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A B S T R A C T

Magnetoencephalography (MEG) is a direct measure of neuronal current flow; its anatomical resolution is
therefore not constrained by physiology but rather by data quality and the models used to explain these data.
Recent simulation work has shown that it is possible to distinguish between signals arising in the deep and su-
perficial cortical laminae given accurate knowledge of these surfaces with respect to the MEG sensors. This
previous work has focused around a single inversion scheme (multiple sparse priors) and a single global para-
metric fit metric (free energy). In this paper we use several different source inversion algorithms and both local
and global, as well as parametric and non-parametric fit metrics in order to demonstrate the robustness of the
discrimination between layers. We find that only algorithms with some sparsity constraint can successfully be
used to make laminar discrimination. Importantly, local t-statistics, global cross-validation and free energy all
provide robust and mutually corroborating metrics of fit. We show that discrimination accuracy is affected by
patch size estimates, cortical surface features, and lead field strength, which suggests several possible future
improvements to this technique. This study demonstrates the possibility of determining the laminar origin of MEG
sensor activity, and thus directly testing theories of human cognition that involve laminar- and frequency-specific
mechanisms. This possibility can now be achieved using recent developments in high precision MEG, most
notably the use of subject-specific head-casts, which allow for significant increases in data quality and therefore
anatomically precise MEG recordings.
Section: Analysis methods.
Classifications: Source localization: inverse problem; Source localization: other.
Introduction

Modern theories of brain organization and function increasingly
incorporate the laminar organization of cortical projections and oscilla-
tory signatures of neural activity (Adams et al., 2013; Arnal and Giraud,
2012; Bastos et al., 2012; Jensen et al., 2015; Wang, 2010). While high
resolution functional magnetic resonance imaging (fMRI) can resolve
laminar-specific activity (Chen et al., 2013; Goense et al., 2012; Guidi
et al., 2016; Huber et al., 2015; Kok et al., 2016; Koopmans et al., 2011,
2010; Olman et al., 2012; Scheeringa et al., 2016), it cannot measure
dynamics at a millisecond time-scale. Being a completely non-invasive
c. This is an open access article unde
and direct measure of neuronal activity capable of such temporal reso-
lution, magnetoencephalography (MEG) is an attractive option for
testing such theories (Baillet, 2017). While MEG has excellent temporal
resolution, its spatial resolution is limited by subject movement and
co-registration error (Hillebrand and Barnes, 2011, 2003; Medvedovsky
et al., 2007; Uutela et al., 2001). With recently developed high precision
MEG using head-cast technology, it is possible to address both issues and
record higher quality MEG data than previously achievable (Liuzzi et al.,
2016; Meyer et al., 2017; Troebinger et al., 2014a, 2014b). Simulations
have shown that such high quality data make it theoretically possible to
distinguish the MEG signal originating from either deep or superficial
r the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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laminae (Troebinger et al., 2014a). However, previous attempts at
laminar localization have used global measures of model fit that cannot
infer the laminar origin of activity in a spatially specific way, using re-
gions of interest (ROIs). Additionally, multiple source inversion algo-
rithms exist to link extra-cranial electromagnetic activity measured at the
sensors to cortical sources. Each of these algorithms uses different as-
sumptions to constrain the source estimation, further complicating the
validation of laminar specific MEG by making it unclear which might be
most suited for laminar-specific analysis.

We here develop whole brain and ROI analyses using multiple source
inversion algorithms for classifying MEG signals as originating from
either deep or superficial laminae, test them using simulated laminar
data, and compare them in terms of their classification performance. To
this end, we simulated sensor data for source activity at locations on
either the pial or white matter cortical surface (representing superficial
and deep cortical laminae, respectively). We then measured the accuracy
of two types of analyses (whole-brain or ROI) in determining, based on
the sensor data alone, the correct origin of the source. The whole brain
analysis reconstructs the sensor data onto the pial and white matter
cortical surfaces and then compares the fit of the two models (Troebinger
et al., 2014a). This provides an overall measure of model fit, but cannot
provide spatially-specific comparisons. To address this limitation, the
ROI analysis reconstructs the data onto both pial and white matter sur-
faces simultaneously, computes an ROI based on the change of activity on
either surface from a baseline time window, and compares the recon-
structed activity within the ROI between the two surfaces. We tested four
different commonly used functional priors: minimum norm (IID;
H€am€al€ainen and Ilmoniemi, 1984, 1994), LORETA (COH; Pascual-Mar-
qui, 1999; Pascual-Marqui et al., 1994), empirical Bayes beamformer
(EBB; Belardinelli et al., 2012; L�opez et al., 2014), and multiple sparse
priors (MSP; Friston et al., 2008). These functional priors each embody
different assumptions about the distribution of current flow across the
cortex, from complete independence (IID), to locally coherent and
distributed (COH), to uncorrelated in time (EBB), to locally coherent and
sparse (MSP).

Methods

MRI acquisition

Data were acquired from a single volunteer with a 3T whole body MR
system (Magnetom TIM Trio, Siemens Healthcare, Erlangen, Germany)
using the body coil for radio-frequency (RF) transmission and a standard
32-channel RF head coil for reception. A quantitative multiple parameter
map (MPM) protocol, consisting of 3 differentially-weighted, RF and
gradient spoiled, multi-echo 3D fast low angle shot (FLASH) acquisitions
and 2 additional calibration sequences to correct for inhomogeneities in
the RF transmit field (Callaghan et al., 2015; Lutti et al., 2012, 2010), was
acquired with whole-brain coverage at 800 μm isotropic resolution.

