete information, this equilibrium is
not the efficient one, but in a certain sense itisk dominant’, as a deviation from the selected
equilibrium is less harmful than a deviation frome tefficient equilibrium. In other words, there

is a trade-off between efficiency and the cost omistake (stability), since the efficient

* In fact, positive network externalities may begkrenough to more than offset inferior quality fiicency. A
familiar example is that of the QWERTY keyboardpter is the general adoption of the VHS formatrahe
Betamax format around 1980 despite the fact traBdgtamax format was widely acknowledged to be soipe



equilibrium results in a higher cost for agentsoes. With strategic complements and complete
information, the efficient equilibrium is selecteRemarkably, the predictions are borne out
qualitatively for every node and quantitatively fvun 10 percentage points of the extreme point-
prediction) for most nodes, for both strategic silies and strategic complements.

With incomplete information, the only informatiomopided is one’s degree, so we do
not distinguish amongst positions with the samerekegDespite the more complex game,
subjects do seem to grasp the essential elementslagf very well. As with complete
information, the qualitative predictions of the mebdare supported for both strategic
complements and strategic substitutes. As theaegigis, we observe that participants do use
monotone (threshold) strategies. Regarding ineckaonnectivity, the frequency of active
players increases for degree 2 and 3 with botlesgfi@substitutes and strategic complements. In
scenarios where incomplete information induces iguenequilibrium, we see that participants
make the choice that is consistent with this eluidim an overwhelming majority of the time.

There is only one case with incomplete informatishere the theoretical prediction
involves multiple equilibria, i.e., with strategitomplements and a high degree of connectivity.
In contrast to the parallel case with completerimiation, the efficient equilibrium is n@iayed.
We offer some possible explanations, relying onnoledl rationality and subjects being forward
looking, regarding the behavioral influences thauld generate this asymmetry between
complete and incomplete information in the cassti@tegic complements.

The remainder of the paper is organized as follas.discuss the relevant literature in
section 2, and present the equilibrium analysisdiar set-up in section 3. The experimental
design and implementation comprise section 4, aedpvesent our experimental results in
section 5. We offer a discussion of our results thiedr implications in section 6, and conclude in

section 7.

2. Literature review
In this section we review related theoretical angbegimental work. We refer the
interested reader to Jackson (2008) for a compsaeroverview of theoretical work on and

applications of social and economic networks.



2.1 Theoretical work

Our study relates to exogenous networks, as afpants no control over the structure of
the network. Thus, we do not consider the issuéat networks were formed, but simply
presume that the links are already in place dwemoe relationships that have (or had) value, and
that the cost of (endogenous) change is prohibitimethis sense, the networks we use are
effectively stable.

A handful of papers show that the outcomes of gameggneral depend on the specific
network structures, when there are either strateghistitutes or complements. In the case of
complete information, Goyal and Moraga-GonzaleD{d(analyze research collaboration when
there is either rivalry or no rivalry amongst firn@zalvo-Armengol and Jackson (2004) develop
a model in which agents receive information abobtgpportunities only through a network of
social contacts. Ballester, Calvo-Armengol and Ze(006) consider the choice of committing
a crime in a network setting with strategic compatarities, and Bramoullé and Kranton (2007)
consider public-goods provision.

In the case of incomplete information, Jackson #adv (2005) show that diffusion
depends on the network structure. Sundararajar6jaff@sents a model of local network effects
in which agents value the adoption of a productablyeterogeneous subset of neighbors, and
have incomplete information about the structure atrdngth of adoption complementarities
between all other agents; he finds that the symmBayes-Nash equilibria of this network game
are in monotone strategies. Galeotti and Vega-R#m¢Rn011) examine how local externalities
affect behavior in a complex random network wheyenés choose investment levels that impose
a payoff externality on neighbors; in the uniqueeiior equilibrium, whether this externality is
positive or negative depends on investment codtdewthe investment strategy is increasing in
degree.

Galeottiet alii (2010) obtain general results in games with indetepinformation about
the degrees of one’s neighbors, where one’s pagefiend not only on one’s action, but also on
the actions of neighbors; they consider both gjrateubstitutes and strategic complements. The

multiplicity present is substantially reduced unoheomplete information.



2.2  Experimental work

Overall, there is a relative dearth of researctexperimental economics on network
games, particularly when one considers the wedithewretical contributions in this ardaHere
we restrict our discussion of the literature in emental economics to designs with exogenous
networks (where the participants have no controth&f network structure), as in our own
environmenf. Some research has examined the consequences wbrkestructure on
equilibrium selection in coordination games, whighelevant for our settings with a multiplicity
of equilibria. Keser, Ehrhart and Berninghaus ()99&he first paper in experimental economics
to consider the effect of network structure. Thesg & 3-person coordination game. In one
treatment, each participant is connected to twghimrs on an 8-player circle; in the other
treatment, people play within closed 3-person gsodjey find that the 3-person group quickly
coordinates on the payoff-dominant equilibrium hihe circular group eventually coordinates
on the risk-dominant equilibrium. Berninghaus, Erthand Keser (2002) modify the payoff
function in the network coordination game, reducihg riskiness of the efficient equilibrium.
They find that if the efficient Nash equilibrium dmmes less risky, populations that interact
locally on the circle also converge to efficienaypin most cases. However, in contrast to these
studies, Boun My, Willinger and Ziegelmeyer (20a8) not find that players who interact
locally on the circle coordinate more frequentlytba risk-dominant equilibrium.

Corbae and Duffy (2008) consider a two-player, 2g@rdination game with groups of
four people in three configurations: the completénork, the circle, and two isolated pairs. In
their game, the efficient equilibrium is also tiekrdominant one; in almost every case the group
achieved the efficient equilibrium. After 10 perspdhe game is changed so that the efficient
outcome is no longer risk dominant. Groups contitouglay the efficient equilibrium, unless one
player is obligated to play the risk-dominant €gyt in this case, there is convergence to the
risk-dominant equilibrium when the interaction isma ‘local’ (the circle and the isolated pairs),

but not as much with the global interaction of toemplete network. Cassar (2007) compares

® Researchers in sociology have long been interéstsmidying networks in experiments (see the sehsitudies by
Stolte and Emerson, 1977, or Cook and Emerson, ;1858 also surveys of Willer, 1999, or Burt, 2009dte,
however, that sociologists have been in particitéerested in studying the exercise of power inwoeks,
something with which the literature in experimemabnomics has not yet been concerned.

® There are other experiments on networks in ottmfrenments, including buyer-seller networks (Cless)
Corominas-Bosch, and Fréchette 2007), the prissriilemma (Riedl and Ule 2002; Kirchkamp and N&f#7),
and endogenous networks (Falk and Kosfeld 2003k @ad Johnson 2004; Callander and Plott 2005; Bghaus,
Ehrhart, and Ott 2006; Berninghaus, Ehrhart, Oitl, ¥ogt 2007).



convergence to equilibrium across three differettvork structures: a local interaction network,
a random network, and a “small-world” network (edictk in the circle has a probability of
being re-wired to a ‘short cut’ of a chord acrdss tircle). She finds that participants converge
to the efficient equilibrium in the small-world medrk, but less so in the other networks.

To the best of our knowledge, there is only oneeexpental paper that considers
network effects primarily in relation to the volang-contribution mechanisfh. Fatas,
Meléndez-Jiménez and Solaz (2010) have 4-persanpgreepeatedly play a standard VCM in
four different network structures: the line, theclk®, the star, and the complete network.
Information about another person’s contributionmy transmitted if and only if there is a direct
link between the parties. Contributions are in faffected by the network structure, with the
complete network and the star leading to 30-40rbigher contributions than with the line
and the circle, which have similar contributiondésy It is clear that there is at least one person
with a degree of three in each of the networks Wwitiher contributions; such a person knows the
contribution of every other player and every otpkyer observes their choice, with this being
common information. The degree of an individual slo®t appear to affect contributions,
however.

Kearnset alii (2006, 2009) develop a series of experiments aitoedetermine what
strategies people use when they are given locatnmdtion about a large network and are asked
to work together, without communicating. Keasgtsalii (2006) consider a game of substitutes
(framed as a graph-coloring problem), and Keatredii (2009) examine a game of complements
(framed as a voting game). The crucial differenevieen their design and ours is that in their
case, the individual payoffs depend on the glolfgsmance of the network whereas in our
case, only a subject’s actions and those of hghbers affect her payoff. Another difference is

that Kearnset alii (2009) consider heterogeneity of preferences anmbagers whereas in our

" Charness and Jackson (2007) frame a Stag Hurteashbice of adding a link between two players ipre-

existing network, where this link can be added iblyez mutual consent or unilateral consent. Whetherpayoff-

dominant or the risk-dominant equilibrium prevallpends primarily on the degree of consent required

8 Carpenter (2007) mainly considers the issue afigsize in the VCM, but also has treatments in Wigieople are
only allowed to punish their closest neighbors.fidds that, relative to not punishing at all, bdtie possibility to
monitor either the complete or half of the grouelgs significantly more contributions, and the ploitisy to punish

only a single player elicits significantly fewerrddbutions.



(complements) setup the preferences are homogernieahge case of substitutes, each action has

a different cost in our design, whereas in Keatreslii (2006) all the actions have the same Cost.
Our experiment can be seen as venturing into some realms. We contrast strategic

complements and strategic substitutes, considdraty complete and incomplete information

concerning aspects of the network structure.

3. Model and equilibrium analysis

3.1 The Game

In the experiment we focus on the two specific gatmat Galeottet alii (2010) use in
their Section 2 in order to introduce and motivésr results, which we now briefly summarize.
Consider a player who can choose between kastige (e.g., buying a product) anactive(e.g.,
not buying the product). Being active has costsO; while an inactive player bears no cost. For
the following analysis, we will fix ¢ = 1/2, astise case in our experiment.

* In the case oftrategic substitutes, a player earns 1 if either she or at least onbeof
neighbors is active, and earns 0 otherwise. Natghe pays the costonly in case she
has been active.

» In the case oftrategic complements, if a player is inactive, she earns 0 and, if she
active she earns a scatar 0 times the number of neighbors that are actind, pays the

costc.

3.2 Networks and connectivity

We consider the three five-player networgs, @s, andge — Orange GreenandPurple,
respectively) presented in Figure 1. Since eadjs@ndge can be obtained by deleting a single
link from go, the Orangenetwork has a higher connectivity than the otler. tWe analyze the

cases of both complete and incomplete informatimuathe network structure.

Figure 1 about here

° In a recent paper, Kovarit alii (2011) analyze experimental anti-coordination gaplayed in fixed networks.
They find that the more-connected players are ablémpose their preferred Nash equilibrium, whidtey
rationalize using the fact that highly-connectealypts tend to have more stable best-responses.



For each player O N = {1, 2, 3, 4, 5}, letN; O N be the set of her neighbors in the
realized networkdp, g or gp). Playeri’s action is denoted by [0 {0,1}, wherex = 1 indicates

being active (“buy”), whilex = 0 stands for being inactive (“not buy”).

3.3 Complete information scenario

There are five players arranged in one of the theteorks defined in Figure 1. Initially,
one of the three networkgd, g, or ge) is randomly drawn with equal probability. Eaclaysr
knows which network is in force (and knows it ie tame network for all players) and the node
(A, B, C, D, or E) to which she is assigned. Herstes also knows her own degree (the number
of neighbors she has, either 1, 2 or 3). With thiermation in hand, each player decides
whether to be active (action 1) or inactive (act®)nlLet a strategy profile b= (Sa, Ss, Sc, S,
Se), wheres, withi O {A, B, C, D, E} denotes the probability that a ydat in position is active.

We first examine the case sfrategic substitutesPlayeri’s payoffs (assuming = 1/2)

are defined in equation (1):
7Ti=|(Xi+ZjDNiX121)_(%)D(i 1)
wherel(.) is an indicator function that takes value Ixif+ szN‘ x; 21, and that takes value 0

otherwise. In Propositions 1, 2 and 3 we charazgetie equilibria for th€©range Greenand

Purple networks, respectively. All proofs of the propasis in this paper are in Appendix C.

Proposition 1. Consider the scenario of strategic substitutes anthplete information with
networkgo.
a) There are three pure-strategy Nash equilib(i,0,1,0,1), (1,0,0,1,0), and (0,1,0,0,1).
b) The following strategy profiles, where agents useathstrategies, are Nash equilibria:
(m, 051-:2-01) with m,0O(005], (10,1—% 05m.) with m.0(0,0.5],

1-m,

(0,0.5,0.5,0,1), (1,0,0.5,0.5,1), and (0,0.5,0(.5,
c) There are no other Nash equilibria



Proposition 2. Consider the scenario of strategic substitutes anthplete information with
networkge.
a) There are four pure-strategy Nash equilibrigt,0,1,0,1), (0,1,0,1,0), (1,0,0,1,0), and
(0,1,0,0,1).
b) The following strategy profiles, where agents usesthstrategies, are Nash equilibria

(M, 051-:%-01) with m,0(005), @101-:% 05m.) with m. (005,

I-mg !
(0.5,0.5,0,0.5,0.5), (0.5,0.5,0,1,0), (0.5,0.5D,0, (0,1,0,0.5,0.5), (1,0,0,0.5,0.5),
(0,0.5,0.5,0,1), and (1,0,0.5,0.5,0).
c) There are no other Nash equilibria

Proposition 3. Consider the scenario of strategic substitutes anthplete information with
networkge.
a) There are three pure-strategy Nash equilib(x0,1,0,1), (1,0,1,1,0), and (0,1,0,0,1).
b) The following strategy profiles, where agents usesthstrategies, are Nash equilibria
(m, ,0.5,1—% 01D with m,0 (005, @L01-:%-,05m.) with mg0(0,0.5],

I-mg !

(0,0.5,0,0.5,0)and(1,0,1,0.5,0.5).

c) There are no other Nash equilibria

We next examine the casestfategic complementsConsistent with our experimental

design (cf. Section 4), we assume 1/3. Hence, playeis payoffs (assuming = 1/2) become:

= - X 2)
In Proposition 4 we characterize the equilibriatfoe Orangenetwork, and in Proposition 5 we
characterize the equilibria for tl&reenandPurple networks.

Proposition 4. Consider the scenario of strategic complements @rdplete information with
networkgo.
a) There are two pure-strategy Nash equilibri@,0,0,0,0), and (0,1,1,1,0).
b) The following strategy profiles, where agents usesthstrategies, are Nash equilibria
(0,1,0.5,0.5,0), (0,0.5,1,0.5,0), (0,0.5,0.5,1a¥d (0,0.75,0.75,0.75,0).
c) There are no other Nash equilibria

1C



Proposition 5. Consider the scenario of strategic complementsamplete information. If the

network is either g or gp, there is a unique Nash equilibriui®, 0, 0, 0, 0).

3.4 Incomplete-information scenario

Again, there are five players arranged in onehefthree networks defined in Figure 1.
We modulate the connectivity through a parampter (0,1). Initially one of the three networks
(do, Os, Or gp) is randomly drawn, where Be) = p and Pr§c) = Pr@e) = (19)/2. Note that,
sincego is more connected thag andgp, by increasing parametprwe increase the expected
connectivity of the network. In our design, in tbessions with incomplete information either
p=0.20orp=0.8.

