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ABSTRACT OF THE DISSERTATION

Breaking Computational Barriers to Perform Time Series Pattern Mining at Scale and at
the Edge

by

Zachary Pierce Zimmerman

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2019

Dr. Philip Brisk, Co-Chairperson
Dr. Eamonn Keogh, Co-Chairperson

Uncovering repeated behavior in time series is an important problem in many domains

such as medicine, geophysics, meteorology, and many more. With the continuing surge

of smart/embedded devices generating time series data, there is an ever growing need to

perform analysis on datasets of increasing size. Additionally, there is an increasing need for

analysis at low power edge devices due to latency problems inherent to the speed of light

and the sheer amount of data being recorded. The matrix profile has proven to be a tool

highly suitable for pattern mining in time series; however, a naive approach to computing

the matrix profile makes it impossible to use effectively in both the cloud and at the edge.

This dissertation shows how, through the use of GPUs and machine learning, the matrix

profile is computed more feasibly, both at cloud-scale and at sensor-scale. In addition, it

illustrates why both of these types of computation are important and what new insights

they can provide to practitioners working with time series data.
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Chapter 1

Introduction

Time series data is produced all around us. The devices producing this data are

many and their purposes highly varied. For example, EEG data which records a person’s

brain activity can be used to diagnose and treat problems relating to the brain. A smart

system that can monitor this activity could detect abnormalities like a stroke or seizure

and notify medical personnel. This type of immediate detection and alerting can save lives.

Earthquake warning systems are another example of this; smart systems are able to monitor

seismic waves for earthquakes and alert people before the shaking begins. If Japan did not

have a widespread early warning system in place for the massive earthquake in 2011 many

more people could have died [35].

There will be an estimated 20.4 billion connected Internet of Things (IoT) devices

in the world by 2020 [62]. Following current trends, the number of deployed sensors is

expected to reach one trillion units by 2030 [24]. These devices are generating a tremendous

amount of data; it is expected that IoT devices are already generating hundreds of zettabytes
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of data over a year. This is too much data to process, and much of it remains unused and

either deleted or archived in cold-storage [58].

Much of the data being collected is time series data. It monitors the health of

bridges [22], it monitors weather conditions [41], it monitors behavior of wildlife [1], it

monitors water quality in lakes and oceans [38], the list goes on and on.

Rather than discard or archive this data, never to be seen again, what if we can

use it? Can we distill information from it before locking it away or discarding it? These

kinds of problems are what motivated this dissertation, which is directed at increasing the

size and scope of the time series pattern mining problems that we can solve.

As one example, earthquake cataloging systems currently utilize a significant

amount of human labeling and analysis. Imagine if we could perform this analysis and

cataloging automatically at the sensor, without any human intervention. Providing a dy-

namic, up-to-date catalog many times larger than scientists currently have available, while

detecting events which are not spotted by humans. This would provide resources for addi-

tional discoveries in seismology and would allow scientists access to a more complete picture

of seismic activity on our planet.

There are similar use cases in other domains. Imagine a hospital with ECG analysis

available on medical equipment which enables automatic detection of anomalies in heart

rhythm and notification of appropriate medical personnel. Automated discovery of these

anomalies would provide doctors with a more complete picture and allow more confidence

in their diagnoses.
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By using the methods developed in this work, the kinds of applications mentioned

above are no longer intractable from a computational perspective.

The rest of this work is organized as follows: first, Chapter 2 introduces relevant

background information. Then, Chapter 3 shows how high performance computing and

accelerators can be leveraged to perform time series pattern mining quickly. Chapter 4

shows how we can push the limits of pattern mining even further using cloud computing.

Chapter 5 shows how we can leverage the methods introduced in the previous chapters to

produce an even faster, approximate pattern mining solution which can support streaming

data and can be run on low power devices. Chapter 6 provides a preview of directions that

this research could take in the future. Finally, Chapter 7 gives some concluding remarks.
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Chapter 2

Background

2.1 The Matrix Profile

In recent years, the Matrix Profile (MP) [109] has proliferated as a useful tool which can

provide insights into time series behavior. In particular the MP is effective in finding shape-

based similarities in time series. Once the MP is computed, it enables motif discovery [109],

discord discovery [109], chain discovery [112], segmentation [37], and many other useful

time-series analyses with very little overhead. The utility of the MP has been discussed at

length in prior works; this work focuses on the various ways of computing the MP in a highly

scalable manner, enabling the computation of the MP on streaming data and low-power

hardware, as well extending and modifying the definition of the MP to contain various other

useful pieces of information.

The MP is easy to describe algorithmically, see [109] and Chapter 3 for a formal

algorithmic definition. However, implementations of the MP can vary tremendously in terms

of scalability, and the scalable versions of MP algorithms are significantly more complex.
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In this work, an architecture aware implementation for graphics processing units (GPUs)

to compute the MP is described in detail, along with its applications to seismology and

other domains that depend on the scalability this implementation provides. This GPU

implementation can be used in various ways. For example, it can be modified and used as

a subroutine in a distributed cloud-scale deployment of the MP capable of performing 1018

comparisons in under 24 hours on 40 GPUs. This fast implementation can also be used to

produce an even faster, approximate MP using machine learning. Chapter 3 begins with

an overview of the MP and its utility in Section 3.1.

2.2 GPUs

The Graphics Processing Unit, or GPU, is “especially well-suited to address problems that

can be expressed as data-parallel computations” [27]. It has its own memory, and it can

launch multiple threads in parallel. Many parallel architectures use a Single Instruction

Multiple Data (SIMD) architecture. For GPUs, the term Single Instruction Multiple Thread

(SIMT) is also used. On a GPU, groups of threads process the same set of instructions on

multiple data values in parallel, this is the SIMD/SIMT paradigm. Many GPU architectures

exist, most notably Nvidia GPUs, which utilize the proprietary CUDA architecture; AMD

GPUs which utilize the OpenCL toolchain, and GPUs which coexist on a CPU die (e.g. Intel

HD Graphics). While there is certainly potential in working with all of these architectures,

this work will focus on the utilization of Nvidia GPUs. The CUDA architecture used by

Nvidia GPUs includes a system architecture, runtime, compiler, and programming language.

Unless otherwise noted, the GPU terminology used in this work refers to components of the

5



CUDA architecture, while similar concepts exist in the other architectures, the terminology

used can be different.

The threads on a GPU are managed in thread blocks which execute on the GPU’s

Streaming Multiprocessors (SMs) in groups of 32 threads. These threads are backed by a

group 32 CUDA cores known as a warp. GPUs utilize a two-level scheduling policy where

thread blocks are scheduled onto SMs, and each SM handles the scheduling of threads in that

block using its own scheduler, known as a warp scheduler. SMs can have a variable number

of cuda cores and GPUs can have a variable number of SMs depending on the model and

architecture of the GPU. Threads in a thread block can cooperate with each other through

shared local resources (cache and shared memory on the SM). Threads running in a warp

execute mostly in lockstep, to maximize temporal and spacial locality with respect to the

instruction and data pipelines.

A CUDA function is known as a kernel. A kernel consists of host (CPU) code (for

launching the kernel and moving data to the GPU) along with device code which executes

only on the GPU. When we launch a kernel, we can specify the number of blocks and the

number of threads in each block to run on GPU. Currently, Nvidia allows launching at most

1024 threads within a block. Many blocks can be launched at once, but if there are too

many blocks not all can be scheduled at once. There is a tradeoff between launching many

threads that do less work versus launching few threads which do more work and different

applications fall on different sides of the spectrum.

Nvidia GPUs are manufactured in various product lines to serve different markets

where they are demanded:
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• GeForce: Consumer and Enthusiast Graphics Processing: e.g. Real-time

rendering for video games (Deep Learning)

• Quadro: Commercial Graphics Processing: e.g. Game Development, Render-

ing, Video Editing/Encoding

• Tesla: Computation and Scientific Computing: e.g. simulation, dynamics, high

precision compute

The Tesla and Quadro lines tend to be more expensive than the consumer graphics

(GeForce). One of the main advantages of Tesla GPUs is that they have significantly

more double precision floating point units which enable them to perform high precision

computation (required by many scientific computing applications) much faster than other

Nvidia GPUs.

For further resources on the CUDA architecture and parallel programming on

GPUs, please see [52].

2.3 Cloud Technology

In recent years, cloud technology has emerged as a significant resource for solving compu-

tational problems at scale. There are many reasons for this including:

• Availability of Modern Hardware: Cloud providers will stock more recent hard-

ware. The hardware is upgraded by the provider, which means that the user will

almost always have access to recent hardware, instead of needing to host a machine

themselves and upgrade it every few years.
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• Elasticity and Scalability: Users can pay for as much or as little as they need, they

can automatically scale their application as demand increases or decreases.

• Cloud Ecosystems and Technology: As cloud platforms become more ubiquitous,

they are offering more tools that make it easier for users to deploy applications in the

cloud. These tools range in application from Data Ingestion, Data Storage, and even

cutting edge ML and AI services.

Additionally, many cloud providers have adopted technologies used by the scientific

community and made them available in the cloud. Currently, Amazon Web Services (AWS)

offers access to instances with attached GPUs or FPGAs. Up to 8 GPUs can be attached

to a single instance. Google Cloud Platform (GCP), offers access to the proprietary Google

TPU for machine learning workloads, while also offering access to GPUs.

Many cloud platforms offer access to preemptible versions of their instances. A

preemptible instance can be shut down by a cloud provider with very little notice dur-

ing times of high demand. Applications running on preemptible instances must be fault

tolerant otherwise an entire computational job could fail when the instance is preempted.

These preemptible instances are offered at much cheaper rates compared to dedicated, non-

preemptible instances. Essentially, users of preemptible instances are scraping the ’bottom

of the barrel’ in terms of compute resources. These preemptible instances are the resources

nobody was willing to pay full price for and so the cloud provider is willing to sell them

to the highest bidder. Applications that utilize preemptible instances can be many times

cheaper than those that do not.
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2.4 Matrix Profile Limitations

While the MP will work in many cases, it is not a panacea; there are cases where it will

fail to provide useful insights. The MP is useful for finding shape based information in

time series data. Sometimes time series data will not have useful shape based information

causing the MP and related techniques to fail. This is not always possible to determine

beforehand, and care should be taken in deploying the matrix profile at scale on a dataset

which is untested for shape based information.
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Chapter 3

The Matrix Profile &

GPU-STOMP

3.1 Background

Time series motifs are approximately repeated subsequences found within a longer time

series. While time series motifs have been in the literature for fifteen years [25], they recently

have begun to receive significant attention beyond the data mining community. In recent

years, they have been applied to a wide variety of problems, which include understanding the

network of genes affecting the locomotion of the C. elegans nematode [56], severe weather

prediction [60], and cataloging speech pathologies in humans [11].

Although significant progress has been made in how we score, rank, and visualize

motifs, discovering them in large datasets remains a computational bottleneck. In this

chapter, the reader will learn how we can significantly improve the scalability of exact motif
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discovery both by leveraging GPU hardware and also by modifying the recently introduced

STAMP algorithm [109]. The STAMP algorithm computes time series subsequence joins

with an anytime algorithm [109]. Our key observations follow below:

• The solution to the full exact 1NN time series join can be converted to the exact solu-

tion for any definition of time series motif [65] with only trivial extra effort. Moreover,

full exact 1NN time series join also yields the exact solution for time series discords,

a popular definition for anomalies in time series [23].

• The anytime property of STAMP may be useful to some users. However, an any-

time solution discards critical temporal and special locality which can be exploited

to produce a faster algorithm on modern hardware and coprocessors. Additionaly, as

we will explain below, in seismology, which is one of the the domains motivating this

work, it is not required or helpful. As we will demonstrate, if we forego this property,

we can compute motifs many orders of magnitude faster than STAMP.

By maintaining the “STAMP” theme introduced in [109], we call our faster algorithm

STOMP, Scalable Time series Ordered-search Matrix Profile and its GPU-accelerated

version GPU-STOMP.

