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HYBRID SIMULATION THEORY FOR A CRANE STRUCTURE

Paul L. Drazin1, Sanjay Govindjee2

Abstract

Hybrid simulation is a simulation technique which allows one to study the time evolution of a system by physically
testing a subset of it while the remainder is represented by a numerical model that is attached to the physical portion
by sensors and actuators. This technique allows one to study a large or complicated mechanical system while only
requiring a subset of the complete system to actually be present in a laboratory. The errors that arise from the use of
sensors and actuators, however, requires careful attention, if a valid simulation is to be guaranteed. Prior efforts to
understand the theoretical behavior of hybrid simulation have involved linear systems with constant errors or simple
one degree of freedom systems. Missing is a theoretical investigation of the behavior of hybrid simulation for larger
multi-degree of freedom nonlinear systems.

In this paper, a model for hybrid simulation is applied to a crane structure. This system offers complex nonlinear
characteristics, and multiple degrees of freedom comparable to what would be found in a standard hybrid simulation
experiment. The setup of the hybrid system involves splitting the mechanical system into two or more substructures
and using a model for an actuator and controller at the interface of the two substructures to maintain the dynamical
response. The error analysis of the hybrid system is through the use of L2 norms on different aspects of the mechanical
systems to provide a general overview on the multiple effects that can occur because of hybrid split.

It is found that the location of the hybrid split has a major impact on the results of a hybrid experiment. Also,
based on the error metrics used in this paper, the location of the hybrid split affects the error in the hybrid system more
than the quantity of hybrid splits. Finally, the resonant frequencies of the unforced system have significant influence
on the error that a hybrid test experiences and should be avoided if possible.

Keywords:
Hybrid simulation, Hybrid testing, Error analysis, Nonlinear dynamics, Frequency analysis

1. Introduction

Hybrid simulation (or hybrid-testing) is a simulation technique that has been around for nearly 30 years [1, 2]
and has become quite popular among Civil Engineering laboratories, primarily for seismic testing [2, 3]. There has
also been some limited application of hybrid simulation to other mechanical systems not directly related to Civil
Engineering or seismic testing; see e.g. [4]. Hybrid simulation is still an active area of research, and is used quite
extensively to determine the dynamic behavior of large or complicated structures [5, 6, 7, 8, 9]. The driving force
behind hybrid simulation is the difficulty in experimentally testing large dynamical systems, especially those subject
to earthquakes. The largest testing facility in world is the E-Defense facility [10] which can test structures with a
20m × 15m plan and 12MN weight. Even though this facility has a large capacity, it is limited to which systems can
be tested, is expensive, has limited throughput, and does not easily allow for modifications. Due to the limitations of
full-size experiments, hybrid simulation offers a cost effective alternative that can be used to give experimental results
for aspects of a system that do not have working or validated computational models for all components.

The basic structure of hybrid simulation and its many variants [11] is to leverage the use of computational models
to reduce the size of the physical system that needs to be present in a laboratory. In this way, aspects of the system
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that have validated computational models can be simulated, where as other aspects that have complicated or unknown
models are tested physically, while maintaining the dynamic fidelity of the entire system. The setup for the hybrid
system assumes that the system of interest is separated at specific locations, and then actuators are used to drive the
physical part in the laboratory, meanwhile, position and force feedback data from sensors are used as an input to the
computational model. A simple schematic of this process is shown in Fig. 1.

Physical
Subsystem

Computational
Model

Actuator
and Controller

Reference
Position

Output
Position

Force Feedback

Figure 1: A simple diagram of a hybrid system setup.

Notwithstanding the fact that variants of hybrid simulation have been used in experimental mechanics for over 30
years, there has been a considerable lack of theoretical understanding of the true dynamics behind this experimental
method. Most analyses of hybrid simulation are concerned with the errors related to time integrators and control
systems, with the idea that improving those aspects of a hybrid simulation experiment, alone, will provide a more
accurate representation of the physical reality [12, 13, 14]. However, there are bound to be errors in the dynamics of
a hybrid system when compared to an equivalent reference system due to the introduction of sensors and actuators
into the system, and there is limited knowledge concerning those errors. Some theoretical work has been conducted
on Euler-Bernoulli beams, Kirchhoff-Love plates, and simple pendulums; see [15, 16, 17]. In these works, simple
linear systems or single degree of freedom nonlinear systems were used to understand the errors that might occur
during a hybrid simulation experiment. While [15, 16, 17] provide a good start in the process of understanding hybrid
simulation errors, this paper aims to expand upon that understand by applying hybrid simulation to a more complicated
nonlinear multi-degree of freedom system. Also, the three previous papers focused only on a hybrid split at a single
location, where as this paper will look at the effects of how the location of the hybrid split affects errors, as well as
multiple hybrid splits.

This paper focuses solely on the theoretical performance of hybrid simulation as an experimental method, ignoring
all of the numerical and random errors, as this leads to a best case scenario for a hybrid experiment; see e.g. [3, 18].
This approach eliminates the errors associated with time integration methods and signal noise and focuses only on
the errors that are generated by systematic interface mismatch errors – an element that is always present in hybrid
simulations. In this paper, the actuator is modeled as a simple spring-mass-damper system and controlled by a PI
controller. This setup for the hybrid system is similar to one used previously [17].

As a model problem, we focus upon a station boom crane. This system has direct applications to a potential
hybrid simulation experiment, in that understanding the motion of a crane structure during an earthquake can be
invaluable. However, experimentally testing a full crane structure is impractical. We aim to provide a framework for
understanding how hybrid simulation affects the dynamical response of a given structure, even when that structure is
quite complicated with many degrees of freedom.

2. General Theory of Hybrid Simulation

In this section we will set up a general frame work for thinking about hybrid simulation.

2
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2.1. The Reference System
First, we need to set up the reference system to which the hybrid system will be compared. A mechanical system

with domainD is considered, as shown in Fig. 2a. The mechanical response of the system is characterized by a state

u(x, t)

D

∂D

(a)

up(x, t)

P
uc(x, t)

C

I
(b)

Figure 2: (a) A general system with domain D and state vector u(x, t). (b) A general system with imposed separation into two substructures for
comparison to the hybrid system. P ∪ I ∪ C = D and ∂P ∩ ∂C = I.

vector,
u(x, t) for x ∈ D. (1)

In order to compare the reference system response to the hybrid system response, we can imagine that the reference
system is split into two substructures: a “physical” substructure (P-side) and a “computational” substructure (C-side)
as shown in Fig. 2b, where P ∪ I ∪ C = D and ∂P ∩ ∂C = I. The state vector can now be separated into two parts:

u(x, t) =

up(x, t) if x ∈ P
uc(x, t) if x ∈ C. (2)

This defines the true response for a given mechanical system. The precise expression for u(x, t) is found by deter-
mining the function that satisfies the governing equations of motion on D and the imposed boundary conditions on
∂D.

