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Diagnosis and classification of 
portosystemic shunts: a machine 
learning retrospective 
case-control study
Makan Farhoodimoghadam 1†, Krystle L. Reagan 2*† and 
Allison L. Zwingenberger 3

1 Department of Computer Science, University of California, Davis, Davis, CA, United States, 
2 Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of 
California, Davis, Davis, CA, United States, 3 Department of Surgical and Radiological Sciences, School 
of Veterinary Medicine, University of California, Davis, Davis, CA, United States

Diagnosis of portosystemic shunts (PSS) in dogs often requires multiple diagnostic 
tests, and available clinicopathologic tests have limitations in sensitivity and 
specificity. The objective of this study was to train and validate a machine learning 
model (MLM) that can accurately predict the presence of a PSS utilizing routinely 
collected demographic data and clinicopathologic features. Dogs diagnosed with 
PSS or control dogs tested for PSS but had the condition ruled out (non-PSS) were 
identified. Dogs were included if a complete blood count and serum chemistry panel 
were available from PSS diagnostic testing. Dogs with a PSS were subcategorized as 
having a single intrahepatic PSS, a single extrahepatic PSS, or multiple extrahepatic 
PSS. An extreme gradient boosting (XGboost) MLM was trained with data from 70% 
of the cases, and MLM performance was determined on the test set, comprising the 
remaining 30% of the case data. Two MLMs were created. The first was designed 
to predict the presence of any PSS (PSS MLM), and the second to predict the PSS 
subcategory (PSS SubCat MLM). The trained PSS MLM had a sensitivity of 94.3% 
(95% CI 90.1–96.8%) and specificity of 90.5% (95% CI 85.32–94.0%) for dogs in the 
test set. The area under the receiver operator characteristic curve (AUC) was 0.976 
(95% CI; 0.964–0.989). The mean corpuscular hemoglobin, lymphocyte count, and 
serum globulin concentration were most important in prediction classification. The 
PSS SubCat MLM had an accuracy of 85.7% in determining the subtype of PSS of 
dogs in the test set, with variable sensitivity and specificity depending on PSS subtype. 
These MLMs have a high accuracy for diagnosing PSS; however, the prediction of 
PSS subclassification is less accurate. The MLMs can be used as a screening tool to 
increase or decrease the index of suspicion for PSS before confirmatory diagnostics 
such as advanced imaging are pursued.

KEYWORDS

liver disease, veterinary, artificial intelligence, hepatopathy, congenital, microvascular 
dysplasia

Introduction

Portosystemic shunts (PSS) are vascular anomalies that allow blood within the portal 
circulation to bypass the liver and enter the systemic circulation. This results in the clinical 
syndrome of hepatic encephalopathy, reduced metabolization of hepatically cleared 
medications, and accumulation of blood ammonia that can result in urate urinary calculi. 
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The clinical presentation of dogs with PSS is variable and can range 
from subclinical to a severe, life-threatening condition. The overall 
incidence of congenital PSS is 0.18% (1). However, some breeds are 
overrepresented, with around 3% of Havanese and Yorkshire terriers 
being diagnosed with the condition (1–3). These vascular anomalies 
are subcategorized as congenital due to inappropriate attenuation of 
fetal vasculature or acquired when they arise due to portal 
hypertension. Congenital PSS are further subclassified into 
extrahepatic PSS, more commonly diagnosed in toy breed dogs, and 
intrahepatic PSS, more commonly diagnosed in large breed 
dogs (4, 5).

The clinical presentation of dogs with PSS can be  vague and 
variable, with signs including failure to thrive, gastrointestinal signs, or 
neurologic signs (6, 7). Clinical signs could easily be attributed to other 
disease processes, making recognizing this condition challenging in 
some cases. Other hepatic diseases, including portal venous hypoplasia 
(PVH) and chronic hepatitis, can mimic the clinical signs and 
clinicopathologic findings often associated with PSS, such as anemia, 
decreased blood urea nitrogen concentrations, elevated liver enzymes, 
hypoalbuminemia, and hypoglycemia (5, 7–10).

