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1  | INTRODUC TION

Psoriasis (PsO) is a chronic inflammatory skin disease that affects 
up to 3.8% of the population.1 Cell‐mediated immunity, excessive 
growth and aberrant differentiation of keratinocytes, and increased 
dermal vascularity all play important roles in the pathomechanisms 
of PsO.2 Approximately 13%‐25% of PsO patients develop psoriatic 
arthritis (PsA), characterized by peripheral arthritis, axial spondylitis 
and enthesitis.3,4 According to the Classification of Psoriatic Arthritis 
(CASPAR) criteria,5 current or past presence of psoriasis of the skin, or 
a positive family history, represents a major criterion for the diagnosis 

of PsA. Interaction among genetic, environmental and immune factors 
leads to psoriatic skin and joint manifestations.6,7 Both the skin and sy‐
novium of patients with PsA produce increased concentrations of pro‐
inflammatory cytokines. Various factors, including human leucocyte 
antigens (HLA), the interleukin (IL)‐23/IL‐17 axis and tumour necrosis 
factor‐α (TNF‐α), are related to PsO and PsA and support the hypothe‐
sis that PsO and PsA are different manifestations of a single disease.8,9

On the one hand, revealing differences between PsO and PsA 
will provide insight into their respective pathophysiologies. On the 
other hand, identification of novel targets for treatment of both PsO 
and PsA is important for simpler and more patient‐friendly treatment 
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Abstract
Psoriasis (PsO) is a chronic inflammatory skin disease with both local and systemic 
components. PsO‐associated arthritis, known as psoriatic arthritis (PsA), develops in 
approximately 13%‐25% of PsO patients. Various factors associated with both PsO 
and PsA indicate that these conditions are part of a single disease. Identification of 
novel targets for the development of drugs to treat both PsO and PsA is desirable to 
provide more patient‐friendly treatment regimens. Such targets will likely represent 
‘common checkpoints’ of inflammation, for example key components or transduction 
cascades of the signalling pathways involved. Emerging evidence supports involve‐
ment of the non‐canonical Wnt signalling pathways in the development of both PsO 
and PsA, especially the Wnt5a‐activated signalling cascades. These, together with 
interlinked factors, are crucial in the interactions among keratinocytes, immune cells 
and inflammatory factors in PsO, as well as among chondrocytes, osteoblasts and 
osteoclasts that trigger both subchondral bone remodelling and cartilage catabolism 
in PsA. This review focuses on the pathological role of Wnt5a signalling and its in‐
teraction with other interlinked pathways in both PsO and PsA, and also on the main 
challenges for future research, particularly with respect to molecules targeting Wnt 
signalling pathways for the treatment of PsO and PsA.
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regimens. These targets will most likely represent ‘common check‐
points’ of inflammation, including key components or transduction 
cascades of the signalling pathways involved, rather than ‘common 
denominators’ such as cytokines.10,11 For example, small molecules 
that inhibit enzymes such as Janus kinases or phosphodiesterase 4 
have proved effective in treating PsO and PsA.12,13 In this context, 
the Wnt5a signalling pathway is an attractive target for the treat‐
ment of PsO as well as PsA.

2  | WNT5A AND PSO

2.1 | Wnt5a signalling pathway

Wnt signalling, which plays important roles in regulating cell prolif‐
eration, differentiation, polarity, migration and inflammation,14‐18 is 
classified into β‐catenin‐dependent canonical and β‐catenin‐inde‐
pendent non‐canonical pathways. In the canonical pathway, Wnt 
signalling is activated by Wnt proteins binding to their respective 
dimeric cell surface receptors composed of the seven‐transmem‐
brane Frizzled proteins and the low‐density lipoprotein receptor‐re‐
lated proteins (LRP5/6). Upon Wnt‐Fz/LRP signalling, Dvl is activated 
and dissociates from a multiprotein complex leading to inactivation 
of GSK3β. This inhibits the phosphorylation and degradation of β‐
catenin, which accumulates in the cytoplasm and then translocates 
to the nucleus and interacts with lymphoid enhancer‐binding factors 
(LEF) and T cell factors (TCF), causing transcriptional activation of tar‐
get genes14 (Figure 1).