2.2. The Hybrid System
The response of the hybrid system should be defined in a similar fashion to make the comparison between the

two systems straight forward. Using the same boundary defined in Fig. 2b, the hybrid system is separated into two
substructures. In order to differentiate the reference system from the hybrid system a superposed hat ( ˆ ) is used to
indicate a quantity in the hybrid system. The mechanical response of the hybrid system is represented by the following
state vector:

û(x, t) =

ûp(x, t) if x ∈ P
ûc(x, t) if x ∈ C. (3)

In a hybrid system ûp and ûc are determined from the “solution” of the governing equations of motion for P and C
subjected to the boundary conditions on ∂P and ∂C. The boundary conditions on ∂D∩∂P and ∂D∩∂C naturally match
those of the reference system. However, in the hybrid system one must additionally deal with boundary conditions on
the two interface sides Ip and Ic, where Ip = I ∩ ∂P and Ic = I ∩ ∂C. The boundary conditions on Ip and Ic are
provided by the sensor and actuator system.

The hybrid split leads to more unknowns than equations. To resolve this issue, we need a model of the actuator
and sensor system. A relatively general form for such a model can be expressed as [15, 17]:

Dc[ûc]
∣∣∣∣Ic

= Dp[ûp]
∣∣∣∣Ip
, (4)

where Dc[•] and Dp[•] are operators that generate the necessary equations at the interface from the state vectors û•.
Later in this paper, a simple spring-mass damper system with a PI controller will be used to model the interface,

3
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ûp(x, t)

P
ûc(x, t)

C

∂D∩ ∂P
∂D∩ ∂C

Ic = I ∩ ∂C

Ip = I ∩ ∂P

Figure 3: The hybrid system separated into the physical, P, and computational, C, substructures.

and thus allows us to precisely specify the form of Dc[•] and Dp[•]. This model allows one to study the effects of
systematic hybrid system splitting errors, specifically boundary mismatch errors. Such errors directly correlate to
errors seen in experimental hybrid systems; see e.g. [3, 19].

In an actual hybrid simulation, one only has the physical part P, the sensor and actuator system, and the compu-
tational model for part C. In particular one does not have full physical domain D or the true physical response over
D, and this makes it challenging to know if the determined response û is correct to a sufficient degree. To circumvent
this issue we will work with an analytical model for the domain D (and thus we do know the true response over D);
further, we do the same for part P and part C as well as for the sensor and actuator system. This will allow us to
faithfully compute the error in the response quantity û of the hybrid system by comparing it to the response quantity
u of the reference system. The error investigated is then strictly the error in the hybrid system associated with the
splitting interface. No physical models are involved and the exercise can be fully carried out analytically.

3. Crane System Setup: Equations of Motion

This paper uses a crane structure, specifically a boom crane structure, to test hybrid simulation theoretically.
Multiple models already exist for these types of cranes [20, 21, 22], and we use those as the basis for the model used
in this paper.

3.1. The Reference System

First we need to setup the model for the crane that is used as a reference for which all subsequent hybrid systems
will be compared. The reference system (RS) is that of a station boom crane. For the model in this paper, the crane
consists of a supporting beam structure with eight degrees of freedom given by u1 to u8. Connected to the crane
structure is the crane cabin, which is a rigid body that can rotate about a pivot with a prescribed angel α and a flexing
angle δ from the supporting structure. A flexible boom is connected to the cabin, and can pivot with respect to the
cabin by some prescribed angle β and a flexing angle γ. Finally, a payload point mass is attached to the end of the
boom via an extensible cable defined by a set of spherical polar coordinates, φ and θ and radius R. A diagram of the
described crane structure can be seen in Fig. 4. The crane can be excited by ground motions in the 1-direction (ug1)
and 2-direction (ug2).

Next we need to set up the equations of motion for RS. To do this, we employ Lagrange’s prescription for the
equations of motion, given by Eq. (5) [23].

d
dt

(
∂T
∂q̇i

)
− ∂T
∂qi +

∂U
∂qi +

∂D
∂q̇i = 0, (5)

where [
qi] =

[
R φ θ γ u1 u2 u3 u4 u5 u6 u7 u8

]
. (6)

4
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Figure 4: A diagram of the Reference System (RS).

In this case, T is the kinetic energy, U is the potential energy, and D is the Rayleigh dissipation function(see [24]),
which are given by the following:

T =
1
2

mmvm · vm +
1
2

mbvb · vb +
1
2

mrvr · vr (7)

+
1
2
ωb · Jbωb +

1
2
ωr · Jrωr +

1
2

4∑
j=1

u̇t
j ·M ju̇t

j,

U =mmgxm · E3 + mbgxb · E3 + mrgxr · E3 (8)

+
1
2

km(R − R0)2 +
1
2

kbγ
2 +

1
2

4∑
j=1

u j ·K ju j,

D =
1
2

cmṘ2 +
1
2

cbγ̇
2 +

1
2

4∑
j=1

u̇ j · C ju̇ j, (9)

where mm, cm, and km are the mass, viscous damping constant, and stiffness of the payload and it’s cable attachment,
mb, cb, kb, and Jb are the mass, viscous damping constant, stiffness, and rotational inertia matrix of the crane boom, mr

and Jr are the mass and rotational inertia matrix of the crane cabin, and M j, C j, and K j are the jth mass, damping, and
stiffness matrices for the crane supporting structure and are derived following the methods outlined by Chopra [25].
And u j are the displacements for the supporting structure. The index j goes from 1 to 4, one for each side of the
supporting structure.

5

UCB/SEMM-2017/01



First, we define position vectors used to describe the motion of RS:

xg = ug1E1 + ug2E2, (10)

which is the ground motion.

xs = 0.5(u1 + u5)E1 + 0.5(u3 + u7)E2 + `qE3 + xg = xsE1 + ysE2 + `qE3, (11)

which is the position of the base of the crane cabin.

xr = `rE3 + xs, (12)

which is the center of mass of the crane cabin.

xa = `axr1 + `azE3 + xr, (13)

which is the position of the connection point of the boom.

xb = `bb1 + xa, (14)

which is the center of mass of the boom.
xt = `tb1 + xb, (15)

which is the position of the end of the boom.
xm = ReR + xt, (16)

which is the position of the payload.
u j = [u2 j−1 u2 j]T , (17)

which are the displacements of the supporting structure. Also, we have

xs =0.5(u1 + u5) + ug1, ys = 0.5(u3 + u7) + ug2, (18)

δ = 0.25
(u1 − u5

lx
+

u3 − u7

ly

)
.