The FLASH acquisitions had predominantly proton density (PD), T1
or MT weighting. The flip angle was 6� for the PD- and MT-weighted
volumes and 21� for the T1 weighted acquisition. MT-weighting was
achieved through the application of a Gaussian RF pulse 2 kHz off
resonance with 4 ms duration and a nominal flip angle of 220� prior to
each excitation. The field of view was 256 mm head-foot, 224 mm
anterior-posterior (AP), and 179 mm right-left (RL). Gradient echoes
were acquired with alternating readout gradient polarity at eight equi-
distant echo times ranging from 2.34 to 18.44 ms in steps of 2.30 ms
using a readout bandwidth of 488 Hz/pixel. Only six echoes were ac-
quired for the MT-weighted acquisition in order to maintain a repetition
time (TR) of 25 ms for all FLASH volumes. To accelerate the data
acquisition, partially parallel imaging using the GRAPPA algorithm was
employed with a speed-up factor of 2 in each phase-encoded direction
(AP and RL) with forty integrated reference lines.

To maximise the accuracy of the measurements, inhomogeneity in the
transmit field was mapped by acquiring spin echoes and stimulated
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echoes across a range of nominal flip angles following the approach
described in Lutti et al. (2010), including correcting for geometric dis-
tortions of the EPI data due to B0 field inhomogeneity. Total acquisition
time for all MRI scans was less than 30 min.

Quantitative maps of proton density (PD), longitudinal relaxation rate
(R1 ¼ 1/T1), magnetisation transfer saturation (MT) and effective
transverse relaxation rate (R2* ¼ 1/T2*) were subsequently calculated
according to the procedure described in Weiskopf et al. (2013).

FreeSurfer surface extraction

FreeSurfer (v5.3.0; Fischl, 2012) was used to extract cortical surfaces
from the multi-parameter maps. Use of multi-parameter maps as input to
FreeSurfer can lead to localized tissue segmentation failures due to
boundaries between the pial surface, dura matter and CSF showing
different contrast compared to that assumed within FreeSurfer algorithms
(Lutti et al., 2014). Therefore, an in-house FreeSurfer surface reconstruc-
tion procedure was used to overcome these issues, using the PD and T1
volumes as inputs. Detailedmethods for cortical surface reconstruction can
be found in Carey et al. (2017). This process yields surface extractions for
the pial surface (the most superficial layer of the cortex adjacent to the
cerebro-spinal fluid, CSF), and the white/grey matter boundary (the
deepest cortical layer). Each of these surfaces is downsampled by a factor
of 10, resulting in two meshes comprising 33,596 vertices each. For the
purpose of this paper, we will use these two surfaces to represent deep
(white/grey interface) and superficial (grey-CSF interface) cortical models.
Cortical thickness was computed as the distance between linked vertices
on the pial andwhitematter surfaces (Kabani et al., 2001; Lerch and Evans,
2005a; MacDonald et al., 2000), and smoothed over each surface with a
Gaussian kernel (FHWM ¼ 8 mm). Mean surface curvature, a measure of
local cortical folding, was computed as the mean of the two principal
curvatures at each vertex (Davatzikos and Bryan, 1996; Griffin, 1994; Joshi
et al., 1995; Luders et al., 2006; Van Essen and Drury, 1997). Sulcal depth
was computed using the CAT12 toolbox (http://dbm.neuro.uni-jena.de/
cat/) to generate a convex hull surface from the pial surface, and then
computing the Euclidean distance between each vertex and the nearest
vertex on hull surface (Im et al., 2006; Tosun et al., 2015; Van
Essen, 2005).

Simulations

We tested the efficacy of each analysis method using synthetic data
sets. All simulations were based on a single dataset acquired from a real
experimental recording of the same human participant that theMRI scans
were acquired from using a CTF 275 channel Omega system. The MEG
sensor data from this dataset were discarded; the dataset was only used to
determine the sensor layout, sampling rate (1200 Hz, downsampled to
250 Hz), number of trials (515), and number of samples (1251) for the
simulations. All simulations and analyses were implemented using the
SPM12 software package (http://www.fil.ion.ucl.ac.uk/spm/software/
spm12/) and are available at http://github.com/jbonaiuto/laminar_sim.

In each simulation, we specified a simulated source centered at a
vertex on either the pial or white matter surface. We simulated sinusoidal
activity profiles of 20 Hz with a patch size of FWHM ¼ 5 mm over a time
window from 100 to 500 ms, and used a single shell forward model
(Nolte, 2003) to generate a synthetic dataset from the simulated activity.
We chose 60 random vertices on each surface to simulate sources at,
giving a total of 120 synthetic datasets (60 sources simulated on the pial
surface, and 60 on the white matter surface; Fig. 1). Each simulation
consisted of a single dipole with a moment of 10 nAm unless otherwise
specified. Typical per-trial SNR levels for MEG data range from �40 to
�20 dB (Goldenholz et al., 2009), and therefore Gaussian white noise
was added to the simulated data and scaled in order to yield per-trial
amplitude SNR levels (averaged over all sensors), of �100, �50, �20,
�5, �0 or 5 dB in order to generate synthetic datasets across a range of
realistic SNRs.

http://dbm.neuro.uni-jena.de/cat/
http://dbm.neuro.uni-jena.de/cat/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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http://github.com/jbonaiuto/laminar_sim


Fig. 1. Simulation locations. Locations of simulated activity on the pial surface (A)
shown in blue, and the white matter surface (B) shown in red. The vertices were chosen
randomly, 60 on the pial surface, and 60 on the white matter surface. All analyses were
performed on simulated data from the same 120 source locations.
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Analyses for laminar discrimination

We compared two methods for determining the laminar locus of
simulated activity: a whole brain and a region of interest (ROI) analysis
(Fig. 2). Each analysis computed 4 different models to explain the
simulated data (IID, COH, EBB, andMSP), each using different functional
priors expressing common MEG inversion assumptions.

