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Machine-Learning-Assisted Accurate Prediction of
Molecular Optical Properties upon Aggregation

Shidang Xu, Xiaoli Liu, Pengfei Cai, Jiali Li, Xiaonan Wang,* and Bin Liu*

For practical applications, molecules often exist in an aggregate state.
Therefore, it is of great value if one can predict the performance of molecules
when forming aggregates, for example, aggregation-induced emission (AIE) or
aggregation-caused quenching (ACQ). Herein, a database containing
AIE/ACQ molecules reported in the literature is first established. Through
training, these machine learning (ML) models can build up the
structure–property relationship and thus implement fast prediction of
AIE/ACQ properties. To this end, a multi-modal approach is proposed,
multiple prediction methods are compared and designed, and thus an
ensemble strategy is developed. First, multiple molecular descriptors are
considered at the same time, major features are extracted by dimensionality
reduction, and multi-modal features are synthesized. Then, several
state-of-the-art methods are designed and compared to analyze the
advantages of the different methods. Finally, the ensemble strategy combines
the advantages of the multiple methods to obtain the final prediction result.
The reliability of this approach in an unknown molecular space is further
verified by three newly designed molecules. Reasonable consistency between
model predictions and experimental outcomes is obtained. The result
indicates that ML can be a powerful tool to predict molecular properties in the
aggregated state, thus accelerating the development of solid-state optical
materials.

1. Introduction

Molecules are often used as films or aggregates in practical
applications. As such, it is crucial to predict the performance
of molecules when forming aggregates. Aggregation-induced
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emission (AIE) is a concept first coined
in 2001 describing the unusual emission
enhancement of molecular species upon
aggregate formation.[1,2] Since then, a new
requisite research area of AIE has been
opened to scientists and engineers and
luminogens with AIE behavior are termed
as AIEgens.[3–6] In the past decade, the
superior property of AIEgen has initiated
many unprecedented scientific studies
and innovated the design of luminescent
materials.[7–13] For example, AIEgen-
based nanoparticles could be designed
to show higher brightness and better
stability than quantum dots;[4,14,15] the
device performance of non-doped organic
light-emitting diodes can be significantly
improved through the incorporation of AIE
property into thermally activated delayed
fluorescence emitters.[16,17] Other exam-
ples include various stimulus-responsive
luminescent materials.[7,8,18] The high
brightness of AIEgens in the solid state
makes their responses more visible to the
naked eye. Besides, based on AIEgens
with suppressed non-radiative decay in
the aggregate state, molecular engineer-
ing has yielded AIE photosensitizers

(PSs) with higher brightness and better photosensitization in
nanoparticles as compared to that for traditional PSs.[9,19]

The uniqueness and versatility of AIEgens increase their de-
mand in a wide range of fields.[20–23] Much effort has been de-
voted to the design and synthesis of new AIEgens.[24,25] The key
to designing a new AIEgen is the prediction of the AIE prop-
erty from its molecular structure, which requires a high level of
structure–property understanding of the AIE phenomenon.[26–28]

However, owing to the diverse impact factors in the process of
molecular aggregation, precise prediction of AIE property from
molecular structure remains challenging. Moreover, the com-
plexed AIE mechanisms are based on various dimensions of
photophysics, for example, restriction of intramolecular rota-
tion or vibration,[29] restriction of excited-state deformation,[30]

suppression of Kasha’s rule,[31] and et al., making it difficult
to predict the AIE property in unknown molecular space. As a
result, many AIEgens were designed by trial and error, which
make the design of next generation AIEgens difficult and slow.
In fact, a majority of AIEgens is derived from a few AIE
cores like tetraphenylethylene (TPE), triphenyl amine (TPA), and
tetraphenyl pyran (TPP),[1,26] limiting the performance optimiza-
tion in a particular application.
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Figure 1. Flowchart of the proposed machine learning (ML)-assisted prediction of AIE/ACQ properties and experimental validation of newly designed
molecules.

Furthermore, more and more AIEgens with unclear mecha-
nisms have been reported,[30,32] implying an urgent demand to
improve the current understanding of AIE.

Machine learning (ML) techniques have been rising in popu-
larity and found inspiring success in property prediction in vari-
ous domains such as drugs, energy, and catalysis materials.[33–36]

By scanning a large dataset and extracting relationships from
molecular features that are required, ML can predict a wide range
of properties without a substantial fundamental understanding
of the underlying chemistry or physics behind these.[37–39] When
fundamentals are well-understood, ML might provide additional
scientific insights of different dimensions, thus enhancing chem-
ical intuition and enriching design strategies.[40,41] Considering
the multiple factors of AIE phenomenon and the complexity of
mechanisms behind, ML is very likely to improve the current un-
derstanding of AIE and contribute to the prediction of AIE prop-
erty. With the precise prediction of AIE property via an artificial
intelligence (AI) system, even unexperienced AIE researchers
will be capable of designing a molecular structure with AIE prop-
erties in an unknown molecular space.