Also, we define the following vectors and rotation tensors:

ri = R1Ei, (19)

where ri is the co-rotational basis of the crane cabin.

bi = R2ri, (20)

where bi is the co-rotational basis of the boom.

R1 =

cos(α + δ) − sin(α + δ) 0
sin(α + δ) cos(α + δ) 0

0 0 1


Ei⊗E j

(21)

is the rotation tensor from the Cartesian basis to the ri basis.

R2 =

cos(β + γ) 0 − sin(β + γ)
0 1 0

sin(β + γ) 0 cos(β + γ)


ri⊗r j

(22)

is the rotation tensor from the ri basis to the bi basis.

eR = cos(θ) sin(φ)E1 + cos(φ)E2 − sin(θ) sin(φ)E3, (23)

6
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eφ = cos(θ) cos(φ)E1 − sin(φ)E2 − sin(θ) cos(φ)E3, (24)

and
eθ = − sin(θ)E1 − cos(θ)E3, (25)

define the spherical basis vectors used to define the position of the payload. Next we define the velocity vectors for
the system:

vg = u̇g1E1 + u̇g1E2, (26)

vs = 0.5(u̇1 + u̇5)E1 + 0.5(u̇3 + u̇7)E2 + vg = ẋsE1 + ẏsE2, (27)

vr = vs, (28)

va = `ax(α̇ + δ̇)r2 + vr, (29)

vb = `b(β̇ + γ̇)b3 + `b(α̇ + δ̇) cos(β + γ)r2 + va, (30)

vt = `t(β̇ + γ̇)b3 + `t(α̇ + δ̇) cos(β + γ)r2 + vb, (31)

vm = ṘeR + Rθ̇eφ + R sin(φ)θ̇eθ + vt, (32)

u̇t
j = [u̇2 j−1 u̇2 j]T −

[u̇g1 u̇g1]T if j is odd
[u̇g2 u̇g2]T if j is even,

(33)

where Eqs. (26)-(33) are the velocities of the corresponding positions defined in Eqs. (10)-(17). Also, the angular
velocities of the crane cabin and boom are

ωr = (α̇ + δ̇)E3, (34)

and
ωb = −(β̇ + γ̇)r2 + ωr, (35)

respectively.
The previous equations give all of the necessary information to expand Eq. (5) to give the 12 equations of motion

that can then be solved using a numerical integrator.

3.2. The First Hybrid System
Next, we set up the first hybrid system (HS1). In this case, the hybrid split is applied at the connection between

the supporting structure and cabin, as can be seen in Fig. 5. In this case, the supporting structure is considered the
computational side, or C-side, and everything else is considered the physical side, or P-side. By introducing this
hybrid split, we introduce three new degrees of freedom: xsp, ysp, and δp which are the E1 position, E2 position, and
rotation angle of the base of the crane cabin from the physical side.

Again, the equations of motion are determined by Lagrange’s prescription, given by

d
dt

(
∂T̂1

∂ ˙̂qi
1

)
− ∂T̂1

∂q̂i
1

+
∂Û1

∂q̂i
1

+
∂D̂1

∂ ˙̂qi
1

=F1p ·
∂vsp

∂ ˙̂qi
1

+ F1c · ∂vsc

∂ ˙̂qi
1

(36)

+ M1p ·
∂ωrp

∂ ˙̂qi
1

+ M1c · ∂ωrc

∂ ˙̂qi
1

,

where [
q̂i

1
]

=
[
R φ θ γ xsp ysp δp u1 u2 u3 u4 u5 u6 u7 u8

]
. (37)

Note, that a superposed hat (ˆ) is used to denote a quantity for a hybrid system. Again, T̂1 is the kinetic energy, Û1 is
the potential energy, and D̂1 is the Rayleigh dissipation function, defined as:

T̂1 =
1
2

mmvm · vm +
1
2

mbvb · vb +
1
2

mrvr · vr (38)

+
1
2
ωb · Jbωb +

1
2
ωr · Jrωr +

1
2

4∑
j=1

u̇t
j ·M ju̇t

j,
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E1

E3

β + γ

eR

eφ

r1p

r3p b1

b3

M1p

M1c

F1c

F1p

r1c

r3c

u1

u2

α + δp

Figure 5: A diagram of the First Hybrid System (HS1).

Û1 =mmgxm · E3 + mbgxb · E3 + mrgxr · E3 (39)

+
1
2

km(R − R0)2 +
1
2

kbγ
2 +

1
2

4∑
j=1

u j ·K ju j,

D̂1 =
1
2

cmṘ2 +
1
2

cbγ̇
2 +

1
2

4∑
j=1

u̇ j · C ju̇ j. (40)

Note that all of the physical quantities, such as masses, stiffness, lengths, etc. are the same as those for RS. For HS1
we have the additional terms of F1p, F1c, M1p, and M1c. In this case, F1p and M1p represent the force and moment read
by sensors on the physical substructure, and F1c and M1c are the force and moment used as inputs to the computational
model. We now define the position vectors for HS1:

xg = ug1E1 + ug2E2, (41)

xsc = 0.5(u1 + u5)E1 + 0.5(u3 + u7)E2 + `qE3 + xg = xscE1 + yscE2 + `qE3, (42)

xsp = xspE1 + yspE2 + `qE3, (43)

xr = `rE3 + xsp, (44)

xa = `axr1p + `azE3 + xr, (45)

xb = `bb1 + xa, (46)

xt = `tb1 + xb, (47)

8
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xm = ReR + xt, (48)

u j = [u2 j−1 u2 j]T , (49)

where Eqs. (41)-(49) have the same physical meaning as their corresponding Eqs. (10)-(17), except that xsc defines
the position of the base of the crane cabin from the computational side and xsp defines the position of the base of the
crane cabin from the physical side. Where the following quantities are defined as:

xsc =0.5(u1 + u5) + ug1, ysc = 0.5(u3 + u7) + ug2, (50)

δc = 0.25
(u1 − u5

lx
+

u3 − u7

ly

)
.

We also define the following vectors and rotation tensors:

rip = R1pEi, (51)

where rip is the co-rotational basis for the crane cabin, which is on the physical side.

bi = R2rip, (52)

where bi is the co-rotational basis for the boom.

R1p =

cos(α + δp) − sin(α + δp) 0
sin(α + δp) cos(α + δp) 0

0 0 1


Ei⊗E j

(53)

is the rotation tensor from the Cartesian basis to the rip basis.

