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Activation of RhoA, a lowmolecular-weight G-protein, plays an important role in protecting the heart against is-
chemic stress. Studies using non-cardiac cells demonstrate that the expression and subsequent secretion of the
matricellular protein CCN1 is induced by GPCR agonists that activate RhoA. In this study we determinedwhether
and how CCN1 is induced by GPCR agonists in cardiomyocytes and examined the role of CCN1 in ischemic
cardioprotection in cardiomyocytes and the isolated perfused heart. In neonatal rat ventricular myocytes
(NRVMs), sphingosine 1-phosphate (S1P), lysophosphatidic acid (LPA) and endothelin-1 induced robust in-
creases in CCN1 expression while phenylephrine, isoproterenol and carbachol had little or no effect. The ability
of agonists to activate the small G-protein RhoA correlated with their ability to induce CCN1. CCN1 induction
by S1P was blockedwhen RhoA function was inhibitedwith C3 exoenzyme or a pharmacological RhoA inhibitor.
Conversely overexpression of RhoA was sufficient to induce CCN1 expression. To delineate the signals down-
stream of RhoA we tested the role of MRTF-A (MKL1), a co-activator of SRF, in S1P-mediated CCN1 expression.
S1P increased the nuclear accumulation of MRTF-A and this was inhibited by the functional inactivation of
RhoA. In addition, pharmacological inhibitors of MRTF-A or knockdown of MRTF-A significantly diminished
S1P-mediated CCN1 expression, indicating a requirement for RhoA/MRTF-A signaling.We also present data indi-
cating that CCN1 is secreted following agonist treatment and RhoA activation, and binds to cells where it can
serve an autocrine function. To determine the functional significance of CCN1 expression and signaling, simulated
ischemia/reperfusion (sI/R)-induced apoptosis was assessed in NRVMs. The ability of S1P to protect against sI/R
was significantly reduced by the inhibition of RhoA, ROCK or MRTF-A or by CCN1 knockdown. We also demon-
strate that ischemia/reperfusion induces CCN1 expression in the isolated perfused heart and that this
functions as a cardioprotective mechanism, evidenced by the significant increase in infarct development in
response to I/R in the cardiac specific CCN1KO relative to controlmice. Our findings implicate CCN1 as amediator
of cardioprotection induced by GPCR agonists that activate RhoA/MRTF-A signaling.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

CCN1 (also known as Cyr61) was first identified as an immediate
early gene upregulated by growth factor stimulation and subsequently
shown to be induced in response to awide range of extracellular stimuli
[1,2]. CCN1, classified as a matricellular protein, is secreted from cells
and serves to regulate diverse responses including cell migration, prolif-
eration, angiogenesis, senescence and cell survival. CCN1 is a multi-
domain protein which includes a number of distinct integrin binding
sites [2,3]. CCN1 binding to integrins mediates the majority of its
1 858 534 4337.
diverse, and at times opposing cellular effects [2,4–7]. We have demon-
strated that activation of GPCRs by lysophospholipids (S1P and LPA) or
thrombin leads to robust induction of CCN1 expression in glioblastoma
cells and that this ismediated through the activation of RhoA [6,8]. RhoA
involvement in S1P induced CCN1 induction has also been demonstrat-
ed in other glioma cells lines [9,10] and in stretch-induced responses of
smooth muscle cells [11,12].

RhoA is best recognized as transducer of signals for actin cytoskeletal
rearrangement. A critical, albeit less appreciated role, for RhoA is in tran-
scriptional regulation, as first discovered through the effects of RhoA ac-
tivation on serum response factor (SRF) target gene expression [13].
SRF, a widely expressed member of the MADS (MCM-1, Agamous, and
Deficients, SRF) box superfamily, is constitutively localized to the nucle-
us and bound to SRE sequences [14,15]. Transcriptional activity of SRF
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is regulated through its association with other transcriptional co-
activators which provide combinatorial control of SRF target genes
[16,17]. To date, two major families of coactivators are known to acti-
vate SRF, the ternary complex factors (TCFs) and the myocardin-
related transcription factors (MRTFs; also known as MAL or MKL). The
effect of RhoA on SRF dependent genes is mediated through a TCF-
independent mechanism [15]. Recent seminal studies demonstrated
that the myocardin family proteins MRTF-A/B provide the link between
RhoA-dependent cytoskeletal regulation and SRF-dependent gene ex-
pression [16,18–20]. Mechanistically, MRTF-A associates with G-actin
and is thus sequestrated in the cytoplasm under resting conditions.
Serum stimulation and signals that activate RhoA to promote actin poly-
merization lead to MRTF-A dissociation from G-actin, whereupon it
translocates into the nucleus and triggers activation of SRF target
genes. MRTF-A activation was recently implicated in the ability of me-
chanical stretch to induce RhoA-mediated CCN1 gene expression in
smooth muscle cells [11]. In the heart, deletion of MRTF-A has been
shown to decrease cardiac hypertrophic responses induced by pressure
overload or angiotensin II (Ang-II) [21], consistent with our early find-
ings on RhoA involvement in hypertrophic ANF gene expression in
cardiomyocytes [22,23].