The five players are then randomly allocated (witiform probability) to the five nodes
of the resulting network. Players are not infornabdut which network has been drawn, but they
know their own degree (the number of neighbors thaye, either 1, 2 or 3). With this
information in hand, each player decides whethédetactive (action 1) or not (action8)Since
each player only learns her degree (and the pjicshe can only condition her behavior on this
information. In this sense, a (symmetric) stratpgfile is represented by a vec®r (S, S, S3),
wheres [1[0,1] is the probability such that the agent widgreek[1{1,2,3} chooses action 1.

We first consider strategic substitutes, with p&yolefined in equation (1) above. In the

following proposition we analyze the equilibria.

19 Note that connectivity is modulated in a differerty in the examples proposed by Galeettilii (2010). In their

case, each potential link between two playersiiséa independently with probability(Erdés-Rényi network), so
several different networks can arise. Our apprdaals to the same theoretical predictions (meathiag players

use threshold strategies and that the effects ohettivity go in opposite directions in strategidstitutes and
strategic complements), but is considerably easianderstand for experimental participants.

11



Proposition 6.Let p [J(0,1). In the scenario of strategic substitutes and incetepinformation

there exists an equilibriur(Ls,(p),0), where

(0 ipsy
— 2
2-3p 1 2
S;(p):<1— 1—p lf§<p<§
1 ifp>E
3

\
Moreover, there are no other pure-strategy equitiband, if p> 0.2,the equilibrium(Ls,(p),0)

is unique™

The proof is in Appendix C. Note that functiog(p) is continuous and (weakly)
increasing irp. Hence, our equilibrium is in line with Galeagti alii's (2010) general result: In
the case of strategic substitutes, there exiseganibrium that involves monotone (symmetric)
strategies where the equilibrium actions are naneiasing in players’ degrees; and by increasing
the connectivity, the set of degrees for which ptayare active increases.

We next turn to the case of strategic complemenith, payoffs defined in equation (2)

above. In the following proposition we charactetize equilibria.

Proposition 7.Let p'= (4105 + 13)/32, and consider the scenario of strategic complemants
incomplete informatio”? If p<1/2, there is a unique equilibrium{0, 0, 0).If p=1/2, there are

three equilibria:(0, 0, 0), (0, 1, 1) ando, s, (p), s;(p)), Where

45(1‘_65) if p<p’ 1if p<p
,(p) = and s;(p) = 2
%(P) 3-30p+51p? : s(P) w otherwise
——————>— otherwise Gp-1)
2(5p-1)

The proof is in Appendix C. We observe that by@asing the connectivity from p < 1/2

to p> 1/2, there are new equilibria in which the setdefrees with which players are active

" Forp < 0.2, additional mixed-strategy equilibria canftyend.
12 Note thatp’ = 0.72647 > 1/2 and that boski(p) andss'(p) are continuous fao > 1/2.

12



increases. In equilibrium, the probability thailayer is active is increasing in the degree,ne li
with the Galeottet alii (2010) results.

4. Experimental design
4.1 Predictions
In our design, we vary the information scenarionfptete and incomplete), the game
(substitutes and complements) and, in the incormptébrmation scenario, the connectivity<
0.2 orp = 0.8). Based on the results of Propositions &, summarize the equilibrium
predictions for each case in Tables 1 and 2. Incdee of complete information, given the
considerable multiplicity of mixed-strategy Nastu#i@gria, in Table 1 we only report the pure-

strategy ones.
Table 1 and Table 2 about here

Regarding the case of complete information andegjra substitutes (Table 1), there are
equilibria in which two nodes are active and eduidi in which three nodes are inactive. The
former are more efficient by having the lowest ltatast, but the latter are stochastically stable.

With incomplete information and strategic subséisu(Table 2), the theoretical prediction
is that players with low degree will be active ambse with high degree will be inactive;
furthermore, the threshold should increase (frogree 1 to degree 2) when we increpgsom
0.2 to 0.8. With incomplete information and strategpbmplements, the theoretical prediction is
that no one will be active whem = 0.2, but that there is room for players withhidegree
(degrees 2 and 3) to be active wien 0.8>* We can also compare across strategic substitutes
and complements. Players with low degree (degreshdild always be active with substitutes,
but should never be active with complements. Meeedhe equilibrium moves in different
directions for substitutes and complements wpencreases; with substitutes the prediction is
that an increase imincreases the threshold, while with complemergsptiediction is reversed.

Comparing across Tables 1 and 2, it becomes di@athe equilibrium multiplicity with

complete information and strategic substitutesilly fesolved with incomplete information; this

13 New equilibria appear such that the thresholddmorease from degree 3 to degree 1.
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is also the case with strategic complements @ad0.2, but not withp = 0.8, where multiple

equilibria remain.

4.1 Implementation and experimental treatments

We conducted our computerized experimental sessabthe University of Innsbruck in
March of 2011, using the software zTree (Fischba@®7). A total of 240 undergraduate
students from various academic disciplines wereuresdl with the help of ORSEE (Greiner
2004) from a pool of 3,800 students registered ebgperiments. No subject was allowed to
participate in more than one session. We had 1@a@eswith 20 participants in each. There
were two sessions and thus 40 subjects in eactrdfio treatments that were as follows:

» strategic substitutes with complete information;

» strategic complements with complete information;

» strategic substitutes with incomplete informationl p = 0.2;

» strategic substitutes with incomplete informationl p = 0.8;

» strategic complements with incomplete informatiodp = 0.2;
» strategic complements with incomplete informatiod p = 0.8.

In each session, the 20 participants were spldoary into two matching groups of 10
subjects, and this was common information to th#iggaants. In each of 40 periods (plus five
unpaid trial periods), the members of a matchirmugmwere randomly assigned to groups of five
subjects who played the stage game of a givemtiezdt On average, a session lasted about 80
minutes, with an average payoff of 16 Euro perecibjincluding a 5 Euro show-up fee).

The experimental instructions are provided in Amjie D.** In treatments with complete
information, participants were always informed la¢ beginning of a period about the chosen
network (which was re-drawn each period) and th#igi@ant’s position in it. At the end of a
period, each person received feedback about hghloais’ decisions and the payoff resulting
from her choice and those of her neighbors. Beforeew period began, participants also
received the respective feedback for all priorgsi In treatments with incomplete information,
subjects were informed about their degree at tiginhang of a period. At the end of the period,

each person received information about the actetbark that was in effect, her position in it,

14 We only provide the instructions for “complete dnhation — substitutes” and “incomplete informatien
complements p = 0.8". The remaining cases are analogous.
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the number of her neighbors who chose to be acive the payoff resulting from her choice and
those of her neighbors.

Since behavior could potentially be affected bk pseferences, we also tested for these
after the 40 rounds of play, using the method dlesdrin Charness and Gneezy (2010). Each
person received an endowment of 100 tokens andl ¢goukst as many of these as desired in a
risky asset. This asset had a 50 percent chansacgEss, in which case it paid 2.5 times the
number of tokens invested; the investment wasifidise asset failed. Whatever was not invested
was kept. This method is easy for people to congréhand gives a specific risk parameter,
except for people who invest 100, since both risktral and risk-seeking subjects should fully

invest!®

5. Results
5.1 Measurement

The data are analyzed with an econometric modebtdrol for robustness of our stated
results. We estimate the probability of being actg a logistic function of explanatory variables
listed below. We have arranged the data as a pdmaie the unit of observation is a participant
who is observed for 40 periods. The models arenastid using random effects and are shown in
Appendix A.

For the analysis of the data from complete inforamasessions, the explanatory variables
of the econometric model are period, dummies faygl position and network, all interactions
between period and these dummies, and the measewedof risk aversion. One model is
estimated using data from sessions with substitatelsanother model is estimated using data
from sessions with complements. The results arensanmed by the marginal probabilities
computed relative to position A in each networke(3@able 4 below and the underlying models
in Appendix A).

15 Regarding the payoff transformations used in #msi®ns, during the experiment payoffs were giveECUs
(Experimental Currency Units). In order to faciléacalculations by the participants, in the caskstmtegic
substitutes, the payoffs in ECUs corresponded dsehn equations (1) and (2) of section 3, but ipligd by 100.
In the cases of strategic complements, in addittomultiplying payoffs by 100, we also added 50 BQU all the
payoffs in order to avoid the possibility of losges that we do not need to control for loss aeesiNote that
these linear transformations on the payoffs haveffexts at all on the equilibrium predictions.

18 previous work has indicated that the proportiomisk-seeking people in experiments is 10 perceness (e.g.,
see Holt and Laury, 2002).
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For the analysis of the data with incomplete-infation sessions, the explanatory
variables of the econometric model are period, mrdy for the connectivity (witlp = 0.2 as
benchmark), dummies for a subject’s degree andtellactions across these variables; moreover
each model is estimated a second time adding tha&sumed level of risk aversion as an
explanatory variable. The results of this model suenmarized by the marginal probabilities
computed with respect to connectivity, degree, askl aversion (see Table 6 below and the

underlying models in Appendix A).

5.2 Complete information
Table 3 presents the summary statistics for behavithe three networks under complete

information and Figure 2 shows the evolution pemoek and position across the 40 rounds.

Table 3 about here

For strategic substitutes the main observatiomas the equilibrium where A, C and E
are active, and B and D inactive (denoted ACE/BDceéorth) is focal in all networks. We
observe that participants in positions A and Eaateve more than 90 percent of the time in all
networks. Subjects in position C are active almi@$ of the time (note that position C has
degree 2, in comparison to positions A and E, whiate degree 1). Participants in positions B
and D are inactive with a frequency higher thanp8€cent in all networks. Averaging across
nodes the absolute difference between the thealghi@diction and the observed behavior,
individual play is consistent with the equilibriuACE/BD in 87 percent of all cases. There is
clearly no support for any of the other equilibrg that it appears that the problem of
equilibrium multiplicity is not present in a behaxal sense. In 52.5 percent of the observations
the groups coordinate on this equilibrium (withdal5percent rate of perfect coordination across

all equilibria).

Figure 2 and Table 4 about here

" There are eight subjects in each network positicthis treatment. Thus, the maximum number of ol®ns
behind each circle in Figure 2 is eight.
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The econometric analysis confirms our previous aapions. Table 4 provides, for each
network, the estimated probability that the playeposition A chooses active (Prok)@nd the
estimated difference of probabilities of choosirgjive between the remaining positions and
position A (Dif_p-pa). In all networks with strategic substitutes thstiraated probability of
position A choosing active is close to 100 percent the differences from position E are never
significant (see row Dif gpa). Moreover positions B and D have a significankbyer
probability of being active in all cases, with #elience of more than 90 percent. Position C has
a significantly lower probability than position A inetworks Orange and Green but the
difference is much lower (around 20 percent) andcle being active is still the most likely
outcome in position C. Thus, the equilibrium ACB/Brevails in all networks. In Figure B.1 (in
Appendix B), we observe that this regularity isqem in all groups of subjects participating in
the experiment.

Note that, across all different possible equiliprieCE/BD is the equilibrium that
involves a maximum number of active players; itas inot efficient, since three people pay the
cost instead of two, with complete coverage in lmatbes (the net social benefit is 3.5, compared
to the social benefit of 4.0 with only two purchs)lseHowever, in this context a deviation from
the selected equilibrium is much less harmful (dng safer) then a deviation from the efficient
equilibrium. To see this, consider any of the the#gcient networks and the inefficient (but
stable) equilibrium ACE/BD. If any player who istize, i.e. A, C or E, deviates to inactive, only
the deviating player incurs a loss (of 1/2). On dfiger hand, in the efficient equilibrium more
people benefit from an active agent, so that aafiewi to inactive is more costly. For example,
consider the equilibrium BE/ACD: If B deviates, baof A, B and C incur a loss of 1/2;
therefore, a deviation is more deleterious on ayera

Summarizing, there is a trade-off between efficjeacd the cost of a mistake (stability).
The efficient equilibrium results in a higher co$tagents’ errors. Interestingly, the equilibrium
ACE/BD is also the stable one in a (perturbed) dyinaset-up:® Boncinelli and Pin (2011) show
that in Best Shot Games, the equilibrium that imgsela maximum number of active players is

the unique stochastically stable one. This regptias directly to our set-up.

18 It is theonly stable one in th©rangeand Greennetworks, and there is an additional stable dayiiiiin in the
Purplenetwork: ACD/BE (which is also inefficient).
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For complements (see the lower part of Figure 2thadower part of Table 3), we see an
impressive rate of play (96 percent) consistenhthe unique equilibrium (nobody is active) in
the Greenand Purple networks'® The Orangenetwork admits two equilibria, with either three
active players (B, C, and D) or none. Here the pésgmbles the former equilibrium, as players
B, C, and D are active about 74 percent of the,tené players A and E remain inactive over 95
percent of the time. This is also the more effitiequilibrium, since players B, C, and D each
earn a positive amount (1/6). Overall, the ratplaf/ consistent with this equilibrium is over 90
percent. All the five agents jointly coordinate thie efficient equilibrium 42 percent of the time.
Thus, we find strong support for the theoreticadictions, with successful coordination by
players at three nodes to achieve the efficientlibgum in the one case where this can involve
a profit. Refining this analysis at the group lefgee Figure B2 in Appendix B), we observe that
three of the four matching groups coordinate quigdl on the efficient equilibrium; however,
the other group, although it first tries to coortim on this equilibrium, finally fails to do so: in
the last periods all subjects choose inactive.dnegal we conclude that the majority of groups
playing in theOrange network coordinate on the efficient equilibriunm @vhich subjects with
more than one link become active).

The marginal effects in Table 4 (computed by edimgathe econometric model in
Appendix A) confirm our previous impressions. In aetworks the estimated probability of
position A choosing active is close to 0 and tHféed@nces to position E in tH@rangenetwork
and to positions B, C, D, and E in the other neksaasre never significant. In th@range
network, positions B, C and D show a much highebpbility of being active (respectively 83,
73 and 80 percent, and significant at the 1% leddhterestingly this equilibrium is very robust
since it is not only a Nash equilibrium but alssteong Nash equilibrium (it is immune to
deviations from any coalition of players). In cast, the other equilibrium (all inactive) is

clearly not strong Nash. We summarize these firglingur first result:

RESULT 1: In the game of substitutes, agents’ behavior in thilee networks is
consistent with the inefficient, but stochasticallgble and relatively riskless,

equilibrium ACE/BD. In the game of complementsy@ia in the Green and Purple

190f course, A and E will never wish to be activiece the maximum possible gain is less than the cos
20 A Wald test cannot reject the null hypothesis it pg-pa = Dif_pc-pa = Dif_pp — pa. This suggests that players
B, D, and D are equally likely to play the efficiestrategy.
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networks play in accordance with the unique equii. In the Orange network subjects
behave consistently with the efficient equilibriB@D/AE.

Note the difference in outcomes between the twatriments: while in substitutes subjects
select the inefficient equilibrium, in complemetiey select the efficient one. We can explain
this difference by looking at the relation betwesficiency and private incentives. In the game
of substitutes, efficiency is achieved when play@rand D are active; however, they strictly
prefer the inefficient equilibrium ACE/BD that prides them a higher payoff. So they can
implicitly coordinate on inactivity in order to foe players A, C and E to be actffeWith
complements the private incentives are more in Vuith efficiency, given that the efficiency
gains are earned from those subjects who are aotjw@ducing the efficient outcome.