Diagnostic tools to discriminate between PSS and other disease 
conditions include measurement of paired fasting and post-prandial 
serum bile acid concentrations and abdominal imaging studies. 
Elevated serum bile acid concentrations are a sensitive marker for 
hepatic insufficiency but cannot differentiate between PSS and other 
pathology, such as PVH (11). Ultrasonographic identification of PSS 
requires advanced technical training, and sensitivity depends on the 
operator’s skill level (12, 13). Additional imaging tests such as nuclear 
scintigraphy and computed tomography may be needed to confirm or 
exclude the presence of a shunt, and dogs often undergo a series of 
tests for a final diagnosis. Other biomarkers have been investigated to 
help discriminate between PSS and other liver pathologies, including 
serum ammonia concentrations protein C; however, these assays lack 
specificity for diagnosing a PSS (14, 15).

Machine learning techniques have been increasingly utilized to 
enhance diagnostic and predictive capabilities in the veterinary field. 
Some previous applications of machine learning in veterinary medicine 
include the diagnosis of hypoadrenocorticism, leptospirosis, and 
babesiosis in dogs, as well as lameness in cows (16–19). Predictable 
patterns in clinicopathologic data have been previously observed in 
dogs with PSS (6, 7, 20). This study aimed to evaluate a gradient-boosted 
tree machine learning model (MLM) as a predictive tool to detect PSS 
in dogs utilizing demographic features and features from routinely 
conducted blood work, the complete blood count and serum 
biochemistry panel. We hypothesize that MLMs when trained with 
clinicopathologic data from dogs with PSS or dogs tested for PSS that 
had the disease ruled out, can accurately discriminate between dogs that 
have a PSS and those that have non-PSS disease. Further, we hypothesize 
that MLMs can accurately classify dogs based on the subtype of PSS.

Materials and methods

Patient selection and ground truth 
determination

A retrospective case–control study, selecting dogs from the 
electronic medical record system of the University of 

California-Davis Veterinary Medical Teaching Hospital (VMTH) 
was performed. Records were searched from 2000 to 2020 to 
identify potential cases (PSS group) and controls (non-PSS  
group).

Dogs with PSS were identified by (1) searching for “shunt” or 
“PSS” in the clinical diagnosis field (2) searching for dogs with 
advanced imaging procedures of the abdomen (contrast CT scan, 
dual-phase contrast CT scan, nuclear scintigraphy of the liver) or 
(3) searching for dogs that underwent a PSS related surgical 
procedure (percutaneous intrahepatic shunt coil embolization 
procedure, intrahepatic shunt surgical repair, multiple or single 
extrahepatic shunt attenuation, or laparoscopic liver biopsy). 
After a medical record review (AZ), dogs were included as cases 
if PSS were identified on ≥1 imaging modality or during surgical 
intervention. If conflicting results were obtained regarding the 
presence of a PSS on multiple imaging modalities, the dog was 
excluded. Dogs were subcategorized in this group based on 
imaging into three groups; single intrahepatic portosystemic 
shunt, single extrahepatic portosystemic shunt, or multiple 
extrahepatic shunts based on imaging studies or surgical 
exploration results based on a wholistic medical record 
review (AZ).

Approximately equal number of dogs with non-PSS disease 
were identified as controls by searching for dogs that had post-
prandial serum bile acid concentrations measured (Veterinary 
Diagnostic Laboratory, University of California-Davis). Medical 
records were reviewed by a single author (AZ), and dogs were 
included if a PSS was not identified on at least one of abdominal 
ultrasound, contrast CT scan, dual-phase contrast CT scan, or 
transrectal nuclear scintigraphy of the liver. The clinical diagnosis 
of the non-PSS dogs was reviewed by a single author (KR), and 
the primary clinical diagnosis was categorized into the following 
categories: gastrointestinal (including non-PSS hepatic or 
pancreatic disease), cardiac, immune-mediated, genitourinary, 
neurologic, respiratory, infectious, neoplasia, trauma and primary 
surgical, or undetermined.