Relatively little is known about the regulation or functional role of
CCN1 in cardiomyocytes. Global CCN1 gene deletion results in embry-
onic lethality associated with altered cardiac development [24] and
Drexler's laboratory reported that CCN1 expression is highly upreg-
ulated in the myocardium of patients with heart failure or ischemic
myopathy [25]. CCN1 appears to serve as a survival signal for cardio-
myocytes by activating kinases such as Akt and ERK that protect against
oxidative stress [7]. Conversely CCN1 has been shown to sensitize to ap-
optosis induced by TNFα or Fas ligand [4,5] but this depends on specific
integrin binding sites [4,5] and is context dependent [2,5,7,26].

We and others have demonstrated that S1P and RhoA signaling con-
fers cardioprotection [27–30]. It is not known whether CCN1 signaling
contributes to this response. In the present study we demonstrate that
CCN1 is induced in cardiomyocytes by S1P and other agonists that acti-
vate RhoA, that this occurs through MRTF-A signaling, and that CCN1
confers cardioprotection against ischemia/reperfusion injury both in
cardiomyocytes and the isolated perfused heart based on findings
using mice in which cardiac CCN1 is genetically deleted.

2. Materials and methods

2.1. Materials

S1P and LPAwere purchased fromAvanti Polar Lipids (Alabaster, AL,
USA), prepared according to manufactory instruction. C3 exoenzyme
was obtained from Cytoskeleton, Inc. Antibodies against CCN-1, RhoA,
MRTF-A and α-actinin were from Santa Cruz Biotechnology (Santa
Cruz, CA, USA). Anti-RhoGDI and anti-Lamin A/C were purchased from
Cell Signaling Technology (Danvers, MA, USA). CCG-1423 and CCG-
203,971 were kindly provided by Dr. Scott Larsen (University of
Michigan). All other chemicals and reagents were obtained from
Sigma–Aldrich (St. Louis, MO, USA) unless otherwise stated.

2.2. Cell culture

Neonatal rat ventricular myocytes (NRVMs) were prepared from 1
to 3 day old Sprague–Dawley rat pups as described previously [31]. All
procedures were performed in accordance with NIH Guide for the
Care and Use of Laboratory Animals and approved by the Institutional
Animal Care and Use Committee. Cardiomyocytes were plated at a
density of 1.0 × 106 per 6 cm dish or 3.5 × 106 per 10 cm dish in 15%
fetal bovine serum containing Dulbecco-modified Eagle's medium
(DMEM) overnight. The cells were washed and the medium replaced
with serum-free DMEM. All experiments were performed after 24 h of
serum starvation.
2.3. Quantitative RT–PCR for CCN1 mRNA

Quantitative RT–PCR was carried out as described previously [32].
Briefly, RNA was extracted using Trizol (Ambion), cDNA synthesis was
carried out with the Verso cDNA synthesis kit (Thermo Scientific) and
qRT–PCR was carried out using standard TaqMan primers and TaqMan
Universal Mastermix II (Applied Biosystems) on a 7500 Fast Real–
Time PCR system (Applied Biosystems). Fold difference was calculated
according to the comparative CT (2−ΔΔCt) method using GAPDH as a
control.

2.4. Whole cell lysate preparation and Western blot analysis

Whole cell lysate was prepared and Western blot analysis was per-
formed using Invitrogen NuPage system, as described previously [31].
All primary antibodies were diluted 1:1000 in 5% BSA and secondary
immunoglobulin G-horseradish peroxidase at 1:3500 in 5% non-fat
milk. Datawas processed and quantitated using gel documentation soft-
ware, AlphaEaseFC (Alpha Innotech Corp, CA, USA).