The whole brain analysis reconstructed the simulated data (with
sensor noise) separately onto each of the surface models (the pial and the
white matter) and compared the fit between the two models using either
free energy (Troebinger et al., 2014a) or cross validation error. Free
energy is a parametric metric that rewards fit accuracy and penalizes
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Fig. 2. Simulation and analysis protocol. Pial and white matter surfaces are constructed based
of either the pial or white matter surface. The whole brain analysis computes separate genera
validation error. The ROI analysis creates a single generative model combining both surfaces.
estimated power at corresponding vertices between the surfaces within that ROI.
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model complexity (Friston et al., 2007), providing a lower bound for the
log model evidence value (Penny et al., 2010). Cross validation involves
partitioning the data into training and test portions. The idea is to fit
models to the training data and then to compare models based on their
accuracy in predicting the test data. Models which are too complex will
over-fit the training data (i.e. fit the noise) and therefore perform poorly
on the test data. Conversely, models which are too simple will not be able
to explain the training or the test data. In other words, cross validation
involves a similar accuracy-complexity trade-off to free energy, but is
calculated on the basis of the sensor-level time-courses, rather than the
distance between the means of the prior and posterior distributions. This
in turn means that while free energy is dependent on the prior distri-
bution specified (including the variance thereof), cross validation is not.
We computed the average 10-fold cross validation error by excluding
10% of the sensors from the source reconstruction and computing the
error in predicting the missing sensor data using the resulting model. The
error in each fold was defined as the root mean square error (RMSE) of
the sensor data predictions, expressed as a percentage of the root mean
square (RMS) measured sensor data, averaged over each excluded sensor.
Much like arguments for parametric and non-parametric statistics, the
free energy approximation is more powerful (as it uses all the data) when
the underlying assumptions are met, whereas cross validation is not quite
as sensitive, is more time consuming, yet is robust.

The ROI analysis reconstructed the data (with sensor noise) onto a
mesh combining the pial and white matter surfaces, thus providing an
estimate of source activity on both surfaces. We defined an ROI by
comparing power in the 10–30 Hz frequency band during the time period
containing the simulated activity (100 ms–500 ms) with a prior baseline
period (�500ms to �100 ms) at each vertex using paired t-tests. Vertices
in either surface with a t-statistic in the 75th percentile of the t-statistics
over all vertices in that surface, as well as the corresponding vertices in
the other surface, were included in the ROI. This ensured that the
contrast used to define the ROI was orthogonal to the subsequent pial
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versus white matter surface contrast. For each trial, ROI values for the
pial and white matter surfaces were computed by averaging the absolute
value of the change in power compared to baseline in that surface within
the ROI. Finally, a paired t-test was used to compare the ROI values from
the pial surface with those from the white matter surface over trials. All t-
tests were performed with corrected noise variance estimates in order to
attenuate artifactually high significance values (Ridgway et al., 2012).

Two-sided binomial tests were used to compare the accuracy in
classifying simulated sources as originating from the correct surface, as
well as bias toward the pial surface, with chance levels (50%). The whole
brain and ROI analyses as well as source reconstruction algorithms were
compared in terms of their classification accuracy using exact McNemar's
tests (McNemar, 1947). Correlations between free energy and cross
validation error differences, and ROI t-statistics were evaluated using
Spearman's rho tests. The free energy difference was computed as the free
energy for the pial surface model minus that of the white matter surface
model, while the cross validation error difference was computed as the
cross validation error for the white matter surface model minus that of
the pial surface model. This ensured that for both metrics, positive values
indicate a better fit metric for the pial surface model. Relationships be-
tween the difference in free energy between the correct and incorrect
surface models, and cortical surface statistics such as cortical thickness,
mean surface curvature, sulcal depth, and lead field strength were eval-
uated using Spearman's rho tests. Because the surface statistics were all
potentially correlated with each other, the correlation coefficients were
compared using Meng's test for correlated correlation coefficients (Meng
et al., 1992), followed up by pairwise Z-tests.

Source reconstruction

Source inversion was performed using four different algorithms
within SPM12: empirical Bayesian beamformer (EBB; Belardinelli et al.,
2012; L�opez et al., 2014), minimum norm (IID; H€am€al€ainen and Ilmo-
niemi, 1984, 1994), LORETA (COH; Pascual-Marqui, 2002; Pascual-
Marqui et al., 1994) and multiple sparse priors (MSP; Friston et al.,
2008). The source inversion in the whole brain analysis was applied to a
Hann windowed time window from �500ms to þ500 ms filtered to
10–30 Hz, while the ROI analysis did not use a Hann window. These data
were projected into 274 orthogonal spatial (lead field) modes and 4
temporal modes.

The empirical Bayes optimization rests upon estimating hyper-
parameters which express the relative contribution of source and
sensor level covariance priors to the data (L�opez et al., 2014). For all
algorithms we assumed the sensor level covariance to be an identity
matrix. For the EBB and COH algorithms there is a single source level
prior which is either estimated from the data (EBB) or fixed (COH). There
are therefore only two hyper-parameters to estimate – defining the
relative contribution of the source and sensor level covariance compo-
nents to the data. For the MSP algorithm, there is a different source
covariance prior for every possible patch. We used a total of 90 patches,
60 of which were used as locations for potential simulated sources, plus
30 patches at random vertices. This does give MSP a considerable
advantage (see Discussion) but factors out computational issues in the
optimization.