The key molecules and cascades in the non‐canonical pathway 
have been previously summarized.19,20 Briefly, non‐canonical Wnt 
signal transduction, predominantly of Wnt5a, mainly involves planar 
cell polarity (PCP) and Wnt/Ca2+ pathways. Non‐canonical Wnt signal‐
ling pathways, which are independent of β‐catenin, rely on Wnt signal 
transduction through Fzd and its coreceptors, such as receptor tyro‐
sine kinase‐like orphan receptor 2 (ROR2) or receptor‐like tyrosine ki‐
nase (RYK). Through the activation of calcium signalling (phospholipase 
C/protein kinase C (PKC)/Ca2+) and calmodulin‐sensitive protein kinase 
II (CamkII), the Wnt/Ca2+/CamkII pathway activates nuclear factor as‐
sociated with T cells (NFAT) to regulate cell adhesion and migration, as 
well as cytoskeletal rearrangements. In the PCP pathway, Wnt binds to 
frizzled (Fzd) receptors, activates dishevelled and thereafter triggers 
Rho/Rho‐associated kinase (ROCK), Rac/c‐Jun N‐terminal kinase (JNK) 
signalling and actin polymerization. These complex signalling events 
are integrated to mediate cytoskeletal changes, cell polarization and 
motility during gastrulation. (Figure 1) Recent evidence supports the 
involvement of Wnt5a in inflammatory diseases,21,22 particularly in the 
development of psoriatic lesions.23‐26

2.2 | Wnt5a is differentially expressed in 
psoriatic skin

Reischl et al23 found that Wnt5a expression was fourfold higher 
than normal in skin lesions from patients with plaque‐type psoriasis. 
Another study with more subjects showed that Wnt5a transcripts 
were up‐regulated fivefold in skin lesions and that FZD2 and FZD5 

F I G U R E  1   Model of the role and proposed mechanism of Wnt5a in psoriasis. Activation of Wnt5a signaling and its downstream effectors 
by local or systemic pathogens stimulate keratinocyte proliferation and secretion of inflammatory cytokines, which further regulate Wnt5a 
expression and promote keratinocyte proliferation and activation through Wnt5a‐mediated signalling pathways. This cross‐talk forms a 
signalling loop that promotes the persistence of PsO inflammation and disease progression
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expression was also increased, while mRNA levels of WIF1 (a Wnt 
antagonist) were down‐regulated >10‐fold.24 We previously demon‐
strated overexpression of Wnt5a in PsO lesions, and in vitro analysis 
of Wnt5a knockdown in HaCaT and NHK cells suppressed cell pro‐
liferation and induced apoptosis.25 A recent analysis of gene patho‐
genicity using samples from psoriatic and healthy skin revealed that 
Wnt5a is one of five key genes in psoriasis.26 However, Wnt5a ex‐
pression remains high in resolving psoriatic lesions27; therefore, the 
role of enhanced Wnt5a expression in PsO is more complicated than 
proposed. Mice with overexpression of Wnt5a in the epidermis do 
not exhibit a psoriasis phenotype.28

The correlation between epigenetic modifications and psoriasis 
was investigated by Verma et al29 They compared epidermis from 
PsO patients with that from healthy controls and identified more 
than 2000 strongly differentially methylated sites (DMS), including 
in Wnt5a and FZD2, as well as a notable overrepresentation of sites 
in genes of the cadherin and Wnt signalling pathways.29 NFATc1, a 
downstream gene of Wnt5a and important in imiquimod‐induced 
psoriasiform dermatitis,30 was differentially methylated at multiple 
sites, as was SFRP4, a negative regulator of Wnt signalling that is 
down‐regulated in PsO by an epigenetic mechanism.31

Together, the above findings show that Wnt5a is overexpressed 
in PsO lesions and probably plays an important role in PsO devel‐
opment. However, the degree to which Wnt5a up‐regulation is in‐
volved in the pathomechanism of psoriatic lesions remains unclear. 
Indeed, abnormal Wnt5a expression may actually counteract the 
primary defect to maintain a normal skin phenotype. Further studies 
are needed to clarify the role and mechanisms of Wnt5a in the com‐
plicated pathophysiology of PsO.