2.5. Nuclear protein extraction

Nuclear protein was isolated from NRVMs as described previously
[31]. Briefly, the cells were lysed in ice-cold Buffer C, containing
10 mM HEPES (pH 7.6), 10 mM NaCl, 1.5 mM MgCl2, 10% glycerol,
0.1% NP-40, 1 mM phosphatase and protease inhibitors. The sam-
ples were kept on ice for 15 min and by centrifugation at 2600 rcf for
5 min. The pellet was washed twice then lysed in high salt RIPA buffer.
The samples were centrifuged at 21,000 rcf for 15min and the superna-
tant containing extracted nuclear protein were collected.

2.6. Rho activation assay

The assay for activated RhoAwas carried out as described previously
[33]. Briefly, cell lysate was incubated with Rho binding domain of
rhotekin and then subjected to series of washes and centrifugations.
4× Laemmli buffer was added and boiled for 5 min prior to SDS-PAGE
analysis. Activated GTP-bound RhoA was detected by Western blotting
for RhoA and normalized to total RhoA in lysate.

2.7. siRNA knockdown

Pre-designed CCN1 ON-TARGETplus siRNA for rat (catalog number;
L-099437-01), MRTF-A ON-TARGETplus siRNA for rat (catalog number;
L-081405-00) and control siRNA (catalog number; D-001810-02) were
purchased from Thermo Scientific. NRVMswere transfected with siRNA
using DharmaFECT-I transfection reagent (Thermo Scientific) as previ-
ously described [31]. After overnight incubation, cells were washed
and cultured for another 48 h in serum free DMEM.

2.8. Immunofluorescence

Myocytes were fixed in 4% formaldehyde, permeabilized in 0.1%
Triton-X 100, and blocked in 3% bovine serum albumin. Cells were incu-
bated with a primary antibody against MRTF-A (Santa Cruz. sc-32909)
overnight at 4 °C, followed by Alexa Fluor 488-conjugated secondary
antibody for 1 h at room temperature. DAPI was also added to visualize
myocyte nuclei. Images were visualized by confocal microscopy
(Olympus FluoView FV1000 confocal microscope).

2.9. Simulated ischemia/reperfusion (sI/R) and apoptosis assay

Myocytes were incubated with simulated ischemia solution, which
contained (mM/L) NaCl 140, KCl 12, MgCl2 1, HEPES 10 and CaCl2 2,
(pH 6.5 and saturated with 95% N2 and 5% CO2) for 4 h, washed with
DMEM, and cultured for 20 h. DNA fragmentation, an indicative of
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apoptosis, was assayed using the cell death detection ELISAPLUS (Roche
Applied Science; catalog number/11 774 425 001) as previously de-
scribed [34].

2.10. Generation of cardiac specific CCN1 knockout mice

Ccn1flox/+mice were backcrossed to C57BL/6 mice N10 times [35].
The floxed mice were crossed with αMHC-Cre mice to generate
cardiomyocyte-specific CCN1 knockout mice (CCN1fl/fl, αMHC-Cre).
Offspring were born with expected Mendelian frequency and showed
no overt cardiac abnormalities or echocardiographic differences from
WT or control (CCN1fl/fl) mice for up to 2 months of age.

2.11. Ischemia/reperfusion in the isolated perfused mouse heart

Hearts were rapidly excised, washed in ice-cold modified Krebs–
Henseleit solution (118 mM NaCl, 4.7 mM KCl, 1.2 mM KH2PO4,
25 mM NaHCO3, 0.5 mM EDTA, 1.2 mM MgSO4, 11 mM glucose,
1.5 mM Na-Pyruvate, and 2 mM CaCl2), mounted on a Langendorff ap-
paratus and perfused with oxygenated Krebs–Henseleit buffer at 37 °C
at a constant pressure of 80 mmHg. Hearts were perfused for 20 min
to allow for equilibration and subjected to no-flow ischemia for
30 min followed by reperfusion for 60 min. To measure infarct size,
the ventricles were then frozen and cut transversely into 5 slices of
equal thickness. The sliceswere then incubated in 1% 2,3,5-triphenyltet-
razolium chloride (TTC) in PBS and fixed in 10% formalin-PBS for 24 h.
Fixed slices were then scanned, and ImageJ was used to measure and
calculate the size of the infarct size and the total area.