In this chapter, we show that GPU-STOMP allows us to significantly expand the

limits of scalability. We demonstrate the scalability of our ideas by extracting motifs from

a dataset with one hundred and forty-three million subsequences. This requires comput-

ing (or admissibly pruning) 10,224,499,928,500,000 pairwise Euclidean distance values (i.e.

more than ten quadrillion comparisons). If each Euclidean distance calculation took one

microsecond, a brute force algorithm would require 324 years . An optimized implemen-
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tation of GPU-STOMP (see Chapter 4) can compute this in only a few hours on a recent

GPU. We recognize that a few GPU hours seems like significant computational time, but it

is important to note that this data represents 83 days of continuous seismology recording

at 20Hz. Therefore, even at this massive scale, our algorithm is much faster than real time.

Figure 3.1 previews a pair of repeating earthquake sequences, which is essentially a time

series motif [25], discovered by our algorithm in a seismologic dataset.

Figure 3.1: A pair of repeating earthquake sequences (motifs) we discovered from seismic
data recorded at a station near Mammoth Lakes on February 17th, 2016. One occurrence
(fine/red) is overlaid on top of another occurrence (bold/blue) that happened hours earlier.
(best viewed in color).

Here, the two occurrences are very similar despite happening 148 minutes apart.

Although the geophysics of earthquakes indicates that in principle we could see similar

events millennia apart, we are unfortunately limited to the few decades humans have been

recording such data (see Figure 3.13).
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3.1.1 Motif Discovery Background and Matrix Profile

Motif discovery for time series was introduced in 2003 [25] (although the classic paper of

Agrawal, Faloutsos and Swami foreshadows motifs by computing all-pair similarity for time

series [2]). Since then, it has increased in research activity. One critical direction has been

applying motifs to solve problems in a wide variety of domains such as bioinformatics [56],

speech processing [11], robotics, human activity understanding [98][102], severe weather

prediction [60], neurology, and entomology [65]. The other key research focus has been

in the extensions and generalizations of the original work, especially in the attempts to

improve scalability [55][65]. These attempts to improve the scalability of motif discovery

fall into two broad classes; approximate and exact motif discovery [55][63][65].

Clearly approximate motifs can be much faster to compute (See Chapter 5), and

this may be useful in many domains. However, there are certain problems spaces in which

the risk of false negatives is unacceptable. Consider seismology, a domain in which false

negatives could affect public policy, change insurance rates for customers, and conceivably

cost lives by allowing a dangerous site to be developed for dwellings.

Beyond being exact, the proposed approach has many advantages that are not

shared by rival methods:

• The proposed method is simple and parameter-free: In contrast, other methods

typically require building and tuning spatial access methods and/or hash functions

[25][55][57][63][98][102][110].
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• It is space efficient: Our algorithm requires an inconsequential space overhead, just

linear in the time series length, with a small constant factor. In particular, we avoid the

need to actually explicitly extract the individual subsequences [25][63][65], something

that would increase the space complexity by two or three orders of magnitude.

• It is incrementally maintainable: Having computed motifs for a dataset, we can in-

crementally update the best motifs very efficiently if new data arrives [109].

• It can leverage hardware: As we show below, our algorithm is embarrassingly paral-

lelizable on multicore processors.

• Our algorithm has time complexity that is constant in subsequence length: This is a

very unusual and desirable property; virtually all time series algorithms scale poorly

as the subsequence length grows (the classic curse of dimensionality) [25][55][57][63]

[98][110].

• Our algorithm takes deterministic time, dependent on the data’s length, but com-

pletely independent of the data’s structure/ noise level etc. This is also unusual

and desirable property for an algorithm in this domain. For example, even for a

fixed time series length, and a fixed subsequence length, all other algorithms we are

aware of can radically different times to finish on two (even slightly) different datasets

[25][55][57][63][98][110]. In contrast, given only the length of the time series, we can

predict precisely how long it will take our finish in advance.

Virtually every time series data mining technique has been applied to the motif dis-

covery problem, including indexing [55][104], data discretization [25], triangular-inequality
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pruning [65], hashing [98][102][110], early abandoning, etc. However, all these techniques

rely on the assumption that the intrinsic dimensionality of time series is much lower than

the recorded dimensionality [25][98][102][105][110]. This is generally true for data such as

short snippets of heartbeats and gestures, etc.; however, it is not true for seismographic

data, which is intrinsically high dimensional. To ascertain this, we performed a simple

experiment.

We measured the Tightness of Lower Bounds (TLB) for three types of data, using

the two most commonly used dimensionality reduction representations for time series, DFT

and PAA. Additionally, PAA is essentially equivalent to the Haar wavelets for this purpose

[105]. The TLB is defined as:

TLB =
LowerBoundDist(A,B)

TrueEuclideanDist(A,B)
(3.1)

It is well understood that the TLB is near perfectly (inversely) correlated with

wall-clock time, CPU operations, number of disk access or any other performance metric

for similarity search, all-pair-joins, motifs discovery, etc. [105]. As the mean TLB decreases,

we quickly degrade to simple brute-force search. The absolute minimum value of TLB is

dependent on the data, the search algorithm, and the problem setting (main-memory based

vs disk based). However as [105] demonstrates, lower bound values less than 0.5 generally

do not “break even.”

Figure 3.2 shows unambiguous results. There is some hope that we could avail

current speed-up techniques when considering (relatively smooth and simple) short snippets

of ECGs, but there is little hope that the noisy and more complex human activity would
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Figure 3.2: left) Samples from three datasets, ECG, Human Activity, and Seismology (avail-
able in [100]). right) The tightness of lower bounds, averaged over 10,000 random pairs,
using PAA and DFT.

yield to such optimizations, and there is no hope that anything currently in the literature

will help with seismological data. This claim is further proven in our detailed experiments

in Section 3.3.

Even if we ignore this apparent death-knell for indexing/spatial access techniques,

we could still dismiss them for other reasons, including memory considerations. As demon-

strated in 3.2, a critical property of STOMP is that it does not need to explicitly extract the

subsequences, which is unlike the indexing/spatial access methods. For example, consider

a time series of length 100 million, with eight bytes per value, requiring 0.8 GB. Our algo-

rithm requires an overhead of seven other vectors of the same size (including the output),

for an easily manageable total of 6.4 GB (if memory was a bottleneck, we could reduce

this by using reduced precision vectors or compression). However, any indexing algorithm

that needs to extract the subsequences will increase memory requirements by at least O(d),

where d is the reduced dimensionality used in the index [57]. Given that d may be 20
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or greater, this indicates the memory requirements grow to at least 16 GB. With such a

large memory footprint, we are almost certainly condemned to a random-access disk-based

algorithm, dashing any hope of any speedup.

A related advantage of our framework is that we can choose the subsequence length

just prior to performing the motif discovery. In contrast, any index-based technique must

commit to a subsequence length before building the index, and it could take hours/days to

build the data structure before any actual searching could begin [78][105]. If such an index

is built to support subsequences of say length 200, it cannot be used to join subsequences

of length 190 or 205, etc. (See Section 1.2.3 of [78]). Thus, if we change our mind about

the length of patterns we are interested in, we are condemned to a costly rebuilding of

the entire index. It is difficult to overstate the utility of this feature. In section 3.3.8, we

will demonstrate how we can use STOMP to explore the behavior of a penguin. At the

beginning of this case study, we had no idea of what time frame the penguin’s behavior

might be manifest. However, with no costly index to build, we simply tried a few possible

lengths until it was obvious that we found a reasonable value.

3.1.2 Seismological Background

While the Matrix Profile algorithms are completely general and can be applied to any do-

main, seismological data is of particular interest to us, due to its sheer scale and importance

in human affairs.

In the early 1980s, it was discovered that in the telemetry of seismic data recorded

by the same instrument from sources in given region, there will be many similar seismograms

[36]. Geller and Mueller [36] have suggested that, “The physical basis of this clustering
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is that the earthquakes represent repeated stress release at the same asperity, or stress

concentration, along the fault surface.” These patterns are called “repeating earthquake

sequences” in seismology and correspond to the more general term “time series motifs.”

Figure 3.1 shows an example of a repeating earthquake sequence pair from seismic data.

A more recent paper notes that many fundamental problems in seismology can

be solved by joining seismometer telemetry in locating these repeating earthquake se-

quences [110], which includes the discovery of foreshocks, aftershocks, triggered earthquakes,

swarms, volcanic activity, and induced seismicity. However, the paper further notes that

an exact join with a query length of 200 on a data stream of length 604,781 requires 9.5

days. Their solution, a transformation of the data to allow LSH based techniques, does

achieve significant speedup, but at the cost of false negatives and necessary careful param-

eter tuning. For example, [109] notes that they need to set the threshold to precisely 0.818

to achieve decent results. While we defer a full discussion of experimental results to 3.3, the

ideas introduced in this chapter can reduce the quoted 9.5 days for exact motif discovery

from a dataset of size 604,781 to less than one minute, without tuning any parameters and

also guaranteeing that false negatives will not occur.

It is vital to note that this kind of speed up really is game changing in this domain.

It allows seismologists to quickly identify or detect earthquakes that are identical or similar

in location without needing trilateration, and it can also provide useful information on

relative timing and location of such events [5][49][50].

More controversially, some researchers have suggested that the slow slip on the

fault accompanying non-volcanic tremors (a sequence of Low Frequency Earthquakes, many
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of which are repeated) may temporarily increase the probability of triggering a large earth-

quake. Therefore, detecting and locating these repeating LFEs allows more accurate short-

term earthquake forecasting [49].

Finally, we note that seismologists have been early adopters of GPU technology [61]

and other high performance computing paradigms. However, their use of this technology

has been limited to similarity search, not motif search.

3.1.3 Developing Intutions for the Matrix Profile

Unlike other motif/anomaly discovery systems, the matrix profile computes a score for every

subsequence in the dataset. Here, we take the time to give some examples to demonstrate

the utility of this more comprehensive annotation of data. We begin by considering the

New York Taxi dataset of [79].

As shown in Figure 3.3.top, the data is the normalized number of NYC taxi passen-

gers over 10 weeks, October 1st to December 15th 2014. The authors show this dataset to

demonstrate the versatility of their “Attention Prioritization” technique for finding unusual

patterns [79][9]. In essence, they transform the data (not shown here) in a way to make the

discovery of anomalies easier. They note that Thanksgiving, on Thursday, November 27th,

can be considered an “anomaly” in this dataset, since the patterns of travel apparently

change during this important US holiday.

We computed the matrix profile for this dataset, with a subsequence length of one

and a half days. As Figure 3.3.middle shows, the matrix profile peaks at the location that

indicates Thanksgiving. However, there are additional observations that we can make with

the matrix profile. There is a secondary anomaly occurring on Sunday, November 2nd;
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there appears to be a spike in taxi demand at about 2:00 am. With a little thought, we

realize this is exactly the hour in which daylight saving time is observed in the US. Setting

the clock back one hour gives the appearance of doubling the normal demand for taxis at

that hour. There is arguably a third anomaly in the dataset, with a more subtle, but still

significant peak at October 13th. This day corresponds to Columbus Day. This holiday is

all but ignored in most of the US, but it is still observed in New York, which has a strong

and patriotic Italian community.

Figure 3.3: top) Normalized number of NYC taxi passengers over 10 weeks [79][9]. middle)
The matrix profile produces high values where the corresponding subsequences are unusual.
bottom) The top motif corresponds to two consecutive Saturdays.

In Figure 3.3.bottom, we show the top-1 motif from the dataset, which is extremely

well conserved. In many natural datasets, for example the circadian rhythm of an animal,

the best motifs are typically exactly twenty-four hours apart (a phenomenon known as
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persistence). However, because this motif’s two occurrences are exactly seven days apart,

the importance of artificial divisions of the calendar on human behaviors becomes apparent.

It is possible that the regions of lower conservation with the motif are also telling. For

example, from 24 to 26 (about 10 to 11am), the motif corresponding to the 25th (green/bold)

is a little higher than the previous week. It was lightly raining (about 0.12 inches) at the

time, which may explain the slightly higher taxi demand in the late morning.