In this work, we established a database containing 356 ex-
perimentally tested AIE/aggregation caused quenching (ACQ)
molecules collected from the literature. We first studied the repre-
sentation of molecules, that is, the process of generating embed-
ding vectors. This is the most important step in molecular ML as
better embedding vectors can compute and predict the molecules
more effectively.[42,43] Here we consider two models of molec-
ular expression, including qualitative and quantitative molecu-

lar descriptors. The most commonly used qualitative molecular
descriptors are molecular fingerprint descriptors. We used Mor-
gan circular fingerprint, Daylight fingerprint, atom-pair finger-
print, and topological torsion fingerprint to generate embedding
vectors, respectively. Herein, five ML algorithms, that is, logistic
regression, K-nearest neighbor (KNN), gradient boost, random
forest, and neural network,[44–46] were applied on different em-
bedding vectors (Figure 1). The experimental results show that
ML methods can well predict AIE molecules. In order to build
a more robust model, we adopted an integrated voting strategy
to determine the final molecular prediction category. Through
this strategy, the model can not only learn molecular informa-
tion of the current data set, but also predict the combination in-
formation of unknown molecules. Last, we independently veri-
fied our proposed strategy of models by synthesizing three new
molecules. The predictions of the model were in good agreement
with the experimental results. Through this work, we set up a
new methodology for AIE research, that is, prescreening the de-
signed AIE molecules by ML models and then only focusing on
those that pass the ML virtual assessment in subsequent exper-
iments. This approach will accelerate the process of developing
high-performance AIEgens.

2. Results and Discussion

There are hundreds of AIEgens reported in the literature. When
collecting data, we screened the molecules according to the fol-
lowing criteria: 1) capture representative AIE/ACQ counterparts
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Table 1. Prediction performance results of qualitative and quantitative descriptors of baseline and ensemble methods based on single-modal strategy.

Methods Train accuracy Test accuracy AUC F1-score

Logistic regression

Morgan 0.9791 ± 0.0264 0.9160 ± 0.0415 0.9100 ± 0.0449 0.9158 ± 0.0416

Daylight 0.9922 ± 0.0151 0.9329 ± 0.0280 0.9292 ± 0.0227 0.9329 ± 0.0274

Atom-pair 0.9778 ± 0.0299 0.9103 ± 0.0514 0.9090 ± 0.0550 0.9107 ± 0.0512

Topological 0.9332 ± 0.0053 0.9244 ± 0.0374 0.9181 ± 0.0438 0.9242 ± 0.0376

Quantitative descriptors 0.6236 ± 0.0038 0.6237 ± 0.0340 0.5000 ± 0.0000 0.4797 ± 0.0419

K-nearest neighbor

Morgan 0.9257 ± 0.0190 0.8879 ± 0.0430 0.8729 ± 0.0474 0.8866 ± 0.0442

Daylight 0.9276 ± 0.0153 0.8963 ± 0.0545 0.8827 ± 0.0639 0.8952 ± 0.0559

Atom-pair 0.9151 ± 0.0071 0.9048 ± 0.0469 0.9072 ± 0.0462 0.9056 ± 0.0465

Topological 0.9154 ± 0.0051 0.9075 ± 0.0472 0.9058 ± 0.0502 0.9077 ± 0.0471

Quantitative descriptors 0.9017 ± 0.0133 0.8740 ± 0.0684 0.8716 ± 0.0726 0.8748 ± 0.0675

Gradient boost

Morgan 0.8914 ± 0.0156 0.8851 ± 0.0577 0.8818 ± 0.0571 0.8852 ± 0.0575

Daylight 0.9822 ± 0.0151 0.9017 ± 0.0461 0.8911 ± 0.0538 0.9011 ± 0.0468

Atom-pair 0.9194 ± 0.1000 0.8713 ± 0.0905 0.8602 ± 0.1298 0.8579 ± 0.1287

Topological 0.8814 ± 0.0507 0.8795 ± 0.0711 0.8746 ± 0.0709 0.8792 ± 0.0711

Quantitative descriptors 0.9813 ± 0.0329 0.9189 ± 0.0419 0.9182 ± 0.0452 0.9192 ± 0.0417

Random forest

Morgan 0.9878 ± 0.0047 0.9074 ± 0.0281 0.9017 ± 0.0323 0.9071 ± 0.0284

Daylight 0.9919 ± 0.0040 0.9213 ± 0.0433 0.9080 ± 0.0528 0.9204 ± 0.0444

Atom-pair 0.9913 ± 0.0125 0.9271 ± 0.0402 0.9315 ± 0.0412 0.9276 ± 0.0400

Topological 0.9953 ± 0.0067 0.9329 ± 0.0397 0.9283 ± 0.0464 0.9326 ± 0.0398

Quantitative descriptors 0.9956 ± 0.0060* 0.9326 ± 0.0475 0.9338 ± 0.0561* 0.9325 ± 0.0482

MLPClassifier

Morgan 0.9813 ± 0.0226 0.9159 ± 0.0414 0.9088 ± 0.0443 0.9156 ± 0.0418

Daylight 0.9885 ± 0.0074 0.9385 ± 0.0298* 0.9332 ± 0.0359 0.9383 ± 0.0299*

Atom-pair 0.9784 ± 0.0296 0.8910 ± 0.0808 0.8838 ± 0.0936 0.8884 ± 0.0869

Topological 0.9420 ± 0.0046 0.9217 ± 0.0347 0.9170 ± 0.0383 0.9216 ± 0.0347

Quantitative descriptors 0.8394 ± 0.1154 0.8396 ± 0.0923 0.8228 ± 0.1482 0.8199 ± 0.1320

Ensemble — 0.9274 ± 0.0416 0.9226 ± 0.0444 0.9273 ± 0.0416

∗Superscript symbol * indicates optimal results for all methods.

that show similar molecular structures but opposite AIE/ACQ
property, for example, a molecule’s shift from ACQ to AIE by re-
placing its atoms, or increasing chain length, or changing the
conjugated structure or position of connection (Figures S1 and
S2, Supporting Information) screen molecules derived from the
same AIE core, especially the classic cores. To avoid an unbal-
anced and biased dataset, we restricted the number of molecules
derived from the same core. At last, 356 molecules were collected
for model training.