R2 =

cos(β + γ) 0 − sin(β + γ)
0 1 0

sin(β + γ) 0 cos(β + γ)


rip⊗r jp

(54)

is the rotation tensor from the rip basis to the bi basis.

eR = cos(θ) sin(φ)E1 + cos(φ)E2 − sin(θ) sin(φ)E3, (55)

eφ = cos(θ) cos(φ)E1 − sin(φ)E2 − sin(θ) cos(φ)E3, (56)

and
eθ = − sin(θ)E1 − cos(θ)E3, (57)

define the spherical basis vectors to define the position of the payload. Next we define the velocity vectors for HS1:

vg = u̇g1E1 + u̇g2E2, (58)

vsc = 0.5(u̇1 + u̇5)E1 + 0.5(u̇3 + u̇7)E2 + vg = ẋscE1 + ẏscE2, (59)

vsp = ẋspE1 + ẏspE2, (60)

vr = vsp, (61)

va = `ax(α̇ + δ̇p)r2p + vr, (62)

vb = `b(β̇ + γ̇)b3 + `b(α̇ + δ̇p) cos(β + γ)r2p + va, (63)

vt = `t(β̇ + γ̇)b3 + `t(α̇ + δ̇p) cos(β + γ)r2p + vb, (64)

vm = ṘeR + Rθ̇eφ + R sin(φ)θ̇eθ + vt, (65)

9
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u̇t
j = [u̇2 j−1 u̇2 j]T −

[u̇g1 u̇g1]T if j is odd
[u̇g2 u̇g2]T if j is even,

(66)

where Eqs. (58)-(66) are the velocity vectors of the corresponding position vectors from Eqs. (41)-(49). We also
define the following angular velocity vectors:

ωrc = (α̇ + δ̇c)E3, (67)

which is the rotational velocity of the crane cabin from the computational side.

ωrp = (α̇ + δ̇p)E3, (68)

which is the rotational velocity of the crane cabin from the physical side.

ωb = −(β̇ + γ̇)r2p + ωrp, (69)

which is the rotational velocity of the boom.
In the ideal setting (i.e. no sensor error), we have

F1c · E1 = −F1p · E1, F1c · E2 = −F1p · E2, M1c · E3 = −M1p · E3. (70)

However, at this point, we do not have enough equations to fully determine the motion of HS1. In order to get the
remaining equations, we need a model for the error at the hybrid split. For this paper, the error is modeled as a
spring-mass-damper system controlled by a PI controller [26]. For the error model chosen, we follow the definition
of Drazin [15] for internal boundary conditions, or

Dc[ûc1]
∣∣∣∣Ic1

= Dp[ûp1]
∣∣∣∣Ip1

. (71)

In this case ûc1 and ûp1 are given by

ûc1 =
[
xsc ysc δc

]T
, ûp1 =

[
xsp ysp δp

]T
, (72)

where the operators Dc[ûc1] and Dp[ûp1] have the following definitions:

Dc[ûc1] =
(
kaki +

(
kakp + caki

) d
dt

+ cakp
d2

dt2

)
ûc1, (73)

and

Dp[ûp1] =
(
kaki +

(
ka(1 + kp) + caki

) d
dt

+
(
ca(1 + kp)

) d2

dt2 + ma
d3

dt3

)
ûp1, (74)

where the parameters ma, ca, and ka are the mass, damping constant, and stiffness of the spring-mass-damper system
used to model the actuator. The parameters kp and ki are the proportional and integral gains of the PI controller. Now
we have an equal number of unknowns as we have equations, which allows to solve the equations of motion for HS1
with the use of a numerical integrator.

3.3. The Second Hybrid System

The second hybrid system (HS2) has the hybrid split applied to the boom-cabin joint. A diagram of HS2 can
be seen in Fig. 6. In this case, the supporting structure and cabin are considered the physical substructure, P-side,
and everything else is considered the computational model, C-side. By introducing this hybrid split, we introduce
three new degrees of freedom: xac, yac, and δc, which are the E1 position, the E2 position, and rotation angle of the
connection point between the crane cabin and boom from the computational side. Lagrange’s equations for HS2 are

10
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Figure 6: A diagram of the Second Hybrid System (HS2).

given by

d
dt

(
∂T̂2

∂ ˙̂qi
2

)
− ∂T̂2

∂q̂i
2

+
∂Û2

∂q̂i
2

+
∂D̂2

∂ ˙̂qi
2

=F2p ·
∂vap

∂ ˙̂qi
2

+ F2c · ∂vac

∂ ˙̂qi
2

(75)

+ M2p ·
∂ωrp

∂ ˙̂qi
2

+ M2c · ∂ωrc

∂ ˙̂qi
2

,

where [
q̂i

2
]

=
[
R φ θ γ xac yac δc u1 u2 u3 u4 u5 u6 u7 u8

]
. (76)

The kinetic energy, T̂2, the potential energy, Û2, and the Rayleigh dissipation function, D̂2, are defined as follows:

T̂2 =
1
2

mmvm · vm +
1
2

mbvb · vb +
1
2

mrvr · vr (77)

+
1
2
ωb · Jbωb +

1
2
ωr · Jrωr +

1
2

4∑
j=1

u̇t
j ·M ju̇t

j,

Û2 =mmgxm · E3 + mbgxb · E3 + mrgxr · E3 (78)

+
1
2

km(R − R0)2 +
1
2

kbγ
2 +

1
2

4∑
j=1

u j ·K ju j,

D̂2 =
1
2

cmṘ2 +
1
2

cbγ̇
2 +

1
2

4∑
j=1

u̇ j · C ju̇ j. (79)
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For HS2, we introduce F2p, F2c, M2p, and M2c. In this case, F2p and M2p represent the force and moment read by
sensors on the physical substructure, and F2c and M2c are the force and moment used as inputs to the computational
model. We now define the position vectors:

xg = ug1E1 + ug2E2, (80)

xs = 0.5(u1 + u5)E1 + 0.5(u3 + u7)E2 + `qE3 + xg = xspE1 + yspE2 + `qE3, (81)

xr = `rE3 + xs, (82)

xap = `axr1p + `azE3 + xr = xapE1 + yapE2 + (`q + `c + `az)E3, (83)

xac = xacE1 + yacE2 + (`q + `c + `az)E3, (84)

xb = `bb1 + xac, (85)

xt = `tb1 + xb, (86)

xm = ReR + xt, (87)

u j = [u2 j−1 u2 j]T , (88)

where Eqs. (80)-(88) have the same physical meaning as the corresponding Eqs. (10)-(17), except that xac is the
position of the connection point between the crane cabin and the boom from the computational side and xap is the
position of the connection point between the crane cabin and the boom from the physical side. Where the followings
quantities are defined as:

xsp =0.5(u1 + u5) + ug1, ysp = 0.5(u3 + u7) + ug2, (89)

δp = 0.25
(u1 − u5

lx
+

u3 − u7

ly

)
,

and
xap = xsp + lax cos(α + δp), yap = ysp + lax sin(α + δp). (90)

We also need the following vectors and rotation tensors:

rip = R1pEi, (91)

where rip is the co-rotational basis of the crane cabin from the physical side.

ric = R1cEi, (92)

where ric is the co-rotational basis of the crane cabin from the computational side.

bi = R2ric, (93)

where bi is the co-rotational basis of the boom.