3.1.4 Notatition and Definitions

While we mostly follow the framework introduced in [109], for completeness we review all

necessary definitions. We begin by defining the data type of interest, time series:

Definition 1 A time series T is a sequence of real-valued numbers ti: T = t1, t2, ..., tn ,

where n is the length of T .

We are interested in local, not global properties of time series. A local region of

time series is called a subsequence.

Definition 2 A subsequence Ti,m of a time series T is a continuous subset of the values

from T of length m, which begin at position i. Formally, Ti,m = ti, ti+1, ..., ti+m−1, where

1 ≤ i ≤ n−m+ 1.

We can take a subsequence and compute its distance to all subsequences in the

same time series. This is called a distance profile.

Definition 3 A distance profile Di of time series T is a vector of the Euclidean distances

between a given query subsequence Ti,m and each subsequence in time series T. Formally,
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Di = [di,1, di,2, ..., di,n−m+1], where di,j(1 ≤ i, j ≤ n −m + 1) is the distance between Ti,m

and Tj,m.

We assume that the distance is measured by Euclidean distance between z-normalized sub-

sequences [105].

We are interested in finding the nearest neighbors of all subsequences in T , as the

closest pairs of this are the classic definition of time series motifs [25][65]. Note that by

definition, the ith location of distance profile Di is zero, and it is close to zero just before

and after this location. Such matches are defined as trivial matches [65]. We avoid such

matches by ignoring an “exclusion zone” of length m
4 before and after the location of the

query. In practice, we simply set di,j to infinity for (i − m
4 ≤ j ≤ i + m

4 ) while evaluating

Di.

We use a vector called matrix profile to represent the distances between all subse-

quences and their nearest neighbors.

Definition 4 A matrix profile P of time series T is a vector of the Euclidean distances

between each subsequence Ti,m and its nearest neighbor (i.e. the closest match) in time series

T . Formally, P = [min(D1),min(D2), ...,min(Dn−m+1)], where Di(1 ≤ i ≤ n −m + 1) is

the distance profile Di of time series T .

We call this vector a matrix profile, since it could be computed by using the full

distance matrix of all pairs of subsequences in time series T, and evaluating the minimum

value of each column (although this method is näıve and space-inefficient). Figure 3.4
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Figure 3.4: top) One distance profile (Definition 3) created from a random query subse-
quence Q of T. If we created distance profiles for all possible query subsequences of T,
the element-wise minimum of this set would be the matrix profile (Definition 4) shown at
(bottom). Note that the two lowest values in P are at the location of the 1st motif [25][65].

illustrates both a distance profile and a matrix profile created on the same raw time series

T.

It is important to note that the full distance matrix is symmetric: Di is both

the ith row and the ith column of the full distance matrix. Figure 3.5 shows this more

concretely.

Figure 3.5: An illustration of the relationship between the distance profile, the matrix
profile and the full distance matrix. For clarity, note that we do not actually create the full
distance matrix, as this would have untenable memory requirements.
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The ith element in the matrix profile P indicates the Euclidean distance from

subsequence Ti,m to its nearest neighbor in time series T. However, it does not indicate

the location of that nearest neighbor. This information is recorded in a companion data

structure called the matrix profile index.

Definition 5 A matrix profile index I of time series T is a vector of integers: I =

[I1, I2, ...In−m+1], where Ii = j if di,j = min(Di).

By storing the neighboring information in this manner, we can efficiently retrieve

the nearest neighbor of query Ti,m by accessing the ith element in the matrix profile index.

As presented, the matrix profile is a self-join [109]: for every subsequence in a

time series T , we find its (non-trivial-match) nearest neighbor within the same time series.

However, we can trivially generalize the MP to be an AB-join [109]: for every subsequence

in a time series A, record information about its nearest neighbor in time series B. Note that

A and B can be of different lengths, and generally, AB-join 6= BA-join.

To briefly summarize this section, we can create two Meta time series, the matrix

profile and the matrix profile index, to annotate a time series T with the distance and

location of all its subsequences’ nearest neighbors within T. As the reader may already

have realized, the smallest pair of values in the matrix profile correspond to the best motif

pair by the classical definition [55][65][25], and the corresponding values in the matrix profile

index indicate the location of the motif. Moreover, as both [109][65] argue, the top-k motifs,

range motifs, and any other reasonable variant of motifs can trivially be computed from the

information in the matrix profile, which is the focus of the remainder of this work.
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3.2 Algorithms

In this section, we begin by demonstrating that we can improve upon the STAMP algorithm

[109] to create the much faster STOMP algorithm. Then we demonstrate that the structure

of STOMP lends itself to porting to GPUs.

3.2.1 The STOMP Algorithm

As explained below, STOMP is similar to STAMP [109] in that it can be viewed as highly

optimized nested loop searches with repeating calculations of distance profiles in the inner

loop. However, while STAMP must evaluate the distance profiles in a random order (to allow

its anytime behavior), STOMP performs an ordered search. By exploiting the locality of

these searches, we can reduce the time complexity by a factor of O(log n). Before we explain

the details of the algorithm, we first introduce a formula to calculate the z-normalized

Euclidean distance di,j of two time series subsequences Ti,m and Tj,m by using their dot

product, QTi, j:

di,j =

√
2m(1− QTi,j −mµiµj

mσiσj
) (3.2)

Here m is the subsequence length, µi is the mean of Ti,m, µj is the mean of Tj,m, σi is the

standard deviation of Ti,m, and σj is the standard deviation of Tj,m.

The technique introduced in [78] allows us to obtain the means and standard

deviations with O(1) time complexity; thus, the time required to compute di,j depends only

on the time required to compute QTi,j . Here, we claim that QTi,j can also be computed in

O(1) time, once QTi−1,j−1 is known.
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Note that QTi−1,j−1 can be decomposed as the following:

QTi−1,j−1 =
m−1∑
k=0

ti+k−1tj+k−1 (3.3)

and QTi,j can be decomposed as the following:

QTi,j =
m−1∑
k=0

ti+ktj+k (3.4)

Thus we have:

QTi,j = QTi−1,j−1 − ti−1tj−1 + ti+m−1tj+m−1 (3.5)

Therefore, our claim is proved.

Figure 3.6 visualizes the algorithm. Based on Equation 3.2, we can map the

distance matrix computation in 3.5 (also shown in 3.6.left) to its corresponding dot product

matrix (shown in 3.6.right).

Figure 3.6: Mapping the computation of the distance matrix (left) to the computation of
its corresponding dot product matrix (right).

The arrows in 3.6.right show the data dependency indicated by 3.5: once we

have QTi−1,j−1, we can compute QTi,j in O(1) time. However, note that 3.5 does not
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apply to the special case when i = 1 or j = 1 (the first row and the first column of

3.6.right, shown in red). This problem is easy to solve: we can pre-compute the dot

product values in these two special cases with a FFT, as shown in Table 3.1. Con-

cretely, we use SlidingDotProduct(T1,m, T ) to calculate the first dot product vector:

QT1 = [QT1,1, QT1,2, ..., QT1,n−m+1] = [QT1,1, QT2, 1, ..., QTn−m+1,1]. The dot product vec-

tor is stored in memory and used as needed.

Table 3.1: Calculate Sliding Dot Products with FFT.

Procedure SlidingDotProducts

Require: Q a query sequence, T a time series
1: n := Length(T ), m := Length(Q)
2: Qr := Reverse(Q)
3: Qra := Append Qr with n−m zeros
4: Qraf := FFT (Qra), Tf = FFT (T )
5: QT = InverseFFT (ElementwiseMultiply(Qraf , Tf ))
6: return QT [m : n]

After the first row and the first column in 3.6.right are computed, the rest of the

dot product matrix is evaluated row after row. We are now in the position to introduce our

STOMP algorithm in Table 3.2.

The algorithm begins in line 1 by computing the matrix profile length l. In line

2, the mean and standard deviation of every subsequence in T are pre-calculated. Line 3

calculates the first dot product vector QT with the algorithm in Table 3.1. In line 5, we

initialize the matrix profile P and matrix profile index I. The loop in lines 6-13 calculates

the distance profile of every subsequence of T in sequential order. Lines 7-9 update QT

according to Equation 3.5. We update QT [1] in line 10 with the pre-computed QTfirst in
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Table 3.2: The STOMP algorithm for computing the Matrix Profile

Procedure STOMP

Require: T a time series, m a subsequence length
1: n := Length(T ), l := n−m+ 1
2: µ, σ := ComputeMeanStd(T,m) // see [78]
3: QT := SlidingDotProduct(T [1 : m], T ), QTfirst := QT
4: D := CalculateDistanceProfile(QT, µ, σ, 1) {see Equation 3.2}
5: P := D, I := ones {initialization of Matrix Profile P and Matrix Profile Index I}
6: for i = 2 to l do
7: for j = l downto 2 do
8: QT [j] := QT [j − 1]− T [j − 1] ∗ T [i− q] + T [j +m− 1] ∗ T [i+m− 1] {update

dot product, see Equation 3.5}
9: end for

10: QT [1] := QTfirst[i]
11: D := CalculateDistanceProfile(QT, µ, σ, i) {see Equation 3.2}
12: P, I := ElementWiseMin(P, I,D, i)
13: end for
14: return P, I

line 3. Line 11 calculates distance profile D according to 3.2. Finally, line 12 compares

every element of P with D: if D[j] < P [j], then P [j] = D[j], I[j] = i.

The time complexity of STOMP is O(n2); thus, we have achieved a O(log n) factor

speedup over STAMP [109]. Moreover, it is clear that O(n2) is optimal for any exact motif

algorithm in the general case. The O(log n) speedup makes little difference for small datasets

and for those with just a few tens of thousands of data points [25]. However, as we consider

the datasets with millions of data points, this O(log n) factor begins to produce a very

useful order-of-magnitude speedup.

To better understand the efficiency of STOMP, it is important to clarify that the

time complexity of the classic brute force algorithm is O(n2m). The value of m depends on

the domain, but in Section 3.3.8, we consider real world applications where it is 2,000. Most

techniques in the literature gain speedup by slightly reducing the n2 factor; however, we
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gain speedup by reducing the m factor to O(1). Moreover, it is important to remember that

the techniques in the literature can only reduce this n2 factor if the data has a low intrinsic

dimensionality (recall Figure 3.2), and the domain requires a short subsequence length. In

contrast, the speedup for STOMP is completely independent of both the structure of the

data and the subsequence length.

Despite this dramatic improvement, it still takes STOMP approximately 5-6 hours

to process a time series of length one million. Can we further reduce the time?

It is important to note that the STOMP algorithm is extremely amenable to

parallel computing frameworks. This is not a coincidence; the algorithm was conceived

with regards to eventual hardware acceleration. Recall that the space requirement for the

algorithm is only O(n); there is no data dependency in the main inner loop of the algorithm

(lines 7-9 of Table 3.2), so we can update all entries of QT in parallel. The evaluation of each

entry in vectors D, P , and I in lines 11 and 12 are also independent of each other. In the

next section, we will introduce a GPU-based version of STOMP, utilizing these observations

to further speed up the evaluation of the matrix profile and thus motif discovery.

3.2.2 Porting STOMP to a GPU Framework

Note: Please refer to Section 2.2 for an explanation of GPU architecture and terminology.

This section assumes the reader is familiar with these concepts.

A näıve GPU implementation of the STOMP algorithm in TABLE II can be

decomposed into four steps:

• CPU copies the time series to GPU global memory.
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• CPU launches GPU kernels to evaluate µ, σ, the initial QT , D, P and I.

• CPU iteratively launches GPU kernels to update QT , D, P , and I.

• CPU copies the final output (P and I) from GPU.

In the first step, the CPU copies time series T (input vector of Table 3.2) to the

global memory of GPU. The time used to copy a time series of length 100 million takes less

than a second, however it is important that not too much memory transfer between the

host and the GPU takes place.