Next, we present experimental analysis to demonstrate the ef-
fectiveness of the methods. We first employ molecular descrip-
tors to characterize molecules, which is a key issue in molec-
ular ML. In this work, two categories of molecular descrip-
tors are used as different modes to predict molecular proper-
ties, that is, quantitative descriptors and qualitative descriptors,
respectively.[47–49] By this way, our approach can take into account
both quantitative and qualitative properties of the molecules.
Then, five popular ML methods are proposed to predict whether

a molecule has AIE properties. These methods include logistic
regression (LR), KNN, gradient boost (GB), random forest (RF),
and multilayer perception (MLP) as a class of neural network. We
also propose a strategy to integrate the results of different meth-
ods and modes and use the integrated results as the final predic-
tive output. In order to compare and evaluate the effectiveness
of the algorithms, we employed some evaluation metrics includ-
ing accuracy, area under the curve (AUC) and F1-score. In our
experiment, tenfold cross-validation was used to evaluate differ-
ent methods with different descriptors. We used fivefold cross-
validation on the training set to select the hyperparameters. The
detailed descriptions are available in the Supporting Information.

The results of separate tests for different methods based on
qualitative and quantitative descriptors are shown in Table 1.
Here we refer to this strategy as single-modal training. Qualita-
tive descriptors consider five fingerprints and encode 2048 bits
in length. Quantitative descriptors use 108-dimensional features,
including 1D and 2D shown in Table S1, Supporting Informa-
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Table 2. Prediction performance results of baseline and ensemble methods based on multi-modal strategy.

Methods Train accuracy Test accuracy AUC F1-score

Logistic regression

Morgan + Quantitative 0.9863 ± 0.0071 0.9215 ± 0.0323 0.9130 ± 0.0354 0.9211 ± 0.0323

Daylight + Quantitative 0.9925 ± 0.0085 0.9356 ± 0.0277 0.9293 ± 0.0291 0.9355 ± 0.0272

Atom-pair + Quantitative 0.9791 ± 0.0289 0.9217 ± 0.0427 0.9219 ± 0.0441 0.9221 ± 0.0426

Topological + Quantitative 0.9828 ± 0.0117 0.9217 ± 0.0427 0.9163 ± 0.0476 0.9215 ± 0.0427

K-nearest neighbor

Morgan + Quantitative 0.9185 ± 0.0200 0.8795 ± 0.0545 0.8660 ± 0.0661 0.8775 ± 0.0573

Daylight + Quantitative 0.9294 ± 0.0138 0.8906 ± 0.0441 0.8755 ± 0.0535 0.8893 ± 0.0455

Atom-pair + Quantitative 0.9235 ± 0.0131 0.9133 ± 0.0439 0.9117 ± 0.0461 0.9136 ± 0.0437

Topological + Quantitative 0.9089 ± 0.0069 0.8936 ± 0.0557 0.8924 ± 0.0600 0.8941 ± 0.0553

Gradient boost

Morgan + Quantitative 1.0000 ± 0.0000* 0.9302 ± 0.0416 0.9343 ± 0.0406 0.9308 ± 0.0410

Daylight + Quantitative 1.0000 ± 0.0000* 0.9157 ± 0.0360 0.9147 ± 0.0453 0.916 ± 0.0369

Atom-pair + Quantitative 1.0000 ± 0.0000* 0.9271 ± 0.0359 0.9261 ± 0.0392 0.9271 ± 0.0360

Topological + Quantitative 0.9483 ± 0.1551 0.8873 ± 0.1108 0.8931 ± 0.1011 0.8875 ± 0.1109

Random forest

Morgan + Quantitative 0.9981 ± 0.0032 0.9410 ± 0.0411 0.9418 ± 0.0465 0.9411 ± 0.0412

Daylight + Quantitative 0.9981 ± 0.0032 0.9440 ± 0.0304* 0.9499 ± 0.0288* 0.9445 ± 0.0300*

Atom-pair + Quantitative 0.9997 ± 0.0009 0.9187 ± 0.0462 0.9214 ± 0.0509 0.9191 ± 0.0462

Topological + Quantitative 0.9975 ± 0.0027 0.9271 ± 0.0422 0.9309 ± 0.0467 0.9275 ± 0.0422

MLPClassifier

Morgan + Quantitative 0.9991 ± 0.0020 0.9216 ± 0.0388 0.9154 ± 0.0397 0.9214 ± 0.0387

Daylight + Quantitative 0.9966 ± 0.0083 0.9413 ± 0.0259 0.9369 ± 0.0244 0.9412 ± 0.0256

Atom-pair + Quantitative 0.9984 ± 0.0038 0.9188 ± 0.0420 0.9217 ± 0.0452 0.9192 ± 0.0420

Topological + Quantitative 0.9959 ± 0.0063 0.9190 ± 0.0502 0.9174 ± 0.0477 0.9192 ± 0.0494

Ensemble — 0.9383 ± 0.0376 0.9391 ± 0.0445 0.9384 ± 0.0379

tion. In addition to the five baseline methods described above,
we also adopt a voting strategy, named as the ensemble method.
Considering all methods and all modes, a total of 25 different
combinations are adopted. Each combination votes on the clas-
sification results, and the category with more votes is the final
result. This avoids the misclassification caused by under-fitting
or over-fitting in individual combinations and enhances the de-
cision making for each method. Experimental results show that
the ensemble voting method is more robust than a single clas-
sification model. Note that the best result of each method with
different fingerprints is marked in bold.