3  | PROPOSED MECHANISM OF WNT5A 
INVOLVEMENT IN PSO

3.1 | Wnt5a and keratinocytes

Interplay between the immune system and the epithelium is the 
pathological trigger of PsO. The activated adaptive and innate im‐
mune systems and T cell responses produce biochemical signals 
that stimulate keratinocyte hyperproliferation, interfere with their 
terminal differentiation and induce the secretion of pro‐inflamma‐
tory factors that, in turn, activate T cells. The activity and function 
of keratinocytes play determinant roles in PsO development and 
are key points that could be targeted by potential or emerging PsO 
treatments.

A series of in vitro studies has determined the effects of Wnt5a 
on keratinocytes. Treatment with recombinant Wnt5a increased 
human keratinocyte proliferation and secretion of TNF‐α, IL‐12 
and IL‐23. IL‐1α, TNF‐α, transforming growth factor‐α and interfer‐
on‐γ stimulated keratinocytes to produce higher levels of Wnt5a, 
which, in turn, repressed both Notch1 and HES1.32 Knockdown of 
Wnt5a suppressed keratinocyte proliferation and induced apop‐
tosis by repressing the Wnt5a/Ca2+ or Wnt/β‐catenin pathways.25 
The calcium‐sensing receptor (CaSR) is essential in calcium‐induced 

differentiation of normal human epidermal keratinocytes (NHEKs) 
because it increases the level of free intracellular calcium, which 
up‐regulates the expression of Wnt5a. Subsequently, autocrine 
Wnt5a promotes the differentiation of NHEKs.33 In contrast, Wnt5a 
treatment can suppress HaCaT keratinocyte proliferation and differ‐
entiation, although the expression of IL‐8, IL‐17A and interferon‐γ 
was up‐regulated.34 It is difficult to interpret these somewhat con‐
tradictory results, but they indicate a complex and as yet unclear 
role of Wnt5a in modulating the proliferation and differentiation of 
keratinocytes.

Furthermore, these in vitro studies do not tell the whole story 
of what happens in vivo, where Wnt5a can be produced not only by 
keratinocytes, but also by other cells that participate in PsO devel‐
opment. To date, no studies have reported that an exogenous Wnt5a 
inhibitor or conditional deletion of Wnt5a from keratinocytes in vivo 
alters the development of PsO. Such studies are in progress in our 
laboratory.

3.2 | Wnt5a and inflammation

3.2.1 | Interaction with inflammatory cytokines

Immune cell infiltration is one of the main characteristics of psoriatic 
lesions. As a potent signalling molecule, Wnt5a is strongly implicated 
in a number of inflammatory diseases, including PsO, rheumatoid ar‐
thritis and sepsis.19,35,36 Wnt5a triggers pro‐inflammatory signalling 
cascades and increases the expression levels pro‐inflammatory cy‐
tokines and chemokines. Conversely, Linnskog et al37 demonstrated 
a dose‐dependent increase in Wnt5a expression in IL‐6‐stimulated 
human melanoma cell lines, HTB63 and A375, whereas Box5, a pep‐
tide antagonist of Wnt5a, inhibited IL‐6‐induced cell migration and 
invasion of the melanoma.

Further study explored the regulatory effect of inflammatory 
cytokines on Wnt5a expression. Rauner et al38 found that TNF‐α 
could stimulate Wnt5a expression in human bone marrow stromal 
cells. IL‐17 is a target for PsO treatment but no report has focused on 
the interaction between Wnt5a and IL‐17 during PsO, although both 
are elevated in PsO lesions.24 However, stimulation of fibroblast‐like 
synoviocytes with TNF‐α and IL‐17A led to increased expression of 
Wnt5a.39 In vitro costimulation of mouse fibroblasts with purified 
IL‐17A and Wnt5a resulted in transforming growth factor‐β1 secre‐
tion and collagen transcription.40

These results indicate interplay between Wnt5a signalling and 
inflammatory responses, which may be dependent on Wnt5a‐me‐
diated interaction with different leucocytes and keratinocytes. 
Accordingly, emerging evidence supports the regulatory roles of 
Wnt signalling pathways in leucocyte function.