To be included, PSS and non-PSS dogs had to have a complete 
blood count (Advia 120; Siemens) and serum chemistry panel 
(Hitachi 917 years 2000–2009; Cobas c501c/6,000 years 2009–
2020) performed (Veterinary Diagnostic Laboratory, University 
of California-Davis) contemporaneously with the diagnostic 
investigation of PSS and before surgical intervention for PSS 
attenuation for dogs with congenital PSS. Medical records for PSS 
and non-PSS dogs were reviewed, and breed, sex, age (days), 
weight (kg), results of complete blood count, and serum 
biochemistry at the time of diagnosis at the VMTH were recorded. 
Results of abdominal imaging, surgical interventions performed, 
and results of liver histopathology were also recorded.

Feature preprocessing

Serum bilirubin and gamma-glutamyltransferase have a lower 
level of detection >0. Values below the detection limit were 
recorded at 0.01 below the lower end of assay detection. Dog 
breeds were grouped into toy, herding, hound, non-sporting, 
sporting, terrier, working, foundation stock service, mix breed, or 
other. One-hot encoding was utilized for categorical variables.
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Machine learning model training

Classification models were trained with patient features and 
clinicopathologic parameters (Table 1). The data set was randomly 
split into a 70% training set and a 30% test set and two models 
were trained, one that predicts the presence of any PSS (PSS 
MLM) and a second that predicts the subclassification of PSS (PSS 
SubCat MLM). First, a gradient boosted tree (xgboost 1.7.6, 
Python3) was trained to discriminate between PSS and non-PSS 
dogs (PSS MLM) (21). The model was trained using 10-fold cross-
validation, and hyperparameters were tuned using a Bayesian 
search algorithm optimized based on AUC-ROC. The tuned 
hyperparameters included gamma, learning rate, maximum 

depth, the number of estimators, regularization alpha, and 
regularization lambda (Supplementary Table S1). A second 
gradient boosted tree (PSS SubCat MLM) was trained to classify 
animals into the following categories: single intrahepatic 
portosystemic shunt, single extrahepatic portosystemic shunt, 
multiple extrahepatic shunts, or non-PSS disease. Due to class 
imbalance, the synthetic minority over-sampling technique 
(SMOTE) from imblearn (0.10.1) library was applied to the PSS 
SubCat MLM training data set (22, 23). Model code utilized to 
build these models is publicly available (https://github.com/
MakanFar/pss_classification).

Machine learning model performance 
evaluation and statistical analysis

The 30% test set was used to evaluate MLM performance. 
Model prediction results are reported as sensitivity and specificity 
compared to the labeled classification. Receiver operator 
characteristic (ROC) plots were generated, and the area under the 
curve (AUC) was calculated. For the PSS SubCat model, a 
one-versus-rest multiclass ROC was utilized. The 95% confidence 
intervals (95% CI) of sensitivity, specificity, and AUC were 
calculated using the Wilson-Brown method (Prism v.9.2.0; 
GraphPad). Population characteristics were tested for normality. 
They did not meet normality criteria, and are presented as the 
median and interquartile range. Comparisons between continuous 
clinicopathologic variables were performed with a Wilcoxon-
Rank Sum test, and p-values were adjusted for multiple 
comparisons using a Bonferroni correction.

Feature importance in the PSS MLM was assessed using the gain 
metric. Features with a high score were considered to have higher gain 
and, therefore, more impact on the MLM prediction.

Results

Study population demographics

In the PSS group, 1,149 dogs were assessed for eligibility. Of these, 
274 were excluded because of a lack of definitive diagnosis of a 
PSS. From the remaining 875 cases, 223 were excluded for lacking one 
or both of CBC and serum biochemistry tests. A total of 652 dogs with 
PSS were included. Of these dogs, 421 had a single extrahepatic shunt, 
175 had a single intrahepatic shunt, and 56 had multiple extrahepatic 
shunts. Table 2 summarizes the method of PSS diagnosis for dogs in 
this group.