2.12. Statistical analysis

Results are reported as averages ± SEM. Statistical significance
was determined using ANOVA followed by the Tukey post hoc test.
A

C

B

Fig. 1.NRVMswere serum-starved for 24 h prior to agonist stimulation. A) Cellswere treatedwi
*, **; P b 0.05, 0.01 vs. control. B) Cells were treatedwith S1P, lysed at various time points and s
and quantitative analysis of S1P-induced CCN1 induction are shown (n=4). C) NRVMswere sti
h and subjected to Western blot.
Comparisons of two groups were accomplished using unpaired
Student's t test. P b 0.05 was considered statistically significant.

3. Results

3.1. Differential effects of GPCR agonists on CCN1 expression in neonatal rat
ventricular myocytes

The cardioprotective lysophospholipid S1P was tested for its ability
to induce CCN1 expression in neonatal rat ventricular myocytes
(NRVMs). CCN1 mRNA assessed by quantitative RT–PCR increased
within 15 min after S1P treatment, reached a peak at 30 min and de-
clined to basal levels by 2 h (Fig. 1A). S1P treatment also lead to robust
increases in CCN1 protein inwhole cell lysateswhichwere significant as
early as 30min and sustained over 24h (Fig. 1B).We then compared the
ability of other GPCR agonists to induce CCN1 expression in
cardiomyocytes. Robust increases in CCN1 expression were observed
after 1 h treatment with S1P, LPA and endothelin-1 (ET-1) (Fig. 1C).
The effects of another group of agonists shown to activate signaling
pathways regulating hypertrophy or cardiac contractility in NRVMs
were also tested. This included phenylephrine (PE), isoproterenol
(ISO) and carbachol (CRB) which activate α-adrenergic, β-adrenergic
and muscarinic cholinergic receptors respectively. Myocytes treated
with these agonists showed little to no increase in CCN1 expression at
1 h (Fig. 1C), or at times up to 24 h (not shown).

3.2. RhoA involvement in agonist-induced CCN1 expression

We next examined the potential importance of RhoA activation
in CCN1 expression in NRVMs. RhoA activation was examined by
immunoprecipitating the GTP-bound activated form of RhoA using the
Rho effector rhotekin. Among the agonists tested, S1P elicited the
most robust RhoA activation, followed by LPA and ET-1. In contrast,
th 5 μMS1P andmRNAwas isolated and subjected to quantitative RT–PCR analysis (n=5).
ubjected to SDS-PAGE followed byWestern blot for CCN1 orα-actinin. Representative blot
mulatedwith 5 μMS1P, 10 μMLPA, 100 nMET-1, 1 μM ISO, 100 μMCRB, or 100 nMPE for 1
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PE, CRB and ISO showed little or no ability to activate RhoA (Fig. 2A).
Thus RhoA activation is closely correlated with the ability of agonists
to induce CCN1 expression in NRVMs. The contribution of RhoA activa-
tion to CCN1 induction was examined more directly in experiments
using the C3 exoenzyme, which ADP ribosylates and functionally inacti-
vates RhoA [36]. The ability of C3 exoenzyme treatment (2 μg/ml) to in-
hibit Rho activation induced by S1P was first confirmed (Supplemental
Fig. 1). Cardiomyocytes were pretreated with C3 exoenzyme, stimulat-
edwith agonists for 1 h and CCN1 expression assessed byWestern blot-
ting. Figs. 2B and C demonstrate that C3 exoenzyme treatment blocks
CCN1 expression in response to S1P, LPA and ET-1 without affecting
basal CCN1 expression. CGX0287, a RhoA selective inhibitor [37] was
also found to prevent S1P-mediated CCN1 expression in NRVMs
(Fig. 2B). ROCK, a downstream effector of RhoA, was also demonstrated
to participate in CCN1 induction by S1P since the pharmacological
A C

B

Fig. 2.A)NRVMswere stimulatedwith S1P (5 μM), LPA (10 μM), ET-1 (100 nM), ISO (1 μM), CRB
described in Materials and methods. *,**; P b 0.05, 0.01 vs. control (n = 4). B) Blocking RhoA f
overnight or with 30 μMCGX 0287 for 30min prior to the addition of 5 μMS1P. After 1 h of S1P
Bar graph shows quantitated results from 3 independent experiments (n= 5–7). *** P b 0.001
exoenzyme overnight, stimulated with 10 μM LPA or 100 nM ET-1 for 1 h, lysed and analyze
for 30 min prior to S1P treatment and CCN1 expression was assessed by Western blotting (
L63RhoA adenovirus or control adenovirus (AdCMV). Cell lysateswere prepared24h after adeno
(GFP), n = 4.
inhibitor Y-27632 blocked S1P-induced CCN1 expression (Fig. 2D), as
observed by others [6,38]. To determine if RhoA activation was suffi-
cient as well as necessary for CCN1 expression, we demonstrated that
adenoviral overexpression of RhoA elicits significant increases in CCN1
expression (Fig. 2E). These composite data provide multiple lines of ev-
idence that GPCRs signal through RhoA activation to increase CCN1 ex-
pression in NRVMs.