3.2.2 | T cells

Wnt5a is a critical mediator of migration and CXC chemokine li‐
gand‐12 (CXCL12)–CXC chemokine receptor‐4 (CXCR4) signalling 
in human and murine T cells. Levels of Wnt ligands are significantly 
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increased in CXCL12‐treated T cells, while Wnt5a augments signal‐
ling through the CXCL12‐CXCR4 axis by activating PKC. Moreover, 
Wnt5a is essential for CXCL12‐mediated migration of T cells, and 
recombinant Wnt5a sensitizes human T cells to CXCL12‐mediated 
migration. Furthermore, Wnt5a is required for the sustained expres‐
sion of CXCR4. These findings are supported by an in vivo study of T 
cell migration in EL4 thymoma metastasis.41

3.2.3 | Dendritic cells

Dendritic cells (DCs) functionally regulate immune responses by link‐
ing innate and adaptive immune systems.42 Accumulating evidence 
supports involvement of the Wnt signalling pathway in controlling 
immune balance via DCs. Increased Wnt5a signalling during DC dif‐
ferentiation compromises their functional capabilities. Wnt5a does 
not block the generation of DCs from monocytes but leads to pheno‐
typically altered DCs that have a lower capacity to uptake antigens 
and that show an altered response to Toll‐like receptor (TLR) ligands. 
These effects are dependent on non‐canonical Ca2+/CamkII/NF‐κB 
signalling, indicating that Wnt5a skews human monocyte–derived 
DCs to differentiate into a tolerogenic functional state.42 Moreover, 
although both canonical and non‐canonical Wnts suppress murine 
DC pro‐inflammatory responses to bacterial endotoxin, IL‐6 produc‐
tion in DCs stimulated by the viral mimic, polyinosinic:polycytidylic 
acid, was inhibited by Wnt5a, but not Wnt3a.43 Holtzhausen et al44 
demonstrated that Wnt5a promotes local dendritic cell expression 
of indoleamine 2,3‐dioxygenase‐1 (IDO) in a β‐catenin signalling 
pathway–dependent manner; Wnt5a‐conditioned DCs promote 
Treg cell differentiation in an IDO‐dependent manner.

In contrast, DCs isolated from the colon of Wnt5a‐ and receptor 
tyrosine kinase‐like orphan receptor 2 (Ror2)‐deficient mice impair the 
differentiation of naïve CD4+ T cells into interferon‐γ‐producing CD4+ 
Th1 cells. Furthermore, the Wnt5a‐Ror2 signalling axis augments the 
priming effect of DCs on interferon‐γ production, which subsequently 
enhances lipopolysaccharide (LPS)‐induced IL‐12 expression.45 The 
dual role of Wnt5a in DCs as a pro‐inflammatory and tolerogenic mol‐
ecule indicates a complicated mechanism by which Wnt5a modulates 
DC differentiation and function. Wnt5a may modulate DC responses 
to limit inflammation, and its regulation of the immune response is a 
primordial mechanism for achieving immune homoeostasis.

3.2.4 | Macrophages and neutrophils

Macrophage recruitment is another characteristic of inflammation, 
including in PsO. An in vitro study focusing on Wnt5a interaction 
with macrophages in castration‐resistant prostate cancer (CRPC) 
indicated that Wnt5a may be a crucial regulator that induces CRPC 
in the bone niche by recruiting and regulating macrophages.46 
Another in vitro study confirmed that Wnt5a induces macrophage 
chemotaxis and activation.47 Recombinant Wnt5a‐induced cytokine 
secretion by macrophages from C57BL/6 mice was dependent on 
TLR4 and was repressed by polymyxin B.48 Moreover, Wnt5a is up‐
regulated in macrophages stimulated with endotoxin (LPS), which 

induces the expression of IL‐1β, IL‐6, IL‐8 and macrophage inflamma‐
tory protein‐1β.22 In fact, macrophage‐derived Wnt5a is an impor‐
tant regulator of macrophage immune function, pro‐inflammatory 
cytokine release, angiogenesis and lymphangiogenesis.49