TABLE 1 Model features utilized to predict presence of portosystemic 
shunt.

Demographics Complete blood 
count

Serum 
chemistry

Breed group Hematocrit (%) Anion gap (mmol/L)

Weight (kg) Red blood cells (/𝜇L) Sodium (mmol/L)

Age (years) Hemoglobin (gm/dL) Potassium (mmol/L)

Sex MCV (fL) Chloride (mmol/L)

MCH (pg) Bicarbonate (mmol/L)

MCHC (gm/dL) Phosphorus (mg/dL)

RDW (%) Calcium (mg/dL)

White blood cells (/𝜇L) BUN (mg/dL)

Band neutrophils (/𝜇L) Creatinine (mg/dL)

Neutrophils (/𝜇L) Bilirubin (mg/dL)

Lymphocytes (/𝜇L) Glucose (mg/dL)

Monocytes (/𝜇L) Total protein (g/dL)

Eosinophils (/𝜇L) Albumin (g/dL)

Basophils (/𝜇L) Globulin (g/dL)

Platelets (/𝜇L) ALT (IU/L)

MPV (fL) AST (IU/L)

ALP (IU/L)

GGT (IU/L)

Cholesterol (mg/dL)

Alanine Transaminase (ALT), Aspartate Transaminase (AST), Alkaline Phosphatase (ALP), 
Blood Urea Nitrogen (BUN), Gamma-glutamyl Transferase (GGT), Mean Corpuscular 
Hemoglobin (MCH), Mean Corpuscular Hemoglobin Concentration (MCHC), Mean 
Corpuscular Volume (MCV), Mean Platelet Volume (MPV), Red Blood Cell Distribution 
Width (RDW).

TABLE 2 Method of PSS status determination.

Diagnosis methodology Computed tomography Nuclear scintigraphy Ultrasound Surgical exploration

PSS Dogs (n = 652) 265 290 452 481

Single intrahepatic (n = 175) 130 51 110 148

Single extrahepatic (n = 421) 120 221 304 329

Multiple extrahepatic shunts (n = 56) 15 18 38 4

Non-PSS Dogs (n = 589) 1 66 573 1
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In the non-PSS group, 969 dogs were assessed for eligibility. 
One hundred and fifty were excluded for lack of confident 
exclusion of a portosystemic shunt. A further 230 were excluded 
for lacking one or both of CBC and serum biochemistry tests, 
leaving 589 control dogs for analysis. Dogs in the control group 
had a PSS ruled out by nuclear scintigraphy in 66, computed 
tomography in 1, and the remaining 522 dogs had a PSS ruled 
out with abdominal ultrasound. Some dogs had multiple 
diagnostics performed (Table 2). Within the non-PSS group, the 
category of clinical diagnosis consisted of 228 dogs with GI 
disease, 171 with neurologic disease, 54 with neoplasia, 35 with 
genitourinary disease, 32 with immune-mediated disease, 12 
with respiratory disease, 9 with infectious, 7 with cardiac disease, 
1 with primary surgical disease, and 40 with an undetermined 
disease process. Seven of the dogs with GI diseases were 
diagnosed with PVH after a review of the histopathology of 
liver biopsy.

The breed group distribution was significantly different 
between the PSS and control group (p < 0.0001), with more toy 
breed dogs represented in the PSS group (Table 3). Dogs in the 
PSS group were younger (p < 0.0001) and had a smaller body 
weight (p < 0.0001) compared to control dogs. There was no 
difference in sex distribution between groups (Table 3). Weight 
measurements were missing for 26 (4.3%) PSS dogs and 21 (9.2%) 
non-PSS dogs. Age was missing for 4 (0.7%) PSS dogs and 21 
(3.6%) non-PSS dogs.

Clinicopathologic findings

Clinicopathologic differences between dogs with PSS and 
non-PSS control dogs are summarized in Table  4. Individual 
clinicopathologic values that were missing in >2% of cases included 
total calcium missing in 274 dogs (22.1%) and red blood cell 
distribution width in 47 dogs (3.8%).