R1p =

cos(α + δp) − sin(α + δp) 0
sin(α + δp) cos(α + δp) 0

0 0 1


Ei⊗E j

(94)

is the rotation tensor from the Cartesian basis to the rip basis.

R1c =

cos(α + δc) − sin(α + δc) 0
sin(α + δc) cos(α + δc) 0

0 0 1


Ei⊗E j

(95)
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is the rotation tensor from the Cartesian basis to the ric basis.

R2 =

cos(β + γ) 0 − sin(β + γ)
0 1 0

sin(β + γ) 0 cos(β + γ)


ric⊗r jc

(96)

is the rotation tensor from the ric basis to the bi basis.

eR = cos(θ) sin(φ)E1 + cos(φ)E2 − sin(θ) sin(φ)E3, (97)

eφ = cos(θ) cos(φ)E1 − sin(φ)E2 − sin(θ) cos(φ)E3, (98)

and
eθ = − sin(θ)E1 − cos(θ)E3, (99)

define the spherical basis vectors to define the position of the payload. And the required velocity vectors:

vg = u̇g1E1 + u̇g2E2, (100)

vsp = 0.5(u̇1 + u̇5)E1 + 0.5(u̇3 + u̇7)E2 + vg = ẋspE1 + ẏspE2, (101)

vr = vsp, (102)

vap = `ax(α̇ + δ̇p)r2p + vr, (103)

vac = ẋacE1 + ẏacE2, (104)

vb = `b(β̇ + γ̇)b3 + `b(α̇ + δ̇c) cos(β + γ)r2c + vac, (105)

vt = `t(β̇ + γ̇)b3 + `t(α̇ + δ̇c) cos(β + γ)r2c + vb, (106)

vm = ṘeR + Rθ̇eφ + R sin(φ)θ̇eθ + vt, (107)

u̇t
j = [u̇2 j−1 u̇2 j]T −

[u̇g1 u̇g1]T if j is odd
[u̇g2 u̇g2]T if j is even,

(108)

where Eqs. (100)-(108) are the velocities of the corresponding positions from Eqs. (80)-(88). Also, we have the
following angular velocity vectors:

ωrc = (α̇ + δ̇c)E3, (109)

which is the angular velocity of the crane cabin from the computational side.

ωrp = (α̇ + δ̇p)E3, (110)

which is the angular velocity of the crane cabin from the physical side.

ωb = −(β̇ + γ̇)r2c + ωrc, (111)

which is the angular velocity of the boom.
In the ideal setting, we have

F2c · E1 = −F2p · E1, F2c · E2 = −F2p · E2, M2c · E3 = −M2p · E3. (112)

Again, at this point, there are not enough equations to match the number of unknowns. To get the remaining equations,
we use the model for the error at the split. Similar to HS1, the error is modeled as a spring-mass-damper system
controlled by a PI controller:

Dc[ûc2]
∣∣∣∣Ic2

= Dp[ûp2]
∣∣∣∣Ip2

. (113)
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In this case ûc2 and ûp2 are given by

ûc2 =
[
xac yac δc

]T
, ûp2 =

[
xap yap δp

]T
, (114)

where the operators Dc[ûc2] and Dp[ûp2] have the following definitions:

Dc[ûc2] =
(
kaki +

(
kakp + caki

) d
dt

+ cakp
d2

dt2

)
ûc2, (115)

and

Dp[ûp2] =
(
kaki +

(
ka(1 + kp) + caki

) d
dt

+
(
ca(1 + kp)

) d2

dt2 + ma
d3

dt3

)
ûp2, (116)

where the parameters are the same as those for HS1. We now have the required number of equations to solve for the
motion of HS2.

3.4. The Third Hybrid System

For the third hybrid system (HS3), we have two hybrid splits. The first split is at the connection between the
supporting structure and the cabin. The second split is at the connection between the cabin and the boom. In this case
the cabin is considered the physical substructure, P-side, and everything else is considered the computational model,
C-side. Introducing these hybrid splits introduces six new degrees of freedom: xsp, ysp, δp, xac, yac, and δc2. Where
xsp, ysp, and δpare the E1 position, E2 position, and rotation angle of the base of the crane cabin from the physical
side and xac, yac, and δc2 are the E1 position, the E2 position, and rotation angle of the connection point between the
crane cabin and boom from the computational side. A figure of HS3 is shown in Fig. 7.

E1

E3

β + γ

eR

eφ

r1p

r3p b1

b3M2p

M2c

F2c

F2pM1p

M1c

F1c

F1p

r1c

r3c

u1

u2

α + δp

Figure 7: A diagram of the Third Hybrid System (HS3).
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Lagrange’s equation are given by the following:

d
dt

(
∂T̂3

∂ ˙̂qi
3

)
− ∂T̂3

∂q̂i
3

+
∂Û3

∂q̂i
3

+
∂D̂3

∂ ˙̂qi
3

=F1p ·
∂vsp

∂ ˙̂qi
3

+ F1c · ∂vsc

∂ ˙̂qi
3

+ M1p ·
∂ωrp

∂ ˙̂qi
3

(117)

+ M1c · ∂ωrc

∂ ˙̂qi
3

+ F2p ·
∂vap

∂ ˙̂qi
3

+ F2c · ∂vac

∂ ˙̂qi
3

+ M2p ·
∂ωrp

∂ ˙̂qi
3

+ M2c · ∂ωrc

∂ ˙̂qi
3

,

where [
q̂i

3
]

=
[
R φ θ γ xsp ysp δp xac yac δc2 u1 u2 u3 u4 u5 u6 u7 u8

]
. (118)

Similarly, the kinetic energy, T̂3, the potential energy, Û3, and the Rayleigh dissipation function, D̂3, are given by

Û3 =mmgxm · E3 + mbgxb · E3 + mrgxr · E3 (119)

+
1
2

km(R − R0)2 +
1
2

kbγ
2 +

1
2

4∑
j=1

u j ·K ju j,

T̂3 =
1
2

mmvm · vm +
1
2

mbvb · vb +
1
2

mrvr · vr (120)

+
1
2
ωb · Jbωb +

1
2
ωr · Jrωr +

1
2

4∑
j=1

u̇t
j ·M ju̇t

j,

D̂3 =
1
2

cmṘ2 +
1
2

cbγ̇
2 +

1
2

4∑
j=1

u̇ j · C ju̇ j. (121)