Note that in order to run the STOMP algorithm, we need to allocate space to

store eight vectors in the GPU global memory: T , µ, σ, QT , QTfirst, D, P and I. A

double-precision time series of length 100 million is approximately 0.8GB, so the algorithm

utilizes approximately 6.4GB global memory space. This is feasible for NVIDIA Tesla K40

and K80 cards; however, if the device used has less memory space available, we can split

the time series into small sections and evaluate one section at a time with the GPU. See

Chapter 4 for details on how this can be done.

In the second step, the CPU can launches GPU kernels to evaluate the vectors in

parallel. The mean and standard deviation vectors in line 2 of Table 3.2 can be efficiently

evaluated by CUDA Thrust [27] using parallel prefix-sum algorithms. The QTfirst vector

in line 3 can be generated in parallel by using cuFFT, the NVIDIA CUDA Fast Fourier

Transform Library [28] in the SlidingDotProduct procedure from Table 3.1. We assign a

total of n−m+ 1 threads to evaluate QTfirst, D, P , and I in lines 3-5 in parallel. The jth

thread processes the jth entry of these vectors one by one.
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Now that we have initialized QT , D, P , and I, we update them iteratively. In

the third step, the CPU runs the outer loop in lines 6-13 of Table 3.2 iteratively. In every

iteration, the CPU launches a GPU kernel with n−m+1 threads, parallelizing the evaluation

of QT , D, P , and I. As shown in Figure 3.7, the first thread reads QT [1] from the pre-

computed QTfirst vector, while the second to the last threads evaluate their corresponding

entry of QT using Equation 3.5.

Note that in contrast to the CPU STOMP algorithm, which uses only one vector

QT to store bothQTi−1 andQTi, here we use two vectors to separate them. This is necessary

because as the threads evaluate entries in QT in parallel, we need to avoid writing entries

before they are read. A simple and efficient way to accomplish this is to create two vectors,

QTodd and QTeven. When the outer loop variable i in line 6 is even, the threads read from

QTodd and write to QTeven; when i is odd, the threads read data from QTeven and write

to QTodd. Following this, the threads evaluate D with Equation 3.2, and the jth thread

updates P and I if D[j] < P [j].

Figure 3.7: Division of work among threads in the third step of GPU-STOMP.
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When all of the iterations are complete, we have reached the last step of GPU

STOMP, where the CPU copies P and I back to the system memory.

3.2.3 Further Parallelizing STOMP with multiple GPUs

The parallelization scheme above is suitable if we only have one GPU device. Can we further

reduce the processing time if there are two or more GPUs available?

Thus far, we have been using CPU to iteratively control the outer loop of the

STOMP algorithm in Table 3.2. We start by computing the first distance profile (the first

row) in Figure 3.5 and its corresponding QT vector. Then in each iteration, we compute

a new row of the distance matrix in Figure 3.5, and maintain the minimum-so-far values

of each column in vector P . When the iteration is complete, P becomes the exact matrix

profile.

This outer loop computation can be further parallelized. Assume we have k inde-

pendent GPU devices, and we also have (n−m+1)/k = q. We can then divide the distance

matrix in Figure 3.5 into k sections: device 1 evaluates the 1st to the qth rows, device 2

evaluates the (q + 1)th to the (2q)th rows, etc. Essentially, device k uses the parallelized

version of SlidingDotProduct function in Table 3.1 to calculate QTq(k−1)+1 and Dq(k−1)+1,

then it evaluates the following q− 1 rows iteratively. The k devices can run in parallel, and

after the evaluation completes, we can simply find the minimum among all the k matrix

profile outputs. In summary, we can achieve a k-times speed up by using k identical GPU

devices.

By porting all the introduced techniques to Nvidia Tesla K80, which contains two

GPU devices on the same unit, we are able to obtain the matrix profile and matrix profile
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index of a seismology time series of length 100 million within 19 days. But there are even

more things we can do to accelerate GPU-STOMP.

3.2.4 A Technique to Further Accelerate GPU-STOMP

Figure 3.7 showed the process to compute the ith row of the distance matrix in Figure 3.5

by n − m + 1 parallel threads. Recall that the distance matrix is symmetric; half of the

distance computations can be saved if we only evaluate the ith to the last columns. We

show this strategy in Figure 3.8.top.

However, note that it is desirable to maintain the O(n) space complexity of our

algorithm; if we move on to the (i + 1)th row of Figure 3.5 without further processing,

then Pi = min(d1,i, d2,i, ..., di,i), and it would no longer be updated. To correct this, it is

necessary to launch another kernel after Figure 3.8.top is completed. The new kernel is

shown in Figure 3.8.bottom.

Essentially, we have used an analogous reduction technique as in [44] to obtain

dmin = min(di,i+1, di,i+2, ..., di,m+n−1), which also is equivalent to min(di+1,i, di+2,i, ...,

dn−m+1,i) as a result of symmetry. If dmin < Pi, we set Pi = dmin, so Pi = min(Di).

Although it is necessary to launch an additional kernel to process each row, which will

require extra time, the extra time is still less than what is saved when handling large time

series.

For example, this new technique reduced the time to process a time series of length

100 million from 19 days to approximately 12 days on NVIDIA Tesla K80. This indicates
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Figure 3.8: Modifying the third step of GPU-STOMP. top) Launch only n − m − i + 2
threads (instead of the n − m + 1 threads in Figure 3.7) this time at the ith iteration.
bottom) Launch another kernel to evaluate the final value of Pi.

that it is possible to finish five quadrillion pairwise comparison of subsequences within 12

days.

Note that fewer and fewer threads are being launched in each iteration. To apply

this new technique to multiple GPUs, it is necessary to ensure that each GPU is loaded

with similar amount of work, so they will finish in similar time. Here, for NVIDIA Tesla

K80, we computed the first (n −m + 1)(1 − 1√
2
) distance profiles with the first GPU and

the last n−m+1√
2

distance profiles with the second GPU.
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3.2.5 Breaking the Ten Quadrillion Pairwise Comparison Barrier

In the last section, we demonstrated a technique to use parallel threads to evaluate the

rows of the distance matrix in Figure 3.5 iteratively. Note that to compute one row, the

technique needs to launch two kernels, all threads need to be synchronized following the

evaluation, and the corresponding QT vector needs to be updated in GPU global memory.

As there are n−m + 1 rows in Figure 3.5, when n becomes large, the overhead for kernel

launches, synchronization, and memory writes become nontrivial.

To make GPU-STOMP even faster, we need to modify the kernel to make it aware

of the architectural considerations above. We denote this optimized, more architecture-

aware version as GPU-STOMPopt. To help the reader better understand how the GPU-

STOMPopt works, we will first show our initial optimization scheme in Figure 3.9, then

further refine it in Figure 3.10 and Figure 3.11.

Figure 3.9: An optimization scheme for the the third step of GPU-STOMP. We only need
to launch one kernel to evaluate all the rows of the distance matrix in Figure 3.5
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Figure 3.9 shows our key scheme to save the kernel launch and thread synchroniza-

tion time: instead of launching a kernel for every single row in Figure 3.5, we issue only one

single kernel to generate the entire matrix profile. Note that based on the one-one corre-

spondence between di,j and QTi,j (as shown in Equation 3.2), we can convert the symmetric

distance matrix computation into Figure 3.9, where we evaluate the upper-right half of the

dot product matrix. Since the value of QTi,j is only dependent on QTi−1,j−1 (according to

Equation 3.5), the computation of each diagonal in Figure 3.9 is independent of any other

diagonal. Thus, we assign n−m+ 1 threads to compute these diagonals in parallel.

Once we obtain QTi,j , we can easily evaluate di,j based on Equation 3.2. Then we

examine two elements of the matrix profile: if di,j < Pi, we set Pi = di,j ; and if di,j < Pj ,

we set Pj = di,j . Note that as each thread in Figure 3.9 operates independently, multiple

threads may attempt to update the same entry of the matrix profile at the same time. We

need to use atomic operations to organize this. Essentially, we set a lock for each entry of

the matrix profile. When multiple threads try to update the same matrix profile entry, they

line up to get the lock, and perform an min operation in order. The reader may doubt that

this can result in a significant cost of time, as it is possible that all threads can be lining up

to update the same single matrix profile entry. However, in practice, we find that a large

portion of these atomic operations are pruned from the calculation.

Assume we have twenty atomic operations lined up to update a matrix profile

entry, which has an initial value of 6.81, with the following distance values in order:

0.6, 4.46, 1.99, 6.98, 2.29, 2.95, 7.05, 1.47, 6.04, 2.72, 2.31, 3.2, 6.25, 9.33, 0.27,

2.62, 2.00, 2.74, 6.67, 2.34.
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Since the matrix profile entry keeps track of the minimum distance value, only two

updates would be executed: 0.6 and 0.27. That is only 10% of this short sequence of data.

Now let us randomly shuffle the data:

7.05, 2.29, 1.47, 0.27, 2.74, 2.95, 9.33, 2.34, 4.46, 2.00, 6.04, 2.72, 2.31, 3.2, 6.25,

6.98, 0.6, 2.62, 1.99, 6.67.

This time three updates would be executed: 2.29, 1.47, 0.27. That is only 15% of

the data; so again, it is only a small portion.

Note that our toy example here is a very short data sequence. In practice, for most

time series only less than 0.1% distance values end up smaller than their corresponding

matrix profile elements. For example, for a random-walk time series of length one million,

we executed on average only 39 atomic updates for each matrix profile entry; more than

99.996% of the atomic operations are pruned.

By implementing the optimization scheme shown in Figure 3.9, we have obtained

about 3X speedup over GPU-STOMP for medium-size time series (i.e. with less than 4

million data points). However, as the time series gets even longer, less speedup is observed,

as the time spent on atomic operations and global memory writes become nontrivial.

To solve this, we use two strategies to refine our optimization scheme in Figure

3.9:

The first strategy aims to accelerate each atomic write. As stated previously,

multiple independent threads can be attempting to update the matrix profile at the same

time, so we are using atomic operations to organize them. Note that when a matrix profile

entry (which is a 64-bit double precision value) is updated, the corresponding matrix profile
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index value (a 32-bit integer value) also needs to be updated. However, currently CUDA

only supports atomic operations on either one single 32-bit value or one single 64-bit value.

To tackle this, we initially set a lock on every entry of the matrix profile, and used a critical

section to update both the matrix profile entry and the matrix profile index value when a

thread gets the lock; however, this solution is not scalable with longer time series inputs.

As a result, we turned to a better solution as shown in Figure 3.10. Instead of using a time-

consuming critical section, we lower the precision of the matrix profile to 32 bits. We then

combine the matrix profile and the matrix profile index into one double-precision vector in

the global memory that can be atomically updated. For the ith entry of the double-precision

vector, 32 bits are used to store the ith matrix profile value, and another 32 bits are used

to store the ith matrix profile index.

This refinement strategy largely accelerated the speed for atomic operations. Note

that the strategy will not result in large precision loss, as only the precision of the output is

reduced; we are still using 64 bits to store all the intermediate results during the evaluation

process.

The second strategy is to utilize the CUDA shared memory to ease the contention

for global memory writes. The strategy, as shown in Figure 3.11, can be viewed as 2-level

hierarchy of Figure 3.9. Here we define TPB as the number of threads per block in the

CUDA kernel.

Different from Figure 3.9, in which each thread evaluates one single diagonal of

the distance matrix, here we divide the distance matrix into k meta diagonals (as shown

in Figure 3.11.a. A meta diagonal consists of TPB diagonals of the distance matrix [(k −
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Figure 3.10: We reduced the matrix profile to 32 bits, then combined each matrix profile
entry and its corresponding matrix profile index entry into a double-precision value to allow
fast atomic updates.

Figure 3.11: a) Each thread block evaluates one meta diagonal of the distance matrix. b)
The parallelograms in a meta diagonal are evaluated iteratively by a thread block. c) The
threads in a block evaluate diagonals of a parallogram in parallel.

1) ∗ TPB < n − m + 1 ≤ k ∗ TPB]. Each meta diagonal is evaluated by one CUDA

thread block. As shown in Figure 3.11.b, the thread block evaluates one parallelogram at
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a time, managing a local copy of the matrix profile in its shared memory. The threads in a

block (shown in Figure 3.11.c) work very similarly as those in Figure 3.9, except that they

atomically update the shared memory instead of the global memory. After a parallelogram

(Figure 3.11.b) is evaluated, all the threads in the block are synchronized. If any value in

the shared memory is smaller than its corresponding entry in the global memory, the global

memory is updated.