3.3. S1P induces MRTF-A nuclear accumulation through RhoA

MRTF-A, a transcriptional co-activator for SRF, is activated through
RhoA signaling and now recognized to mediate RhoA effects on tran-
scription of various genes. To determine whether MRTF-A plays a role
in CCN1 induction in cardiomyocytes we first asked whether S1P treat-
ment causes nuclear accumulation of MRTF-A. NRVMs were stimulated
D

E

(100 μM), or PE (100 nM) for 5min. RhoA activitywas assessed byRBDpull downassay as
unction decreases CCN1 induction by S1P. Cells were treated with 2 μg/ml C3 exoenzyme
treatment, cells were harvested and cell lysates were subjected to CCN1Western blotting.
vs. control. ##, ### P b 0.01, P b 0.001 vs. S1P alone. C) Cells were treatedwith 2 μg/ml C3
d by Western blotting for CCN1 expression. D) NRVMs were treated with 5 μM Y-27632
n = 5). **; P b 0.01 vs. control, #; P b 0.05 vs. S1P alone. E) NRVMs were infected with
viruswashout and CCN1 levelswere assessed byWestern blotting. *** P b 0.001vs. control
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with S1P and the nuclear fraction isolated and subjected to Western
blotting. As shown in Fig. 3A, MRTF-A increased in the nuclear fraction
in a time dependentmanner following S1P treatment. Increased nuclear
MRTF-A was evident by 30 min and significant by 60 min, and the
increase was prevented by C3 exoenzyme pretreatment (Fig. 3B) indi-
cating the RhoA dependence of nuclear MRTF-A accumulation. Immu-
nohistochemical analysis also demonstrated that MRTF-A retention in
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Fig. 3.A)NRVMswere treatedwith 5 μMS1P for various times, lysed, fractionated and nu-
clear proteinswere extracted for theWestern blotting forMRTF-A and LaminA/C (loading
control). B) Cells were treated with 2 μg/ml C3 exoenzyme overnight followed by stimu-
lation with 5 μM S1P. After 1 h incubation, nuclear proteins were extracted and analyzed
for MRTF-A by Western blotting (n = 5–6). **; P b 0.01 vs. control. #; P b 0.05 vs. S1P
alone. C) After 1 h treatment with S1P, cells were fixed, permeabilized, and subject to nu-
clear (DAPI) and MRTF-A staining. Representative confocal images from 3 independent
experiments are shown.
cytosol was decreased by S1P treatment in a C3 exoenzyme-dependent
manner (Fig. 3C).

3.4. Inhibition of MRTF-A attenuates S1P-induced CCN1 expression

We next determined whether MRTF-A activation is responsible
for agonist-induced CCN1 expression in NRVMs. CCG-1423 is a small
molecule inhibitor discovered through a transcription-based high-
throughput SRE-luciferase screening assay [39]. This inhibitor was
recently shown to prevent Rho-mediated increases in SRF mediated
transcription by blocking MRTF-A activation [39–42]. In cells treated
with 30 μM CCG-1423 for 30 min prior to S1P stimulation, the S1P-
induced increase in nuclear MRTF-A (Fig. 4A) and decrease in cytosolic
sequestration ofMRTF-A (Fig. 4B)were inhibited. CCG-203,971, a deriv-
ative of CCG-1423 [40], had a similar effect (Fig. 4B). Treatment with
CCG-1423 reduced CCN1 expression in a dose-dependent manner
(Fig. 4C) andCCG-203,971was an evenmore potent and effective inhib-
itor of CCN1 induction by S1P (Fig. 4D). To further demonstrate the con-
tribution ofMRTF-A to CCN1 induction,we pretreated cells for 48 hwith
control or MRTF-A siRNA, resulting in a greater than 50% decrease in
MRTF-A expression. MRTF-A knockdown significantly decreased CCN1
expression upon S1P stimulation (Fig. 4E), supporting the conclusion
that MRTF-A is required for S1P/RhoA-induced CCN1 expression.