In this case, we have F1p, F1c, M1p, M1c, F2p, F2c, M2p, and M2c, which all follow the same definitions as those from
HS1 and HS2. The position vectors are defined as:

xg = ug1E1 + ug2E2, (122)

xsc = 0.5(u1 + u5)E1 + 0.5(u3 + u7)E2 + `qE3 + xg = xscE1 + yscE2 + `qE3, (123)

xsp = xspE1 + yspE2 + `qE3, (124)

xr = `rE3 + xsp, (125)

xap = `axr1p + `azE3 + xr, (126)

xac = xacE1 + yacE2 + (`q + `c + `az)E3, (127)

xb = `bb1 + xac, (128)

xt = `tb1 + xb, (129)

xm = ReR + xt, (130)

u j = [u2 j−1 u2 j]T , (131)

where Eqs. (122)-(131) all have the same physical meaning as their corresponding Eqs. (10)-(17), except that xsc

defines the position of the base of the crane cabin from the computational side and xsp defines the position of the base
of the crane cabin from the physical side and xac is the position of the connection point between the crane cabin and
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the boom from the computational side and xap is the position of the connection point between the crane cabin and the
boom from the physical side. Also, the following quantities are defined as:

xsc =0.5(u1 + u5) + ug1, ysc = 0.5(u3 + u7) + ug2, (132)

δc = 0.25
(u1 − u5

lx
+

u3 − u7

ly

)
.

The required vectors and rotation tensors are given by:

rip = R1pEi, (133)

where rip is the co-rotational basis of the crane cabin from the physical side.

ric = R1cEi, (134)

where ric is the co-rotational basis of the crane cabin from the computational side.

bi = R2ric, (135)

where bi is the co-rotational basis of the boom.

R1p =

cos(α + δp) − sin(α + δp) 0
sin(α + δp) cos(α + δp) 0

0 0 1


Ei⊗E j

(136)

is the rotation tensor from the Cartesian basis to the rip basis.

R1c =

cos(α + δc2) − sin(α + δc2) 0
sin(α + δc2) cos(α + δc2) 0

0 0 1


Ei⊗E j

(137)

is the rotation tensor from the Cartesian basis to the ric basis.

R2 =

cos(β + γ) 0 − sin(β + γ)
0 1 0

sin(β + γ) 0 cos(β + γ)


ric⊗r jc

(138)

is the rotation tensor from the ric basis to the bi basis.

eR = cos(θ) sin(φ)E1 + cos(φ)E2 − sin(θ) sin(φ)E3, (139)

eφ = cos(θ) cos(φ)E1 − sin(φ)E2 − sin(θ) cos(φ)E3, (140)

and
eθ = − sin(θ)E1 − cos(θ)E3, (141)

define the spherical basis vectors to define the position of the payload. Finally, the velocity vectors are as follows:

vg = u̇g1E1 + u̇g2E2, (142)

vsc = 0.5(u̇1 + u̇5)E1 + 0.5(u̇3 + u̇7)E2 + vg = ẋscE1 + ẏscE2, (143)

vsp = ẋspE1 + ẏspE2, (144)

vr = vsp, (145)

vap = `ax(α̇ + δ̇p)r2p + vr, (146)

vac = ẋacE1 + ẏacE2, (147)
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vb = `b(β̇ + γ̇)b3 + `b(α̇ + δ̇c2) cos(β + γ)r2c + vac, (148)

vt = `t(β̇ + γ̇)b3 + `t(α̇ + δ̇c2) cos(β + γ)r2c + vb, (149)

vm = ṘeR + Rθ̇eφ + R sin(φ)θ̇eθ + vt, (150)

u̇t
j = [u̇2 j−1 u̇2 j]T −

[u̇g1 u̇g1]T if j is odd
[u̇g2 u̇g2]T if j is even,

(151)

where Eqs. (142)-(151) are the velocities of the corresponding positions from Eqs. (122)-(131). Also, we have the
following angular velocity vectors:

ωrc = (α̇ + δ̇c2)E3, (152)

which is the angular velocity of the crane cabin from the computational side.

ωrp = (α̇ + δ̇p)E3, (153)

which is the angular velocity of the crane cabin from the physical side.

ωb = −(β̇ + γ̇)r2c + ωrc, (154)

which is the angular velocity of the boom.
In the ideal setting, we have

F1c · E1 = −F1p · E1, F1c · E2 = −F1p · E2, M1c · E3 = −M1p · E3. (155)

and
F2c · E1 = −F2p · E1, F2c · E2 = −F2p · E2, M2c · E3 = −M2p · E3. (156)

As was the case for HS1 and HS2, we still need more equations to properly solve for the motion of HS3. To do this we
use the same error model described before: a spring-mass-damper system controlled by a PI controller. The equations
for which are given by

Dc[ûc3]
∣∣∣∣Ic3

= Dp[ûp3]
∣∣∣∣Ip3

. (157)

In this case ûc3 and ûp3 are given by

ûc3 =
[
xsc ysc δc xac yac δc2

]T
, ûp3 =

[
xsp ysp δp xap yap δp2

]T
, (158)

where the operators Dc[ûc3] and Dp[ûp3] have the following definitions:

Dc[ûc3] =
(
kaki +

(
kakp + caki

) d
dt

+ cakp
d2

dt2

)
ûc3, (159)

and

Dp[ûp3] =
(
kaki +

(
ka(1 + kp) + caki

) d
dt

+
(
ca(1 + kp)

) d2

dt2 + ma
d3

dt3

)
ûp3, (160)

where the parameters are the same as those mentioned for HS1. The system is subject to the following constraints

xap = xsp + lax cos(α + δp), yap = ysp + lax sin(α + δp), δp = δp2, (161)

in order to maintain rigid body motion for the cabin. All of the previous equations give the necessary equations to
solve for the motion of HS3.
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4. Analysis

For the analysis of the crane structure, all of the physical dimensions defined in the previous section need to be
defined, along with a set of initial conditions for time integration. See Appendix A for all of the physical data, initial
conditions, and other constants. Note that all values represent non-dimensionlized values. The majority of the analysis
consists of evaluating how a harmonic displacement applied at the base of the structure affects the hybrid responses
of the three different hybrid systems. To accomplish this we define ug2 as

ug2 = A cos(Ωt), (162)

where A is the amplitude of the displacement and Ω is the angular frequency of the displacement. We set A = 0.1 and
vary Ω from 0.1 to 10 with a step size of 0.05. Throughout the analysis, the L2 norm [27] is used to evaluate the error.
There are three different types of L2 errors that are used in this paper:

1. Whole System Error: when both reference system and hybrid system have equivalent quantities to compare.

EWS
• (t) =

√∫ t
0 ‖a• − â•‖2√∫ t

0 ‖a•‖2
, (163)

where a• and â• are the state vectors for the reference and hybrid systems respectively for some physical
quantities represented by •. And ‖ • ‖ is the standard 2-norm of a vector.