PSS prediction

The PSS MLM classification model predicted a diagnosis of a 
PSS correctly in 345/373 (92.5%) dogs in the test set, correctly 
classifying 183/194 dogs within the PSS group, yielding a 
sensitivity of 94.3% (95% CI 90.1–96.8%) (Table 5). The classifier 
correctly classified 162/179 of the non-PSS dogs as not having a 
PSS, resulting in a specificity of 90.5% (95% CI 85.32–94.0%). The 
positive and negative likelihood ratios are 9.9 and 0.07, 
respectively. This model has an AUC of 0.976 (95% CI; 0.964–
0.989) (Figure  1). Of the features utilized to train the PSS 
classification model, MCH, lymphocyte count, and serum 
globulin concentration were identified as the most important 
predictors of classification (Figure 2).

PSS subcategory prediction

The PSS SubCat MLM correctly predicted the classification of 
7/13 (33.9%) of dogs with acquired PSS, 103/121 (85.1%) of dogs with 
extrahepatic PSS, 46/58 (79.3%) of dogs with intrahepatic PSS, and 
164/181 (90.6%) of dogs with non-PSS disease with an overall 
accuracy of 85.7% (Table 6). When assessing one subcategory versus 
all other categories, this model has an AUC of 0.954 (95% CI; 0.921–
0.986) for detecting intrahepatic PSS, 0.937 (95% CI; 0.910–0.963) for 
detecting extrahepatic PSS, 0.824 (95% CI; 0.711–0.938) for detecting 
acquired PSS, and 0.979 (95% CI; 0.967–0.991) for detecting non-PSS 
disease (Figure 3; Table 7).

Discussion

MLMs trained with routinely collected patient data can 
accurately predict the presence and subtype of PSS. These MLMs 
can identify patterns with dog signalment, hematologic, and 
biochemical parameters that differentiate between PSS and 
non-PSS disease with an accuracy similar to traditional methods 
of PSS detection, including ultrasonography, serum post-prandial 
bile acids, and plasma ammonia concentrations (8, 12, 24). 
Application of these MLMs may provide actionable diagnostic 
information utilizing readily available laboratory parameters that 
can augment clinical decision-making.

Measurement of post-prandial serum bile acids or plasma 
ammonia concentrations are commonly used biomarkers to 
screen for PSS in dogs. Post-prandial serum bile acids are a 
sensitive marker of PSS (92–93%), but specificity (67%) is lacking 
(8, 24). Elevated plasma ammonia concentrations have a 
sensitivity of 85–100% and a specificity of 84–89% (8, 24). 
Limitations to applications of these assays include the need for a 
12 h fast before performing a bile acids test, the liable nature of 
ammonia, the need for reference laboratory testing, and the 
associated costs. Compared to these biomarkers, the MLM 
trained to detect the presence or absence of a PSS has equivalent 
sensitivity (94%) with superior specificity (90%), without the 
practical limitations of biomarker testing. Further, serum bile 
acids and plasma ammonia concentration testing cannot 
differentiate between subcategories of PSS. In contrast, a second 

TABLE 3 Demographic description of dogs with and without PSS.

PSS dogs Non-PSS dogs

Sex (n, %)

Female 338 (52%) 319 (54%)

Male 313 (48%) 268 (46%)

Breed group (n, %)

Herding 41 (6%) 57 (10%)

Hound 28 (4%) 39 (7%)

Non-sporting 35 (5%) 81 (14%)

Other 114 (17%) 77 (13%)

Sporting 86 (13%) 88 (15%)

Terrier 50 (8%) 64 (11%)

Toy 265 (41%) 128 (22%)

Working 33 (5%) 55 (9%)

Age (years; median, IQR) 1.5 (0.6–3.9) 6.5 (2.3–10)

Weight (kg; median, IQR) 6.0 (2.9–13) 12 (5.3–27)
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MLM was trained to predict the subcategory of PSS and had an 
overall accuracy of 86%. This study did not include a comparison 
of serum bile acid concentrations, plasma ammonia 

concentrations, and MLM performance, as many of the PSS  
dogs did not have this biomarker testing performed at 
our institution.