Results

Laminar source discrimination

In the whole brain analysis, we computed a difference in free energy
between the pial and white matter generative models, approximating the
log ratio of the model likelihoods. This resulted in a metric which is
positive or negative if there is more evidence for the pial or white matter
model, respectively. Similarly, the ROI analysis produced a t-statistic
which was positive when the change in power was greater on the pial
surface, and negative when the change was greater on the white matter
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surface. The free energy difference and ROI t-statistics for each simula-
tion using each source inversion algorithm are shown in Fig. 3. For the
EBB and MSP algorithms (Fig. 3A, D), most of the sources simulated on
the pial surface resulted in positive free energy differences and t-statis-
tics, while most of those simulated on the white matter surface yielded
negative metrics (EBB whole brain: accuracy ¼ 93.33%, p < 0.0001; EBB
ROI: accuracy ¼ 99.17%, p < 0.0001; MSP whole brain:
accuracy ¼ 100%, p < 0.0001; MSP ROI: accuracy ¼ 100%, p < 0.0001).
In contrast, the COH and IID algorithms were biased deep for free energy
(COH: white matter ¼ 69.17%, p < 0.0001; IID: white matter ¼ 67.5%,
p < 0.0005) and superficial for the ROI analysis (COH: pial ¼ 100%,
p < 0.0001; IID: pial ¼ 100%, p < 0.0001) regardless of the layer on
which sources were simulated. Thus, both the EBB and MSP versions of
both the whole brain and ROI analyses were able to distinguish between
white matter and pial sources, but the COH and IID algorithms could not
(Fig. 3B and C).

In order to quantify the agreement between the different metrics used
(free energy, cross validation error, and ROI t-statistic), we analyzed
pairwise correlations between them. The difference in free energy from
the whole brain analysis and the t-statistic from the ROI analysis were
correlated for the EBB algorithm (ρ(118) ¼ 0.75, p < 0.001; Fig. 4A).
There was a considerable separation between the MSP t-statistic distri-
butions for pial and white matter sources, so we therefore considered the
pial and white matter simulation sources separately. Correlations be-
tween the free energy difference and ROI analysis t-statistic were still
significant for sources on both surfaces (pial: ρ(58) ¼ 0.48, p < 0.0005,
white matter: ρ(58)¼ 0.3, p¼ 0.02; Fig. 4B). We compared the difference
in cross validation error between the white matter and pial surface
models with the difference in free energy in order to verify that the re-
sults of the whole brain analysis were the same with an independent
metric. We found that the cross validation error difference was highly
correlated with both the free energy difference (EBB: ρ(118) ¼ 1.0,
p < 0.0001; Fig. 4A; MSP: ρ(118) ¼ 0.98, p < 0.0001; Fig. 4B) and the t-
statistic from the EBB version of the ROI analysis (ρ(118) ¼ 0.75,
p < 0.0001; Fig. 4A). The cross validation error difference and ROI t-
statistic were only significantly correlated for pial sources for the MSP
algorithm (pial: ρ(58) ¼ 0.34, p ¼ 0.009, white matter: ρ(58) ¼ 0.18,
p ¼ 0.173; Fig. 4B), but the two metrics predicted the same classification
category (pial or white matter) for every simulated source.

At an SNR of �20 dB, the EBB and MSP versions of the whole brain
and ROI analyses correctly classified most of the simulated sources, while
the IID and COH versions performed at chance levels (Fig. 3). In order to
further evaluate the performance of the analyses, we simulated sinusoi-
dal activity with varying levels of noise resulting in SNRs from �100 dB
to 5 dB, as well as a control dataset containing only noise and no signal
(SNR ¼ �∞dB). We first compared the bias of each analysis and source
inversion algorithm by computing the percentage of sources classified as
pial, using a threshold of ±3 for the free energy difference (meaning that
one model is approximately twenty times more likely than the other) and
a threshold of the critical t value with df¼ 514 and α¼ 0.05 for the ROI t-
statistic. At low levels of SNR, all of the metrics were biased toward pial
sources (SNR ¼ �100 dB, EBB whole brain: pial ¼ 85%, p < 0.0001;
SNR ¼ �100 dB, EBB ROI: pial ¼ 100%, p < 0.0001; SNR ¼ �100 dB,
MSP whole brain: pial¼ 74.17%, p < 0.0001), except for the MSP version
of the ROI analysis (SNR ¼ �100 dB: pial ¼ 42.5%, p ¼ 0.12), but these
biases were not statistically significant (i.e. the free energy difference and
t-statistics were greater than zero, but did not exceed the significance
threshold). As SNR increased nearly all classifications exceeded the sig-
nificance threshold, and the EBB and MSP versions of the whole brain
and ROI analyses became unbiased (SNR ¼ 5 dB, EBB whole brain:
pial ¼ 50%, p ¼ 1.0; SNR ¼ 5 dB, EBB ROI: pial ¼ 50%, p ¼ 1.0;
SNR ¼ 5 dB, MSP whole brain: pial ¼ 50%, p ¼ 1.0; SNR ¼ 5 dB, MSP
ROI: pial ¼ 50%, p ¼ 1.0; Fig. 5A, C). We then compared the accuracy of
each analysis and source inversion algorithms over the range of SNRs.

The MSP version of the whole brain analysis performed at above 90%
accuracy (thresholded) even with SNR ¼ �50 dB (accuracy ¼ 92.5%,
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p < 0.0001; Fig. 5D), while the MSP version of the ROI analysis and the
EBB versions of both analyses required at least �20 dB SNR to achieve
approximately 90% accuracy (MSP ROI: accuracy ¼ 100%, p < 0.0001;
EBB ROI: accuracy ¼ 99.17%, p < 0.0001; EBB whole brain: 93.33%,
p < 0.0001; Fig. 5B, D). The MSP version of the whole brain analysis
outperformed the ROI analysis at SNR ¼ �50 dB (Х 2 (1,
N ¼ 120) ¼ 97.01, p < 0.0001), and the EBB version of the whole brain
analysis at SNR ¼ �50 dB (Х 2 (1, N ¼ 120) ¼ 96.01, p < 0.0001) and
SNR ¼ �20 dB (Х 2 (1, N ¼ 120) ¼ 6.13, p ¼ 0.013). All differences
between the EBB andMSP algorithms and analyses disappeared at higher
SNR levels.