2. Hybrid Interface Error: when the hybrid system has equivalent quantities on the C-side and P-side that both
need to be compared to the reference system.

EHI
• (t) =

√∫ t
0 ‖a• − âc•‖2 + ‖a• − âp•‖2√∫ t

0 ‖a•‖2
, (164)

where a•, âc•, and âp• are state vectors of the reference, computational side, and physical side, respectively, for
some quantity represented by •.

3. Hybrid System Error: the error between equivalent quantities on the C-side and P-side, which is the error at the
hybrid interfaces.

EHS
• (t) =

√∫ t
0 ‖âc• − âp•‖2√∫ t

0 ‖âc•‖2
, (165)

where âc•, and âp• are state vectors of the computational side and physical side, respectively, for some quantity
represented by •. Note, this type of error is not dependent upon the reference system.

Note, that in all three cases, the error is normalized, in the first two cases, to the reference system, and for the third
case, to the C-side. Whole system errors are computed for the states of the system (as, âs) and the total energy of the
system (aE , âE). Hybrid interface errors and hybrid system errors are computed for δ (aδ, âcδ, âpδ), xs (ax, âcx, âpx),
and ys (ay, âcy, âpy). See Appendix B for definitions of all of the previously mentioned vectors. In order to let all of
the L2 errors approach a steady-state value, the L2 errors for the following figures are all computed out to a value of
t = 1000.

Figures 8-15 show all of the L2 errors for the different properties mentioned earlier. From examining these figures,
we see fairly smooth curves for the all of the L2 errors except around Ω = 1.75 and Ω = 5.4. First, the analysis ignores
the areas around Ω = 1.75 and Ω = 5.4, and analysis of the cause and impact of those two regions comes afterward.

4.1. Comparing the Reference System to the Hybrid Systems

While excluding the regions around Ω = 1.75 and Ω = 5.4, we notice that the errors tend to be the smallest
towards Ω = 0, and get larger as Ω = 10. This makes sense because, as the frequency is increased, it is harder for
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Figure 8: The Whole System Error of the total energy for all three hybrid systems as a function of Ω.

the controller to maintain dynamic matching between both the C-side and P-side, which leads to larger errors. This
effect is clearly shown in Figs. 13 and 14, which shows that the error between equivalent quantities on the C-side and
P-side are approximately growing with Ω. We note that in some cases the L2 error goes above 1, which is over 100%
error, for example HS2 in Fig. 9, which indicates poor matching between the reference and hybrid systems. However,
by examining Fig. 8, we see that – even for higher frequencies – the error for HS2 never goes above 0.04, or 4%.
This is interesting in that the states are not matching very well between the two systems, however, the total energy of
the two systems is matching fairly well. This result is similar to one found by Drazin and Govindjee [17], indicating
that different aspects of hybrid simulation can be accurate, while others can be inaccurate. This leads to a question of
what is desired from hybrid simulation, and what can one reasonable expect from a hybrid simulation response. From
comparing Figs. 8 and 9, we can see that the errors for all three systems are typically much smaller for EWS

E than for
EWS

s . Since the EWS
s represents how well the entire motion of the hybrid system matches that of the reference system,

it is clear that the total energy of the system matches better than the actual motion of the system. Thus, even though it
may seem like the hybrid simulation is not representative of the true dynamics – especially for the case of HS2 when
EWS

s goes above 1 – it can still provide accurate results for other physical properties of the system, in this case the total
energy. This reinforces the conclusion that to fully utilize hybrid simulation, sometimes it is beneficial to look at as
many physical quantities as possible, because the actual motion may not be as accurate as one would like to believe.

4.2. Comparing the Hybrid Systems to Each Other

From examining Figs. 8-15, it is clear that HS1, HS2, and HS3 all have unique error responses for all of the
properties shown. This indicates that the location of the hybrid split affects the results produced from a hybrid
simulation. For example, all of the L2 errors for HS1 never goes above 0.4, whereas HS3 typically has a larger L2

error than HS1, yet never goes above 0.7, and HS2 typically has the largest error, and in many cases goes above 1.
From these results it seems that, on average, HS1 provides the best results, followed by HS3, and HS2 is the worst.
This may be somewhat surprising, in that HS3 has two hybrid splits, whereas HS2 only has one, and one might expect
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Figure 9: The Whole System Error of the states for all three hybrid systems as a function of Ω.

that having only one hybrid split would imply that there is less chance for error to be introduced into the system.
However, the results show that more hybrid splits does not directly correlate to more error in the hybrid system. This
implies that there are good and bad locations to create a hybrid split, where a good hybrid split location will be one
that minimizes error introduced into the hybrid system, and a bad hybrid split location is one that will cause the error
in the system to rise quickly. For instance, HS1 is the best hybrid system since it has the least amount of error in all
three of our error metrics. This indicates that it has a good hybrid split location, or a hybrid split location that does
not alter the system dynamics a great deal. Similarly, HS2 is the worst hybrid system, since it has the most error in
all three of our error metrics. This indicates that it has a bad hybrid split location, or a split location that drastically
changes the system dynamics. Since HS3 has the both split locations (the ones used by HS1 and HS2), it indicates that
HS3 should have both a good and bad hybrid split location. Since HS3 is in between HS1 and HS2, when it comes to
L2 errors, it might indicate that good and bad locations have an averaging effect.

4.3. Analyzing the Frequency Response

From Figs. 8-15, we see fairly smooth curves for the all of the L2 errors except around Ω = 1.75 and Ω = 5.4,
which have what seem to be random spikes in the error. To try to better understand the error spikes, we look at the
frequency response of the unforced system (ugy = 0). The frequency responses for all four systems are shown in
Fig. 16, where we can see that there are frequency peaks around Ω = 1.75 and Ω = 5.4. This indicates that resonant
frequencies of the system are causing the spikes in the L2 error curves. These error spikes are similar to the error
spikes found by Drazin et. al. [15] and Bakhaty et. al. [16], which were typically located near resonant frequencies of
the system. Due to the appearance of error spikes in simple linear systems with constant error, as well as in this paper
with a nonlinear multi-degree of freedom system with basic PI controller, it seems to imply that error spikes near
resonant frequencies are a fundamental aspect of hybrid simulation. This makes it clear that hybrid simulation has a
hard time dealing with the resonant frequencies of a system, and one should be aware of this and try to avoid exciting
the resonant frequencies when administering a hybrid simulation experiment in order to avoid any unnecessary error.

20

UCB/SEMM-2017/01



0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

 

 
HS1
HS2
HS3

Ω

E
H

I
δ

(1
00

0)

Figure 10: The Hybrid Interface Error of δ for all three hybrid systems as a function of Ω.