We also explore whether equilibrium play becomesenfieequent over time. In Figure 3,
we plot across periods the average frequency ofiledgum play. At each period, we measure
the frequency of groups such that all the membegescaordinated on an equilibrium. We
observe that this frequency has a positive tenderey time.For substitutes (complements) the
correlation coefficient between the period andaberage frequency of equilibrium play is 0.724
(0.622), with a significance level of one percemtbioth cases. In other words, coordination

failure becomes much less frequent in later periods

Figure 3 about here

Finally we look at the role of risk aversion. Examg all previous econometric results,
we can see that they are robust to the inclusioms&faversion. Theoretically we could expect
that in both treatments, a greater degree of rsksion is correlated with less activity in theeas
of strategic complements and more activity in theecof strategic substitutes. In Appendix A,
we see that the marginal effect of risk aversiorttenprobability of being active is significant

(and in the right direction) only for complemenikhis yields our next result:

21 The reverse is also true: players A, C and E coufdlicitly coordinate on the inactivity to forcéayers B and D
to be active. But the implicit coordination could more difficult to get across three subjects thaross two, as
evidence from coordination games suggests thatdgowion is less likely in larger groups (WeberPgp Note
that in this set-up (strategic substitutes with ptate information), the more-connected players tentdave more
stable best-responses, as defined by Kowetridii (2011), which also indicates that the preferregildayium of the
more-connected agents is played.
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RESULT 2: Both treatments of substitutes and complementslagispcreasing
coordination over the time. The effect of the l®faisk aversion is small and significant

only for complements.

5.3 Incomplete information

Table 5 presents the summary statistics for behawith incomplete information and
strategic substitutes or complements under eadbapility regime. In strategic substitutes we
observe that, in each cage= 0.2 andp = 0.8), modal play coincides with play in the wreq
equilibrium. The proportions are 94.81 percent8%1percent and 98.91 percent of the time,
respectively, for degree 1, 2 and 3 wher 0.2, and 92.90 percent, 59.52 percent and 89.93
percent whem = 0.8. The correspondence is excellent for degtesasd 3, but less so for degree
2. Overall, 87.56 percent of all choices were cstesit with equilibrium play whep = 0.2 and
84.00 percent whep= 0.8.

Table 5 and Table 6 about here

This descriptive evidence is confirmed by the ecoatic analysis that is summarized in
Table 6. It reports marginal effects (full estinoas are in Appendix A). First, regarding the
effect of connectivity within a particular degreeedall that theOrange network has higher
connectivity, so the higher value pfimplies higher connectivity), the behavior of pay with
degree 1 does not significantly differ across tladues ofp. For players with degree 2, the
probability of being active is significantly highenth the higher value op, with a marginal
effect of 0.547 (in the model including controlg fask aversion). Finally, the probability of
being active for players with degree 3 is marginalbnificantly higher with the higher value of
p, but the marginal effect is close to O (it is GP2Hence, our data are quite consistent with the
equilibrium prediction.

Next we consider the effect of having different ies. Having degree 2 significantly
reduces the probability of being active with resgecdegree 1, but the decrease is quite large
whenp = 0.2 (the marginal effect is -0.816), and muclaksen whenp = 0.8 (the marginal effect

is -0.273). People with degree 3 have a signiflgdower probability of choosing to be active
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than do people with degree 1, with a very largéedéihce both whep = 0.2 (the marginal effect

is -0.980), and whep = 0.8 (the marginal effect is -0.961). Comparnlegree 3 to degree 2 we
find a significantly lower probability of choosirtg be active for people with degree 3, with a
large difference whep = 0.8 (the marginal effect is -0.687), and a mioeter one whem = 0.2
(the marginal effect is -0.164). All of the diféarces across the two probability values are
qualitatively in the direction of the theoreticakgiction. Hence, our analysis suggests that the
expected effects of connectivity and degree areerokd in the lab. The first two columns in
Table 6 show that including risk aversion as arepwhdent control variable leaves the estimated
marginal effects of different degrees and conndgtialmost identical. The risk-aversion
parameter itself shows that more risk-averse sthjae less likely to be active, although the
marginal effects are only marginally significant non-significant. We summarize these

findings in the following result:

RESULT 3: In the game of strategic substitutes under indetepinformation: a)
subjects play consistently with the unique equilitor; b) the probability of being active
is decreasing with the degree and increasing withdonnectivity.

One reason why subjects with degree 2 play equihbrstrategies less frequently than
subjects with degrees 1 and 3 may be due to thdHacthey have a lower cost from deviating:
() Consider the casp = 0.2, where players with both degree 2 and de8raee inactive in
equilibrium. A player with degree 3 has more chanaiebeing linked with an active player than
does a player with degree 2 (i.e. the cost of dievidor a player with degree 2 is lowéf)In
this sense, if the frequency of deviation is ine&rgelated to the cost of deviation, we expect
more deviations of players with degree 2. (II) Gdesthe cas@ = 0.8. Here players with both
degree 2 and degree 1 are active in equilibriummil&ily, in this case, the cost of deviating to

become inactive is lower for players with degreth@n for players with degree 1 (a deviating

2 |n this case, the expected value of being inadtivequilibrium for player with degree 3 is 100 {@dhat he is
always linked with a player with degree 1) wherntbasexpected value of being inactive for a playighaegree 2 is
lower than 100. Note that a deviating player (wiggree either 2 or 3) always earns 50.
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player with degree 2 is more likely to be linkedato active player), and we could expect more
deviations from ther®®

Now consider the case of strategic complements. Whe= 0.2, there is a unique
equilibrium (all inactive), and play by people widlbegrees 1 and 2 is strongly consistent with the
equilibrium prediction (98.03 percent and 82.11cpat). However, subjects with degree 3 are
inactive only a bit more than half the time (55.pBrcent), the greatest deviation from
equilibrium play that we see in all of our treatrtgersstill, in the aggregate, individual play is
consistent with the equilibrium prediction six aftseven times. Whep = 0.8 there are three
equilibria, with two of these in pure strategieBlayers with degree 1 are never active; in one
pure-strategy equilibrium, players with both degr@eand 3 are active, while in the other pure-
strategy equilibrium these players are inactiveptiner words, it is worthwhile for players of
higher degrees to coordinate on activity. The ragtivity equilibrium is the efficient one, with
players of higher degree making positive profitexpectation, but it is also riskier. Perhaps the
tension between these two equilibria leads to dwmlg-thirds of the overall choices being
consistent with this equilibrium.

Attending to the econometric model on the rightchaide of Table 6, regarding the
effect of connectivity within a particular degrebe behavior of players with degree 1 does not
significantly differ across the values pf For players with degrees 2 and 3, the probabuality
being active is significantly higher with the highealue ofp. Most likely this reflects the
presence of other equilibria involving activity whe = 0.8, so that it appears that some players
try to coordinate, although without much successthe efficient equilibrium. The results are
robust to the inclusion of risk attitudes, as thergmal effects are very small and insignificant.
Thus, risk attitudes do not appear to play much wadle here.

Concerning the effect of the degree we see tharsop with degree 2 is significantly
more likely to be active than a person of degreaul the increase is considerably higher vaith
= 0.8 than withp = 0.2 (respectively the marginal effects are 0.H®lI 0.041). This is

gualitatively in the direction of the theoreticakgiction (in contrast to the cape= 0.2,p = 0.8

% |n this case, a player with degree 2 is locateth&@Orangenetwork with a probability of 2/3 and in this caife
she deviates, she earns 0, whereas with a praiyabfli if she deviates, she earns 100. On the ditwed, if a player
with degree 1 deviates, with a probability of 18/8he earns 0 and with a probability of 3/21, stwm® 100. Note
that a non-deviating player (with degree 1 or 2yagls earns 50. Hence, if a player with degree latley she
switches a fixed payoff of 50 to an expected pawdfl00*3/21; whereas if a player with degree 2ids, she
switches a fixed payoff of 50 to an expected pagbff00*1/3. Thus the cost of deviating is lower oplayer with
degree 2 than for a player with degree 1.
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allows for players with degree 2 to be active inilorium). Perhaps unsurprisingly, since
players of degrees 2 and 3 make the same choieghier of the pure-strategy equilibria in this
environment, the same relationship holds betweérests with degrees 1 and 3, with a higher
marginal effect (0.562 versus 0.328) wher 0.8. Finally we find significant evidence in hot
treatments that players of degree 3 are more attiss@ players of degree 2. This evidence, not
predicted by theory, could be explained by the tgremcentive for players of degree 3 to get

coordination on the efficient equilibrium. We sunrina this evidence in our next result.

RESULT 4: In the game of strategic complements under incetaphformation: a) with
lower connectivity the modal play coincides withe thinique equilibrium; b) the

probability of being active increases with the degand connectivity.

We now analyze the evolution of average behavioosscthe 40 periods. Figure 4
suggests that, for substitutes, behavior is québle for players with degrees 1 and 3 (and very
close to the equilibrium prediction). The frequerafychoosing to be active for players with
degree 2 is always below 1/2 when= 0.2, and mostly above 1/2 when= 0.8, which
qualitatively follows the equilibrium prediction|tough deviations are observed. We note that
whenp = 0.8, players of degree 2 display a convergemt¢lee equilibrium. For complements the
pattern is revealing. It seems that subjects witindér degrees attempt to coordinate on being
active and making some profits; this is particyldarue for players of degree 3. But this more
efficient play erodes over time, with low or vepowl rates of activity for everyone by the end of
the session. So it seems that the inefficient gai®) equilibrium would prevail in the long run.
Our interpretation is that coordination problemadlgarticipants to eventually play the risk-
dominant equilibrium. In any event, modal play tfne aggregate) corresponds to this no-activity

case.

Figure 4 and Figure 5 about here

In Figure 5 we examine whether there is a trend twee toward equilibrium play. We
plot across periods the average frequency of dujiuitn play. At each period, we measure the
frequency of groups such that all the members aocedinated on an equilibrium. We observe
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that this frequency is significantly positive oveme, which suggests movement towards

equilibrium?* We can state our final result:

RESULT 5: a) When players face a game of strategic subssitutith low connectivity,
individual play and the level of coordination isiske over time. With higher connectivity
there is a trend to the unique equilibrium and awcreasing level of coordination. b)
When players face a game of strategic complemantiyidual play with low
connectivity converges to the unique equilibriumthwian increasing level of
coordination; individual play with higher connedtiv converges to the inefficient

equilibrium with an increasing level of coordinatio

6. Discussion
In this section, we address the extent to whichetkgerimental data fits the theoretical
prediction, the equilibrium selection in the di#et scenarios and how convergence to the

equilibrium evolves over time.

6.1 Conformance of the experimental results to the theetical predictions

Our experimental results are quite consistent wiéhtheoretical predictions for behavior
in network games. These results not only providey \stirong qualitative support, but also
surprisingly strong quantitative support. With cdete information, subjects on average make
choices that correspond to a specific equilibriufrp8rcent of the time when the game involves
strategic substitutes, even though there are thieallg multiple equilibria for each of the three
networks. When the game involves strategic comphesp@lay corresponds to the same specific
equilibrium 96 percent of the time when there imm&que equilibrium and 74 percent of the time
when there are two equilibria (overall, more th&np@rcent of the time). In this latter case, the
equilibrium is the efficient one. If we considerlprhe last 10 periods of the sessions, play
corresponds to the efficient equilibrium in tBeangenetwork 81 percent of the time, and to the

unique equilibrium in the other networks a full 118€rcent of the time (see Table 7).

% For substitutes the correlation coefficient betwéee period and the average frequency of equilibrplay is
0.233 (and non significant) wigh= 0.2 and it is 0.594 (with a significance levélone percent) witlp = 0.8. For
complements the correlation coefficient betweenpbeod and the average frequency of equilibriuayps 0.926
with p = 0.2 and 0.639 witp = 0.8, with a significance level of one percenbath cases.
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Table 7 about here

With incomplete information and substitutes, play ¢onsistent with the unique
equilibrium 89 percent of the time wher= 0.2 and 81 percent of the time wher 0.8. These
percentages are relatively low for subjects witlygrde 2, as there is a substantially lower
expected cost if one deviates from equilibrium pla)ith incomplete information and
complements, play is consistent with the uniquéliggum 79 percent of the time whgn= 0.2
and with the same equilibrium 72 percent of theetimhenp = 0.8 and there are multiple
theoretical equilibria (in this case the equililnius inefficient). However, these rates with
complements are much higher if we consider onlyldlse 10 periods of the sessions, as there is
strong convergence to this equilibrium over timg f@rcent and 94 percent consistencypfer
0.2 andp = 0.8, respectively; see Table 7). These resulth mcomplete information are
particularly striking, given the far greater comgtg of this environment.

In addition, the effects of degree and connectivityactivity are entirely consistent with
the theoretical predictions. Proposition 6 prede&taegative relationship between degree and
activity with strategic substitutes, while Propasit 7 predicts a positive relationship with
strategic complements. Furthermore, activity rddesagents with degrees 2 or 3 are higher for
both complements and substitutes with higher canngc(agents with degree 1 should never be
active with complements for eith@rvalue, but should always be active with substeufer
eitherp-value). Indeed, these qualitative predictionstame out by the data, as can be seen in
Table 5%° Thus, we find that the main regularities derivaahf theory (in line with Galeotet

alii 2010), both within treatments and across treatsnar@ confirmed by the experimental data.

6.2  Equilibrium selection
A key issue for policy is that of equilibrium selien, where theory is typically silent and
experimental work is particularly useful. In outigg we have multiplicity of equilibria in five

% summarizing, the activity rates for degrees Iar} 3, respectively, the rates with substitute drom 95 to 28
to 1 percent withp = 0.2 and from 93 to 60 to 10 percent fior 0.8. The activity rates with complements inceeas
from 2 to 18 to 44 percent with = 0.2 and from 2 to 31 to 51 percent for 0.8. Concerning connectivity, the
comparisons with substitutes acrgss 0.2 andp = 0.8 are 28 versus 60 percent for degree 2 awerdus 10
percent for degree 3; the respective comparisotts @@mplements are 18 versus 31 percent for dedjimed 44
versus 51 percent for degree 3.
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scenarios? (i) complete information + substitutesGrangenetwork, (i) complete information
+ substitutes #Greennetwork, (iii) complete information + substitutesPtrple network, (iv)
complete information + complements Grange network, and (v) incomplete information +
complements p = 0.8. While thenefficient equilibrium (which is less risky and shastically
stable) is prominently played in the lab in casgqi{), (iii) and (v), we observe that most graup
adhere to the efficient equilibrium in case (iv).

These results raise the question of what reasenddhind the observed asymmetry
between complete and incomplete information indhgse of complements —i.e., between cases
(iv) and (v)- that is not addressed by the theang(so is behavioral in nature). Note that in both
cases, there is an efficient equilibrium (whereyeta with degrees 2 and 3 are active) and an
inefficient one (where all players are inactivepwéver, if subjects know with certainty that
they are in thé@rangenetwork —case (iv)— , they mostly play the effintiequilibrium whereas,
if we introduce a little bit of uncertainty —casg- and they are in th@rangenetwork with high
probability @ = 0.8), the pattern of play converges to the inigffit equilibrium?’ Hence,
stochastic stability does not work to capture trgifferences in behavior (in both cases it would
select the inefficient equilibrium). A closely rédd equilibrium concept proposed by Charness
and Jackson (2007), that relies on stochasticlgyabut considers more sophisticated players
(robust belief equilibrium), does not capture thelsserved differences in behavfSr.