Because we scaled the level of the white noise in order to achieve a
fixed SNR level, there was the possibility that these results were biased
due to boosting the signal from deep layer sources which were further
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away from the sensors. In order to address this, we ran additional control
simulations in which we kept the source signal magnitude fixed at
20 nAm, and varied the level of the white noise from 10 to 2 � 106 fT
RMS. Consistent with the results of our main simulations, both the EBB
and MSP versions of the whole brain and ROI analyses achieved at least
80% accuracy when the noise level fell below 100 fT RMS (EBB whole
brain: 80.83%, p < 0.0001; EBB ROI: 90.83%, p < 0.0001; MSP whole
brain: 99.17%, p < 0.0001; MSP ROI: 100%, p < 0.0001; Figure S1). For
comparison, this corresponds to a per-trial SNR level of approxi-
mately �25 dB.

We tested the EBB and MSP versions of the whole brain and ROI
analyses under more realistic noise assumptions by simulating sources
added to resting state MEG data acquired from the same participant
whose anatomy the simulations were based on. Data from a 10 min



Fig. 4. Metric correlations. All of the analysis metrics (free energy difference, cross validation error difference, and ROI t-statistic) were highly correlated with each other for both the
EBB (A) and MSP (B) source inversion algorithms (SNR ¼ �20 dB). Red circles denote sources simulated on the white matter surface, blue circles denote those simulated on the pial surface.
Dotted lines indicate the least squares fitted linear relationships. The separated dashed lines in panel B indicate that the metric correlations were performed within (not across) layers in
these cases.
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resting state scan with the eyes open were downsampled to 250 Hz,
epoched to match the simulated trial durations, and baseline corrected to
remove the DC offset. We varied the strength of the simulated dipoles
from 0.01 nAm to 300 nAm (resulting in a range of SNRs from approx-
imately �100 dB to -5 dB), positioned them at the same vertices as the
main simulations, and added their projected sensor activity to the resting
state data (Figure S2). The EBB and MSP versions of the whole brain and
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ROI analyses achieved significantly above chance accuracy when the
dipole moment was at least 50 nAm (corresponding to an SNR of
approximately �20 dB), MSP was more accurate than EBB, and the ROI
analysis was more accurate than the whole brain analysis, consistent with
the main simulation results (Figure S3). Note, however, that at low dipole
moments, both the EBB and MSP global metrics are deemed significant
yet are biased towards the superficial surface (see Discussion).
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Patch size

We modelled current flow as normal to the cortical surface, but the
spatial extent (or local dispersion) of this current flow tangential to the
cortical surface is an uncertain quantity which will depend on a number
of factors including lateral local connectivity. In our previous work we
have shown that incorrect estimates of cortical patch size tend to bias
layer estimates (Troebinger et al., 2014a). We therefore simulated dis-
persions (or patch sizes) of current flow over the cortical surface of 5 mm
and 10 mm, and tested the whole brain analysis using source recon-
struction patch sizes of 5 mm and 10 mm. As SNR increased, the EBB and
MSP versions of the whole brain analysis went from being biased to the
pial surface (SNR ¼ �∞dB, simulate ¼ 5 mm, reconstruct ¼ 5 mm, EBB:
pial ¼ 85%, p < 0.0001; SNR ¼ �∞dB, simulate ¼ 10 mm,
reconstruct ¼ 10 mm, EBB: pial ¼ 85%, p < 0.0001; SNR ¼ �∞dB,
simulate ¼ 5 mm, reconstruct ¼ 5 mm, MSP: pial ¼ 74.17%, p < 0.0001;
SNR ¼ �∞dB, simulate ¼ 10 mm, reconstruct ¼ 10 mm, MSP:
pial ¼ 77.5%, p < 0.0001) to being unbiased when the patch size was
correctly estimated (SNR ¼ 5 dB, simulate ¼ 5 mm, reconstruct ¼ 5 mm,
EBB: pial ¼ 50%, p ¼ 1.0; SNR ¼ 5 dB, simulate ¼ 10 mm,
reconstruct ¼ 10 mm, EBB: pial ¼ 51.67%, p ¼ 0.784; SNR ¼ 5 dB,
simulate ¼ 5 mm, reconstruct ¼ 5 mm, MSP: pial ¼ 50%, p ¼ 1.0;
SNR ¼ 5 dB, simulate ¼ 10 mm, reconstruct ¼ 10 mm, MSP: pial ¼ 50%,
p ¼ 1.0; Fig. 6A, C). However, when the patch size was either under- or
over-estimated, the EBB algorithm became biased toward the white
matter surface (SNR ¼ 5 dB, simulate ¼ 5 mm, reconstruct ¼ 10 mm:
pial ¼ 32.5%, p < 0.001; SNR ¼ 5 dB, simulate ¼ 10 mm,
reconstruct ¼ 5 mm: pial ¼ 32.5%, p < 0.001), while the MSP algorithm
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remained unbiased (SNR¼ 5 dB, simulate¼ 5mm, reconstruct¼ 10mm:
pial ¼ 55%, p ¼ 0.315; SNR ¼ 5 dB, simulate ¼ 10 mm,
reconstruct ¼ 5 mm: pial ¼ 55%, p ¼ 0.315). As a result, the laminar
classification accuracy of both algorithms was reduced when the patch
size was either under- (SNR ¼ �50 dB, MSP: Х 2 (1, N ¼ 120) ¼ 6.05,
p ¼ 0.014; SNR ¼ �20 dB, EBB: Х 2 (1, N ¼ 120) ¼ 17.05, p < 0.0001) or
over-estimated (SNR ¼�50 dB, MSP: Х 2 (1, N¼ 120)¼ 6.86, p¼ 0.009;
SNR ¼ �20 dB, EBB: Х 2 (1, N ¼ 120) ¼ 33.03, p < 0.0001; Fig. 6B, D),
although MSP was less sensitive to this difference. The accuracy of the
EBB and MSP versions of the ROI analysis were similarly affected by the
patch size estimate (Figure. S4).