From the results, we can see that the train accuracy and AUC of
the random forest based on the quantitative descriptors are better
than others. The MLP Classifier method based on Daylight fin-
gerprint has the best performance in test accuracy and F1-score.
This shows that the two types of descriptors (two modals) are both
important for the prediction performance. logistic regression has
poor performance based on quantitative descriptors, which indi-
cates that the quantitative descriptors are not suitable for linear
fitting. Therefore, the nonlinear method can yield better results.
Random forest has relatively good results on all fingerprints, be-
cause it can handle high-dimensional data, and for unbalanced
data sets, it can balance the errors. Gradient boost is an ensem-
ble method based on the decision tree, however, its performance
is not as good as the random forest, is probably due to overfitting.

In the multi-modal experiment, the potential overfitting is more
obvious. The result of MLP Classifier is next to the random forest.
Neural network is the algorithm that receives the most attention
at present, which, however, needs more data points for training
to get better results. For a suitable fingerprint, the training result
of Daylight fingerprint is better than other descriptors in stability.
This is because the topological mode of the Daylight fingerprint
is more in line with the molecular structures of AIEgens.

In our data set, 134 samples have AIE properties while 222
samples have ACQ properties, which is a slightly unbalanced data
set. Determining the category of hard samples is the key problem.
Hard samples are samples close to the classification plane, and
in general, these samples are also data that are not adequately ob-
tained and mined in the data set. The intra-class distance of these
data tends to be larger and may be closer to the inter-class sam-
ples. In other words, these samples are relatively rare samples in
this experiment. The biggest contribution of AIE molecular pre-
diction to the future is to predict data that has not been generated
in the current experiment, that is, data that has not been seen
ever. In this way, researchers can better guide the experimental
generation of data.

The ensemble method is proposed to explore the classification
plane and the prediction of hard samples. In order to illustrate
the effectiveness of the proposed ensemble method, the confu-
sion matrix of the benchmarking methods are shown in Fig-
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Figure 2. a) Schematic illustration of multi-modal descriptors. b) Average results of different methods. c) Confusion matrix of ensemble method based
on multi-modal descriptors.

ure S6, Supporting Information. As seen from the figures, the
most accurate classifier is the MLP classifier on Daylight finger-
print. There are 22 misclassification samples, among which 11
molecules with AIE properties are misclassified as ACQ and 11
molecules with ACQ properties are misclassified as AIE instead.
The next most accurate classifier is the random forest on quan-
titative descriptors. There are 24 misclassified samples, 8 AIE
are misclassified as ACQ, and 16 ACQ are misclassified as AIE.
There are 26 misclassification samples by ensemble method, 13
AIE are misclassified as ACQ and 13 ACQ are misclassified as
AIE. This may be caused by unsatisfactory results for certain
methods used in single-modal, such as linear regression. There-
fore, there is a big gap between the classification planes of differ-
ent methods, and it is difficult to select one method as the final
result.

Table 2 shows the results of different methods based on the
multi-modal strategy. We also present the average results of
single-modal and multi-modal on five different methods and con-
founding matrix of ensemble method base on multi-modal de-
scriptors in Figure 2a. Multi-modality here refers to combining
two types of descriptors into a feature vector for training, which is
shown in Figure 2b. We first performed dimensionality reduction
using principal component analysis (PCA) on the 2048 dimen-
sional fingerprint feature. The aim was to make fingerprint and
quantitative descriptor have a closer dimension and avoid focus-

ing on one modal. After this process, 356 dimensional features
are obtained, but all information of the original data is retained.
The specific processes and principles are described in the Sup-
porting Information. In addition, we made a z-score standardiza-
tion for the quantitative descriptors, so that they have the same
scale with PCA dimensionless data. Therefore, for multi-modal
data, the feature dimension is 464 (356 + 108).

It can be seen from the results that the multi-modal prediction
is generally better than single-modal prediction. Among them,
the results of logistic regression were relatively close, because the
fitting of features by linear regression method was limited. When
the data is nonlinear, it is difficult to achieve greater improve-
ment, as well as dealing with the problem of data imbalance.
There was no significant improvement in the results of KNN.
This is because the distance-based KNN method has dimension-
ality disaster problem, and the prediction accuracy of minority
categories is low. The results of gradient boost, random forest,
and MLPClassifier have been improved significantly, because the
feature with rich information plays a greater role in the complex
method. The gradient boost obtained completely correct results
on the three training feature sets, but the result on the test set was
not as good as the random forest, which further indicated that the
gradient boost had overfitting on the training set. random forest
achieved the best performance in the test set on Daylight + quan-
titative descriptors. This shows that the fusion of the two modal
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Figure 3. a) Structures of compound 1–3. Plots of the maximum photoluminescence (PL) intensity of compound 1–3, b–d) against water fractions
(vol%). The inset shows photographs of the compounds in 0 and 99 vol% water under UV light (365 nm) illumination. e) Results of the different
state-of-the-art methods compared with ensemble strategy.

features improves the separability of the classification space. The
result of MLP Classifier is the best in the Daylight fingerprint,
which is similar to the single-modal result. It can be seen that
the feature encoding method of Daylight fingerprint is more suit-
able for our data. Compared with the single modal, the ensemble
method with multi-modal data has obviously been improved and
is closer to the optimal baseline method, which indicates that the
multi-modal data can correctly divide the classification plane for
all the methods. In this case, the ensemble method can more ef-
fectively correct the misclassification of hard samples, and at the
same time guide test of unknown samples more accurately.