In order to find a logic that explains the sharfifedence in behavior across both

scenarios, we need to rely on bounded memory (@nadity) and the ability of agents to be

%6 The theoretical multiplicity problem is not (belanally) present withcomplete informationEven though there
are at least three equilibria for each networkhia tase of strategic substitutes, only one of theseives any
support. This appears to be the result of pragnugaision-making:. While the ACE/BD equilibrium pides a
slightly smaller social surplus than those withyotwo active players (3.5 versus 4.0), it is leéskyrto be active in
the ACE/BD network. With respect to strategic coempénts, only th®©rangenetwork has multiple equilibria. In
this case, the efficient equilibrium is reachedhiree of the four matching groups.

27 Although, in the first 10 periods, the activitytedor subjects with degree 2 is 55 percent anihrgumessive 89
percent for subjects with degree 3, this decrepssspitously to 4 percent and 15 percent, respelgti in the last
10 periods. Thus, the ambiguity regarding one’sitipos in the network appears to erode one’s beiethe
possibility of coordination, so that the initialtopism about coordination on the efficient equilin does not last.
%8 In a robust-belief equilibrium, basically, ageinsorporate the possibility that others make eriorsheir best
responses. This assumption may reduce the numiadxsofbing sets or the number of states in an himgpset and,
as a consequence, the stochastically-stable stateschange. However, in our setup, both in incotepbnd
complete information (with complements), this refilent does not cause any reduction in the numbaisairbing
sets nor in the number of states in each absorbetgand, therefore, the robust-belief equilibriumd ahe
stochastically- stable state coincide: no one besoactive.
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forward looking (at least to some extefitRegarding bounded memory and rationality, we can
observe that, if players are not completely Bayesid update their payoff using past
experience, in case (v) the efficient (and riskyligbrium is not an absorbing state. To see this,
note that in this treatment (with incomplete infatran) subjects can get payoffs below the
secure payoff of 50 provided by inactivity, evenaif players are fully coordinated on the
efficient equilibrium® If subjects have limited memory and update thejpreeted payoffs with
past (and recent) experiences, a few periods adrexqcing payoffs below 50 suffice to move to
coordination on the inefficient (and less riskyuifprium (without the necessity of mistakes or
mutations)** Hence, when individuals are fully coordinated be tnefficient (and less risky)
equilibrium, the bounded memory is not enough tavenout from this equilibrium without the
presence of mutations. This could explain why wseobe the convergence to the inefficient
equilibrium in the treatment with complements @re 0.8 (incomplete information).

However, in case (iv) —complete information— thiécefnt equilibrium is not affected by
bounded memory, and it is absorbing. This happenause the efficient equilibrium is not risky
(if players are not making mistakes) and, when\iddials are fully coordinated on some
equilibrium, individuals never experience payoffeldw 50. Therefore, with complete
information (in theOrangenetwork) both equilibria are absorbing, which esishe question of
why people coordinate more on the efficient equitliim. We put forward two explanations:

First, there is substantial evidence that peoplesxperiments like efficiency/payoff
dominance (e.g., Charness and Rabin 2002; EngelaadrStrobel 2004), particularly without
uncertainty*? Relatedly, note that in th®rangenetwork the efficient equilibrium just requires
the coordination of three individuals in a gamelwonly two actions, and there is experimental

evidence that shows that small groups of individuabordinate more often on the efficient

% Indeed, an estimation of an EWA learning modelni€eer and Ho, 1999) using our experimental data (no
reported here, but available upon request) suggiests(i) individuals consider the foregone pagdads well as the
realized ones in their updating process (they atecompletely stuck to their strategy), and (iiflividuals use a
limited number of past experience in their updapnocess.

301t could happen, for example, to a player withréeg3 when th@urple network is realized.

31 Note that, even ip = 0.8, this is not a really unlikely event. In diwium, although for players with degree 3 it
happens only six percent of the times, for playeith degree 2 there is a 25 percent chance of fayaiow 50.
With a bit of noise, this percentage rises rapitiipreover, we also observe evidence of this indat. It seems
that subjects skip from active to inactive aftemgoexperience of low payoffs. For example, if wekiat the
average payoff in the rounds before subjects gkip factive to inactive, their payoffs are around221(50 is the
sure payoff from inactivity).

32 Under complete information, everyone knows thargene else knows the network structure and onestipn

in it (and with respect to th@rangenetwork, knowing one’s degree is equivalent tovkimg one’s position) and
this induces a higher comfort level for making yisiktempts at coordination.
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equilibria than large groups, and that efficienbrchnation is more likely the fewer the number
of available strategies (e.g., Weber, 2006; Felenbusch and Sutter, 2010). Moreover, even
though there is anonymity in both case (iv) anc®da¥ complete information has more of a feel
of being in a known group, perhaps triggering asseof group membership.In some sense,
there may be a parallel with the effectiveness mdngmous communication in achieving the
payoff-dominant equilibrium (Cooper, DeJong, Fongytand Ross, 1992; Charness, 2000).
Here tacit ‘communication’ may be present with kmgpositions, but not otherwise.

A second, and complementary, explanation relieshan consideration that, to some
extent, individuals are forward looking (i.e., nobmpletely myopic), which may have a
significant impact when studying stochastic stapilas proposed by Mengel (20217 For
example consider a coordination game with threggpta two actions and suppose that the
efficient action is preferred only if all playerseafully coordinated on it. These are the
elementary ingredients of case (iv), in which theyers with degrees 2 and 3 are those who can
coordinate on being active.

Consider first the traditional stochastic-stabibtyalysis: If players are fully coordinated
on the inefficient equilibrium, at least two mutais are needed to transit to the efficient
equilibrium. On the contrary, if players are cooated on the efficient equilibrium, one
mutation is enough to transit to the inefficienteoMherefore the inefficient equilibrium is a
stochastically-stable state. Suppose now that e forward looking and believe that others
are myopic. Assume first that there is full cooedion on the inefficient state. If an agent
mutates to the efficient action, the best respafsa forward looking agent is to change her
action, because she knows that the best respone slubsequent players will be to play the
efficient action as well (provided there are twaydrs playing it). Therefore one mutation is
enough to move the system to the efficient equuiior With the same kind of reasoning we can
state that one mutation is not enough to move ystem from the efficient equilibrium to the
inefficient one. Hence, the introduction of forwdodking considerations allows for the

selection of the efficient equilibrium.

3 See, for example, Goette, Hufmann and Meier (200Barness, Rigotti, and Rustichini (2007) and Céwed Li
(2009).

%% Note that this presumes a different kind of sajitasion for best-responders in the analysis of staehastic
stability than Charness and Jackson (2007): Instéassuming that agents incorporate the possititiat others
make errors in their best responses, it presunaptayers are forward-looking but believe thatesthare myopic.
% In a recent experiment, Mantovaeti alii (2011) show that, in a network formation setuperdg are forward-
looking rather than myopic.
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6.3  Convergence towards equilibrium

A final important point is that the rate of confante to the equilibrium increases
dramatically over time. Perhaps the data would mdke theoretical predictions even more
closely over a longer number of periods. Table @ghthe deviation rates in the last 10 periods
from the predicted equilibrium in every treatment.

Play conforms very closely to what would be expeatethe equilibrium that we observe
in each case. Remarkably, there are absolutelyenations from equilibrium play in 12 of the
30 cells for complete information, and in threetlod 12 cells for incomplete information. The
Orangenetwork has a high average deviation rate of alh®upercent, mainly because of one
group (out of four) who largely played the ineféint equilibrium. Overall, the rate of
conformance with the claimed equilibrium is 94 gercin the final 10 periods with complete
information and complements and 93 percent withgeta information and substitutes. A real
surprise is that this rate of conformance is equadl high with incomplete information, at 95

percent with complements and 91 percent with stuibes.

7. Conclusion

Networks are a very prevalent feature of the soaia economic landscape, with
important applications in the areas of bargainjob, search, political interactions, and systems
compatibility, among others. The question of howwaoek structure affects behavior is a vital
one for business decisions and governmental pdiié.conduct an experiment designed to test
the theoretical predictions (adapted from Galeettialii 2010) for behavior in the cases of
strategic complements and strategic substitutesichwlare general to many economic
environments. We include the case of incompletermétion in our experimental design, as
theory predicts this should ameliorate the probtéraquilibrium multiplicity. In fact, to the best
of our knowledge, we are the first to consider expentally the challenging case of uncertainty
regarding aspects of the network structure. In waw, there is almost always a degree of
uncertainty concerning the prevailing network snoe in the field, so this is a very relevant
design choice.

We find that play conforms very strongly to the kifative and quantitative theoretical
predictions for whether agents are active or ivactiThe degree to which this is true is

impressive with complete information, and is somatstartling with incomplete information,
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considering the cognitive challenges of making sleais under uncertainty. When we restrict
our attention to the more ‘settled’ behavior in thset 10 periods of the sessions, we observe
strong convergence to an equilibrium. In the cdsaammplete information, we also find strong
qualitative support for the predicted relationshesween degree and activity and connectivity
and activity.

A central issue in network theory is that of eduilim selection, since it is more difficult
to make informed policy decisions when one canmedigt the effects of network structure on
outcomes. Considerable theoretical research has dm®lucted on trying to refine these or to
gain insight into how to predict which of a multgity of equilibria actually prevails. Galeott
alii (2010) refine away some more delicate equilibiyacbnsidering the case of incomplete
information, while others, such as Boncinelli anoh P2011), consider selection based on
concepts such as stochastic stability. In fact,regults suggest that the problem of equilibrium
multiplicity may in practice not be so severe. Eweith the numerous pure-strategy equilibria
with substitutes and complete information, thera istrong adherence to a specific equilibrium
in each of three different networks. While this #éigtium is not the most efficient one, it is
much more stable.

Thus, people seem to choose to trade off a relgtsmall difference in potential gain
against the likelihood of actually receiving a galn the case of complements, there is
multiplicity just in the Orange network scenario. In this case, the equilibriurrected is the
efficient one, which can be rationalized relying baunded memory and forward looking
arguments, along with the fact that people in expents are attracted by payoff dominance,
particularly without uncertainty. With incompletafermation, when there is more than one
equilibrium (in the case of strategic complemerttsd, prevailing one is the stochastically-stable
(inefficient) equilibrium.

Overall, we feel that experimental research suchhas shall be extremely useful in
making pragmatic choices regarding which networkicstire to implement and in predicting
outcomes for an already-existing network structu@ven the uncertainty in the field
environment, incorporating incomplete informatiamdauncertainty will certainly increase the
external validity of such research. Improved bébtra network theory may well be the result of
the knowledge gleaned from laboratory experimeilt& encourage others to pursue this

research as well.
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Tables and Figures

Table 1: Equilibria with complete information

Network Active nodes Inactive nodes
A CE B, D
Orange B, E A CD
AD B,CE
A CE B, D
. B,D A CE
Substitutes Green
B, E A C,D
A D B,C E
A C,D B, E
Purple A CE B,D
B, E A C,D
B,C,D A E
Orange
- A, B,CD,E
Complements
Green - AB,CDE
Purple - A B CD,E

Table 2: Equilibria with incomplete information

Probability ofgo Degree profile
: 0.2 (1,0,0)
Substitutes
0.8 (1,1,0)
0.2 (0,0, 0)
(0, 0,0)
Complements
0.8 0,1,1)
(0, 0.65, 0.91)

Note: (X, y, z) represents the probability thattipgrants with degree 1, 2, or 3, respectively,aotive.

34



Table 3: Frequencies (and relative frequencies, %f choices by network and position —

Complete information

Orange Green Purple
Total Active Total Active Total Active
Choices (%) Choices (%) Choices (%)
A 93 88 105 96 122 113
(94.62 (91.43 (92.62
B 93 8 10& 16 122 6
(8.60 (15.24 (4.92
c 93 63 10t 70 122 11k
. (67.74 (66.67 (94.26
Substitutes 5 93 10 10¢ 18 122 22
(10.75 (17.14 (18.03
E 93 85 10t 99 122 112
(91.40 (94.29 (91.80
Total 465 254 525 299 610 368
(54.62 (56.95 (60.33
A 114 4 105 1 101 1
(3.51 (0.95 (0.99
B 114 85 10& 4 101 13
(74.56 (3.81 (12.87
c 114 83 10& 11 101 1
(72.81 (10.48 (94.26
Complements 5 114 85 10¢ 2 101 5
(74.56 (1.90 (18.03
E 114 6 10& 1 101 1
(5.26 (0.95 (0.99
Total 570 263 525 19 505 21
(54.62 (3.62 (4.16
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Table 4: Marginal effects by player position, netwdk and treatment — Complete information

Substitutes Complements
Orange Green Purple Orange Green Purple
Brob 0.089**  0.975**  0.977**  0.010 0.000 0.000
R (0007)  (-0014)  (-0.013)  (-0.007)  (0.000) (0.000)
Dif oup,  0-978%%  -0.9277% 0,965  0.833"*  0.007 0.050*
—PePA (0.010)  (-0.026)  (-0.014)  (-0.050)  (-0.007)  (-Orp2
Oif g, 0:222"%  -02217% 0,012 0.736**  0.01 0.000
—Pcba(L0.074) (-0.074)  (-0.013)  (-0.066) (-0.009)  (0.pOO
Oif oo, 0967 -0.884*  .0.880"*  0.803"*  0.001 0.006
—PoPa - (9.015) (-0.037)  (-0.037)  (-0.056) (-0.002)  (-07pO
oif 5eg, 0001 0.012 -0.007 -0.010 0.001 0.000
—PEPA T (0014)  (0015)  (-0.016)  (-0.007)  (-0.002)  (0.pOO

Notes: Prob_pis the estimated probability that position = A okes active. Dif jpa is the estimated
difference (position i - position A) of probabiés of choosing active, standard errors are repadnted

parenthesis.