With this refinement strategy, the contention of atomic updates in Figure 3.9 is

largely relieved. The original scheme in Figure 3.9 allowed a global memory location to be

visited by all active threads in all the thread blocks (which can be as many as n −m + 1

threads) simultaneously. In contrast, with the refined scheme in Figure 3.11, the number

of threads racing for a shared memory location cannot be larger than TPB, and a global

memory location cannot receive more than k atomic update requests at the same time. This

brings about a large performance gain.

Similar to GPU-STOMP, GPU-STOMPopt can easily be adapted to multiple

GPUs as well. For example, to evenly divide the work for an Nvidia Tesla K80, we compute

the odd (1st. 3rd, 5th, etc. from the left) meta diagonals in Figure 3.11.a with the first

GPU, and the even (2nd, 4th, 6th, etc. from the left) meta diagonals in Figure 3.11.a with

the second GPU. However, there are better ways of approaching splitting the work which

will be covered in Chapter 4.

With all the optimization strategies, GPU-STOMPopt achieved more than 2X

speedup over GPU-STOMP for large datasets. Concretely, it further reduces the time to

process a time series of length 100 million from 12 days to about 4 days on Nvidia Tesla
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K80. Furthermore, for the first time in the literature, we are able to process a time series

of length 143 million, which is slightly more than ten quadrillion pairwise comparison of

subsequences, within just 9 days.

It is important to note that with more modern GPUs this speedup is even more

pronounced, because before the Maxwell architecture (the Tesla K80 is a Kepler architecture

GPU, which is one generation prior to Maxwell) shared memory atomics were implemented

in the instruction set, but not at the hardware level. More modern GPUs are many times

faster than the K80 because their shared memory atomics are implemented in hardware

[26]. Chapter 4 shows an evaluation of GPU-STOMPopt on newer hardware.

3.3 Empirical Evaluation

Although some parts of our experiments require access to a GPU, we have designed them

so they can be reproduced easily. To allow for the reproduction of our experiments, we have

constructed a webpage [100], which contains all datasets and code used in this chapter. We

begin with a careful comparison to STAMP, which is obviously the closest competitor, and

we consider more general rival methods later.

Unless otherwise noted, we used an Intel i7@4GHz PC with 4 cores to evaluate all

the CPU-based algorithms; we used a server with two Intel Xeon E5-2620@2.4GHz cores

and an Nvidia Tesla K80 GPU to evaluate GPU-STOMP and GPU-STOMPopt.
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3.3.1 STAMP vs STOMP

We begin by demonstrating that STOMP is faster than STAMP, and also that this difference

grows as we consider increasingly large datasets. Furthermore, we measure the gains made

by using GPU-STOMP. In Table 3.3, we measure the performance of the three algorithms

on increasingly long random walk time series with a fixed subsequence length 256.

Table 3.3: Time required for motif discovery with m = 256, varying n, for the three
algorithms under consideration

Runtimes (n)

Algorithm 217 218 219 220 221

STAMP 15.1 min 1.17 hours 5.4 hours 24.4 hours 4.2 days
STOMP 4.21 min 0.3 hours 1.26 hours 5.22 hours 0.87 days
GPU-STOMP 10 sec 18 sec 46 sec 2.5 min 9.25 min

Note that we choose m’s length as a power-of-two only to offer the best case for

(the FFT-based) STAMP; our algorithm is agnostic to such issues.

A recent paper on finding motifs in seismograph datasets also considers a dataset

of about 219 in length and reports taking 1.6 hours, which is approximately the same time

it takes STOMP [110]. However, their method is probabilistic and allows false negatives

(twelve of which were actually observed, after checking against the results of a 9.5 day

brute-force search [110]). Moreover, it requires careful tuning of several parameters, and it

does not lend itself to GPU implementation.

We wish to consider the scalability of even larger datasets with GPU-STOMP.

However, in order to do so, we must estimate the time it takes the other two other algo-

rithms. Fortunately, both of the other algorithms allow for an approximate prediction of
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the time needed, given the data length n. To obtain the estimated time, we evaluated only

the first 100 distance profiles of both STAMP and STOMP and multiplied the time used

by n−m+1
100 . In Table 3.4, we consider even larger datasets, one of which reflects the data

used in a case study in Section 3.3.5.

Table 3.4: Time required for motif discovery with various m and various n, for the three
algorithms under consideration

Runtimes (m | n)

Algorithm 2000 | 17,279,800 400 | 100,000,000

STAMP (estimated) 36.5 weeks 25.5 years
STOMP (estimated) 8.4 weeks 5.4 years
GPU-STOMP (actual) 9.27 hours 12.13 days

Note that the 100-million-length dataset is one hundred times larger than the

largest motif search in the literature [55]. In all three algorithms under consideration,

the time required is independent of the subsequence length m, which is desirable. This is

demonstrated in Table 3.5, where we measure the time required with n fixed to 217, for

increasing m.

Table 3.5: Time required for motif discovery with n = 217, varying m, for the three algo-
rithms under consideration

Runtimes (m)

Algorithm 64 128 256 512 1,024

STAMP 15.1 min 15.1 min 15.1 min 15.0 min 14.5 min
STOMP 4.23 min 4.33 min 4.21 min 4.23 min 2.92 min
GPU-STOMP 10 sec 10 sec 10 sec 10 sec 10 sec
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Note that the time required for the longer subsequences is slightly shorter. This

is true since the number of pairs that must be considered for a time series join [109] is

(n−m+ 1)2, so as m becomes larger, the number of comparisons becomes slightly smaller.

3.3.2 GPU-STOMPopt Breaks the Ten Quadrillion Pairwise Comparison

Barrier

In Table 3.6, we measure the performance of STAMP, STOMP, GPU-STOMP, and GPU-

STOMPopt on increasingly long random walk time series with a fixed subsequence length

256. The shaded cells are duplicated from Table 3.3, but they are included for comparison.

Note that while some numbers are estimated, as explained in the next section, we can

predict the time and memory requirement of STAMP and STOMP very precisely (with less

than 5% error) for large datasets.

Table 3.6: Time required for motif discovery with m = 256, varying n, for STAMP, STOMP,
GPU-STOMP, and GPU-STOMPopt

Small Datasets
Runtimes (n)

Algorithm 217 218 219 220 221

STAMP 15.1 min 1.17 hours 5.4 hours 24.4 hours 4.2 days
STOMP 4.21 min 0.3 hours 1.26 hours 5.22 hours 0.87 days
GPU-STOMP 10 sec 18 sec 46 sec 2.5 min 9.25 min
GPU-STOMPopt 8 sec 9 sec 17 sec 49 sec 2.93 min

Large Datasets
Runtimes (n)

Algorithm 17,279,800 100,000,000 143,000,000

STAMP 36.5 weeks (est.) 25.5 years (est.) 51.2 years (est.)
STOMP 8.4 weeks (est.) 5.4 years (est.) 10.9 years (est.)
GPU-STOMP 9.27 hours 12.13 days 24.5 days (est.)
GPU-STOMPopt 3.29 hours 4.51 days 9.33 days
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3.3.3 STOMP vs State-of-the-Art Motif Discovery Algorithms

Beyond the independence of the subsequence length demonstrated in Table 3.5, all three

matrix profile-based algorithms are also independent of the intrinsic dimensionality of the

data, which is also desirable. To demonstrate this, we will compare to the recently in-

troduced Quick-Motif framework [55] and the more widely known MK algorithm [65]. The

Quick-Motif method was the first technique to perform an exact motif search on one million

subsequences.

To level the playing field, we do not avail of GPU acceleration, but instead, we

use the identical hardware (a PC with Intel i7-2600@3.40GHz) and programming languages

for all algorithms. Note that for a fair comparison with STAMP [109], which is written in

MATLAB, in Section 3.3.1, we measured the performance of STOMP based on its MATLAB

implementation. However, because the two rival methods in this section (Quick-Motif and

MK) are written in C/C++, here we measure the runtime of (the CPU version of) STOMP

based on its C++ implementation.

We use the original author’s executables [99] to evaluate the runtime of both MK

and Quick-Motif. The reader may wonder why the experiments here are less ambitious than

in the previous sections. The reason is that beyond time considerations, the rival methods

have severe memory requirements. For example, for a seismology data with m = 200,

n = 218, we measured the Quick-Motif memory footprint as large as 1.42 GB. In contrast,

STOMP requires only 14MB memory for the same data, which is less than a hundredth

of the footprint. If this ratio linearly interpolates, Quick-Motif would need more than

half a terabyte of main memory to tackle the one hundred million benchmark, which is
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infeasible. Moreover, for Quick-Motif, it is possible that a different dataset of the same size

could require a larger or smaller footprint. In contrast, the space required for STOMP is

independent of both the structure of data and the subsequence length.

This severe memory requirement makes it impossible to compare the STOMP

algorithm with Quick-Motif on the seismology data, since Quick-Motif often crashed with

an out-of-memory error as we varied the value of m. However, we noticed that the memory

footprint for Quick-Motif tends to be much smaller with smooth data. Therefore, instead

of comparing performance of the algorithms on seismology data, in Table 3.7, we utilized

the much smoother ECG dataset (used in [78]), which is an ideal dataset for both MK and

Quick-Motif to achieve their best performance.

Table 3.7: Time required for motif discovery with n = 218, varying m, for various algorithms

m

Algorithm 512 1,024 2,048 4,096

STOMP 501s (14MB) 506s (14MB) 490s (14MB) 490s (14MB)
Quick-Motif 27s (65MB) 151s (90MB) 630s (295MB) 695s (101MB)

MK 2040s (1.1GB) N/A (>2GB) N/A (>2GB) N/A (>2GB)

Clearly, both the runtime and memory requirement for STOMP are independent of

the subsequence length. In contrast, Quick-Motif and MK both poorly scale in subsequence

length in both runtime and memory usage. Note that the memory requirement of Quick-

Motif is not monotonic in m, as reducing m from 4,096 to 2,048 requires three times as

much memory. This is not a flaw in implementation (we used the author’s own code), but

a property of the algorithm itself.

As indicated in Figure 3.2, the Quick-Motif algorithm [55], the MK algorithm [65],

and the original motif discovery by projection algorithm [25] can all be fast in the best
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case. For example, if there happens to be a perfect (zero Euclidean distance) motif in the

dataset, they will all discover it with O(n) work (with high constants), and all algorithms

can use this zero-valued best-so-far to prune all other possibilities for motif pairs. While we

generally do not expect to have a zero-distance motif in real-valued data, a very close motif

pair in a dataset with low intrinsic dimensionality (recall Figure 3.2) can offer similar speed

ups. However, that describes the best case for all three algorithms. Consider instead the

worst case (for example, the input signal is white noise, and all subsequences are effectively

equidistant from each other), all three rival algorithms degenerate to O(mn2) (again, with

high constants). In contrast, STOMP is unique in that its best case and worse case are

identical, just O(n2). Because m can be as large as 2,000 (see Figure 3.13), this can produce

a significant speedup. Moreover, as we will show in the next two sections, STOMP computes

much more useful information than the two rival methods.

Before demonstrating this, we show that the experiments in the previous table were

spurious for STOMP. We do not need to measure its time or memory footprint, because we

can predict it precisely. To the best of our knowledge, this property is unique among all

motif discovery algorithms proposed in the literature [25][55][65].

For STOMP (assuming only that m � n), given only n, we can predict how

long the algorithm will take to terminate and how much memory it will consume, which is

completely independent of the value of m and the data.

To do this, we need to do a single calibration run on the machine in question.