To validate the ability of our model in predicting new molec-
ular structures, we designed a series of potential AIEgens with
structures unlike any reported ones. The molecular structures
of 1–3 are shown in Figure 3a. In contrast to compound 1,
compound 2 possesses an additional carbon in the amino sub-
stituent structure, yielding a three-membered ring. According
to the known AIE mechanisms, compounds 1 and 2 are sup-
posed to show similar AIE/ACQ property. However, our model
predicts that compound 1 is ACQ while 2 is AIE. To validate the
prediction, compounds 1 and 2 were prepared by Knoevenagel
condensation and Buchwald–Hartwig coupling followed by AIE
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characteristics study. The synthesis and characterization are de-
scribed in the Supporting Information. The AIE characteristics
of all the compounds were studied by monitoring their emis-
sion properties in DMSO/water mixtures with different volume
fractions of water. The titration results of 1 and 2 are shown
in Figure 3b. Compounds 1 and 2 show ACQ and AIE prop-
erties, respectively, consistent with the ML prediction. Next, we
replaced the dicyano group of 2 with a carbonyl group and ob-
tained compound 3. From the results of 1 and 2, it is obvious
that the three-membered amino ring of 2 plays a crucial role
in its AIE behavior and thus 3 is supposed to be AIE active as
well. However, our ML model predicts that compound 3 is an
ACQ molecule. To validate the prediction, we synthesized 3 fol-
lowed by the same AIE characteristics study and the result shows
that 3 is ACQ, indicating the excellent accuracy of our model
in predicting new structures superior to human perception. Fig-
ure 3e shows the results of the different state-of-the-art methods.
These methods are competing methods with the ensemble model
which we have compared in the last section. It can be seen from
the table that only the prediction results of multi-modal ensem-
ble and single-modal random forest are completely correct. How-
ever, from Figure 3e, the results of single-modal random forest
on the test set are not as good as that of the multi-modal en-
semble. This demonstrates that multi-modal ensemble is more
robust, which means that for different data types, including
known and unknown data, it has both predictive and exploratory
capabilities.

3. Conclusion

On the basis of a database containing AIE/ACQ molecules col-
lected from the literature, various programming language ex-
pressions of small molecules including Morgan circular finger-
print, Daylight fingerprint, atom-pair fingerprint, topological tor-
sion fingerprint, and quantitative descriptors were used to build
ML models to predict the AIE/ACQ properties of different fluo-
rophores. The proposed multi-modal ensemble method achieves
the best and most robust performance. This strategy considers
the properties of multiple descriptors and combines the infer-
ence advantages of multiple methods. Therefore, it can not only
learn the existing molecular structure, but also has the ability to
predict an unknown structure.

The reliability of our ML model in predicting brand new
molecules has been further demonstrated. We compared the pre-
diction from the ML models and the results of the experiment
for three newly designed small molecules. The ML predictions
are consistent with experimental results. The limitation of cur-
rent model is its applicability in non-rotor structures as most
considered AIEgens in our dataset are rotor structure based. We
have developed a scheme to help AIEgen design by combining
ML approaches and experimental analysis. That is, a large num-
ber of AIEgens could be screened through a pre-evaluation and
classification ML model, and then the identified candidates will
be synthesized and further tested by experiments. Our study on
the relationship between the chemical structure of molecule and
AIE/ACQ prediction could speed up new AIEgen design and
hence accelerate the development of high-performance organic
luminescent materials.

4. Experimental Section
Molecular Descriptor: Molecular characterization, that is, how to en-

code molecular structures, is a key issue in molecular machine learn-
ing. The complexity of molecular characterization is a numerical descrip-
tion comparing the similarities between two compounds.[1,2] In order to
make molecular comparisons computationally easier, the structure needs
to be simplified and abstract. Quantitative structure–activity relationship
(QSAR) is an important tool for molecular characterization. It uses mathe-
matical statistics to explain the quantitative change rule between the activ-
ity or physical and chemical characteristics of a compound and its molec-
ular structure.

Molecular descriptors are the primary way QSAR is calculated. Accu-
rate molecular descriptors play a decisive role in the reliability of molec-
ular evaluation. A molecular descriptor is a measure of some aspect of a
molecule, including its physical and chemical properties, or a numerical in-
dicator derived from various algorithms. Currently, more than 5000 molec-
ular descriptors are provided and calculated by various software. The RDkit
is used to generate molecular descriptors as numerical descriptors[8] for
predictive experiments.

Molecular descriptors can be divided into quantitative descriptors
and qualitative descriptors. Quantitative description includes descriptors
based on molecular graph theory, various theoretical or experimental spec-
tral data (such as ultraviolet spectrum), molecular composition (such as
number of hydrogen bond donors, number of chemical bonds), physi-
cal and chemical properties (such as ester water distribution coefficient),
molecular field descriptors, and molecular shape descriptors, etc. Qual-
itative descriptors are commonly referred to as molecular fingerprints,
which represent the structure, properties, fragments or substructures of
molecules with some kind of code. In this paper, these two molecular de-
scriptors were used as different modes to predict molecular properties.
So this approach takes into account both the quantitative and qualitative
properties of the molecules.