*** %% and * indicate statistical significance ahe 1%, 5%, and 10% levels, respectively, tweaethil

tests.
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Table 5: Frequencies (and relative frequencies, %Qf choices by connectivity (p) and degree —
Incomplete information

p=0.2 p=0.8
Degree Total Active Total Active
Choices (%) Choices (%)
1 771 731 676 628
(94.81) (92.90)
5 554 156 378 225
Substitutes (28.16) (59.52)
3 275 3 546 55
(1.09) (10.07)
Total 1600 890 1600 908
(55.63) (56.75)
1 763 15 681 12
(1.97) (1.76)
5 598 107 374 116
Complements (17.89) (31.02)
3 239 106 546 278
(44.35) (51.01)
Total 1600 228 1600 908
(14.25) (25.37)
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Table 6: Marginal effects on the choices of connaeity, degree and risk — Incomplete

information
Substitutes Complements

(1) (1) (1) (IV)
0= 0.8 and degree = 1 0.002 0.004 -0.000 -0.000

(.009) (0.009) (0.001) (0.001)

0.521*** 0.547*** 0.111* 0.111*
p=0.8 and degree =2 (0.087) (0.083) (0.056) (0.056)
0= 0.8 and degree = 3 0.021** 0.024* 0.233* 0.233*

(0.009) (0.010) (0.132) (0.132)
degree 2 (compared to degree -0.805*** -0.816*** 0.041** 0.041**
1)and p=0.2 (0.045) (0.0412) (0.017) (0.017)
degree 2 (compared to degree -0.287*** -0.273%** 0.152%** 0.153***
1)and p=0.8 (0.068) (0.064) (0.053) (0.053)
degree 3 (compared to degree -0.981*** -0.980*** 0.328*** 0.328***
1l)and p=0.2 (0.007) (0.007) (0.091) (0.091)
degree 3 (compared to degree -0.962*** -0.961*** 0.562*** 0.562***
1l)and p=0.8 (0.009) (0.009) (0.095) (0.095)
degree 3 (compared to degree -0.176*** -0.164*** 0.287*** 0.287***
2)and p=0.2 (0.049) (0.045) (0.079) (0.079)
degree 3 (compared to degree -0.675*** -0.687*** 0.409** 0.409***
2)andp=0.8 (0.067) (0.063) (0.061) (0.061)
Marginal effect of risk aversion -0.000* -0.000
whenp = 0.2 and degree = 1 (0.000) (0.000)
Marginal effect of risk aversion -0.002** -0.000
whenp = 0.2 and degree = 2 (0.001) (0.000)
Marginal effect of risk aversion -0.000 -0.000
whenp = 0.2 and degree = 3 0.000) (0.002)
Marginal effect of risk aversion -0.000* -0.000
whenp = 0.8 and degree = 1 (0.000) (0.000)
Marginal effect of risk aversion -0.003** -0.000
whenp = 0.8 and degree = 2 (0.001) (0.001)
Marginal effect of risk aversion -0.000* -0.000
whenp = 0.8 and degree = 3 (.000) (0.002)

Notes: standard errors are reported in parenth&sjs**, and * indicate statistical significancetahe
1%, 5%, and 10% levels, respectively, two-tailexise
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Table 7: Deviation rates in last 10 periods from pmary equilibrium

Substitutes

Complements
Position

Position

A B C D E Avg. A B C D E Avg.
Orange 0.05 0.05 0.27 0.05 0.00 0.08 0.06 0.30 0.27 0.30 0.00 0.19
Green 0.07 0.07 0.20 0.10 0.03 0.09 0.00 0.00 0.00 0.00 0.00 0.00
Purple 0.04 0.04 0.00 0.07 0.07 0.04 0.00 0.00 0.00 0.00 0.00 0.00

Degree Degree
1 2 3 Avg.* 1 2 3 Avg.*
p=0.2 0.02 0.27 0.00 0.10 0.00 0.04 0.10 0.03
p=0.8 0.05 0.22 0.05 0.09 0.00 0.04 0.15 0.06

Notes: The average is calculated by weighting élbesrwith the number of observations in each cell.
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Figure 1: The networks
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Figure 2: Relative frequency of active choices acss periods, by network player position and
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Figure 3: Relative frequency of equilibrium play acoss period by treatment — Complete
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Figure 4: Relative frequencies of choices by degreegames, and connectivity ) —
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Figure 5: Relative frequencies of equilibrium playacross periods by game and connectivity
— Incomplete information
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Appendix A: Econometric model (Variables and Estimations)
Network:

Orange =1,
Green =2,
Purple =3
Position:
A=1,
B=2,
C=3,
D=4,
E=5.

Complete information

dij = 1 if network=i and position =j, 0 otherwise
tij: interaction between dij and period
Incomplete information

d1=1if p=0.8, 0 otherwise

degree2 =1 if player’s degree=2, 0 otherwise

degree3 =1 if player’s degree=3, 0 otherwise

d1_period: interaction between period and d1
d1_degree2: interaction between d1 and degree2
d1_degree2: interaction between d1 and degree3
deg2_period: interaction between degree2 and period
deg3_period: interaction between degree3 and period
deg2_per_d1:interaction between degree2, period and d1
deg3_per_d1: interaction between degree3, period and d1.

d1_degreel: marginal effect of d1 when degree=1

d1_degree2: marginal effect of d1 when degree=2

d1_degree3: marginal effect of d1 when degree=3

degree2_d1_0: marginal effect of degree 2 (with respect to degree 1) when d1=0 (p=0.2)
degree2_d1_1: marginal effect of degree 2 (with respect to degree 1) when d1=1 (p=0.8)
degree3_d1_0: marginal effect of degree 3 (with respect to degree 1) when d1=0 (p=0.2)
degree3 _d1_1: marginal effect of degree 3 (with respect to degree 1) when d1=1 (p=0.8)
degree32_d1_0: marginal effect of degree 3 (with respect to degree 2) when d1=0 (p=0.2)
degree32_d1_1: marginal effect of degree 3 (with respect to degree 2) when d1=1 (p=0.8)

risk_0_0_0: marginal effect when d1=0 and degree==1
risk_0_1_0: marginal effect when d1=0 and degree==
risk_0_0_1: marginal effect when d1=0 and degree==
risk_1_0_0: marginal effect when d1=1 and degree==1
risk_1_1 0: marginal effect when d1=1 and degree==
risk_1_0_1: marginal effect when d1=1 and degree==
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Complete information - Strategic Substitutes

Random effects | ogi stic regression Nunmber of obs = 1600
G oup variable: id Nunmber of groups = 40
Random effects u_i ~ Gaussi an Qbs per group: mn = 40

avg = 40

max = 40

val d chi 2(30) = 375.7
Log likelihood = -388.50483 Prob > chi 2 = 0
Choi ce Coef . Std. Err. z P>z [ 95% Conf. I nterval]
Peri od 0. 030663 0.047141 0. 65 0. 515 -0.06173 0. 123057
di2 - 8. 40485 1.7711 -4.75 0 -11. 8761 -4.93356
di3 -3.90144 1. 265561 -3.08 0. 002 -6.38189 -1. 42098
di4 -6. 95259 1.5288 -4.55 0 -9. 94899 -3.9562
di5 -1.80211 1.416295 -1.27 0. 203 -4.578 0.973777
d21 -2.43685 1. 350567 -1.8 0.071 -5.08391 0.210213
d22 -5. 75513 1.357171 -4.24 0 -8.41514 -3.09512
d23 -4. 33103 1. 260564 -3.44 0. 001 -6.80169 -1. 86037
d24 -5.59522 1.326514 -4.22 0 -8.19514 -2.9953
d25 -1.22466 1. 440592 -0.85 0. 395 -4.04816 1.598853
d31 -0.87704 1. 366207 -0.64 0.521 -3.55476 1. 800676
d32 -6.18386 1.418038 -4.36 0 -8.96316 - 3. 40455
d33 -2.10023 1.34226 -1.56 0.118 -4.73101 0. 530551
d34 -4.85752 1.249787 -3.89 0 -7.30706 -2.40798
d35 -1.86108 1. 328373 -1.4 0. 161 -4. 46464 0. 742488
t12 -0.03139 0.073418 -0.43 0. 669 -0.17528 0. 112509
t13 0. 02826 0. 053593 0. 53 0. 598 -0.07678 0. 133299
t14 -0. 06707 0. 065325 -1.03 0. 305 -0. 19511 0. 060959
t15 0. 053105 0. 068362 0.78 0. 437 -0. 08088 0. 187091
t21 0. 078902 0. 061831 1.28 0. 202 -0.04228 0. 200088
t22 -0.0878 0. 059385 -1.48 0. 139 -0. 20419 0. 028597
t23 0. 046098 0. 053475 0. 86 0. 389 -0. 05871 0. 150906
t 24 -0.0617 0. 05645 -1.09 0.274 -0.17234 0. 048942
t 25 0. 050011 0.074264 0. 67 0. 501 -0. 09554 0. 195565
t31 0. 005485 0. 061208 0.09 0. 929 -0.11448 0. 125452
t32 -0. 13539 0. 06704 -2.02 0. 043 -0. 26678 -0. 00399
t 33 0. 106867 0.072718 1.47 0. 142 -0. 03566 0. 249391
t 34 -0.09514 0. 05377 -1.77 0. 077 -0. 20053 0.010246
t 35 0. 040081 0. 058256 0. 69 0. 491 -0.0741 0. 154262
Ri sk 0. 008371 0.011682 0.72 0. 474 -0.01453 0. 031267
_cons 3. 491075 1.312174 2. 66 0. 008 0. 919263 6. 062888
/1 nsi g2u 1. 384996 0. 274943 0. 846118 1. 923875
sigma_u 1. 998702 0. 274765 1. 526624 2.616761
Rho 0. 548385 0. 068092 0. 414661 0. 675469
Li kel i hood-ratio test of rho=0: chibar2(01) = 275.78 Prob >= chibar2 = 0.000
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Marginal effects

Choi ce Coef . Std. Err. z P>z [ 95% Conf . Interval]
Peri od . 0003294 . 0005634 0.58 0. 559 -.0007748 . 0014336
t12 -7.84e-06 . 0006102 -0.01 0. 990 -. 0012038 . 0011882
t13 . 0106987 . 0051008 2.10 0. 036 . 0007014 . 0206961
t14 . 0008184 . 0011067 -0.74 0. 460 -. 0029874 . 0013507
t15 . 0018897 . 0012482 1.51 0. 130 -. 0005567 . 0043361
t21 . 0028018 . 0014995 1.87 0. 062 -. 0001372 . 0057408
t22 . 0025522 . 0017662 -1.45 0. 148 -.0060138 . 0009095
t23 . 0145285 . 0055472 2.62 0. 009 . 0036562 . 0254007
t24 . 0025986 . 0027381 -0.95 0.343 -. 0079652 . 002768
t 25 . 0011056 . 0007921 1.40 0. 163 -. 000447 . 0026582
t31 . 000818 . 0008963 0.91 0. 361 -. 0009386 . 0025747
t32 . 0013675 . 0008659 -1.58 0.114 -. 0030645 . 0003296
t33 . 0015022 . 0008646 1.74 0.082 -. 0001923 . 0031968
t 34 . 0054927 . 0025946 -2.12 0.034 -.010578 -. 0004075
t 35 . 0021455 . 0013144 1.63 0.103 -. 0004306 . 0047217
Ri sk . 0083711 . 01168 0.72 0.474 -. 014525 . 031267
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Complete information - Strategic Complements

Random effects | ogi stic regression Nunmber of obs = 1600
G oup variable: id Nunmber of groups = 40
Random effects u_i ~ Gaussian Cbs per group: mn = 40

Avg = 40

Max = 40

Val d chi 2(30) = 234. 49
Log likelihood = -280.54602 Prob > chi 2 = 0
Choi ce Coef . Std. Err. z P>z [ 95% Conf. I nterval]
Peri od 0. 012517 0. 045182 0. 28 0. 782 -0.07604 0. 101071
d12 7.203613 1.407627 5.12 0 4.444714 9. 962512
di3 5.912277 1. 359848 4.35 0 3. 247023 8. 57753
di4 7.21883 1. 402497 5.15 0 4. 469987 9. 967673
di5 4.015273 1. 500287 2.68 0. 007 1.074765 6. 955781
d21 1. 862151 2.698071 0. 69 0. 49 - 3. 42597 7.150273
d22 2.566745 1.610425 1.59 0.111 -0. 58963 5.723119
d23 5. 055612 1. 463772 3.45 0. 001 2.186673 7.924552
d24 2. 257243 1.837471 1.23 0. 219 -1. 34413 5. 85862
d25 1. 806821 2. 147597 0.84 0.4 -2.40239 6.016034
d31 4.098842 2.678017 1.53 0.126 -1.14998 9. 347658
d32 4.726608 1. 400217 3.38 0. 001 1. 982232 7.470983
d33 1. 841959 2.148467 0. 86 0. 391 -2.36896 6. 052878
d34 3. 49502 1.504369 2.32 0.02 0. 546511 6. 443529
d35 3. 505376 2. 435331 1.44 0. 15 -1.26779 8. 278537
t12 -0.04634 0. 051205 -0.9 0. 365 -0. 1467 0. 05402
t13 -0.01217 0. 050444 -0.24 0. 809 -0.11104 0. 086698
t14 -0.05783 0. 050785 -1.14 0. 255 -0. 15737 0. 041705
t15 -0. 35341 0.138617 -2.55 0. 011 -0. 62509 -0.08172
t21 -0. 36076 0. 413782 -0.87 0. 383 -1.17175 0. 450241
t22 -0. 1474 0. 088299 -1.67 0. 095 -0. 32047 0. 025659
t23 -0. 25116 0. 083561 -3.01 0. 003 -0.41494 -0. 08738
t 24 -0. 23798 0.174672 -1.36 0.173 -0. 58033 0. 104369
t 25 -0.2018 0.16164 -1.25 0. 212 -0.51861 0. 115004
t31 -0.97318 0. 975 -1 0. 318 -2.88415 0.93778
t32 -0. 15397 0. 062666 -2.46 0.014 -0.2768 -0. 03115
t 33 -0.31792 0. 270881 -1.17 0. 241 -0. 84884 0. 212999
t 34 -0. 20028 0. 090852 -2.2 0. 027 -0. 37835 -0. 02222
t 35 -0. 61405 0. 566495 -1.08 0. 278 -1.72436 0. 496265
Ri sk 0. 027471 0. 007972 3.45 0. 001 0.011846 0. 043095
_cons -6.23145 1.347641 -4.62 0 -8.87277 -3.59012
/1 nsi g2u 0. 778799 0. 325834 0. 140176 1.417423
sigma_u 1. 476094 0. 240481 1. 072602 2.031372
Rho 0. 398421 0. 078097 0. 259096 0. 556403
Li kel i hood-ratio test of rho=0: chibar2(01) = 75.62 Prob >= chibar2 = 0.000
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Marginal effects

Choi ce Coef . Std. Err. z P>z [ 95% Conf . Interval ]
Peri od . 0001233 . 0004298 0. 29 0.774 -. 0007191 . 0009658
t12 -. 0044179 . 0031186 -1.42 0. 157 -. 0105302 . 0016944
t13 . 0000659 . 0042203 0.02 0. 988 -. 0082058 . 0083375
t14 -. 0067972 . 0034897 -1.95 0. 051 -.0136368 . 0000424
t15 -. 0001938 . 0003237 -0.60 0. 549 -. 0008283 . 0004407
t21 -. 0000199 . 0000978 -0.20 0. 838 -. 0002117 . 0001718
t22 -. 0009829 . 0006546 -1.50 0. 133 -. 0022659 . 0003002
t23 -. 0027501 . 0017791 -1.55 0.122 -. 0062372 . 0007369
t24 -. 0002091 . 0003588 -0.58 0. 560 -. 0009123 . 0004941
t25 -. 0002263 . 0003052 -0.74 0. 458 -. 0008244 . 0003719
t31 -3.47e-09 . . .
t32 -. 0071486 . 0028674 -2.49 0.013 -.0127686 -. 0015287
t33 -. 0000395 . 0001264 -0.31 0. 755 -. 0002873 . 0002084
t34 -. 001237 . 00095 -1.30 0. 193 -. 003099 . 0006249
t35 -1.29e-06 . 0000114 -0.11 0.910 -. 0000236 . 000021
Ri sk . 0274705 . 00797 3.45 0. 001 . 011846 . 043095
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Incomplete information - Strategic Substitutes