3.5. CCN1 is secreted and binds to the plasma membrane

CCN1 is a heparin-binding matricellular protein. To detect CCN1
which accumulated outside the cells in response to S1P treatment,
cells were exposed to S1P for 4 h and soluble heparin plus agarose
bead-bound heparin were added to the medium for an additional
hour. As shown previously heparin competes for CCN1 bound to the
cell surface and the CCN1 accumulated outside the cell can be collected
by using heparin agarose beads [6,43]. CCN1 bound to the beads was
collected and subjected to Western blot analysis (Fig. 5). S1P treatment
lead to robust increases in CCN1 in the media. CCN1 remaining in the
whole cell lysate was undetectable after heparin and heparin-bead
treatment, suggesting that nearly all of the CCN1 generated in response
to S1P exits from the cells. The accumulation of CCN1 in the extracellular
space following S1P treatmentwas significantly diminished by the inhi-
bition of Rho with C3 (Fig. 5A), ROCK with Y-27632 or MRTF-A with
CCG-203,971 (Fig. 5B).

3.6. CCN1 contributes to the protective effect of S1P in NRVMs

Our group previously demonstrated a cardioprotective role for
S1P in the heart [28,30]. The hypothesis that RhoA-mediated MRTF-A
activation and CCN1 expression serve as mediators of the cardio-
protective effect of S1P was therefore examined. NRVMs treated with
CCN1 siRNA showed decreased basal CCN1 and no significant S1P-
stimulated increase in CCN1 expression (Fig. 6A). These cells, along
with cells inwhich RhoA, ROCK andMRTF-A activationwere pharmaco-
logically inhibited (with CGX0287, Y-27632 and CCG-203,971, respec-
tively) were subjected to simulated ischemia/reperfusion (sI/R) and
apoptosis assessed (Fig. 6B). The effect of sI/R was significantly attenu-
ated by S1P treatment (white bar), confirming that S1P is cardio-
protective. This protection was partially but significantly blocked by
CCN1 knockdown. Blocking RhoA, ROCK or MRTF-A activation also di-
minished the protective effect of S1P. These results indicate that
RhoA/ROCK-dependentMRTF-A activation and CCN1 induction contrib-
ute to S1P-mediated cardioprotection.

3.7. CCN1 expression is induced by ischemia/reperfusion and provides
cardioprotection in the perfused hearts

To determine the role of CCN1 in the heart, we generated cardiac-
specific CCN1 knockout mice (CCN1fl/fl, αMHC-Cre). The level of CCN1
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mRNA in the CCN1 KO mouse heart was significantly decreased as
assessed by quantitative RT–PCR (Fig. 7A). The remaining 20% expres-
sion likely reflects CCN1 present in non-cardiomyocytes in the heart
e.g. vascular smoothmuscle cells and cardiac fibroblasts. We previously
reported that RhoA is activated in response to ex vivo ischemia/reperfu-
sion (I/R) [29] and therefore hypothesized that CCN1 would be induced
in the heart subjected to I/R. Remarkably in control (CCN1fl/fl) hearts,
CCN1 mRNA was increased 7.5 fold after 30 min ischemia and 60 min
reperfusion. As expected there was no significant increase in CCN1 KO
mouse hearts (Fig. 7B). To determine whether the increase in CCN1 ex-
pression could play a regulatory role in cardioprotection against I/R,
infarct size at 60 min of reperfusion was assessed by TTC staining.
The infarct area was more than twice as large in CCN1 KO hearts com-
pared to control hearts (Fig. 7C). Western blotting for phosphorylated
Akt (P-Akt), a pro-survival kinase, revealed that P-Akt increased follow-
ing I/R in control mice, as reported [28,31,44–46] and that this response
was significantly reduced in KO heart (Fig. 7D), suggesting that Akt ac-
tivation occurs through CCN1 signaling.