TABLE 4 Clinicopathologic findings of dogs with and without PSS.

Reference 
interval

PSS cases median (IQR) Non-PSS controls median (IQR) Adjusted p value

Complete blood count

Red blood cells (/𝜇L) 5.6–8 6.6 (5.8–7.2) 6.1 (5.2–6.8) 0.0035

Hemoglobin (gm/dL) 14–19 13 (11–15) 14 (12–16) 0.0035

Hematocrit (%) 40–55 40 (35–45) 41 (35–46) 0.6335

MCV (fL) 65–75 62 (58–65) 68 (65–71) 0.0035

MCH (pg) 22–26 20 (19–22) 24 (23–25) 0.0035

MCHC (gm/dL) 33–36 33 (32–34) 35 (34–36) 0.0035

RDW (%) 11–14 14 (13–15) 14 (13–16) 1

White blood cells (/𝜇L) 6,000–13,000 13,175 (10,298–17,248) 11,000 (8,105–15,770) 0.0035

Band neutrophils (/𝜇L) 0 0 (0–0) 0 (0–0) 0.0105

Neutrophils (/𝜇L) 3,000–10,500 8,393 (6,162–11,908) 7,694 (5,317–12,317) 0.203

Lymphocytes (/𝜇L) 1,000–4,000 2,954 (2,066–3,907) 1,680 (1,044–2,404) 0.0035

Monocytes (/𝜇L) 150–1,200 692 (460–1,173) 600 (380–944) 0.0035

Eosinophils (/𝜇L) 0–1,500 501 (265–847) 276 (104–545) 0.0035

Basophils (/𝜇L) 0–50 23 (0–54) 0 (0–33) 0.0035

Platelets (/𝜇L) 150,000–400,000 238,000 (179,000–308,000) 320,000 (232,250–428,000) 0.0035