Surface anatomy

We next sought to determine what anatomical features of the cortical
surface make it easier or more difficult to discriminate between white
matter and pial surface sources. We therefore computed several surface
statistics including cortical thickness (Kabani et al., 2001; Lerch and
Evans, 2005a; MacDonald et al., 2000), surface mean curvature (Davat-
zikos and Bryan, 1996; Griffin, 1994; Joshi et al., 1995; Luders et al.,
2006; Van Essen and Drury, 1997), sulcal depth (Im et al., 2006; Tosun
et al., 2015; Van Essen, 2005), and lead field RMS (Hillebrand and
Barnes, 2002), and examined the relationship between each measure and
the difference in free energy between the correct and incorrect generative
models in the whole brain analysis (ΔF ¼ Fcorrect � Fincorrect , Fig. 7). The
distributions of cortical thickness, mean curvature, and sulcal depth
closely matched previously published estimates (Fischl and Dale, 2000;
Hutton et al., 2008; Jones et al., 2000; MacDonald et al., 2000; Tosun
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Fig. 7. Relationship between cortical surface anatomy and laminar discriminability. First row (from left to right): cortical thickness plotted on the pial surface, cortical thickness
distribution over the pial surface, free energy difference between the correct and incorrect generative model as a function of cortical thickness (red ¼ white matter sources, blue ¼ pial
sources; EBB, SNR ¼ �20 dB). Second row: Surface curvature of the white matter and pial surfaces, relationship between white matter and pial surface curvature, free energy difference as a
function of surface curvature. Third row: Sulcal depth of the white matter and pial surfaces, relationship between white matter and pial surface sulcal depth, free energy difference as a
function of sulcal depth. Fourth row: Lead field RMS of the white matter and pial surfaces, relationship between lead field RMS of the white matter and pial surfaces, free energy difference
as a function of lead field RMS.
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et al., 2015). Sulcal depth and lead field RMSwere both highly correlated
with ΔF (sulcal depth: ρ(118) ¼ -0.726, p < 0.0001; lead field RMS:
ρ(118) ¼ 0.653, p < 0.0001), indicating that source activity was more
easily classified as originating from the pial or white matter surface in
sources closer to the scalp, and those which have a greater impact on the
sensors. Cortical thickness and surface curvature were both weakly
correlated with ΔF (cortical thickness: ρ(118)¼ 0.288, p < 0.005; surface
curvature: ρ(118) ¼ 0.294, p < 0.005), meaning that source activity was
more easily classified as pial or white matter where there was greater
distance between the surfaces, and at gyral rather than sulcal vertices.
These surface metrics are not independent (e.g. both surface curvature
and sulcal depth influence the lead field RMS), but a comparison of
correlated correlation coefficients (Meng et al., 1992) revealed signifi-
cant heterogeneity of the absolute correlation matrix (Х 2 (3,
N¼ 120)¼ 48.72, p < 0.0001). Follow-up tests revealed that sulcal depth
and lead field RMS were significantly more correlated with ΔF than
either cortical thickness (sulcal depth: Z ¼ 5.6, p < 0.0001; lead field
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RMS: Z ¼ 4.37, p < 0.0001) or surface curvature (sulcal depth: Z ¼ 5.34,
p < 0.0001; lead field RMS: Z¼ 4.12, p < 0.0001) were, and there was no
difference between the sulcal depth and lead field RMS correlation co-
efficients (Z ¼ 1.22, p ¼ 0.111).

We also looked at the distribution of lead-field differences between
matching pial/white vertices relative to their nearest neighbours on the
same surface (Figure S8) and found that generally (in 66.8% of vertices
on the pial surface and 56.65% on the white matter surface) there was a
smaller difference in lead-field magnitude between pial-white vertex
pairs than their immediate same-surface neighbours.

Discussion

We here provide a comparison and evaluation of analysis techniques
for non-invasive laminar specific inference in human neocortex with
MEG. We found that, given sufficient SNR, both the whole brain model
comparison analysis and the ROI analysis were able to distinguish
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between simulated activity originating on white matter versus pial sur-
faces, representing deep and superficial cortical laminae, from the sensor
data alone. Importantly, we found mutually corroborating results from
two inversion schemes (MSP and EBB) and three metrics of fit (free en-
ergy, cross-validation and local t-tests). The MSP source inversion algo-
rithm was more sensitive to laminar differences in activity at a lower
SNR, though EBB achieved similar classification performance with a
slightly higher SNR. These SNR levels are now possible thanks to novel
head-cast technology which reduces head movement and allows accurate
co-registration over repeated sessions, resulting in very high SNR MEG
data (Meyer et al., 2017; Troebinger et al., 2014a, 2014b).

Laminar discrimination depends on functional assumptions

In this study we remained agnostic about functional assumptions and
used four commonly used sets of priors. We find that only the algorithms
with some sparsity constraint (EBB and MSP) could successfully discrimi-
nate the laminar origin of source activity (Fig. 3). This is because model
evidence, like cross-validation, penalizes more complex models as they
tend to have poor generalization performance. This means that intrinsi-
cally sparser algorithms (like EBB and MSP) will always be rewarded if
they can explain the same amount of data with fewer active sources. We
should note that MSP had a distinct advantage here as the possible source
space of priors included the vertex locations on which sources were
simulated. EBB had no such prior information. We found that the imple-
mentations of minimum norm and LORETA were not suitable for this
discrimination task, but we should point out that these algorithms (as
implemented in SPM12) are somewhat generic and not individually opti-
mized. For example, many groups define a baseline period or empty room
recording, which allows an estimate of the optimal regularization param-
eter, or use a depth re-weighting in the minimum norm estimates
(Gramfort et al., 2014). Here all regularization (the balance between the
source and sensor level covariance matrices) was set based on a Free en-
ergy optimization (Friston et al., 2008), but cross-validation approaches
are also possible (Engemann and Gramfort, 2015).