4. Discussion

CCN1 is a pleiotropicmolecule, expression ofwhich is highly induced
in response to diverse stimuli. Cellular functions including cell migra-
tion, proliferation, differentiation, survival/apoptosis and senescence
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Fig. 6. A) NRVMs were transfected with control or CCN1 siRNA, incubated for 48 h
and treated with 5 μM S1P for 1 h. Inhibition of S1P-induced CCN1 expression is shown.
**, ***; P b 0.01, P b 0.001 vs siCtrl, ##; P b 0.01 vs. siCtrl+ S1P (n= 5). B) NRVMs treated
with CCN1 siRNA for 48 h, with CGX 0287 (30 μM) for 30 min, with Y-27632 (5 μM) for
30 min or with CCG-203,971 (5 μM) for 30 min were subjected to simulated ischemia
for 4 h and reperfusion for 20 h with or without the addition of 5 μM S1P. The ability of
S1P to decrease apoptosiswas assessed by an ELISA-based DNA fragmentation assay. Inhi-
bition of CCN1 decreases S1P-mediated cardioprotection against simulated ischemia/re-
perfusion (sI/R) (n = 4). ***; P b 0.001 vs. control (no S1P), ##, ###; P b 0.01, 0.001 vs.
S1P alone.
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can be regulated through CCN1 signaling [2]. CCN1 is highly expressed in
the myocardium of patients with heart failure or ischemic myopathy,
and it has also been shown to be increased in the mouse heart in re-
sponse to pressure overload and myocardial infarction [25]. The molec-
ular mechanisms by which CCN1 expression is regulated in the heart
have not been elucidated nor has its role been fully determined. In this
studywe provide several lines of evidence that GPCRs and interventions
that increase RhoA signaling are efficacious inducers of CCN1 expres-
sion, that this occurs through the transcription co-factor MRTF-A, and
that CCN1 contributes to GPCR agonist-mediated cardioprotection.
4.1. Activation of GPCRs that couple to RhoA induces CCN1
in cardiomyocytes

A previous publication reported that PE and Ang-II increase CCN1
expression in cardiomyocytes [25]. Interestingly our studies demon-
strated that CCN1 induction by PE was very modest compared to that
by S1P, LPA or ET-1. We suggest that the disparate efficacy of these
agonists reflects differences in G-protein coupling. Specifically several
S1P and LPA receptor subtypes couple to G12/13 [47–50]. The endothelin
receptor ETA has also been reported to couple to G12 in addition to its
established coupling to Gq [51,52]. G12/13 proteins regulate guanine nu-
cleotide exchange factors (GEFs) for RhoA [6,27,53,54] and indeed we
also show robust activation of RhoA by these ligands (Fig. 2A). In con-
trast the α- and β-adrenergic receptors stimulated by PE and ISO in
cardiomyocytes couple to Gq and Gs respectively, and the cardiomyo-
cyte M2 muscarinic receptor stimulated by carbachol couples mainly
to Gi. Work presented here shows that activation of these receptors
does not lead to significant RhoA activation, nor does it induce CCN1
induction in cardiomyocytes. Studies in which we block RhoA
signaling with C3 exoenzyme or CGX0287 (Figs. 2B and C), or inhibit
its downstream effector, Rho kinase (Fig. 2D), further demonstrate the
critical role of RhoA activation in GPCR-induced CCN1 expression in
cardiomyocytes. We also demonstrate that adenoviral overexpression
of RhoA is sufficient to increase CCN1 expression (Fig. 2E), and that
CCN1 expression is robustly increased in the heart subjected to I/R
(Fig. 7B), a conditionwhichwe have previously shown to lead to activa-
tion of RhoA [29].

4.2. MRTF-A mediates RhoA induced CCN1 induction

RhoA regulates transcriptional activity and immediate-early genes
through its effects on SRF. The CCN1 protein falls into the category of
immediate-early genes since increases in CCN1 mRNA and protein can
be observed within 15 min to 30 min of S1P treatment (Figs. 1A and
B). The ability of SRF to transactivate its target genes is regulated by
transcriptional co-activators [16,17] one of which is MRTF-A [20,55].
Using two pharmacological inhibitors and siRNA-mediated knockdown,
we demonstrate that MRTF-A is required for CCN1 induction in
cardiomyocytes (Fig. 4). MRTF-A is translocated to the nucleus in re-
sponse to S1P through RhoA signaling, as evidenced by inhibition with
C3 exoenzyme (Fig. 3). This supports the critical role of RhoA signaling
in MRTF-A activity previously reported in fibroblasts stimulated with
serum and in smooth muscle cells subjected to strain [11,16,20]. CCN1
is a matricellular protein and our data indicate that it is increased in re-
sponse to transcriptional activation in cardiomyocytes and secreted into
the extracellular space (Fig. 5), as shown previously by us and others for
non-cardiac cells [2,6,56]. The increase in CCN1 in themedia reflects the
increase in CCN1mRNA and protein in the cell as it is also prevented by
RhoA inhibitionwith C3, ROCK inhibitionwith Y-27632 orMRTF-A inhi-
bition with CCG-203,971. Thus MRTF-A-mediated CCN1 expression
could integrate GPCR signaling with responses mediated through the
extracellular matrix and integrins, the receptors through which CCN1
affects cellular functions (Fig. 8).