MPV (fL) 7–13 9.9 (8.8–11) 9.8 (8.7–12) 1

Serum chemistry panel

Anion gap (mmol/L) 12–20 17 (14–20) 21 (19–24) 0.0035

Sodium (mmol/L) 143–151 147 (145–149) 147 (145–149) 1

Potassium (mmol/L) 3.6–4.8 4.4 (4.1–4.7) 4.5 (4.2–4.9) 0.0035

Chloride (mmol/L) 108–116 113 (110–116) 110 (107–113) 0.0035

Bicarbonate (mmol/L) 20–29 21 (19–23) 21 (19–23) 0.3325

Phosphorus (mg/dL) 2.6–5.2 4.9 (4–6.2) 4.4 (3.6–5.2) 0.0035

Calcium (mg/dL) 9.6–11.2 9.8 (9.3–10) 10 (9.7–11) 0.0035

BUN (mg/dL) 11–33 6 (5–10) 16 (10–22) 0.0035

Creatinine (mg/dL) 0.8–1.5 0.4 (0.3–0.5) 0.7 (0.6–0.9) 0.0035

Glucose (mg/dL) 86–118 94 (82–107) 103 (93–113) 0.0035

Total protein (g/dL) 5.4–6.9 5.1 (4.5–5.7) 6.1 (5.5–6.7) 0.0035

Albumin (g/dL) 3.4–4.3 2.7 (2.4–3) 2.9 (2.4–3.3) 0.0035

Globulin (g/dL) 1.7–3.1 2.4 (1.9–2.8) 3.2 (2.6–3.7) 0.0035

ALT (IU/L) 21–72 114 (60–230) 64 (36–148) 0.0035

AST (IU/L) 20–49 68 (45–117) 36 (26–61) 0.0035

ALP (IU/L) 14–91 150 (81–249) 105 (48–288) 0.0035

GGT (IU/L) 0–5 4 (2–6) 5 (3–8) 0.0035

Cholesterol (mg/dL) 139–353 134 (99–185) 214 (154–276) 0.0035

Bilirubin (mg/dL) 0.0–0.2 0.2 (0.1–0.2) 0.2 (0.1–0.3) 0.2205

p values adjusted with Bonferroni-Dunn method, and adjusted values < 0.05 represent significant differences. Alanine Transaminase (ALT), Aspartate Transaminase (AST), Alkaline 
Phosphatase (ALP), Blood Urea Nitrogen (BUN), Gamma-glutamyl Transferase (GGT), Mean Corpuscular Hemoglobin (MCH), Mean Corpuscular Hemoglobin Concentration (MCHC), 
Mean Corpuscular Volume (MCV), Mean Platelet Volume (MPV), Red Blood Cell Distribution Width (RDW).
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Feature importance for the MLM was determined in this 
study. Understanding the most contributive features allows for 
model transparency, confidence during clinical decision-making, 
and may expose physiologic features of PSS that were not 
previously recognized (25). The most contributive features in this 
study were MCH, lymphocyte count, and serum globulin  
concentrations.

The MCH is a calculated value representing the hemoglobin 
amount per red blood cell. A low MCH has been previously 
associated with the presence of PSS (26, 27). It has been suggested 
that this may be due to impaired iron utilization and abnormal 
iron metabolism in dogs with PSS. MCH increases and decreases 
proportionally to cell volume, and indeed dogs with PSS in this 
group had lower MCV than non-PSS dogs; however, MCH was 
more strongly associated with the presence or absence of PSS 
than MCV. This indicates that MCH is impacted by factors 
beyond cell size in dogs with PSS. In people, MCH is an 
independent predictor of iron deficiency, length of hospital stay 
of people with acute pancreatitis, and premature discontinuation 
of antiplatelet therapy in people receiving cardiovascular stents 
indicating this hematologic parameter provides additional 
information to the more traditionally utilized hemoglobin and 
MCV (28–30).

Dogs with PSS in our study had higher lymphocyte counts 
than dogs without PSS. The mechanism of this difference is 
unknown, but normal to high lymphocytes have been noted 
previously in dogs and cats with PSS (31, 32). This may reflect 
age, as the PSS group was younger than the non-PSS group, and 

lymphocyte counts decrease with age (33). Similarly, serum 
globulin concentration was associated with PSS status, but may 
reflect changes in age in the population as globulin concentrations 
increase with age (34). However, these findings were independent 
of age in our model, indicating other mechanisms may 
be contributing.

The MLMs presented here were trained on dogs with a high 
pre-test probability of a PSS. All dogs in non-PSS group had post-
prandial bile acid concentrations determined, signifying the attending 
clinician suspected hepatic insufficiency, PSS, or some other hepatic 
disease. Therefore, the application of these MLMs would only 
be appropriate for dogs with a high suspicion of PSS rather than as a 
screening tool broadly applied to a population with a low pre-test 
probability of a PSS.

This study’s control population included dogs tested for a PSS 
with post-prandial serum bile acid concentrations but had the 
disease ruled out with at least one imaging modality. This includes 
many dogs that had a PSS ruled out using an abdominal 
ultrasound rather than the gold standard, nuclear scintigraphy. 
The sensitivity and specificities for the detection of PSS with 
abdominal ultrasound varies widely, ranging from 47 to 85% and 
67 to 100%, respectively (6, 12, 13, 35). In our institution, highly 
skilled ultrasonographers interpreting the study, and the holistic 
assessment of the patient by the attending clinician refuted the 
presence of a PSS. However, a limitation of this study is the lack 
of definitive diagnosis in many non-PSS dogs. Additionally, the 
non-PSS dogs represent at heterogenous group of disease 
processes as demonstrated by the varied categories of disease in 
this group, but was predomidated by dogs with primary 
gastrointestinal disease or neurologic disease. This highlights the 
ability of this model to identify dogs with PSS in dogs with varied 
clinical presentations.