[) Non including the risk variable

Random effects | ogi stic regression Nunmber of obs = 3200
G oup variable: id Nunmber of groups = 80
Random ef fects u_i ~ Gaussian Cbs per group: min = 40
Avg = 40
Max = 40
Val d chi2(11) = 668. 46
Log likelihood = -837.60775 Prob > chi 2 = 0
Choi ce Coef. Std. Err. z P>z [ 95% Conf . I nterval]
Peri od . 0353394 . 0157828 2.24 0. 025 . 0044056 . 0662731
di -. 8188269 . 6459138 -1.27 0.205 -2.084795 . 4471409
degree? -4.566573 . 4437865 -10. 29 0.000 -5.436379 -3.696767
degree3 -7.386604 1.027127 -7.19 0.000 -9.399737 -5.373472
d1_period . 0466305 . 0242528 1.92 0.055 -.0009042 . 0941651
d1_degree2 1.648846 . 6139654 2.69 0. 007 . 4454959 2.852196
d1_degree3 2. 438584 1. 149082 2.12 0.034 . 1864249 4.690743
deg2_period -. 050013 . 0189049 -2.65 0.008 -.0870659 -.0129601
deg3_period -. 1621972 . 0830486 -1.95 0.051 -.3249694 . 000575
deg2_per_d1 . 0305168 . 0289488 1.05 0.292 -.0262219 . 0872555
deg3_per_d1l . 0142048 . 0874948 0.16 0.871 -.1572819 . 1856914
_cons 3. 323875 . 4665528 7.12 0. 000 2. 409449 4. 238302
/1 nsi g2u 1. 337087 . 1957578 . 9534084 1.720765
sigma_u 1.951393 .1910002 1.610757 2.364065 sigma_u 1. 951393
Rho . 5364948 . 0486787 .4409175 .6294639 rho . 5364948
Li kel i hood-ratio test of rho=0: chibar2(01) = 490. 93 Prob >= chibar2 = 0. 000
Marginal effect
Choi ce Coef. Std. Err. z P>z [ 95% Conf. I nterval ]
d1_degreel . 0018477 . 0090151 0. 20 0. 838 -. 0158217 . 0195171
d1_degree2 . 5206969 . 0873879 5.96 0. 000 . 3494198 . 691974
d1_degree3 . 0213193 . 0093988 2.27 0.023 . 002898 . 0397405
degree2_dl1_0 -. 8054548 . 0451776 -17.83 0. 000 -. 8940012 -.7169084
degree2_di1_1 -. 2866056 . 067589 -4.24 0. 000 -. 4190775 -. 1541336
degree3_dl1_0 -.9811888 . 0065618 -149. 53 0. 000 -. 9940496 -.9683279
degree3_dl1_1 -.9617172 . 008591 -111.95 0. 000 -. 9785552 -.9448792
degree32_dl1_0 -. 175734 . 0488696 -3.60 0. 000 -. 2715167 -. 0799512
degree32_dl_1 -.6751116 . 0667504 -10.11 0. 000 -. 8059401 -. 5442832
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1) Including the risk variable

Random ef fects | ogi stic regression Nunmber of obs = 3200
Group variable: id Nunber of groups = 80
Random effects u_i ~ Gaussian Cbs per group: min = 40
Avg = 40
Max = 40
Val d chi2(12) = 669. 38
Log likelihood = -835.0852 Prob > chi 2 = 0
Choi ce Coef. Std. Err. z P>z [ 95% Conf . I nterval]
Peri od . 0353746 . 0157977 2.24 0. 025 . 0044117 . 0663375
dl -. 6814024 . 6378184 -1.07 0.285 -1.931503 . 5686988
degree2 -4.581403 . 4443026 -10. 31 0. 000 -5.45222 -3.710586
degree3 -7.392577 1. 027527 -7.19 0.000 -9.406494 -5.37866
d1l_period . 0466369 . 0242576 1.92 0.055 -.0009071 . 094181
d1l_degree2 1. 671407 . 6139628 2.72 0. 006 . 4680618 2.874752
d1l_degree3 2.461545 1.148353 2.14 0. 032 . 210815 4.712274
deg2_peri od -. 0500117 . 0189244 -2.64 0.008 -.0871029 -.0129206
deg3_peri od -. 162495 . 0831316 -1.95 0. 051 -. 32543 . 0004399
deg2_per _d1 . 0302095 . 0289505 1.04 0.297 -.0265325 . 0869514
deg3_per_d1 . 0148065 . 0875422 0.17 0.866 -.1567731 . 1863861
Ri sk -. 0158006 . 0069383 -2.28 0.023 -.0293993 -.0022018
_cons 4.136116 . 5870075 7.05 0. 000 2.985603 5. 28663
/1 nsi g2u 1.261315 . 1973897 .8744378 1.648191 /lnsig2u 1.261315
si gma_u 1.878845 . 1854324 1.548395 2.279818 si gma_u 1.878845
Rho . 5176095 . 0492862  .421551 .6123839 rho . 5176095
Li kel i hood-ratio test of rho=0: chibar2(01) = 453.07 Prob >= chibar2 = 0.000
Marginal effect
Choi ce Coef . Std. Err. z P>z [95% Conf. I nterval ]
d1l_degreel . 004092 . 0089446 0. 46 0. 647 -. 0134391 . 0216232
d1l_degree2 . 5471342 . 0826837 6.62 0. 000 . 3850772 . 7091913
d1l_degree3 . 0235348 . 0099948 2.35 0.019 . 0039455 . 0431242
degree2_d1_0 -. 8161774 . 0414533 -19.69 0. 000 -. 8974244 -. 7349305
degree2_d1_1 -.2731352 . 0642068 -4.25 0. 000 -.3989783 -.1472921
degree3_dl1_0 -. 980062 . 0068608 -142.85 0. 000 -. 9935089 -.9666151
degree3_dl_1 -.9606192 . 0090874 -105. 71 0. 000 -.9784301 -.9428083
degree32_d~0 -.1638846 . 0451955 -3.63 0. 000 -. 252466 -. 0753031
degree32_d~1 -. 687484 . 0628339 -10. 94 0. 000 -. 8106361 -.5643318
risk_0_0_0 -. 0002897 . 0001697 -1.71 0.088 -. 0006223 . 0000429
risk_0_1_0 -.0021784 . 0010144 -2.15 0.032 -. 0041666 -. 0001901
risk_0_0_1 -. 0000198 . 0000251 -0.79 0.431 -. 000069 . 0000294
risk_1_0_0 -. 0002272 . 0001254 -1.81 0.070 -. 0004729 . 0000185
risk_1_.1.0 -.0032382 . 0014454 -2.24 0. 025 -. 0060711 -. 0004052
risk_1_0_1 -. 0003819 . 0002303 -1.66 0.097 -. 0008333 . 0000695
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Incomplete information - Strategic Complements
I) Non including the risk variable

Random effects | ogi stic regression Nurmber of obs = 3200
Group variable: id Nurber of groups = 80
Random effects u_i ~ Gaussi an Qbs per group: mn = 40
avg = 40
max = 40
val d chi2(11) = 453. 63
Log likelihood = -708.10264 Prob > chi 2 = 0
Choi ce Coef. Std. Err. z P>z [ 95% Conf. I nterval]
Peri od -0. 14473 0. 040886 -3.54 0 -0.22487 -0. 0646
di -0. 50301 0. 892839 -0.56 0.573 -2.25295 1.246919
degree?2 4.341164 0. 587702 7.39 0 3. 18929 5. 493038
degree3 7.213044 0. 756647 9.53 0 5. 730044 8. 696044
d1_period 0. 00959 0. 059068 0.16 0.871 -0.10618 0. 12536
d1_degree2 1. 386266 0. 881645 1.57 0.116 -0.34173 3.114258
d1_degree3 1.891964 1. 030358 1.84 0. 066 -0. 1275 3.911429
deg2_period -0. 04366 0. 044415 -0.98 0. 326 -0. 13071 0. 043393
deg3_period -0.0674 0.047183 -1.43 0. 153 -0. 15988 0. 025075
deg2_per_d1 0.01618 0. 063925 0. 25 0.8 -0.10911 0. 141471
deg3_per_d1 -0. 03096 0. 065662 -0. 47 0. 637 -0. 15966 0.09773
_cons -3.67977 0. 62245 -5.91 0 -4.89975 -2. 45979
/1 nsi g2u 1.645845 0. 207959 1. 238252 2. 053437
si gma_u 2.277145 0. 236777 1. 857304 2.791889
Rho 0.611827 0. 049389 0.511849 0. 703201
Li kel i hood-ratio test of rho=0: chibar2(01) = 459.91 Prob >= chibar2 = 0.000
Marginal effect
Choi ce Coef . Std. Err. z P>z [ 95% Conf . I nterval ]
d1_degreel -. 0003723 . 0012022 -0.31 0. 757 -. 0027285 . 0019839
d1_degree2 . 1106046 . 0557568 1.98 0. 047 . 0013234 . 2198859
d1_degree3 . 232949 . 1322903 1.76 0.078 -. 0263352 . 4922333
degree2_d1_0 . 0414475 . 0172073 2.41 0.016 . 0077219 . 0751732
degree2_d1_1 . 1524245 . 0528636 2.88 0. 004 . 0488137 . 2560353
degree3_dl1_0 . 3283258 . 0912503 3. 60 0. 000 . 1494784 . 5071731
degree3_dl_1 . 5616471 . 0949516 5.92 0. 000 . 3755454 . 7477488
degree32_d~0 . 2868782 . 0791469 3.62 0. 000 . 1317532 . 4420032
degree32_d~1 . 4092226 . 0609084 6.72 0. 000 . 2898443 . 5286009
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1) Including the risk variable

Random ef fects | ogi stic regression Nunmber of obs = 3200
Group variable: id Nunber of groups = 80
Random effects u_i ~ Gaussian Cbs per group: min = 40
Avg = 40
Max = 40
Val d chi2(12) = 453. 60
Log likelihood = -708.07396 Prob > chi 2 = 0
Choi ce Coef. Std. Err. z P>z [ 95% Conf . I nterval]
Peri od -. 1447516 . 0408935 -3.54 0.000 -.2249014 -.0646018
dl -.5010158 . 8928432 -0.56 0.575 -2.250956 1.248925
degree2 4.341514 . 5878049 7.39 0.000  3.189437 5. 49359
degree3 7.213081 . 7566286 9.53 0. 000 5.730116 8. 696045
d1l_period . 0096085 . 0590735 0.16 0.871 -.1061734 . 1253905
d1l_degree2 1.385479 . 8816709 1.57 0.116 -.3425639  3.113522
d1l_degree3 1.891547 1.03034 1.84 0.066 -.1278814  3.910976
deg2_peri od -. 0436345 . 0444213 -0.98 0.326 -.1306986 . 0434297
deg3_peri od -. 0674082 . 047188 -1.43 0.153 -.1598949 . 0250785
deg2_per_d1 . 016171 . 0639297 0.25 0.800 -.1091288 . 1414708
deg3_per_d1 -. 0309548 . 0656667 -0. 47 0.637 -.1596591 . 0977496
Ri sk -. 0019786 . 0082606 -0.24 0.811 -.0181691 . 0142118
_cons -3.559826 . 797559 -4.46 0.000 -5.123013 -1.996639
/1 nsi g2u 1. 645359 . 2079661 1.237753 2.052965 /lnsig2u 1. 645359
si gma_u 2.276592 . 236727 1.856841 2.791231 si gma_u 2.276592
Rho . 6117114 . 0493962 .5117242 .7031029 rho . 6117114
Li kel i hood-ratio test of rho=0: chibar2(01) = 459.57 Prob >= chibar2 = 0.000
Marginal effect
Choi ce Coef . Std. Err. z P>z [ 95% Conf. I nterval ]
d1l_degreel -. 0003694 . 0012015 -0.31 0.759 -.0027243 . 0019855
d1l_degree2 .1107319 . 0557719 1.99 0. 047 . 0014209 . 2200429
d1l_degree3 . 2334398 . 1322453 1.77 0.078 -. 0257562 . 4926359
degree2_d1_0 . 0414237 . 0171952 2.41 0.016 . 0077216 . 0751257
degree2_d1_1 . 1525249 . 0528829 2.88 0. 004 . 0488763 . 2561735
degree3_dl1_0 . 3279842 . 0911988 3.60 0. 000 . 1492378 . 5067307
degree3_dl_1 . 5617934 . 0949291 5.92 0. 000 . 3757358 . 7478511
degree32_d~0 . 2865606 . 0791045 3.62 0. 000 . 1315186 . 4416025
degree32_d~1 . 4092685 . 0608862 6.72 0. 000 . 2899337 . 5286033
risk_0_0_0 -2.75e-06 . 0000119 -0.23 0.817 -. 000026 . 0000205
risk_0_1_0 -. 0000811 . 0003397 -0.24 0.811 -. 000747 . 0005848
risk_0_0_1 -.0004371 . 0018246 -0.24 0.811 -. 0040132 . 0031391
risk_1_0_0 -2.02e-06 8. 78e- 06 -0.23 0.818 -. 0000192 . 0000152
risk_1.10 -. 0002572 . 0010765 -0.24 0.811 -. 002367 . 0018527
risk_1_0_1 -. 0004869 . 0020325 -0.24 0.811 -. 0044706 . 0034969
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Appendix B: Figures by groups

(x,y,z) means group X, network y position z whNetwork: Orange = 1, Green = 2, Purple =3
Position: A=1,B=2,C=3,D=4,E=5.

Figure B.1: Complete information and substitutes: Rlative frequencies of active choices
across periods, by group, network and position.
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Figure B.2: Complete information and complements: Rlative frequencies of active choices
across periods, by group and position in the Orangeetwork.

1,11 1,12 1,13 1,14 115

— . @ @ 000 00 €000 0200000 | €0 CNWEIE © 0O NI €O WWN®WE © O ww o .

0 . . . oo .

O 60 0000000 G000 G © 000 o . o o . . o o @ | 6 N®Nes 00 00
2,1,1 2,1,2 2,1,3 2,1,4 2,15

- me o woew ® oo %o Wowmwo o 00 0 WO ®we ewwo® ®We o ®

w4 e . o . .

O ®e woemenmmes o o ¢ ®we . oo . we oo ® ®omenume wo o
15,1,1 15,1,2 15,1,3 15,1, 4 15,1,5

i €000 000 0 | 00 0000 0 CNEW O WOCO® 00 O 0N NN o

0 . . .

© - 6900060 00 © 000 000000 000 o oo e o o . 00000 00 © 0 00000 000
16,1,1 16,1,2 16,1,3 16,1,4 16,1,5

- ® owe o o * oeom oo °0 o ® oo

CE L . . .

O ews ewmer o comemom o 00 0o wome - ® ®woemeo ®» . ee o wwwew e @0 oo ®w cewwow o

T T T T

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

Periods

55



Appendix C: Proofs

Complete information scenario — Strategic substitugs

For eachi € {4,B,C,D,E}, Letm; € [0,1] be the probability to be active of the player in
positioni. Letn; = |N|.

A Nash equilibrium in mixed strategies is descrilbdr = (my, mg, m¢, mp, mg). We
first state and prove some lemmas that shall berlased in the proofs of Propositions 1, 2 and
3.

Lemma 1. Consider the scenario of strategic substitutes eochplete informationln a Nash
equilibrium eitherm; € [0,0.5] or m; = 1.

Proof: Assumem; € (0.5, 1); then for allj € N; the best response of playeis m; = 0, because
E;(0) > 0.5. However, in this case, the best response of playenplies thatm; =1, a
contradiction. QED

Lemma 2. Consider the scenario of strategic substitutes eochplete informationln a Nash
equilibrium

a) If m; € (0,0.5], then,[Jjen,(1 —m;) = 0.5 and, for alle N;, m; € [0, 0.5].

b) m; = 1if and only iffor all j € N;, m; = 0.

c) m; = 0ifand only if[[jen,(1 —m;) < 0.5

Proof Part @). The condition E;(0) = E;(1) = 0.5 must hold. Hence,E;(0) = (1 —
[Tjen,(1 —m;)) = 0.5, and the claim follows. Parb); It directly follows from the best response
of playersj, given thatE;(0) = 1 andE;(1) = 0.5. Part €). It must be the case th&j(0) =

(1 —Iljen,(1 — p;)) = 0.5. Hence, the claim follows. QED

The following remark describes some special caesrmma 2.