Human neutrophils express a number of Wnt5a receptors, in‐
cluding FZD2, 5 and 8. Wnt5a stimulation of human neutrophils leads 
to chemotactic migration and the secretion of CXCL8 and CCL2. 
Neutrophil chemotaxis induced by supernatant collected from LPS‐
stimulated macrophages was markedly inhibited by an antagonist of 
Wnt5a, which indicates that Wnt5a may contribute to neutrophil re‐
cruitment, thereby regulating the inflammation response.50

3.3 | Wnt5a and angiogenesis

Dysregulated angiogenesis has been observed in the chronic cu‐
taneous inflammation associated with PsO. Different angiogenic 
growth factors are involved at each step of the PsO molecular path‐
way, such as vascular endothelial growth factor, hypoxia inducible 
factor‐1α, and angiopoietin‐2.51,52 The Wnt5a‐mediated non‐ca‐
nonical signalling pathway potentially participates in this process, 
based on its important role in endothelial cell proliferation and 
vascularization.

Wnt5a is expressed in human primary endothelial cells, and 
exogenous Wnt5a expression in these cells promotes angiogene‐
sis. Wnt5a induces endothelial cell proliferation and enhances cell 
survival by activating Ca2+/CamkII, whereas reduced Wnt5a expres‐
sion decreases capillary‐like network formation and inhibits endo‐
thelial cell migration. Thus, Wnt5a promotes angiogenesis through 
non‐canonical pathways.53 In human vascular endothelial cells, 
Wnt5a regulates cytoskeleton remodelling and barrier function.54 
Furthermore, Wnt5a can enhance the permeability of human coro‐
nary artery endothelial cells (HCAECs) through Ryk interaction and 
downstream ROCK/LIMK2/CFL1 signalling.55 Similarly, Wnt5a me‐
diates remodelling of actin cytoskeleton in IL‐4‐activated HCAECs; 
silencing Wnt5a significantly reduced the enhanced permeability 
and improved barrier function in IL‐4‐treated HCAEC monolayers.56 
In this context, Wnt5a may not only participate in angiogenesis by 
stimulating endothelial cell proliferation, but may also enhance the 
permeability of vascular endothelial cells, which is supposed to con‐
tribute to leucocyte effusion and infiltration in psoriatic lesions.

Taking these observations together, we present a model in which 
Wnt5a activation is involved in keratinocyte proliferation and se‐
cretion of inflammatory cytokines, which further regulate Wnt5a 
expression and promote keratinocyte proliferation and activation 
through Wnt5a‐mediated signalling pathways (Figure 1). This cross‐
talk forms a signalling loop that promotes the persistence of PsO 
inflammation and disease progression.

4  | WNT5A AND PSA

PsA targets the spine, peripheral joints and the entheses.55 The ae‐
tiology of PsA is unclear, but is thought to be an interplay of genetic, 
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immunological and environmental factors that promote pathologi‐
cal bone remodelling and joint damage. Sixty‐seven per cent of PsA 
patients exhibit erosive bone disease,56 in which increased osteo‐
clast activity causes destructive bone loss in both a localized and a 
systemic manner.57‐59 The simultaneous presence of bone erosions 
and bony spurs in PsA joints indicates that PsA leads to activated 
bone remodelling with both enhanced bone resorption and bone 
formation. Abnormal bone remodelling therefore plays a crucial role 
in PsA.60

In contrast to PsO, in which Wnt5a is overexpressed, there 
has been no report of Wnt5a expression in PsA tissues, although 
Wnt5a is expressed locally in the joints of spondyloarthritis pa‐
tients, which include PsA patients. Moreover, Wnt5a decreases 
differentiation marker gene expression and mineralization in 
cultured chondrocytes. It also decreases alkaline phosphatase 
activity in Achilles tendon enthesis and reduces osteocalcin lev‐
els released by ankle explants. In contrast, Wnt5a stimulates 

ossification marker expression in cultured osteoblasts and in‐
creases the tibial plateau bone volume in cultured explants of 
mouse ankle.61 Wnt5a is also involved in arthritis development by 
promoting osteoclast activity and the inflammation response.62 
Wnt5a conditional knockout mice are resistant to the develop‐
ment of arthritis compared with control littermates, providing 
more insight into the role of endogenous Wnt5a in autoimmune 
diseases.62