Qualitative Descriptors: Molecular fingerprinting is by far the most
popular way of quantitative descriptors, which converts a molecule into
(encodes) a series of binary digits (bits) to indicate the presence or ab-
sence of a specific substructure in the molecule (see Figure S1, Supporting
Information). Each molecule first applies a hash function and then gen-
erates a fingerprint based on the feature. Comparing fingerprints allows
you to determine similarities between two molecules, find matching query
substructures, and so on. By doing so, statistical analysis and/or machine-
learning techniques on this group of molecules to gain new insights that
were not available to humans could be performed. Molecular classifica-
tion, for example, reduces the similarity between molecules of the same
class (intra-class) and increases the similarity between molecules of the
different class (inter-class).

It is difficult to compare molecules directly in structure, so the com-
parison between molecules needs to be quantified first. The quantized
molecules are represented in the form of bit strings, and each bit corre-
sponds to a segment of a molecule (Figure S2, Supporting Information).
Similar molecules should have many pieces in common, and this should
be expressed numerically as a similar vector. In this way, the similarity cal-
culation method based on distance, divergence, and correlation coefficient
can be easily applied to molecules. There are many molecular fingerprint
methods, the most commonly used are Morgan circular fingerprint, Day-
light fingerprint, atomic pair fingerprint, and topological twist fingerprint.

The extended connectivity fingerprint (ECFP) is a molecular fingerprint
that can represent the internal structure of a compound, which is derived
from the Morgan algorithm.[9] In recent years, ECFP has become the in-
dustry standard method for circular molecular fingerprint, which is often
used as a benchmark to compare the effect of new methods in machine
learning. Morgan circular fingerprint (MCP) is part of the family of ECFP,
using Morgan[10] generation algorithm. MCP searches substructures of all
given steps in the compound through Morgan search algorithm, and then
obtains the hash value of each substructure through hash, thus forming
the corresponding fingerprint. When this fingerprint is used, it will pro-
duce a fingerprint of variable length according to different set diameters.
They record each environment from the atom up to a specified radius (see
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Figure S3, Supporting Information). MCP can determine the absence or
presence of molecular function and is widely used in similarity search of
complete structures.

Topological or path-based fingerprint starts with an atom, intercepts
molecular fragments along the path to a specified length, and hashed
each fragment to get a fingerprint (see Figure S4, Supporting Information).
This fingerprint can adjust the path length, calculate all the subgraphs be-
tween the minimum path and the maximum path, so it is suitable for
arbitrary molecules, and can quickly search for substructures and filter
molecules. The Daylight fingerprint is the most prominent representative
of this kind of fingerprint. The fingerprint generator produces a fingerprint
similar to that produced using the Daylight fingerprint algorithm.[12,13]

Atom-pair fingerprint and topological torsion fingerprint are also two com-
mon topological fingerprints. Atom-pair fingerprint identifies each atom in
the molecule as the shortest path based on the environment. Meanwhile
topological torsion fingerprints are generated by constructing a topolog-
ical dual angle descriptor using the bonding paths of four non-hydrogen
atoms. The two fingerprint algorithms are similar in that they contain in-
formation in three dimensions: atomic number, number of 𝜋 electrons,
and number of adjacent atoms. In addition, they can all be expressed in
sparse form and explicit form, and you can view the chemical information
represented by the fingerprint.

Quantitative Descriptors: Quantitative descriptors can be divided into
1D, 2D, and 3D, etc. according to the calculation of molecular structure
dimensions required. RDKit provides many methods for calculating de-
scriptors, which can be used for molecular screening, drugenicity assess-
ment, etc. Here we filter 108 1D and 2D descriptors to quantify features,
including 201D and 88 2D molecular descriptors (see Table 1 for details).

Logistic Regression: Logistic regression[3] is called “regression” be-
cause the basic idea is based on regression. However, it is used to deal
with classification problems, mainly for binary classification, that is, there
are only two outputs, representing two categories. Here, let X denote the
samples, with corresponding outputs Y. Θ is the covariant matrix. The
classification label Y ∈ {0, 1}, where 1 represents positive samples and 0
represents negative ones, was assumed. In logistic regression, we find a
hypothetical function h(x) = g(𝜃Tx) based on the prediction of the actual
value of the linear function 𝜃Tx output, and map the actual value to a value
between 0 and 1. If h(x) ≥ 0.5 then y = 1, which would give a prediction of
a positive sample. And if h(x) < 0.5, then y = 0, which would give a predic-
tion of a negative one. The sigmoid function was selected as the activation
function in logistic regression, which is defined as:

g(z) = 1
1 + e(−z)

(1)

Then the predictive function of logistic regression output is:

h𝜃(x) = g(𝜃T x) = 1

1 + e(−𝜃T x)
(2)

Logistic regression is a logarithmic probability of a linear combina-
tion of features to fit the probability of a true label as a positive example
(ln y

1−y
= 𝜃T x + b). In other words, the probability that the input x is clas-

sified to be category 1 and category 0 is:

P(y = 1|x; 𝜃) = h𝜃(x)
P(y = 0|x; 𝜃) = 1 − h𝜃(x) (3)

K-Nearest Neighbor: KNN[4] is a relatively mature pattern recognition
algorithm and one of the simplest classification algorithms. Considering
the k closest samples of a data point, if most of the samples belong to
a certain category, the data point also belongs to this category. Two key
factors that affect KNN were the number of neighbors k and the calculation
of distance. k was usually an integer not greater than 20 and the distance
was generally using Euclidean distance. The Euclidean distance is defined

as d =
√∑n

i=0 (xi − yi)
2, where n is the number of samples.