Remark 1.Letn; = 1, in a Nash equilibrium
a) If m; € (0,0.5] andj € N;, thenm; = 0.5.
b) If m; =0andj € N;, thenm; = 1.
Lemma 3.Letj € N; andn; = 1. In a Nash equilibrium, ifn; € (0, 0.5], thenm; = 0.5.
Proof. Let m; € (0,0.5), the best response of playgrimplies m; = 1. Therefore, the best

response of playerimpliesm; = 1, a contradiction. QED
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In the following proofs (Propositions 1-3), in ord® compute the Nash equilibria in
mixed strategies (the proofs are constructive),steet by assuming a Nash equilibrium where
one player is using a mixed strategy. Then, we agplll strategy profiles consistent with a
Nash equilibrium. Note that, when we are assuminag (in a Nash equilibrium) a playéris
playing a mixed strategy, by Lemma 1 we know that (0, 0.5].

Proof of Proposition 1.

The characterization of the pure strategy Nashlibgai directly follows from partlf) of Lemma
2. In order to characterize the mixed strategy léxid, we analyze three cases (the other ones
are symmetric)my € (0,0.5],mg € (0,0.5], and m. € (0, 0.5].

Casel: m, € (0,0.5].
By part @) in Remark 1, we have thatz = 0.5 and, by partd) in Lemma 2,

3 (1-my)(1 —mc)(1 —mp) = 0.5 andm,, mg, my € [0,0.5]

By Lemmas 2 and 4n, € {0,0.5}. Assumem, = 0, by (3) we have thah, =1 — and

0.5
1-my
by part p) of Remark 1,m; = 1. Hence, the following set of strategy profiles @tash

equilibria: (my4,0.5,1 — 10'; ,0,1) with 0 <my, < 0.5. By symmetry, the following set of
—Ima
strategy profiles are also Nash equilibrig: (0 1 — 10'; ,0.5,mg) with 0 < my < 0.5. Assume
—MmE

nowpp = 0.5. Then, condition (3) is not satisfied.

Case2: mg € (0,0.5].

By Lemma 3;n; = 0.5. The casen, € (0,0.5] is discussed above. By paa) of Lemma 2 we
only need to discuss the casg = 0. Moreover, by Lemmas 2 and #,, € {0,0.5}. Assume
mp =0, by (3) we have thain, = 0.5 and, by part ify of Remark 1,m; = 1. Hence,
(0,0.5,0.5,0,1)is a Nash equilibrium. By symmetry, als@l, 0,0.5,0.5,0)is a Nash
equilibrium. Assume nown;, = 0.5. By (3), m: = 0 and, from partd) of Lemma 2;m; = 0.
Hence,(0,0.5,0,0.5,0) is a Nash equilibrium.

Case3: m. € (0,0.5].

By part @) of Lemma 2;ng, mp € [0,0.5] and, by Lemma 3ng, mp € {0,0.5}. By part @) of
Lemma 2,mz = mp = 0 andmg = mp = 0.5 are not part of a Nash equilibrium. On the other
hand, assuming either; = 0.5 and pp = 0, or pg = 0 and pp = 0.5, we obtain the equilibria
described in Case 1. This concludes the equilibgharacterization. QED

57



Proof of Proposition 2.

The characterization of the pure strategy Nashlibgai directly follows from partlf) of Lemma
2. In order to characterize the mixed strategy léxid, we analyze three cases (the other ones
are symmetric)m, € (0,0.5],mg € (0,0.5], and m. € (0,0.5].

Casel:m, € (0,0.5].
By part @) of Remark 1, we have that; = 0.5 and, by partg) of Lemma 2,
4) (1 -my)(1 —m¢) = 0.5 andmy, mg, my € [0,0.5]

0.5
1-my
(0.5,0.5,0,0.5,0.5), (0.5,0.5,0,1,0), and(0.5,0.5,0,0,1) are Nash equilibria. By symmetry,
(0,1,0,0.5,0.5) and(1,0,0,0.5,0.5) are also Nash equilibria. t#h, € (0,0.5), then m, > 0.
Then, by partd) of Lemma 2,m, = 0 and, by partlf) of Remark 1,mz; = 1. Hence, the

By condition (4), we have thamm,=1-— If my = 0.5, then m; =0. Hence,

following set of strategy profiles are Nash equifib (m,,0.5,1 — % ,0,1) with 0 <my <
—Ima

0.5. By symmetry, the following set of strategy prefilare also Nash equilibrial, (0,1 —
0.5
1-mpg !

0.5, mg) where0 < my < 0.5.

Case2: mg € (0,0.5].

By Lemma 3;n; = 0.5. The casen, € (0,0.5] is discussed above. By paa) of Lemma 2, we
only need to discuss the caag = 0. By Lemma 2m, = 0.5 andm, = 0. Moreover, by part
(b) of Remark 1,m; = 1. Hence, (0,0.5,0.5,0,1) is a Nash equilibrium. By symmetry,
(1,0,0.5,0.5,0) is also an equilibrium.

Case3: m. € (0,0.5].

By part @) of Lemma 2,mz, mp € [0,0.5] and, by Lemma 3mnz, mj € {0,0.5}. By parta in
Lemma 2,mz; = mp = 0 andmg = mp = 0.5 cannot be part of a Nash equilibrium. Assuming
either mg = 0.5and mp =0, or mz = 0and mp = 0.5, we obtain the same equilibria
described in the previous case. This concludesduédibrium characterization. QED

Proof of Proposition 3.

The characterization of the pure strategy Nashlibgai directly follows from partlf) of Lemma

2. In order to characterize the mixed strategy ldaia, we analyze four cases (the remaining
one is symmetric)in, € (0,0.5],mgz € (0,0.5], mp, € (0,0.5],andm; € (0, 0.5].

Casel:m, € (0,0.5].

By part @) of Remark 1mgz = 0.5 and, by partdq) of Lemma 2:
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(5) (1 - mA)(l - mc)(l - mD) =05 andmA,mc, mp € [0, 05]

By Lemma 3, mp € {0,0.5}. Assume mp = 0.5. Condition (5) implies thatmn, =0, a
0.5
1-pamy
Remark 1, my =1. Hence, the following set of strategy profiles axash equilibria:

(m,,0.5,1 — >

1-my !

contradiction. Assume now, = 0. By condition (5),m, =1 — and, by partlf) of

0,1) with 0 <my < 0.5. By symmetry, the following set of strategy

profiles are also Nash equilibrigt — % 0.5,m¢,0,1) with0 < m < 0.5.
—mc

Case2: mg € (0,0.5].

By Lemma 3;nz; = 0.5 andm, € {0,0.5}. If m, = 0, by part b) of Remark 1m; = 1 and, by
0.5

1-mgy

part @ of Lemma 2m, =1 — with m, € [0,0.5]. Then, the following set of strategy

0.5
1-my !

following set of strategy profiles are also Nashuilgria: (1 —

profiles are Nash equilibriamy,, 0.5,1 — 0,1) with my € [0,0.5]. By symmetry, the

0.5
1-m¢’
m. € [0,0.5]. (Note that these equilibria include the ones tbimprevious case). H, = 0.5,
by part &) of Lemma 2,p, =0, p. =0 and p; = 0. Hence, (0,0.5,0,0.5,0) is a Nash
equilibrium.

0.5,m.,0,1) where

Case3:my € (0,0.5].
By Lemma 3m, = 0.5. By part @) of Lemma 2,

(6) (1 —-mp)(1 —mg) = 0.5 andmg, mg € [0,0.5]
By Lemma 3mp € {0,0.5}. Assumemg = 0. By part ) of Remark 1m, = m, = 1. Then, by
(6), mg = 0.5. Hence,(1,0,1,0.5,0.5) is a Nash equilibrium. Assume nawg = 0.5. By (6),
pg = 0. Then, by partg) of Lemma 2p, = 0 andp. = 0. Hence,(0,0.5,0,0.5,0) is a Nash
equilibrium.

Cased: my € (0,0.5].
By part @) of Remark 1m, = 0.5. Then, by partg) of Lemma 2,

7 (1-mp)(1—mg) = 0.5.
Sincemg > 0, condition (7) impliesng < 0.5. Then, by Lemma 3nz = 0 and, by partlj) of
Lemma 2,my, = m, = 1. Finally, (7) impliesmgz = 0.5. Hence,(1,0,1,0.5,0.5)is a Nash
equilibrium. This concludes the equilibrium chaeaiation. QED
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Complete information scenario — Strategic complemes

Proof of Proposition 4.

For eachi € {4,B,C,D,E} such thain; = 1,i’s best response implies; = 0, since her payoff
from choosing action 1 i5/3 — 1/2 < 0. Hence, in all Nash equilibriaz;, = mg = 0.

We first, characterize the pure strategy Nash dxjiail For each of the players B, C and D, in
order to find optimal to choose action 1, it isuigs that at least two of their neighbors also
choose 1, otherwise they prefer action 0. Sincend B choose 0, in a pure-strategy Nash
equilibrium eithemg = m; =mp =1 ormg = me = my = 0.

Sincemy, = mg = 0, in order to characterize the mixed strategy duonsl, we just need to
analyze one case (the remaining ones are symmetricE (0, 1).

Case 1:mj € (0,1). To be in a Nash equilibrium the following conditi must be satisfied:
(A-mmg + (1 - mB)mC)§+ mBmC§ = % that simplifies to:

8)  3(mgtme) =5
Hence, mg,m; > 0. By (8), mg = m =1 can not hold. Suppose; = 1, then, by (8),
me = 0.5. A similar computation yieldsm, = 0.5. Hence, (0,1,0.5,0.5,0) is a Nash
equilibrium. By symmetry(0, 0.5,1,0.5,0), (0,0.5,0.5,1,0) are also Nash equilibria. Suppose
now mg < 1. If m; =1, we obtain one of the previous equilibria. Henassumem, < 1.
Then, the following conditions must hold:

9)  ;(mu+me) =05
(10)  ;(mu+mg) =05

Conditions (8), (9), and (10) implyg = m, = m, = 0.75. Hence,(0,0.75,0.75,0.75,0) is a
Nash equilibrium. QED

Proof of Proposition 5.

For eachi € {4,B,C,D,E} such thatn; = 1 (A andE in gs, andA, C andE in gp), i's best
response implies; = 0, since her payoff from choosing action )8 — 1/2 < 0. Hence, in a
Nash equilibrium, players B and D gg and player D in thgp also choose action 0, since they
have degree 2 and one of their neighbors has ddgi@ad, therefore, chooses action 0). It
follows that, in a Nash equilibrium, also playeind)s and player B irge choose action 0, since
all their neighbors also choose 0. QED
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Incomplete information scenario

We first define some conditional probabilities thetall be useful in the proofs of
Propositions 6 and 7. Lek(j; p) be the expected probability for an agent thahdd@mnal on
having degree 1, her neighbor has degr&g applying Bayes’ rule we gét

3(1-p)

2(1-p)+4p
5(1-p)+4p

5(1-p)+4p

0u(2; p) = andqu(3; p) =

Let o(j1,j2; p) be the expected probability for an agent thandd@mnal on having degree
2, her neighbors have degré¢eandj,. By applying Bayes’ rule we get

(1,2;p) = =S (2,2;p) =

4(1-p)+2p’

andax(3,3;p) =

, G(1,3;p) =

4(1- p)+2p )+2 4(1- p)+2p

Let gs(j1,j2,)3; P) be the expected probability for an agent thabdaeonal on having degree 3,
her neighbors have degrgeg, andjs. By applying Bayes’ rule we get

0s(1,1,2;p) = 1> andas(1,2,3;p) =

1+3p

Let n{ (x;, x_;) be the payoff of an agent (indexedileyN) with degreg € {1,2,3}.

Proof of Proposition 6.

We start checking for pure strategy equilibria fEhare 8 candidates:= (0,0,0),s' = (1,0,0),
s" =(0,1,0),s¥ = (0,0,1),s = (1,1,0),s" = (1,0,1),s" = (0,1,1) ancs”™" = (1,1,1). We first
prove that candidates s", sV, "', s"" ands"" cannot be equilibria:

« Forallp € (0,1), s is not an equilibrium, since} (0,x";) = 0 < 1/2 = w}(1,x%)).

« Regardings", in order to be an equrllbrlum it would requirg(0, x")) > n}(1,x'"1) and

(1, x") = w0, x"]), i.e., qu(2; p) 25 and 52q2(1,2, p) + q(2,2; p), but these
inequalities are incompatible for alle (0,1).
« Regardings”, in order to be an equilibrium, it would requvté(o x™) = n?(1,x%) and
(1, x") = n3(0,xY), i.e., q(1,3; p) + 0(3,3; p) = 5 and; > 3(1,2,3; p), but these
inequalities are mcompatible for alle (0,1).
« Forallp € (0,1),s” is not an equilibrium, since (1,x¥)) = 1/2 <1 = 73(0,x¥
« Forallp € (0,1), " is not an equilibrium, since?(1,x"") =1/2< 1= nZ(O xV” .

« Forallp € (0,1), 8™ is not an equilibrium, since} (1, xV/") = 1/2 < 1 = n}(0, x11).

% Recall that with probabilitp, the orange network is selected whereas eachedttier two networks is selected
with probability (1p)/2. Then the five players are randomly allocatethe network with uniform probability.
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We now prove that candidatgsands’ are equilibria whep < % andp > § respectively:

« Candidates' = (1,0,0). First, we observe that, for alle (0,1), 7}(1,x'%) =1/2 >
0 =n}(0,x") andn?(0,x") =1 > % =n2(1,x’). Hence, in order to be an equilibrium,

it requiresmt?(0, x™) = n?(1,x"), i.e., q2(1,2; p) + 02(1,3; p) = % which simplifies top <
1

E.
« Candidates’ = (1,1,0). First, we observe that, for aile (0,1), 73(0,x¥)=1>
1

~=m;(1,xf). Hence, in order to be an equilibrium, it requitesth ;i (1,x7,) =

n}(0,x7,) andn?(1,x%,) = n?(0,x"), i.e.,% > qu(2; p) and% > 0p(1,2; p) + G(2,2; p) +
02(1,3; p). The second inequality imply the first one, ariee tequilibrium condition
simplifies top > %
Thus, we have shown that, whene (0%] V) El) the strategy profile (1s; (p), 0) is an
equilibrium, and that for app € (0,1), there are no other pure strategy equilibrium.

We now check for equilibria where players use migedtegies. First, consider a strategy
profile s* = (1, m, 0), withm € (0,1), i.e., players with degree 2 mix, and players witQres 1
and 3 choose actions 1 and 0, respectively. ¥oto be an equilibrium, it is required that

nf(1,x2%) = 17 (0,x2), i.e.,% = 02(1,2; p) + (1,3; p) + (MP+2m(1-m)) f(2,2; p), which
Lp /@3 g [23

1-p 1-p’

simplifies tom = We get tham is a real number lying in

the interval (0,1) when% <p< 2.37 Note that, for allp € (0,1), m?(0,x*)=1> % =
3 (1, x'%). Thus, in order to show that, for alle (%g) s* is an equilibrium, we just require
thatr} (1, x%) > n} (0, x™), i.e.,% > m q(2; p). Sincem < 1, q:(2; p) is decreasing ip, and

au(2; 1/2) = 1/3, we get that whene GE) the strategy profile (I, (p), 0) is an equilibrium.