A further limitation of this study is the unbalanced data set 
and the limited number of dogs with some subsets of PSS. Most 
dogs with PSS were dogs with a single, extrahepatic PSS, followed 
by dogs with a single, intrahepatic PSS, and the fewest number 
with multiple, acquired, extrahepatic shunts, consistent with the 
epidemiology of the disease (20, 36). To address this, a method of 
over-sampling categories with fewer dogs was utilized that can 
enrich the data set (22, 23). Future studies should include larger 
groups of dogs with acquired, extrahepatic shunts to enrich the 
training set used to subcategorize types of PSS. These MLMs are 
trained with blood work performed from a single clinical 
laboratory over a 20 year time period. This represents a wide 
period of time necessary to amass the patient numbers necessary 
to train MLM, yet also introduces limitations, including variations 
in clinicopathologic methodologies over this period. Indeed 
we noted that some dogs had missing clinicopathologic variables 
that were not included on the blood work panels during some 
time periods. However, we utilized models in this study designed 
to handle missing values in features without impacting 
performance (37, 38). Future studies should include 
clinicopathologic data from multiple clinical laboratories with 
varied instrumentation to determine the generalizability of 
these models.

The project adopts an open-source framework to facilitate the 
integration of this method into clinical workflows. This design 

FIGURE 1

Receiver operator characteristic (ROC) curve for the portosystemic 
shunt machine learning model on the test set data.

TABLE 5 Machine learning model prediction compared to the ground 
truth of dogs in the test set.

Ground truth classification

PSS dogs Non-PSS dogs

PSS MLM 

prediction

PSS predicted 183 17

No PSS predicted 11 162
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choice promotes transparency and allows collaborative 
enhancements, where clinicians and developers can explore the 
codebase. The proposed non-invasive diagnosis solution could 

be  integrated into electronic medical record systems, allowing 
clinicians to utilize these clinical decision-support tools in 
real time.

FIGURE 2

Feature importance for machine learning model. All features used for model training and the corresponding score that represents the gain and 
importance in model prediction are listed from those with highest importance to those with the lowest importance. Alanine Transaminase (ALT), 
Aspartate Transaminase (AST), Alkaline Phosphatase (ALP), Blood Urea Nitrogen (BUN), Gamma-glutamyl Transferase (GGT), Mean Corpuscular 
Hemoglobin (MCH), Mean Corpuscular Hemoglobin Concentration (MCHC), Mean Corpuscular Volume (MCV), Mean Platelet Volume (MPV), Red 
Blood Cell Distribution Width (%).
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In conclusion, MLMs can provide accurate prediction of the 
presence of PSS and subcategories of disease using routinely collected 
clinicopathologic and signalment data. These MLMs have similar 
sensitivity to traditional biomarkers used for detecting PSS in dogs 
with improved specificity.
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TABLE 6 Four by four table demonstrating PSS SubCat MLM prediction compared to ground truth classification on the test set.

Ground truth classification

Acquired PSS Extrahepatic PSS Intrahepatic PSS Non-PSS 
disease

PSS SubCat MLM 

prediction

Acquired PSS 7 6 0 6

Extrahepatic PSS 2 103 8 10

Intrahepatic PSS 2 9 46 1

Non-PSS disease 2 3 4 164

FIGURE 3

Receiver operator characteristic (ROC) curve for detection of 
portosystemic shunt (PSS) subcategory classification for intrahepatic 
PSS (red line), extrahepatic PSS (green line), acquired PSS (blue line), 
and non-PSS disease (black line).

TABLE 7 The performance of PSS SubCat MLM on the test set.

Subcategory Sensitivity 
(%)

Specificity 
(%)

AUC

Acquired PSS 53.9 (29.1–76.8) 96.7 (94.3–98.1) 0.824 (0.711–0.938)

Intrahepatic PSS 79.3 (67.2–87.8) 96.2 (93.5–97.8) 0.954 (0.921–0.986)

Extrahepatic PSS 85.1 (77.7–90.4) 92.1 (88.0–94.8) 0.937 (0.910–0.963)

Non-PSS disease 90.6 (85.5–94.0) 95.3 (91.3–97.5) 0.979 (0.967–0.991)

Numbers in parentheses are 95% CIs.
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