The neighbors selected in the KNN algorithm were all objects that have
been correctly classified. This method determined the category to which
the sample to be classified belongs only based on the category of the near-
est sample or samples. Therefore, the KNN algorithm process could be
described as: 1) calculate the distance between test data and each train-
ing data; 2) sort by increasing distance; 3) select the K points with the
smallest distance; 4) determine the occurrence frequency of the category
of the first K points; 5) return the category with the highest frequency in
the first K points as the predicted classification of test data.

Gradient Boosting Decision Tree: Gradient boosting decision tree
(GBDT)[5] is a very popular model in machine-learning applications
with excellent performance. It is a representative algorithm in boosting
series.[18,19] Boosting is a progressive model combination method. Each
new classifier improves on the prediction result of the previous classifier.
Therefore, boosting is a model combination method that reduces bias.
GBDT is an iterative decision tree algorithm, which is composed of mul-
tiple decision trees. The conclusions of all trees are summed up as the
final answer, and the integration method is gradient boosting. The intu-
itive understanding was: each round of predictions had residuals with ac-
tual values, and the next round of predictions was performed based on
the residuals, and finally all predictions were added together to obtain the
result. GBDT through multiple rounds of iteration, each iteration gener-
ated a weak classifier, each classifier was trained based on the residuals
of the previous classifier. Since the training process was to reduce the de-
viation to continuously improve the accuracy of the final classifier. The
requirements for weak classifiers were generally simple enough and have
low variance and high bias. The weak classifier was generally selected as
the CART TREE[19] (the classification regression TREE). Due to the high
bias and simple requirements, the depth of each classification regression
tree was not very deep. The final total classifier was a weighted summation
of the weak classifiers obtained in each round of training.

Using a decision tree to represent the basic model of GBDT, then GBDT
can be expressed as:

fM(x) =
M∑

m=1

T(x;Θm) (4)

where T(x; Θm) represents the decision tree. M is the number of trees. The
forward distribution algorithm was adopted to first determine the initial
boosting tree fo(x) = 0. Then the model in step m was:

Θ̂m = arg min
Θm

N∑
i=1

L(yi, f(m−1)(xi) + T(xi;Θm)) (5)

where L() is the loss function. The loss function selected by the regression
algorithm was generally the mean square error (least squares) or the ab-
solute value error. In the classification algorithm, the logarithmic function
was used to represent the loss function.

Random Forest: Random forest[6] is a flexible and convenient
machine-learning algorithm, which is an ensemble learning algorithm
based on decision tree. The idea of ensemble learning is to solve the in-
herent defects of a single model or a group of models, so as to integrate
more models, learn from each other, and avoid limitations. Bagging and
boosting are two main algorithms of ensemble learning. Both bagging and
boosting combine existing classification or regression algorithms in a cer-
tain way to form a more powerful classifier. This is an assembly method
of classification algorithm, which assembles weak classifier into strong
classifier. Bagging comes from bootstrap aggregating, which means self-
service sampling ensemble. This method divides the training set into k
new training sets, and then builds a model on each new training set, which
is irrelevant. During the prediction, the k models are classified by voting to
get the classification results. For the regression problem, the mean value
of k models is calculated as the final result.

Random forest is a special bagging method that uses a decision tree
as a model in bagging. Decision tree divides the space with a hyperplane,
each time splitting the current space into two. This makes each leaf node a
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disjoint region in space. When making a decision, the input sample goes
down step by step according to the value of each feature and falls into
one of the N regions (assuming N leaf nodes). Therefore, the workflow of
random forest could be summarized as follows:

i) k features were randomly selected from the data set, with a total of m
features (where k was less than or equal to m). Then a decision tree
was built based on these k features;

ii) Repeat n times, and these k properties were randomly combined to
create n decision trees;

iii) Random samples were input for each decision tree to predict the re-
sults, and n results could be obtained from n decision trees;

iv) The votes of each predicted target were calculated, and the predicted
target with the highest number of votes were taken as the final predic-
tion of the random forest.

Neural Network: Artificial neural network (ANN)[7] is a computational
nonlinear model widely used in machine learning. It consists of three
parts, the input layer, the hidden layer, and the output layer. Each layer con-
tains a certain number of neurons. Input layer data is passively received
through the node and then passed to subsequent hidden layers. The hid-
den layer processes the data using various mathematical functions, which
are then passed to subsequent output layers. The final output layer pro-
vides the final solution for the network.

Perceptron or single-layer neural network is the simplest neural com-
puting model. The perceptron can be regarded as a single neuron with
input x1, x2, x3, …, xN, and output y = f(x). Each perceptron input has the
weight w1, w2, w3, …, wN. If a weight is less than 1, it will weaken the in-
put. If it is greater than 1, it will enlarge the input. In addition, there is an
input 1 in the perceptron model, with a fixed weight b, called deviation,
and used as the target value for training perceptron. Thus, the output of
the perceptron can be expressed as follows:

f (x) = f

(
M∑
i

𝜔ixi + b

)
(6)

where f(x) is called the activation function or transfer function and was
used to determine the value of the perceptron output. Common activation
functions include sigmoid function, tanh function, and ReLU function.