However, it worth noting that all four systems have nearly identical frequency responses, as seen in Fig. 16, which
indicates that the hybrid split did not change the frequency response of the system, and leaves the resonant frequencies
intact. This can be an invaluable resource, in that, one can use the hybrid system to determine the resonant frequencies
without actually having the reference system.

4.4. Discussion

In the previous section, we analyzed different aspects of a theoretical hybrid simulation setup. While we were
able to find situations in which the results of a hybrid test were comparable to that of the reference test, there were
numerous occasions in which the hybrid results did not match the reference system. This indicates that the use of
hybrid simulation to effectively test different mechanical systems and structures is not guaranteed, but rather requires
careful consideration of how the hybrid system is constructed. As we have seen, it is possible for something as
simple as the location of the hybrid split to drastically change the outcome of a hybrid test. We have also seen that
certain physical properties match fairly well, while other properties do not match at all. However, all of this was
determined with knowledge of the reference system. In an actual hybrid experiment, the reference system response
most likely will not be known, which would make it impossible to calculate errors similar to those in this paper. For
this reason, a hybrid experiment needs to be well thought out beforehand to make sure that all error inducing situations
are reduced as much as possible. In addition, a hybrid test should look at as many physical quantities as possible, such
as displacements, velocities, energies, frequencies, etc., because this will give the user a greater chance at receiving
useful and accurate data. If possible, it seems advisable to conduct as many hybrid tests as possible for a single
mechanical system. By doing this, there will then be multiple sets of data that can be compared to see if there is any
correlation between the sets of data, which would potentially point in the direction of the reference response. Finally,
with more data from multiple hybrid tests, it will provide possible ranges of motion that the mechanical system will
experience; in essence creating bounds on the motion that will be useful for designing systems or structures that utilize
the core component of original hybrid test.
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Figure 11: The Hybrid Interface Error of xs for all three hybrid systems as a function of Ω.

5. Conclusion

This paper aimed to expand upon the theoretical knowledge of hybrid simulation. It utilized a best case scenario
for errors that might occur in a hybrid simulation experiment, namely systematic magnitude and phase mismatch at
the hybrid interface through the application of a PI controller. While this is by no means a comprehensive list of
all possible errors that might occur, it gives us a good starting point. This paper tested an multi-degree of freedom,
nonlinear, crane structure with a theoretical hybrid simulation setup developed previously [15, 16]. From this setup,
we devised three different hybrid systems: one with the split between the cabin and supporting structure, one with the
split between the cabin and the boom, and one with both hybrid splits. In this way we were not only able to compare
the hybrid system to the reference system, but we were also able to compare the effectiveness of the hybrid systems to
each other. In previous works, it was found that hybrid simulation can produce accurate results, but those were done
with very simple linear or single degree of freedom nonlinear systems. This paper explored the effects of how hybrid
simulation scales with the size and complexity of the structure. While analyzing the hybrid systems, we found many
correlations to previous works, such as the error spikes in the frequency domains [15, 16], as well as the fact that
certain dynamical properties can be accurately described by a hybrid test while others can not [17]. This shows that
the results and analysis from even the simple systems maintains its relevancy, even for more complicated structures.
From comparing the hybrid systems to each other, we found that the location of the hybrid splits, as well as how
many hybrid splits there are, can have a significant impact on the overall results. This makes it critical that one fully
understands the situation in which they are conducting a hybrid test. Thus, overall we can see that hybrid simulation
can be quite effective if used properly and if proper care is taken when setting up the actual hybrid test.
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Figure 12: The Hybrid Interface Error of ys for all three hybrid systems as a function of Ω.
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Figure 13: The Hybrid System Error of δ for all three hybrid systems as a function of Ω.
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Figure 14: The Hybrid System Error of xs for all three hybrid systems as a function of Ω.
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Figure 15: The Hybrid System Error of ys for all three hybrid systems as a function of Ω.
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Appendix A. Physical Data

The following tables provide all of the numerical values used throughout this paper, along with g = 9.8. All values
were chosen in an attempt to approximate a scaled down crane structure and are considered dimensionless. Note, for
the initial conditions used for time integration, all non-zero values are shown in Table A.5, with the exception of ug2,
whose definition is provided within the paper.

`x `y `s `r `ax `az `b `t R0

0.25 0.25 3 0.75 0.05 0.05 1 1 3

Table A.1: All lengths used for the crane systems.
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M j mr mb mm Jr Jb

[
9.36 0

0 18.72

]
Ei⊗E j

19.5 3.9 0.78

4.0625 0 0
0 4.0625 0
0 0 0.8125


ri⊗r j

0.0016 0 0
0 1.308 0
0 0 1.308


bi⊗b j

Table A.2: All masses and inertias used for the crane systems.

K j kb km C j cb cm[
2023.3 −2201.5
−2201.5 4562.5

]
Ei⊗E j

2.6 × 106 4.19 × 107
[
39.96 −0.02
−0.02 79.93

]
Ei⊗E j

191.21 342.96

Table A.3: All stiffnesses and damping constants used for the crane systems.

ma ca ka kp ki

1 156.5 245.25 10 55

Table A.4: All constants used for hybrid control.

R φ θ α β ugx

3 1.47 1.47 0.25 0.5 1

Table A.5: All non-zero initial conditions.

Appendix B. Error State Vectors

Let ad be the vector of displacements, then

ad =
[
R φ θ γ u1 u2 u3 u4 u5 u6 u7 u8

]T
, (B.1)

and equivalently for âd, where all the quantities in Eq. (B.1) have the same meaning as in Section 3.1. And let av = ȧd,
where the superposed dot (˙)indicates a time derivative of the given quantity. Then,

as =
[
ad av

]T
, (B.2)

Similarly for âs. Then, for the total energy vectors, we have

aE =
[
E
]
, (B.3)
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where E = T + U. See Section 3.1 for definitions of T and U. And equivalently for âE . Finally, the vectors for δ, x,
and y, are given by

aδ =
[
δ δ̇

]T
, âcδ =

[
δc δ̇c

]T
, âpδ =

[
δp δ̇p

]T
, (B.4)

ax =
[
xs ẋs

]T
, âcx =

[
xsc ẋsc

]T
, âpx =

[
xsp ẋsp

]T
, (B.5)

ay =
[
ys ẏs

]T
, âcy =

[
ysc ẏsc

]T
, âpy =

[
ysp ẏsp

]T
, (B.6)

where xs, ys, and δ are the E1 position, the E2 position, and rotation angle of the crane cabin for the reference system,
xsc, ysc, and δc are the E1 position, the E2 position, and rotation angle of the crane cabin for the hybrid systems from
the computational side, and xsp, ysp, and δp are the E1 position, the E2 position, and rotation angle of the crane cabin
for the hybrid systems from the physical side.
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