With a time series of length n, we measure T , the time taken to compute the matrix profile,

47



and M , the (maximum) amount of memory consumed. Then, for any new length nnew, we

can compute Trequired, the time needed as the following:

Trequired =
T

n2
∗ n2new (3.6)

and we can compute Mrequired the memory needed as the following:

Mrequired =
M

n
∗ nnew (3.7)

As long as we avoid trivial cases, such as m ∼ n, nnew is very small, or n is very

small, and this formula will predict the resources needed with an error of less than 5%. To

demonstrate this, we performed the following experiment. On our machine (a PC with Intel

i7-2600@3.40GHz) we ran STOMP (Matlab version) on a random walk dataset of size 218,

measuring the resources consumed. Then, as shown in Table 3.8, we use the formulas above

to predict the resources needed to compute the Matrix Profile for datasets of size {218, 219,

220, 221}. Then we measured these values with actual experiments on random walk data.

From Table 3.8, the agreement between our predictions and the observed values is clear.

Table 3.8: Time and memory required for STOMP, with m = 256, varying n

STOMP runtime (memory)

Input Size Measured Predicted Relative Error

218 19.0 min (30MB) 19.0 min (30MB) 0% (0%)
219 75.6 min (60MB) 76.0 min (60MB) 0.5 % (0%)
220 313.2 min (121MB) 304 min (120MB) 3% (0.8%)
221 1252.8 min (242MB) 1216 min (240MB) 3% (0.8%)
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This property has several desirable implications: we can carefully plan resources

when performing analytics on large data archives; we can easily divide the work to paral-

lel computing resources to finish our task in time; and we can show a perfectly accurate

“progress bar” to a user who is using STOMP interactively.

3.3.4 Parameter Settings

As we have previously noted, STOMP (together with STAMP) is unique among motif

discovery algorithms because it is parameter-free. In contrast, Random Projection [25] has

four parameters, Quick-Motif [55] has three parameters, Tree-Motif has four parameters

[104], MK [65] has one parameter, and FAST has three parameters [110].

That being said, the reader may wonder about the only input value besides the

time series of interest: the subsequence length m. Note that this is also a required input for

all the other existing techniques. However, we do not consider m to be a true parameter,

as it is a user choice, reflecting her prior knowledge of the domain. Nevertheless, it is

interesting to ask how sensitive motif discovery is to this choice; at least in the seismology

domain that motivates us.

To test this, we edited the data above such that the two earthquakes in Figure

3.13.bottom happen exactly 13 minutes 20 seconds apart. We reran motif discovery with

m = 2, 000 (twenty seconds), with double that length (m = 4, 000), and with half that

length (m = 1, 000). Figure 3.12 shows the result.

The results are reassuring. At least for earthquakes, motif discovery is not sensitive to the

user input. Even a poor guess as to the best value for m, it will likely give accurate results.
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Figure 3.12: top) Thirty minutes of seismograph data that has the two earthquakes from
Fig. 3.13.bottom occur at 6min-40s and 20min. bottom) The matrix profile computed if
we use the suggested subsequence length 2,000 (blue), or if we use twice the length (red),
or half that length (green).

3.3.5 Case Studies in Seismology: Infrequent Earthquake Case

To allow confirmation of the correctness and utility of STOMP, we begin by considering a

dataset for which we know the result from external sources. On April 30th 1996, there was

an earthquake of magnitude 2.12 in Sonoma County, California . Then on December 29th

2009, about 13.6 years later, there was another earthquake with a similar magnitude. We

concatenated the two full days in question to create a single time series of length 17,279,800

(see Table 3.4 for timing results) and examined the top motifs with m = 2, 000 (twenty

seconds). Note that we are using the raw data as provided to us by the seismologists, we

are not preprocessing it in anyway. As Figure 3.13.top illustrates, the top motif here is not

an earthquake but an unusual sensor artifact [45].

There are a handful of other such artifacts; however, as shown in the bottom of

Figure 3.13, the fifth best motif is the two occurrences of the earthquake. These misleading

sensor artifacts are common, but they could be eliminated easily [45]. For example, the
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Figure 3.13: Motifs (colored) shown in context (gray). top) The top motif discovered in
the Sonoma County dataset is a sensor artifact, as are the next three motifs (not shown).
bottom) The fifth motif is two true occurrences of an earthquake that happen 4,992 days
apart.

sensors could have a zero crossing rate that is an order of magnitude lower than true

earthquakes.

3.3.6 Case Studies in Seismology: Earthquake Swarm Case

In the previous section, we discovered a repeating earthquake source that has a frequency

of about once per 13.6 years. Here, we consider earthquakes that are tens of millions of

times more frequent.

Forecasting volcanic eruptions is of critical importance in many parts of the world

[97]. For example, on May 18th, 1980, Mount St. Helens had a paroxysmal eruption that

killed 57 people [50]. It is conjectured that explosive eruptions are commonly preceded by

elevated or accelerated gas emissions and seismicity; thus, seismology is a major tool for

both monitoring and predicting such events. In Figure 3.14, we illustrate a short section

of the matrix profile of a seismograph recording at Mount St Helens. It is important to

51



restate that this is not the raw seismograph data, but it is the matrix profile that STOMP

computed from it.

Figure 3.14: The matrix profile of a seven-minute snippet from a seismograph recording at
Mount St Helens.

The image demonstrates a stunning regularity. Repeated earthquakes are occur-

ring approximately once every thirty-eight seconds. This is consistent with the findings of a

team from the US Geological Survey who reported that the earthquakes, which accompanied

a dome-building eruption, appeared “... so regularly that we dubbed them ‘drumbeats’. The

period between successive drumbeats shifted slowly with time, but was 30–300 seconds.”

[50].

This example shows a significant advantage of our approach that we share with

STAMP but no other motif discovery algorithm. Instead of computing only O(1) distance

values for the top k motifs, STOMP is computing all O(n) distances from every subsequence

to their nearest neighbors. By plotting the entire matrix profile, gain unexpected insights

by viewing the motifs in context. For example, in the example above, we can see both

the surprising periodicity of the earthquakes, and by comparing the smallest values in the

matrix profile with the mean or maximum values, we can get a sense of how well the motifs

are conserved relative to “chance” occurrences. It could also potentially indicate whether

52



there were changes to the earthquake source, reflecting changes in eruptive behavior over

time.

A recent paper performed a similar analysis on the Mount Rainier volcano, making

the interesting and unexpected discovery that the frequency of earthquakes is correlated with

snowfall [5]. However, the paper bemoans at the number of ad-hoc “hacks” that needed to

make such an exploration tenable. For example, “In order to save on computing time, we

cut out detections that are unlikely to contain a repeating earthquake event by excluding

events with a signal width,” and “To save on computing time, we define that in order to be

detected. . . ” etc. [5]. However, the results in Table 3.4 indicate that we could bypass these

issues by spending a few hours computing the full exact answers. This would eliminate the

risk that some speedup “trick” erases an interesting and unexpected pattern.

3.3.7 Case Studies in Seismology: Detection of Repeated Low Frequency

Earthquakes

In the previous sections, we showed how STOMP could help us detect repeating earthquake

sources by evaluating the matrix profile of a single seismograph recording time series. Here

we show that by providing the matrix profiles of multiple seismograph recording time series,

STOMP allows us to detect low frequency earthquakes (LFEs). LFEs are of great impor-

tance to the seismology community, as they could “potentially contribute to seismic hazard

forecasting by providing a new means to monitor slow slip at depth” [94]. LFEs recur episod-

ically, often during bursts of tectonic ‘tremor’, which are considered superpositions of many

LFEs in a short period of elevated seismic activity [93]. One traditional approach, known

as ‘matched filtering’ identifies repeated LFEs by evaluating the cross-correlation between
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continuous waveform data (time series) and a template waveform (subsequence) (e.g. [95]).

However, this requires a suitable, carefully recorded template waveform of an LFE (an LFE

subsequence) to have been identified in advance, which is very difficult or even impossible

in many cases. In the face of this, similarity-join search through autocorrelation (e.g. [18])

has been used to detect LFEs in several studies. However, the traditional similarity-join

search approach is computationally intensive (typically only one hour or less of continuously

waveform data can be searched in feasible time), severely limiting the number and range of

LFEs that can be detected.

Consider an example of LFE detection along the central San Andreas fault near

Parkfield, CA. We search for LFEs in waveform data from a tremor burst that occurred on

October, 6, 2007, in which many LFEs were detected by matched filtering [95]. As before,

note that we are using the raw data as provided to us by the seismologists, we are not

preprocessing it in anyway The LFE template (subsequence) in [95] was found by careful

visual examination of seismic recording from multiple temporary seismic stations located

close to the source (the green triangles in Figure 3.15; temporary stations were set up near

a well-known earthquake source in this area), and subsequently also identified on more

distant, permanent High Resolution Seismic Network (HRSN, the red triangles). Note that

our task here is to detect all the LFEs automatically, and the only data available are those

from the HRSN stations (the red triangles in Figure 3.15), since in most applications we do

not know the earthquake source location (thus the data from the temporary stations) until

well after the event.
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Figure 3.15: LFEs can be detected from the seismograph recording of HRSN stations.

Apart from the lack of the temporary station data, what makes our task even

more difficult is that the data from HRSN stations are noisy and many contain a lot of false

positives. For example, the top 15 motifs (repeating templates) found from the data of an

HRSN station near central San Andreas fault are either sensor artifacts (similar to Figure

3.13) or instrument noise in the station itself. However, in spite of all these difficulties, we

will demonstrate that STOMP allows us to detect LFEs from long seismic recordings.

We ran GPU-STOMPopt on the seismic recording time series from three HRSN

stations for a 24-hour period spanning the tremor burst. The three HRSN stations are

located close to each other. The data was sampled at 20Hz, for a total of ∼1.7 million

samples per station time series. Figure 3.16 shows the sum of the three matrix profiles

obtained.

The reader may wonder why we are summing the three matrix profiles here. This

simple step greatly reduces the false positives in the data. As the three HRSN stations
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Figure 3.16: The sum of three matrix profiles of the 24-hour seismograph recording at three
HRSN stations near the central San Andreas fault.

are located close to each other, when an LFE occurs, the stations should detect it at a

similar time. As a result, the matrix profile values of the three stations should all be low at

the occurrence of the LFE. The sum of the matrix profiles shows low values at such time

instants, which strengthens the LFE signal and thus weakens the false positives, which are

local to each sensor. We discovered that the top seven motifs identified in this way were

either glitches in the waveform data (sensor artifacts, again, recall Figure 3.13), or signals

that could not be separated into individual LFEs; however, as shown in Figure 3.17, the

8th best motif showed strong characteristics, in terms of frequency content, waveform shape

and duration, of an LFE, and the origin time of this LFE is consistent with the results in

[95], which may be regarded as the ground truth.

In contrast to [95], which detects the LFE pattern with weeks of enormous human

effort, we are able to complete the same task automatically in approximately 3 minutes

with GPU-STOMPopt on NVIDIA Tesla K80.
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Figure 3.17: The 40-second LFE snippet detected from the three HRSN station time series.

3.3.8 A Case Study in Animal Behavior

While seismology is the primary motivator for this work, nothing about our algorithm as-

sumes anything about the data’s structure, or precludes us from considering other datasets.

To demonstrate this, in this section, we briefly consider telemetry collected from Magel-

lanic penguins (Spheniscus magellanicus). Adult Magellanic penguins can regularly dive to

depths of between 20m to 50m deep in order to forage for prey, and may spend as long

as fifteen minutes under water. The data was collected by attaching a small multi-channel

data-logging device to the bird. The device recorded tri-axial acceleration, tri-axial mag-

netometry, pressure, etc. As shown in Figure 3.18, for simplicity we consider only Y-axis

magnetometry. Note that, as with the seismology, we are not preprocessing this data source

in in any way, no smoothing, not down sampling, etc.

An observer with binoculars labels the data; thus, we have a coarse ground truth

for the animal’s behavior. The full data consists of 1,048,575 data points recorded at 40 Hz

(about 7.5 hours). We ran GPU-STOMPopt on this dataset, using a subsequence length of
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Figure 3.18: left) The Magellanic penguin is a strong swimmer. right) A four-minute snippet
of the full dataset reveals high levels of noise and no obvious structure.

2,000. This took our algorithm just 49 seconds to compute. As shown in Figure 3.19, the

top motif is a surprisingly well conserved “shark fin” like pattern.