Another in vitro study revealed a regulatory role of Wnt5a in os‐
teoblasts and osteoclasts, which are the predominant cells in bone 
remodelling.63 Wnt5a expression was increased in osteoarthritic 
osteoblasts compared with their normal counterparts. Wnt5a in‐
creased the expression of LGR5 and stimulated the phosphorylation 
of JNK and PKC, and the activity of transcription factors NFAT and 
AP‐1. Inhibition of Wnt5a expression partially corrected the abnor‐
mal mineralization, osteocalcin secretion and ALPase activity of os‐
teoarthritic osteoblasts.63

F I G U R E  2   Model of the role and proposed mechanism of Wnt5a in psoriatic arthritis. Wnt5a produced by chondrocyte or osteoblast 
activated the non‐canonical signalling pathway and downstream cascades include CAMK Ⅱ, MAPKs, NF‐κB, JNK and/or PKC, Rho, thereby 
regulates the activity of chondrocytes, osteoblasts and osteoclasts, triggers both subchondral bone remodelling and cartilage catabolic 
metabolism, and finally lead to the development of psoriatic arthritis
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Moreover, osteoclastogenesis is enhanced by Wnt5a‐Ror2 
signalling from osteoblast‐lineage cells to osteoclast precursors. 
Specifically, knockout of Wnt5a in osteoblasts or Ror2 in osteo‐
clast precursors in mice caused reduced osteoclastogenesis.64 
Wnt5a‐Ror2 signals increased the expression of receptor activa‐
tor of nuclear factor‐κB (RANK) in osteoclast precursors by ac‐
tivating JNK and recruiting c‐Jun to promote the expression of 
RANK, thereby enhancing RANKL‐induced osteoclastogenesis. 
A soluble form of Ror2 acts as a decoy receptor for Wnt5a and 
abrogates bone destruction in mouse arthritis.64,65 Similar results 
were found in other studies. Mice with an osteoclast‐specific defi‐
ciency in Ror2 had increased bone mass. Osteoclasts derived from 
these mice exhibited impaired bone resorption and actin ring for‐
mation.66 Wnt5a‐Ror2 signalling in the subchondral bone marrow 
stromal cells of temporomandibular joints, which was enhanced 
by experimentally induced unilateral anterior crossbite, promoted 
increased stromal cell expression of CXCL12 and RANKL. The JNK 
and/or Ca2+/NFAT pathways were involved and were therefore 
engaged in enhancing osteoclast precursor migration and differ‐
entiation, leading to increased osteoclast activity and overall sub‐
chondral trabecular bone loss in this model.67

These data support the hypothesis that Wnt5a plays a dual role, 
modulating bone remodelling as well as interacting with the im‐
mune system involved in psoriasis, and may thereby participate in 
the development of PsA. The Wnt5a–Ror2 signalling pathway regu‐
lates the activity of chondrocytes, osteoblasts and osteoclasts and 
is overexpressed in arthritis tissues. We therefore hypothesize that 
Wnt5a‐Ror2‐mediated interaction between the above‐mentioned 
cells triggers both subchondral bone remodelling and cartilage ca‐
tabolism (Figure 2).

5  | CONCLUSIONS

Based on the findings presented in this review, we propose that 
Wnt5a‐activated signalling pathways and other potentially inter‐
linked factors mediate interactions among keratinocytes, immune 
cells and inflammatory factors, and that Wnt5a plays an important 
role in the development of PsO and PsA. However, the degree to 
which these responses in keratinocytes and leucocytes require 
Wnt5a remains uncertain. More research, particularly in vivo 
studies using exogenous Wnt5a inhibitors or conditional Wnt5a 
knockout in keratinocytes or other interacting cells, is needed to 
clarify the precise role and mechanism of the Wnt5a‐mediated im‐
mune response and inflammation in PsO and PsA. This will reveal 
whether Wnt5a is a ‘common checkpoint’ for PsO and PsA and, if 
so, would confirm Wnt5a as a potential target for the treatment of 
both PsO and PsA.
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