Finally, using the softwar&athematicawe have checked that, #f > 0.2, there is no other
mixed strategy equilibriurf QED

37 When solving fom (a second degree equation), we select the robptbaidesm < 1. The conditiorp < 2/3 is
obtained from imposing that the argument of theasguoot is positive, angl> 1/2 is obtained from imposing >
0.

3 To check it analytically would be cumbersome, siitcrequires to check for various simultaneousyiradities,
and there are a number of candidates;,Q,0), ¢,1,0), ,0,1), f,1,1), (Omy,1), (1my,1), (0,0ms) (1,0/ms),
(0,1my), (1,11m%), (My,my,0), (My,Me,1), (M,0,ms), (My, 1), (0mp,me), (1imp,mg) @and (ny,M,, mMs). TheMathematica
file is available from the authors upon request {fe referees’ convenience, it is included intéehnical document
— not intended for publication].
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Proof of Proposition 7.

We start checking for pure strategy equilibria fEhare 8 candidates: = (0,0,0),s"' =
(1,0,0),s" = (0,1,0)sY = (0,0,1)s' = (1,1,0)s" = (1,0,1),s" =(0,1,1) and"" = (1,1,1).

We first prove that candidatgs s", s, s’, s, ands”" cannot be equilibria:
« Forallp € (0,1), s" is not an equilibrium, since} (1,x") = -1/2 < 0 = n}(0, x",
+ For all p € (0,1), g is not an equilibrium, since

mf (1, x1)) = -(CIz(l 2; p) +2(q2(2,2; p)) — < 0 =7 (0,x")).

« Regardings”, in order to be an equmbrlum it would requird(1,x") > n?(0,x™), i.e.,
§q3(1,2,3; p) —52 0. However, the inequality does not hold since, &my € (0,1),
q5(1,2,3; p) < 1.

+ Regardings’, in order to be an equilibrium, it would requirg(1,x",) = n}(0,x",), i.e.,
%ql(z; p) — 3 > 0. However, the inequality does not hold since &@0,1), ¢, (2; p) < 1.

« Regardings”, in order to be an equilibrium, it would requir¢(1,x")) > n}(0,x"), i.e.,
lq1(2- p)—= > 0. However, the inequality does not hold since &@0,1), g, (2; p) < 1.

e Forallpe (o, 1) s is not an equilibrium, since! (1, x"1'") = —1/6 < 0 = } (0, x"!™).

We now prove that candidats'sis an equilibrium for alp € (0,1), and that candida®" is
an equilibrium for alp > 1/2.

« Candidates = (0,0,0). For allpe (0,1), and k € {1,2,3}, n¥(0,x_;) =0>—1/2 =
7ik1,x—i Hences is an equilibrium.
« Candidates™ = (0,1,1). First, we observe that, for alle (0,1), m}(0,x") =0 >
-1/6 = }(1, xV”) Hence, in order to be an equilibrium, it requitesth 72 (1, x’!") >
(0, xVI") andn? (1, xY1) = n?(0,x¥), i.e.,

2(0:(1.2; p) + 42(13; p) +202(2,2; p) + 2q2(2,3; p)) —5 = 0 and
§(q3(1,1,2; p) + 2q95(1,2,3; p)) —§ > 0.

The first inequality simplifies t@ > 1/2 and the second one simplifies gg> 1/5. Since
both conditions are necessary, the result follows.

We now check for equilibria where players use misgtegies. First note that, in any
equilibrium profile, players with degree 1 necedgachoose the pure strategy 1, since

i (1,x ;) < %—% <0=rm;(0,x_;). Hence, assumingm,e€ (0,1) and mj; € (0,1), the
equilibrium candidates as® = (0,m,, 0),s" = (0,m,, 1),s"" = (0,0, m;),s"" = (0,1, m;) and
SXIV = (01m21 m3)'

We first prove that candidatss, s ands™" cannot be equilibria:
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equilibrium ifp >

Since, ins" = (0,1,0), for allp € (0,1), (1, x'1) < 0 = 7?(0,x"}), s* can neither be an
equilibrium.

For allp € (0,1), s is not an equilibrium, since? (1, x*!") < - —% < 0=m}(0,x_;) and,

therefore, players with degree 2 cannot optimality. m
Regarding s, in order to be an equilibrium, it would requirbat w3 (1, x*/") =

2 (0,xX1), ie., = (f3(1 1,2;p) + (1-m3) 3(1,2,3;p) + 2m; 3(1,2,3; p))——— 0, which
simplifies tom; = —. Sincems > 1, it is needed thgp > 1/5. Additionally, fors™ to be an
equilibrium, we would need that* (1, x*/"") > n?(0, xX”’) i.e., (f2(1 2;p) + 25(2,2;p) +
ms fa(1,3;p) + 20ms)? 2(3,3; p) +2ms(1-ms) £(3,3;p)) — = > 0. If we substituten; =,

we obtain that the inequality is satisfied if amdyoif p € (0,5 —2v6) U (54 2V6, ). Since
5 — 2v6 < 1/5, there is n@ € (0,1) such thas™" is an equilibrium.

We finally prove that candidate = (0, m,, 1), with m, =45(;—_6§), is an equilibrium if
€ (;,132210 ) and thats"V = (0, m,, ms), with m —%j)lfz and m; = (35;,;91,;22 is an

V105+13
32

Candidates™ = (O m,, 1). In order to be an equilibrium, it requiresattr?(1, x*!) =
nf (0,xX]), ie., 2 (mz f2(1,2; p) + 2(m,)? 12(2,2; p) + 2my(1-m;) £2(2,2; p) + f2(1,3; p) +

—4(:7;). Since we requiren, € (0,1), it is needed

that pe(l 2) Additionally, for ' to be an equilibrium, we need thaf(1,x*")
(0, x*), i.e., = (m2f3(112 p) + (1-m;) 15(1,2,3;p) + 2m, f3(1,2,3; p))——>0 If we

2f2(3,3; ) —5 = 0, which simplifies tom, =

substitute m, = 5_6” we obtain that the inequality is satisfied if andlyoif p €

4(1-p)’
(13 —V105 13+V105 13—/105 134+/105
32 7 32 32

)u(l ©). Since <% and <E’ we get thats! is an

1 134105 )
32 !

Candidates"' = (0, m,, ms;). In order to be an equilibrium, it requires thaoth
(1, xX") = n2(0,xX]V) andr? (1, x*1) = n3(0,xXD), i.e.,

g (m2 f2(1,2;p) + 2(m;)? 12(2,2;p) + 2m,(1-my) 12(2,2;p) + msfa(1,3;p) +2(m3)? f(3,3;p) +

2my(1-m;) £2(3,3;p)) — 3 = 0 and

§ (m; 13(1,1,2;p) + (m3(1-my)+ my(1-m3)) f3(1,2,3;p) + 2mym, 13(1,2,3;p)) —l =

equilibrium ifp € (

Solving for the system of equations, we get that= % andm (3;“’91”)2 Finally,
13++/105

we get thain, € (0,1) andm, € (0,1) if and only ifp > . QED
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Appendix D: Experimental instructions

[) Complete Information - Substitutes

The aim of this Experiment is to study how indivatkimake decisions in certain contexts. '
instructions are simple. If you follow them carefullgu will earn a no-negligible amount of
money in cash (Euros) at the end of the experini2unting the experiment, your earnings will

accounted in ECU (Experimental Currency Units).itithal paymers will remain private, a
nobody will know the other participants’ paymengy communication among you is stric
forbidden and will result in an immediate exclusfaam the Experimer

1.- The experiment consists of 40 rounds. In each rowd will be randomly assigned to
group of 5 participants. This group is determinaddomly at the beginning of the roul
Therefore, the group you are assigned to changesct round. In this room, there are
participants (including yourself) that are potal members of your group. That is, at ev
round your group of 5 participants is selected agnitrese 10 participants, each of them b
equally likely to be in your group. You will not &w the identities of any of these patrticipal

2.- At each roundthe computer selects randomlynetwork for your group: the orange
network, thegreen networkor thepurple network:

CYRN() ® G oG

90 ®) © &) —®
o © ©

orange network green network purple network

Once a network is selected, you (and the other reesrdf your group) are randomly assigne
aposition: A, B, C, D or E, all of them being equally likely. The assignmpracess icrandom:
At each round, you are equally likely to be locateéach of the 5 positions. At each round,
will be informed of the selected network (colordaof your position (letter

In a network, a links represented by a line (connection) betweeo positions. For example,
theorange network position B has_three linksit is linked topositions A, C andD (but it is not
linked toposition E). Summarizing

- In theorange networkthere are two positions witl link (positions AandE), one position
with 2 links (position C), and two positions wit3 links (positions BandD).

- In thegreen networkthere are two positions will link (positions AandE), three positions
with 2 links (positions B C andD), and no position with 3 links

- In the purple network there are three positions wil link (positions A, C and E), one
position with_2 linkg(position D), and one position with 3 linKposition B).
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You can notice that both thgreen and thepurple network have one link ledbat theorange
one: In thegreen network positions B and D are not linked and in thepurple network
positions CandD are_not linked

Your earnings of the round can only be affectedybyr decisions and the decisions of those
participants located in positions that are linkegaurs, as specified below.

3.- At each round, knowing the selected network angt ymsition, you will be asked to make a
choice: to beACTIVE or INACTIVE (the other participants are asked to make the same
choice). Your payoff of the round will depend onuyachoice and on the choices of those
participants of your group located in positionkéd to yours: You earn 100 ECU if either you
or at least one of the participants located in tpwss linked to yours choose to be ACTIVE.
Being active has a cost of 50 ECU. Hence,

* If you choose to bACTIVE your round payoff i$0 ECU for sure 100 - 50]

» If you choose to bENACTIVE your round payoff can be:
» 100 ECU if at least one participant linked to you choaséé¢ ACTIVE, or
» 0 ECU if no participant linked to you choose to be ACEHV

4.- At the end of every round, you will get informati@bout current and past rounds. The
information consists of:

- The selected network.

- Your position in the network.

- Your choice (ACTIVE or INACTIVE).

- The number of participants linked to you thatsto be ACTIVE.

- Your (round) payoff.

5.- Payoffs. At the end of the experiment, you willdgzed the earnings that you achieved in 4
rounds, that will be randomly selected across theodinds of play (all rounds selected will the
same probability). These earnings are transformeash at the exchange rat@6fECU =1 €
In addition, just by showing up, you will also baigha fee ob €
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[I) Incomplete Information — Complements — p=0.8
[Note: The case p=0.2 is analogous (it just changes theéaVurn composition

The aim of this Experiment is to study how indivédkimake decisions in certain contexts. '
instructions are simple. If you follow them caréjuyou will earn a no-negligible amount of
money in cash (Euros) at the end of the experini2unting the experiment, your earnings will
accounted in ECU (Experimental Currency Units).itimbal payments will remain private,
nobody will know the other participants’ paymemsly comnunication among you is strict
forbidden and will result in an immediate exclusfaam the Experimer

1.- The experiment consists of 40 rounds. In each rownd will be randomly assigned to
group of 5 participants. This group is determinaddomly & the beginning of the roun
Therefore, the group you are assigned to changeadt round. In this room, there are
participants (including yourself) that are potehtisembers of your group. That is, at ev
round your group of 5 participants is ected among these 10 participants, each of thenyg
equally likely to be in your group. You will not &w the identities of any of these patrticipal

2.- At each round, the computer selects one color fovirtual urn. The virtual urn contains
balls:8 orange balls 1 green bal andl purple ball.

08080
o O @)

All the 10 balls of the virtual urn are equallydily to be selected by the computer. “color of
the selected ball determinesnetwork for your group: the orange network, the green
network or thepurple network. Oncethe network has been selected, the ball is returméiae
virtual urn. Thus, in each round the color seletpoocess is identical (there are always 8 or:
balls, 1 green ball and 1 purple ball, and onéheft is randomly picked by the computer).
three possible networks are:

®) (D) ® O & —®@
© © ©

orange network green network purple network

Once a network is selected, you (and the other reesrdf your group) are randomly assigne
aposition: A, B, C, D or E, all of them being equally likely. The assignmpracess is randon
At each round, you are equally likely to be locateéach of the 5 positions. At each round,
will neither be informed of the selected networ&l¢c) nor of your position (lettel
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In a network, a links represented by a line (connection) betweengesitions. For example, in
theorange network position B has_three linksit is linked topositions A  C andD (but it is not
linked toposition E). Summarizing:

- In theorange networkthere are two positions with 1 lirkositions AandE), one position
with 2 links (position C), and two positions with 3 linkgositions BandD).

- In thegreen networkthere are two positions with 1 linkositions AandE), three position
with 2 links (positions B C andD), and no position with 3 links

- In the purple network there are three positions with 1 lifgositions A C and E), one
position with_2 linkg(position D), and one position with 3 linkposition B).

You can notice that both thgreen and thepurple network have one link ledbat theorange
one: In thegreen network positions B and D are not linked and in thepurple network
positions CandD are_not linked

Your earnings of the round can only be affectedybyr decisions and the decisions of those
participants located in positions that are linkegaurs, as specified below.

3.- At each round, you will only be informed about howany linksyour assigned position has (1
link, 2 linksor 3 linkg in the selected network, but you will neither knawth certainty which is
the selected network nor your exact position.

For example, if at a particular round you are infed that your position has 3 linkhere are
different paths that could lead to this outcomendty be the case that the selected network is the
orange network and you have been assignedtsition B or D, or it may be the case that the
selected network is thaurple network and you have been assignegdosition B.

4.- At each round, knowing the selected network andg ymsition, you will be asked to make a
choice: to beACTIVE or INACTIVE (the other participants are asked to make the same
choice). Your payoff of the round will depend onuyachoice and on the choices of those
participants of your group located in positionkéd to yours. If you choose to be INACTIVE,
your round payoff is 50 ECU. If you choose to beTAZE, your round payoff is calculated as
follows: First, add 100 ECU per patrticipant linkiedyou that also chooses to be ACTIVE; then,
divide the result by 3. Hence,

* If you choose to bACTIVE your round payoff can be:
» 100,00 ECU if 3 participants linked to you choose to be ACEIM}, or

» 66,66 ECU if 2 participants linked to you choose to be ACHI 00;100], or

» 33,33 ECU if 1 participants linked to you choose to be ACEIW], or

» 0,00 ECU if no participant linked to you choose to be ACEV
» If you choose to blNACTIVE your round payoff i$0,00 ECU for sure.
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5.- At the end of every round, you will get informati@bout current and past rounds. The
information consists of:

- The selected network.

- Your position in the network.

- Your choice (ACTIVE or INACTIVE).

- The number of participants linked to you thatsto be ACTIVE.

- Your (round) payoff.

6.- Payoffs. At the end of the experiment, you willdgsed the earnings that you achieved in 4
rounds, that will be randomly selected across theodinds of play (all rounds selected with the
same probability). These earnings are transform@ash at the exchange rat6fECU = 1 €

In addition, just by showing up, you will also baigha fee ob €
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