We note that the ROI and global metrics implemented here are not
based on identical data. The ROI analysis requires a functional contrast –
it can only detect laminar differences where there is a change in power
from a baseline time window, while the whole brain analysis simply
determines which surface best supports the measured data (even if there
is no modulation from baseline). Another difference in the imple-
mentation is the use of a Hann window in the whole brain analyses
(originally motivated to give frequency specificity) which was not pre-
sent in the local analysis and hence the local metrics have a marginal
SNR advantage.

Laminar discrimination requires accurate patch size estimates

We looked at a range of simulation and reconstruction patch sizes, as
previous simulation work has shown that an overestimation of patch
extent can bias model evidence towards superficial cortical layer models
(Troebinger et al., 2014a). In this study we observed a similar skew in the
mean free energy difference (Figure S5) but this was always much
smaller than the free energy difference for the correct surface. This is
perhaps due to the refined and much smoother surfaces we are using here
(and that we are assuming zero co-registration error). Here we focused on
accuracy (rather than mean free energy difference) of laminar classifi-
cation and found that it was indeed degraded when the source patch size
was over- or under-estimated, but that EBB (Fig. 6B) was biased toward
white matter sources, while MSP was slightly biased toward pial sources
(Fig. 6A,C), regardless of the over- or under-estimation. EBB is a two
stage process, first estimating the source distribution with beamformer
priors, and then balancing this estimate against sensor noise to fit the
data. For a single source, under- or over-estimation of patch size using
EBB will lead to a source estimate with a lower peak variance (Hillebrand
and Barnes, 2011). In the limit this will tend to a flat variance distribution
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across the cortex (resembling an IID or COH prior), and our initial sim-
ulations (Fig. 3) show that free energy metrics of these estimates (at high
SNR) will be biased toward the deep layers (Figure S6). We speculate that
given similar levels of accuracy, free energy favors less the marginally
less complex current distributions on the deep layer models. In contrast,
laminar classification based on the percentage of variance explained, a
goodness of fit metric that does not penalize complexity, results in a
superficial bias for IID and COH (Figure S7). We also note that the ROI
analysis for IID and COH has a superficial bias (Fig. 3, S6).

Free energy and cross-validation error are closely related

Free energy is a widely used parametric measure of model fit in the
neuroimaging community, but cross validation error is a more commonly
used nonparametric measure in the field of machine learning. Both
metrics reward model accuracy and try to avoid overfitting of data. Free
energy accomplishes this by penalizing model complexity, while cross
validation error measures the ability of a model to generalize to new,
unseen data. In our simulations, the difference in cross validation error
between the pial and white matter generative models was highly corre-
lated with their difference in free energy. Importantly, this demonstrates
that the laminar inferences in these analyses are not specific to special-
ized parametric measures of model fit such as free energy, but generalize
to familiar nonparametric measures such as cross validation error.

Anatomical assumptions

We made three major simplifying anatomical assumptions in these
analyses: i) the locations of deep and superficial laminar sources are on
the white matter and pial surfaces, ii) deep and superficial laminae
contribute equally to the measuredMEG signal, and iii) the spatial spread
of lateral connectivity is the same across laminae. However, these as-
sumptions may require further scrutiny. First, the mean thickness of the
human cerebral cortex ranges from 2mm to over 4 mm (Lerch and Evans,
2005b; MacDonald et al., 2000), and therefore the effective net dipole
moments of sources in the supra- and infra-granular layers will be more
proximal than the pial and white matter surfaces used here. Second,
while the main contributors to the MEG signal are the supra-granular
layers II/III pyramidal neurons and the infra-granular layer V pyrami-
dal neurons of the neocortex (Murakami and Okada, 2006) with rela-
tively comparable numbers of neurons in these layers (Meyer et al.,
2010), based purely on histology, one would expect the layer V cells to
have an approximately 3–4 times larger dipole moment (or impact on the
MEG sensors) than the layer II/III cells (Bush and Sejnowski, 1993; Jones
et al., 2007; Murakami and Okada, 2015, 2006). Based on geometry, as
the layer II/III cells are nearer to the MEG sensors, one might expect this
to mitigate the effect. However the regions in which the superficial layers
are closer to the sensors (the crests of the gyri) are also the regions in
which the MEG signal is attenuated due to their predominantly radial
orientation (Hillebrand and Barnes, 2002). In practice, one should expect
a slight bias towards the superficial surface (on average the lead fields
from the superficial layer are marginally (~12%) greater than the deep -
see Fig. 7) but this is insignificant as compared to the bias against
supra-granular cells due to their size (a factor of 2–4). Third, there are
differences in the extent of lateral connectivity in different cortical layers
(Kritzer and Goldman-Rakic, 1995; Schubert et al., 2007), and regions
(Amir et al., 1993; Elston and Rosa, 1997; Elston et al., 1999; Levitt et al.,
1993; Lund et al., 1993). Specifically, superficial layer II/III neurons are
generally more sparsely and less locally connected than the deep ones
(Sakata and Harris, 2009; Schubert et al., 2007).

Limitations

While the simulations reported here demonstrate the feasibility of
laminar specific inferences with MEG, there are several limitations that
could be addressed in future work.
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Here, each simulation involved a single source of activity on either
the white matter or pial surface. In the human brain, multiple sources are
often co-active (Hari and Salmelin, 1997; Jensen and Vanni, 2002), and
laminar recordings from non-human primates suggest that activity occurs
simultaneously at deep and superficial sources in the same patch of
cortex (Bollimunta et al., 2011; Haegens et al., 2015; Maier et al., 2010;
Smith et al., 2013; Spaak et al., 2012; Xing et al., 2012). The ROI analysis
could easily be extended to handle multiple sources across the brain by
defining multiple ROIs based on clusters of activity. However, in the case
of simultaneous activity in deep and superficial laminae within a cortical
patch, both the whole brain and ROI analyses implemented here can only
infer the laminar origin of the strongest source. One option could be to
make use of biophysically informed generative models such as the ca-
nonical microcircuit (Bastos et al., 2012), in order to predict the expected
time-series from the different pyramidal cell populations. These could
then be projected from different spatial origins, and thus would give a
complete spatio-temporal model of the MEG signal.