4.3. CCN1 plays a protective role in the heart against I/R

The diverse effects of CCN1 are suggested to be due to its binding to
various cell surface integrins [2]. Integrin activation can have
cardioprotective effects, as established by the observation that hetero-
zygous knockout of β1 integrin increases cardiac dysfunction after
infarction [57], and that conditional and complete deletion of integrin
β1 leads to the development of cardiac fibrosis and cardiac failure [58].
Activation of α7β1 integrin was also recently demonstrated to be
cardioprotective against I/R [59]. Recombinant CCN1 protein has been
shown to bind to β1 integrin and activate survival kinases such as Akt
and ERK in cardiomyocytes [7]. Our findings using CCN1 gene knock-
down or gene deletion confirm that CCN1 expression, induced by
RhoA, agonist, or I/R, provides cardioprotection both in cardiomyocytes
and in the ex vivo perfused heart. It has been reported that CCN1 signal-
ing through some of its integrin binding sites can facilitate apoptosis [4,
5,26] although this is context dependent [2,4,5,7,26]. Mutation of two of
the CCN1 integrin binding sites implicated in death receptor mediated
apoptosis [4] decreases isoproterenol toxicity in the mouse heart
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suggesting that CCN1 contributes to this toxicity [5].Wild-type CCN1 pro-
tein does not, however, induce apoptosis in isolated cardiomyocytes [5,7],
indeed it protects against H2O2 induced cell death [7]. These data and the
observations presented here support a predominantly salutary effect of
CCN1 induction and integrin activation on cardiac responses to injury.

While induction of CCN1 in response to S1P is a remarkably rapid re-
sponse, leading to increased protein expression within 30 min, it may
not be fast enough to protect against the earliest events leading to re-
perfusion injury. S1P can also activate protective protein kinase signal-
ing pathways including Akt and this response, which occurs within
minutes, has been shown to contribute to cardioprotection [28,30,60].
CCN1 inductionmay, however, provide a second phase of protective sig-
naling activation to ensure cardiomyocyte survival. Cardiomyocytes ex-
press S1P1, S1P2 and S1P3 receptors andwe have suggested that it is the
S1P2 and S1P3 receptors that are responsible for the initial Akt activation
[28]. Thus it could be clinically advantageous to selectively activate S1P
receptors and to recruit both immediate post-transcriptional- and later
transcriptional-salvage pathways to protect hearts.

While this study focuses on CCN1, another CCN family protein CCN2
(connective tissue growth factor: CTGF), has also been shown to be ele-
vated in hypertrophied and failing hearts [61,62]. The role of CCN2 in the
heart has been examined in transgenic micemodels, leading to the con-
clusion that large increases in CCN2 can confer cardioprotection against
I/R [63], suggesting functional similarity in CCN1 and CCN2. It will be of
considerable importance to examine the role of CCN2 as well as CCN1 in
future in vivo experiments stressing the heart through interventions
such as in vivo I/R, pressure overload and myocardial infarction.

4.4. Conclusion

Our findings demonstrated that CCN1 expression in cardiomyocytes
is highly induced by a selected subset of GPCR agonists. This does not
occur through the ligands or GPCRs involved in acute physiological reg-
ulation of the heart (e.g., β-AdR andGs;α1-AdR andGq;m2AChR andGi)
but rather through agonists such as S1P and LPA which act on receptors
that couple to G12/13 and RhoA. Ligands such as S1P and LPA are known
to be generated under conditions of inflammation and at sites of cell in-
jury [64], as well as during ischemia reperfusion in the heart [60,65,66].
Based on the observations reported here the actions of these endoge-
nous cardioprotective signals may depend on andwould be diminished
in the absence of CCN1. These findings suggest more broadly that other
G12/13 and RhoA coupled receptor ligands released at sites of ischemia in
the heart could activate RhoA and MRTF-A, induce CCN1 expression,
and protect cardiomyocytes against ischemic injury. Early activation of
RhoA and CCN1 during reperfusion could provide a therapeutic avenue
for protecting cardiomyocytes and limiting further development of
heart failure and cardiac remodeling.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.yjmcc.2014.07.017.
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