Principal Component Analysis: PCA is the most widely used data di-
mension reduction algorithm, which can be used to extract the main char-
acteristic components of data. PCA expresses data by using a small num-
ber of features that contains the core information of the data, and finds a
few features that describe the key information. The idea of PCA is based on
the theory of maximum variance, which maps n-dimensional features to
k-dimensions (k < n). This k-dimension is new orthogonal features called
principal component. Generally used in scenarios where the original data
have many features and features have obvious correlations. Due to PCA
only selects the most critical information, it has better resistance to inter-
ference. In this work, the default value for the number of principal com-
ponents (number of preserved features) in the input parameter of PCA,
which was defined as the principal components = min (number of sam-
ples, number of features) was used. Therefore, the number of features
retained in this experiment according to the dataset was the number of
samples, which had 356 dimensional features.

The PCA member parameter explained variance_ratio, was outputted
which indicated the ratio of the variance of each principal component to
the total variance after dimensionality reduction. The larger the ratio, the
more important the principal component. After summing the explained
variance_ratio, that is, the ratio of all retained features to the total variance,
the result was always 1 in these experiments. This means that the data
was reduced from 2048 dimensions to 356 dimensions to retain all the
information of the original data without loss of information.

Metrics: A standard format for accuracy evaluation is the confusion
matrix, also known as the error matrix. It visually describes the predictive
performance of the model and compares it from four quadrants:

True positives (TP): Samples are predicted positive and actually are pos-
itive.

True negatives (TN): Samples are predicted negative and actually are
negative.

False positives (FP): Samples are predicted positive but actually are
negative.

False negatives (FN): Samples are predicted negative but actually are
positive.

Based on the confusion matrix, the accuracy is defined as:

Accuracy = TP + TN
TP + TN + FN + FP

(7)

Accuracy is the most common evaluation metric. For binary classifiers,
the model can be well evaluated in accuracy when classes are balanced.
However, when the classes were unbalanced, the accuracy is partial to the
majority class and has little effect on the evaluation of the minority classes.
Therefore, two other comprehensive metrics, F1 and AUC were employed.
F1-score considered both precision and recall to find a balance between
them:

Precision = TP
TP + FP

(8)

Recall = TP
TP + FN

(9)

F1 = 2 × Precision × Recall
Precision + Recall

(10)

It could be seen from the equations that recall is described based on
the true label, and precision is relative to model prediction. In general, if
the model was greedy and wanted to cover more samples, it was more
likely to make mistakes. In this case, there would be high recall and low
precision. If the model was conservative and only made a prediction for its
very certain sample, the precision would be high, but the recall would be
relatively low. F1 took these two factors into account, and the higher the
value, the better the result.

In order to illustrate AUC, it was needed to introduce the concepts of
true positive rate (TPR) and false positive rate (FPR). Both metrics were
based on the conditional probability of the true label, and the true distri-
bution of the label did not affect TPR and FPR. In other words, these two
metrics would not be affected by imbalanced data.

TPR = TP
TP + FN

(11)

FPR = TP
TN + FP

(12)

where TPR is same as recall. The receiver operating characteristic curve
(ROC curve) took FPR as the abscissa and TPR as the ordinate using dif-
ferent thresholds to draw the curve.

The area under curve (AUC) is the area under the ROC curve. Basically,
the larger the AUC, or the curve is closer to the upper left corner (true
positive rate= 1, false positive rate= 0), the better the model performance.

Hyperparameters: Training data were split into five parts, four parts as
sub-training, and one portion as validation. The parameters with the best
results were selected to train the final model. The hyperparameters were
set as:

i) Logistic regression: the regularization parameter was chosen in the
range [10−3,103];

ii) KNN: the number of neighbors was chosen from [3, 5, 7, 9, 11, 13, 15,
17, 18];

iii) Gradient boosting: the minimum samples split and minimum sam-
ples leaf were in the range [0.1, 0.5], and the maximum depth was
from values [3, 5, 7]; the subsample was chosen from [0.5, 0.75, 0.95];
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iv) Random forest: the minimum samples split was in the range [2, 4],
and the number of estimators was from [10, 50, 100, 200, 500];

v) Neural network: the learning rate search grid was in the range [10−5,
10−1] using a log-scale; and the regularization parameter 𝛼 was cho-
sen from [10−5, 10−3] using a log-scale.

Confusion Matrix: The confusion matrix of ensemble method and
competing method based on multi-modal features are shown in Figure
S6, Supporting Information. As seen, the highest accuracy rate was based
on random forest on Daylight + Quantitative descriptors. There were 20
misclassified samples, of which 4 AIEs were misclassified as ACQ, and 16
ACQs were misclassified as AIE. Next to this method was MLPClassifier on
Daylight + quantitative descriptors, with 21 misclassified samples, 11 AIE
misclassified as ACQ, and 10 ACQ misclassified as AIE. First of all, both
methods perform well in Daylight + Des features, which demonstrates the
effectiveness of the fusion of these two features. Secondly, the results of
the two methods were significantly different on the unbalanced classifica-
tion plane. Random forest was fairer to a single unbalanced category, while
MLPClassifier treated two unbalanced categories equally. This once again
brings up the problem of evaluating the final result. The ensemble method
had 22 misclassified samples, 8 AIEs were misclassified as ACQ, and 14
ACQs were misclassified as AIE. Although it was based on the results of
the integrated voting of the 20 modes, it was also consistent with the re-
sults of balancing the two best methods. This indicated that the voting
integration method could be predicted effectively and comprehensively,
which was regarded as the final model.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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