Figure 3.19: The top motif of length 2,000 discovered in the penguin dataset. Only three
examples are shown for visual clarity, there are eight such patterns. This behavior may be
part of a ‘porpoise’ maneuver.

What (if anything) does this pattern indicate? Suggestively, we observed this

pattern does not occur in any of the regions labeled as nesting, walking, washing, etc., but

only during regions labeled foraging. Could this motif be related to a diving (for food)

behavior?

Fortunately, diving is the one behavior we can unambiguously determine from the

data, as the pressure sensor reading increases by orders of magnitude when the penguin is

under water. We discovered that the motif occurs moments before each dive, and nowhere

else. This this pattern appears to be part of a ritual behavior made by the bird before

diving. It has been reported that “The only time penguins are airborne is when they leap
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out of the water. Penguins will often do this to get a gulp of air before diving back down

for fish.” Thus, we suspect this pattern in part of a ‘porpoise’ behavior [96].

Generally speaking, we see this example as typical of the interactions that motif

discovery supports. In most cases, motif discovery is not the end of analyses, but only the

beginning. By correlating the observed motifs with other (internal or external) data, we

can form hypotheses and open avenues for further research. Recall the previous section;

this is rather similar to the team studying Mount Rainier’s seismology discovered that its

earthquakes are correlated with snowfall [5]. We believe that the STOMP algorithm may

enable many such unexpected discoveries in a vast array of domains.

3.4 Conclusion

In this chapter we introduced STOMP, a new algorithm for time series motif discovery,

and showed that it is theoretically and empirically faster than its strongest rivals in the

literature, STAMP [109], Quick-Motif [55] and MK [65]. In the limited domain of seismology,

we showed that STOMP is at least as fast as the recently introduced FAST algorithm [110],

but STOMP does not allow false negatives and does not need careful parameter tuning.

Moreover, for datasets and subsequences lengths encountered in the real world, STOMP

requires one to three orders of magnitude less memory than rival methods. Thus, even if

we are willing to wait a longer period of time for the rival methods to search a large (ten

million-plus) dataset, we will almost certainly run out of main memory. Given that these

algorithms require random access to the data, disk-based implementations are infeasible.

This is not a gap that is likely to be closed by a new implementation of these algorithms,
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because STOMP is unique among motif discovery algorithms in not extracting subsequences,

but performing all the computations in-situ.

We further demonstrated optimizations that allow STOMP to take advantage of

GPU architecture, opening an even greater performance gap and allowing the first exact

motif search in a time series of length one hundred and forty-three-million.
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Chapter 4

SCAMP - A Distributed, Scalable,

Matrix Profile Framework

4.1 Introduction and Background

In this chapter, we show that with several novel insights we can push the motif discovery

envelope even further than with GPU-STOMPopt using a scalable framework in conjunction

with a deployment to commercial GPU clusters in the cloud. We demonstrate the utility of

our ideas with detailed case studies in seismology, demonstrating that the efficiency of our

algorithm allows us to exhaustively consider datasets that are currently only approximately

searchable, allowing us to find subtle precursor earthquakes that had previously escaped

attention, and other novel seismic regularities. To meet the needs of domain experts, we

present a cloud-scale framework called SCAMP (SCAlable Matrix Profile) that expands the

purview of exact motif discovery. We summarize our major contributions below:
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1. We provide a general distributed framework for the ultra-scalable computation of

the Matrix Profile [109]. Both the performance and numerical stability are greatly

improved via our method when dealing with long time series.

2. Our framework allows us to work with time series data which do not fit wholly into

GPU memory, allowing MPs to be computed which are larger than previously consid-

ered.

3. We introduce novel numerical methods to increase performance and improve stability

of the MP computation; this allows the use of single-precision floating-point calcula-

tions for some datasets, which allows our methods to be applied to larger datasets at

a cheaper amortized cost.

4. We deployed a fault-tolerant framework that is compatible with “spot” instances

[7], which major cloud providers (Amazon, Google, and Microsoft) offer at a major

discount, making motif discovery more affordable.

5. We provide a freely available open-source implementation of our framework which

runs on Amazon Web Services in a cluster of instances equipped with Nvidia Tesla

V100 GPUs, as well as optimized CPU code at [114].

Much of the terminology for this chapter remains the same as in Chapter 3, but there are

a few additional considerations to be wary of.
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4.1.1 Observations on Precision

Figure 4.1: top-row) A snippet of whitefly insect EPG data. second-row) The MP computed
with 64-bit precision. third-row) Because the 64-bit and 32-bit MPs are visually identical
at this scale, we subtracted them, and multiplied the difference by 5,000. bottom-row) The
whitefly is tiny, yet it produces well conserved motifs.

Several independent research groups have noted that for some time series retrieval

tasks, 64-bit precision is unnecessarily precise [12][103]. Researchers have shown that re-

duced precision can be exploited to have significant performance benefits with minimal

observable difference in quality of results [103][40]. This observation has been heavily ex-

ploited in deep learning [43][40]; however, it is rarely exploited for time series, except for

allowing the use of Minimal Description Length to score and rank models [12], which is

orthogonal to scalability considerations. Figure 4.1 shows an MP computed on some insect

electrical penetration graph (EPG) data using 64-bit precision.

This plot suggests that the difference between MPs computed at 64 and 32-bit

precision is so small it does not affect the motifs discovered, and is not visible unless we

multiply the difference by a large constant; however, we must consider two caveats:
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• The time series shown in Figure 4.1 is relatively short. To address ever longer time

series, there is more potential for accumulated floating-point error to impact the result

[47]. Even in this example we can see that the difference vector gets larger as we scan

from left to right (Figure 4.1.third-row). We address this issue with our tiling scheme

in 4.2.1.

• The information contained in the time series in Figure 4.1 is contained within a small

range. This is true for some types of data, such as ECGs, accelerometer and gyroscope

readings; however, there are also a handful of domains for which this is not true, such

as seismology. A “great” earthquake has a magnitude of 8 or greater, but humans

can feel earthquakes with magnitudes as low as 2.5, a difference of more than five

orders of magnitude. Processing raw data with a large dynamic range is non-trivial

(see Sections 4.2.1, 4.2.6, and 4.3.4).

Before proceeding, we note that this illustration offers another example of the

utility of motif discovery. The time series in Figure 4.1 is a fraction of an entomologist’s

data archive [59]. The 2nd motif represents ingestion of xylem sap behavior [86], which

is common and immediately recognizable by an entomologist; however, the 1st motif was

unexpected: there is a “missed beat” during the xylem sap ingestion cycle. If we had

observed a single example, we could attribute it to chance or noise; however, motif discovery

shows us that there are at least two strongly conserved examples. This suggests that there

exists some semantic meaning to this motif, which entomologists are currently exploring

[59].
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4.2 The SCAMP Framework

Figure 4.2: left) The GPU-STOMPOPT execution pattern, which is shared with the
SCAMPTILE algorithm. right) The SCAMP tiling scheme using 4 GPUs. The illustration
of the tiling scheme is for self-joins only; the lower triangular tile is computed with the same
implementation, but with the inputs transposed.

To compute large MPs, we introduce the SCAMP framework that can be used

by a cluster with a host and one or more workers. A host can be a local machine, or

a master server. A worker can be a CPU-based system or an accelerator (e.g., a GPU),

following the host’s direction. A cluster refers to the combination of a host and all of its

associated workers. This can be the typical group of co-located nodes in a cloud, or a single

node with accelerators attached (e.g. a server equipped with several GPUs). Additionally,

SCAMP improves several aspects of GPU-STOMPopt, yielding a several-fold improvement

in performance and allows efficient exploitation of newer GPU hardware. We explain these

improvements in detail in the following sections.
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4.2.1 Tiling Scheme

Rather than computing the entire distance matrix in one operation, we split it into tiles.

Each tile independently computes an AB-join between two segments of the input time

series. This allows the computation to scale to very large input sizes and distribute the

work to many independent machines, as depicted in Figure 4.2.right. The host maintains

information about its workers, such as the number and type of available GPUs, the memory

capacity, and the CPU speed, to determine a tile width that can saturate its workers. The

host generates tiles of this width and delegates them among the workers. For simplicity,

this paper assumes that all of the workers are homogeneous (V100 GPUs) and that the

most effective tile size (∼1 million) fully saturates each worker during execution. This tile

width is currently discovered empirically, but could be hard-coded once it is known a given

system configuration.

4.2.2 Host Algorithm

Table 4.1: The SCAMPHOST Algorithm.

Procedure SCAMPHOST

Require: T a time series, window length m, and tile size s
1: tiling := GetTiling(len(T ), s)
2: stats := PrecomputeStats(T ,m)
3: for row, col in tiling do
4: tile := CreateTile(T , m, stats, row, col, s)
5: globalWorkQueue.add(tile)
6: end for
7: StartAsynchronousWorkers()
8: P , I := WaitForWorkerResults()
9: return P , I
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The host executes the SCAMPHOST algorithm, which employs multiple asyn-

chronous workers, which could be threads or other nodes in a cluster (see Table 4.1). Line

1 determines the appropriate tiling for the problem instance and the relative tile execution

order. Line 2 precomputes all necessary statistics of T needed to compute distances between

subsequences. Lines 3-5 initialize a data structure containing all information necessary to

compute the result for each tile in our problem instance, and insert the tile into a global

work queue. Line 7, initializes asynchronous workers, who extract work from the queue.

Line 8 retrieves and merges and the tile result and Line 9 outputs the result.

4.2.3 Tile Computation

Table 4.2: SCAMP Tile Computation

Procedure SCAMPTILE

Require: workQueueOfT iles globalWorkQueue
1: while globalWorkQueue not EMPTY do
2: tile := globalWorkQueue.GetItem()
3: if tile is null then
4: return
5: end if
6: A := tile.A, B := tile.B
7: mp := tile.mp, mpi := tile.mpi, stats := tile.stats
8: QT := SlidingDotProducts(A,B)
9: mp, mpi := DoTriangularTile(A, B, stats, QT, mp, mpi)

10: QT := SlidingDotProducts (B,A)
11: mp, mpi := DoTriangularTile (B,A, stats, QT, mp, mpi)
12: ReturnTileToHost(mp, mpi)
13: end while
14: return

Workers execute the SCAMPTILE algorithm to compute each tile’s intermediate

result (see Table 4.2), while unprocessed tiles remain in the global work queue. Line 2-

7 extracts a tile from the work queue, along with its relevant information from the tile
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structure. Line 8 computes initial dot product values associated with the upper triangular

tile. Line 9 executes an architecture-optimized kernel to compute the local MP and Index for

that tile. Lines 10 and 11 compute the initial dot product values associated with the lower

triangular tile and the result associated with that tile. The tile’s computation similar to

GPU-STOMPopt from Chapter 3, with additional optimizations, described in the following

sections.

4.2.4 Optimizations

The host may run out of memory if tiles are sufficiently small and too many are pre-

allocated; however, this can be overcome via optimization. For example, in a single node

deployment, each worker, rather than the host, can construct the full tile upon its execution.

In a distributed deployment, the maximum number of tiles in the queue can be limited, and

more work can be added as each tile’s processing completes. Further, it is possible to cache

the best-so-far MP values as tiles computed by workers, enabling subsequent tiles to be

initialized with more up-do-date MP values. These optimizations reduce the number of

memory accesses during computation, but have been omitted from Tables 4.1 and 4.2 for

simplicity of presentation.

Chapter 3 established that there is symmetry in the distance matrix for self-joins;

here, we note that the memory access pattern and the order of distance computations in

SCAMP and GPU-STOMPopt are similarly symmetric. The lower-triangular portion of

the distance matrix Figure (3.5) can be computed using the same subroutine as the upper-

triangular portion simply by transposing the input. The SCAMP framework exploits this

property to implement joins.
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4.2.5 Comparison to GPU-STOMPopt

Beyond the scope of the preceding discussion, SCAMP offers several distinct advantages

over GPU-STOMPopt:

• Extensibility: Since tiles are computed independently, SCAMP can provide different

options for each tile’s computation, which offers a pathway to run SCAMP on a

heterogeneous compute infrastructure. See Chapter 6 for additional information on

how SCAMP can be used to perform other kinds of computation besides generating

the Matrix Profile

• Numerical Stability: Each new tile introduces a ‘reset’ point for SCAMP’s ex-

trapolation. When a new tile computation begins, SCAMP directly computes high-

precision initial dot products of the distance matrix at that row and column. This

reduces the likelihood that rounding errors propagate along diagonals. In contrast,

GPU-STOMPopt extrapolates the diagonals of the distance matrix from a single ini-

tial value.