In the main simulations reported here, we used Gaussian white noise
scaled in each simulation in order to achieve a fixed per-trial SNR, which
could have biased the results by attenuating noise levels in deep layer
simulations. In additional control simulations we have shown that the
whole brain and ROI analyses can still make accurate laminar inferences
when the SNR is not fixed (Figure S1), and with more realistic noise
sources (Figure S2, S3). However, in all of our simulations we assume
that the noise covariance matrix is diagonal, but for real data this would
need to be estimated using empty room measurements.

We should point out that the SNR of the dataset, although apparently
low, will be significantly increased through the singular value decom-
position implicit in the source reconstruction. Here the 251 samples were
reduced to 4 orthogonal temporal modes giving an effective SNR increase
of a factor of 7.922.

In human MEG data, the true source patch size is generally unknown.
Our simulations show that spatial specificity can be reduced by inaccu-
rate estimates of source patch size, and therefore any empirical MEG
studies of laminar-specific activity should determine the appropriate
patch size in order to control for potential biases. This could be accom-
plished by using the global fit metrics (free energy or cross validation
error) to compare source inversions performed on combined pial/white
manifolds for multiple patch sizes, prior to any layer comparison. With
the patch size optimized one could then proceed with either the global or
local metrics as outlined in this paper.

In these simulations we should note that MSP generally performs the
best for two reasons. Firstly, the source configurations simulated were
sparse, favoring both MSP and EBB. Secondly, in the MSP case the source
space was constrained to include the possible simulation locations. We
did this to factor out the computationally intensive optimization for a
global (free energy) maximum as MSP selects and removes patch com-
binations. In practice, however, we would typically use multiple initial
patch selections (e.g. Troebinger et al., 2014a) to produce multiple so-
lutions from which we would select the solution with highest overall
free energy.

The simulations reported here do not contain co-registration error or
within-session movement. Previous work suggests that the co-
registration error must be less than 2mm/2� in order to make accurate
laminar inferences (Troebinger et al., 2014a). While subject-specific
head-casts have been shown to achieve this level of precision (Meyer
et al., 2017), it is not clear what range of error and within-session
movement the specific analyses described here can tolerate.

Finally, both the ROI and whole-brain metrics are biased superficially
for low SNR data (Fig. 5). In our Gaussian noise simulations this is not an
issue, as these metrics are non-significant at these levels. However, in real
recording situations it will be important to consider whether a superficial
estimate of activity is not to mischaracterization of the noise (see
Figure S3, the realistic noise case, at low dipole moment).
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Future improvements to increase laminar discrimination accuracy

Future improvements to the methods we describe could further
boost laminar discrimination accuracy with low SNR. We used the po-
tential locations of simulation sources as well as some extra vertices as
priors for MSP source reconstruction. Future versions of this analysis
could use pairs of vertices at corresponding locations on the pial and
white matter surfaces as priors. This would take advantage of the
sparsity constraints of MSP to determine the most likely location of
source activity in each pair (pial or white matter), and the difference
between the two could be further amplified by the ROI analysis.
Another possibility is to run EBB and MSP source reconstruction in a
staged manner, using the results of the EBB source reconstruction as
MSP priors. In our simulations, patch size over- or under-estimation
significantly affected laminar discrimination accuracy. Intrinsic sur-
face curvature may indicate the extent of lateral connectivity (Ronan
et al., 2011), and therefore one possibility for future analyses is to use
intrinsic surface curvature to inform patch size estimates. Finally, we
found that laminar discrimination was most accurate where the lead
field was strongest (Fig. 7). Optically pumped magnetometers (OPMs)
promise to achieve much higher SNRs than traditional SQUIDs since
they can be placed directly on the scalp, boosting the lead field strength
(Boto et al., 2017, 2016).
Laminar- and frequency-specific inferences

Theories of brain organization and function such as predictive
coding (Bastos et al., 2012; Friston, 2008), communication through
coherence (Fries, 2015, 2009, 2005), gating by inhibition (Jensen and
Mazaheri, 2010), and communication through nested oscillations
(Bonnefond et al., 2017) ascribe distinct roles to deep and superficial
cortical laminae as well as low and high frequency oscillations. Support
for these theories comes mainly from tract tracing and laminar re-
cordings in nonhuman primates which demonstrate a layer-specific
segregation in the origin of feedforward and feedback cortico-cortical
connections (Felleman and Van Essen, 1991; Markov et al., 2013) and
the distribution of low and high frequency activity (Bollimunta et al.,
2011, 2008; Buffalo et al., 2011; Dougherty et al., 2015; Haegens et al.,
2015; Maier et al., 2010; Smith et al., 2013; Spaak et al., 2012; Van
Kerkoerle et al., 2014; Xing et al., 2012). While there is corroborating
evidence for these theories in terms of task-modulated frequency-spe-
cific activity in the human brain (De Lange et al., 2013; Donner et al.,
2009; Jensen et al., 2012; Michalareas et al., 2016; Polanía et al., 2015;
Popov et al., 2017), studies linking human oscillatory activity to
laminar organization are scarce (Scheeringa et al., 2016). The recent
development of high precision MEG with subject-specific head-casts
allows non-invasive recording of oscillatory activity in the human brain
at previously infeasible SNRs (Meyer et al., 2017; Troebinger et al.,
2014b), rendering these theories finally testable in humans (Troebinger
et al., 2014a). We have demonstrated that given this high quality data,
it is in principle possible to make spatially-localized laminar specific
inferences.
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