• Fault-Tolerance: SCAMPTILE independently issues and completes processing for

each tile; as a result, it is inherently preemptable, which increases the fault-tolerance

of our framework. If a worker executing a tile “dies” or otherwise fails to complete

its work, the host can simply reissue a new instance of the incomplete tile into the

work queue. As mentioned in Section 4.1 , many commercial cloud providers allow

users to purchase spot instances at discounted prices. Spot instances are only useable

by fault-tolerant applications because the cloud provider can kill the instance at any
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time. Thus, SCAMP provides a pathway for lower-cost cloud-based MP computation,

which GPU-STOMPopt cannot provide. SCAMP users can increase the number of

compute resources purchased at a fixed cost point, which increases the size of the time

series datasets they can process using SCAMP.

4.2.6 Numerical Optimization and Unrolling

To improve performance and numerical stability, SCAMP reorders GPU-STOMPopt’s float-

ing point computations and replaces its sliding dot product update (Equation 3.2 and 3.5)

with a centered-sum-of-products formula (Equations 4.1 to 4.5).

These transformations reduce each thread’s demand for shared memory; at the

same time, increasing the amount of shared memory allocated to each thread, allows each

worker to compute four separate diagonals (Figure 4.3).

df0 = 0; dfi =
Ti+m−1 − Ti−1

2
(4.1)

dg0 = 0; dgi = (Ti+m−1 − µi) + (Ti−1 − µi−1) (4.2)

QT i,j = QT i−1,j−1 + dfidgj + dgjdgi (4.3)

Pi,j = QT i,j ∗
1

||Ti,m − µi||
∗ 1

||Tj,m − µj ||
(4.4)

Di,j =
√

2m(1− Pi,j) (4.5)

Equations 4.1 and 4.2 precompute the terms used in the sum-of-products update

formula of Equation 4.3, and incorporate incremental mean centering into the update.
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Equations 4.1, 4.2, and 4.3 are specific to self-joins and are a special case of a more general

formula for an AB-join [114]. This new formula reduces the number of incorrectly rounded

bits.

Equation 4.4 replaces the Euclidean distance used in previous MP definitions ([109]

and Chapter 3) with the Pearson Correlation; Pearson Correlation can be computed incre-

mentally using fewer computations than ED, and can be converted to z-normalized ED in

O(1) by Equation 4.5. SCAMP also precomputes the inverse L2-norms in Equation 4.4 to

eliminate redundant division operations from SCAMP’s inner loop.

Figure 4.3: One iteration of the innermost loop of GPU-STOMPopt (left) and SCAMP
(right). Self-joins require only half of the distance matrix, but we must track both the MP
value for the columns and for the rows. AB-joins only require the columns or the rows.

Unrolling the innermost loop 4x requires each thread to compute 16 new distances

per iteration (four distances for each of four diagonals), while ensuring the per-thread-block

register and memory usage remains low enough to achieve 50% occupancy on a Tesla V100

GPU (see Ref. [70] for details). MP computation on the GPU is bound by shared memory
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loads not compute time. Unrolling permits SCAMP to use vectorized shared memory loads

for dependencies, enabling consolidation of shared memory transactions.

SCAMP tracks the maximum per-row and per-column distances and updates the

corresponding MP value in shared memory when an improvement occurs, resulting in a

single update per row. In contrast, GPU-STOMPopt compares every newly computed

distance to the MP cache.

4.2.7 Floating-point Precision Options

We evaluated SCAMP under two precision modes:

SCAMPDP performs all computation and stores all intermediate shared memory

values in double-precision. SCAMPDP generated accurate results for all datasets that we

tested, regardless of size, noise, ill-conditioned regions, etc.

SCAMPSP performs all computation and stores all intermediate shared memory

values in single-precision, which increasing performance and memory utilization by ∼2x.

SCAMPSP was adequate for highly regular datasets, such as ECG or accelerometer data,

but may yield incorrect results for ill-conditioned data (see Section 4.3.4 for a detailed

analysis). Using vectorized shared memory loads, SCAMPSP executes two 128-bit loads per

column dependency and one 128-bit load per row dependency. This enabled all intermediate

values to be stored in registers without spilling.

We tested SCAMP using half-precision (16-bit) floating-point operations but found

that SCAMP identified incorrect motifs for many data sets; we do not consider half-precision

any further.
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4.2.8 Multi-Node AWS Deployment

Figure 4.4: Illustration of how to distribute SCAMP in a cluster of GPU instances on AWS.

We deployed SCAMP on Amazon Web Services (AWS), as representative com-

mercially available cloud platform (see Figure 4.4). We first partition our time series data

set into equal-sized chunks ranging from 20 to 100 million elements. There is a tradeoff

here between the overhead of initiating new jobs, intermediate data size, and the risk of a

job being preempted and losing work. We compress each chunk and store it on the cloud

(Amazon S3), where it can be read by worker nodes. There is existing work on array stores,

[74], that might be leveraged in providing access to the input array among worker nodes,

but for simplicity we defer a study on these methods to future work.

We use AWS batch to set up a job queue backed by a compute cluster of p3.16xlarge

spot instances. We issue an array batch job in which each job computes the MP for one tile.

We issue one job per worker, and the tile size is specified to ensure full saturation of each
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worker’s compute resources. This maximizes throughput of the processing pipeline without

risking exorbitant progress loss if Amazon preempts a worker.

Each worker first copies and decompresses its input segments corresponding to

the row and column of its tile. Each tile has two inputs: a segment corresponding to the

tile-row, and another corresponding to the tile-column; each job computes an AB-join on

the inputs. Next, the worker executes SCAMPHOST on the input, further subdividing the

tile among its GPUs. Once the worker computes the MP and index associated with the

tile, the result is compressed and written back to Amazon S3.

Each job dequeues after it terminates. After all jobs terminate, another job de-

compresses and merges each tile’s MP into the final result; as long as intermediate data

growth is limited, this is relatively simple. In a 1 billion datapoint experiment, we merged

196 GB of intermediate results in ∼1 hour using one AWS machine. The merging step could

be further parallelized using a framework such as MapReduce [30].

Intermediate output data volumes can grow to tens or hundreds of gigabytes for

input sizes up to 1 billion elements. Small tile sizes produce too much local information

to reasonably store. SCAMP’s space requirement is O(RN) where R is the number of tile

rows, and N is the length of the final MP. If the tile size is 1, then R = N and processing

one billion elements necessitates storing the distance matrix (∼1 quintillion values). If each

intermediate value is eight bytes compressed on disk, the total storage requirement would

be ∼8 exabytes, the estimated aggregate storage capacity of Google’s datacenters in 2014

[66].
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4.3 Emperical Evaluation

All experiments reported here are reproducible. All code and data (and additional experi-

ments omitted for brevity) are archived in perpetuity [114].

Table 4.3 reports the result of a direct comparison of SCAMP to GPU-STOMPopt

using random walk datasets of various lengths. The first column reports the performance

of GPU-STOMPopt using the code from STOMP 3 on an Nvidia Tesla K80 GPU. The

results here are similar, but vary slightly due to a change in the timing of the experiment

to improve precision.

Table 4.3: SCAMP Runtime Evaluation on Various Architectures

Algorithm STOMP-GPUopt SCAMP

Architecture K80 V100 V100 V100

Precision DP DP DP SP

218 3.04s 0.34s (8.9x) 0.28s (10.9x) 0.24s (12.7x)
219 11.4s 1.24s (9.2x) 0.68s (16.8x) 0.57s (20.1x)
220 44.1s 4.81s (9.2x) 2.05s (21.5x) 1.42s (31.1x)
221 174s 19.0s (9.2x) 6.99s (24.9x) 4.38s (39.8x)
222 629s 69.2s (9.1x) 25.8s (24.4x) 15.5s (40.7x)
223 2514s 277s (9.1x) 96.8s (26.0x) 52.5s (47.9x)

The second column reports the execution time of the same code (still GPU-

STOMPopt) running on a single Nvidia Tesla V100 SXM2 on Amazon EC2. The reported

speedup is due to the V100’s higher instruction throughput compared to the K80, which

is bottlenecked by the latency of atomic updates to shared memory. Nvidia implemented

shared memory atomics in hardware and included them in their instruction set architecture

(ISA) starting with the Maxwell GPU family [26]; they are no longer a performance bot-

tleneck on newer GPU architectures. The third and fourth columns report the execution
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time and speedups (relative to Column 1) of SCAMPDP and SCAMPSP running on the

V100 GPU. The reported speedups are due to the optimizations described in Sections 4.2.1,

4.2.6, and 4.2.7. SCAMPSP does not always produce the same result as SCAMPDP due

to the difference in computational precision.

4.3.1 Scalability

Figure 4.5 depicts an analytical performance model for SCAMP’s execution time under

ideal conditions. Given the runtime of SCAMP (To) on one GPU on a dataset of a size

(No) which sufficiently saturates compute performance, we construct an analytical model

(Equation 4.6) to estimate SCAMP’s execution time across G GPUs on a time series of

length N under ideal assumptions (e.g., no communication overhead).

N = No

√
TG

To
(4.6)

No and To are initialization parameters provided by one trial run on a single V100

GPU. We use this equation and the SCAMPDP runtime for input size 223 (Table 4.3) to

construct the model in Figure 4.5.

Each data point in Figure 4.5 corresponds to an experiment we ran, which demon-

strates that the empirical model is highly accurate. The data for our distributed workloads

in the next section also align well was this plot but were not included due readability con-

straints. More detail is available on our supporting webpage [114]. Under this model, the

cost of a problem remains constant if there is no distributed overhead. For example, to com-

pute a join of 530 million using double-precision, one can either use 8 GPUs for 8 hours, or
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Figure 4.5: Equation 4.6 plotted using No and To from Table 4.3, the V100 double precision
result for a dataset with 223 data points. Dots correspond to values measured during exper-
iments reported in this paper. Results are for a single non-preemptable instance equipped
with G GPUs. Equation 4.6 also generalizes to multi-instance distributed workloads.

64 GPUs for 1 hour. The cost is identical as long as there is no difference in the cost per

hour for GPU compute time.

4.3.2 Distributed Performance: p3 spot instances

Next, we evaluate SCAMP’s performance on two very large earthquake datasets. Both

experiments ran on 40 V100 GPUs, each in a different configuration, on an AWS EC2 spot

instance fleet. A spot instance fleet automatically provisions a consistent number of spot

instances for the job queue. If one instance is preempted, AWS provisions another for the

fleet as long as there are available instances. A spot instance user accesses compute resources

not sold to customers who pay full price for non-preemptable instances. Spot instance prices

increase when demand is high; when demand is low, the provider loses money, but mitigates

losses by selling preemptable access to the highest bidder.
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The Parkfield dataset ran on a five p3.16xlarge spot instance fleet, where each in-

stance is equipped with eight V100 GPUs. The p3.16xlarge instances were in high demand

at the time of the experiment: many jobs remained queued at times that AWS could not

provide capacity to execute; we were only charged for active GPU compute time. The Cas-

cadia Subduction Zone dataset ran on ten Amazon EC2 p3.8xlarge instances each equipped

with four V100 GPUs. These instances were in lower demand than those used for the Park-

field data set experiments, allowing faster job completion time with less queuing overhead.

The spot price of Amazon spot instances is dynamic and demand-driven [7], and we were

charged a higher spot price. Table 4.4 reports the results of these experiments.

Table 4.4: Summary of various distributed runs on AWS spot instances

Dataset Parkfield Cascadia

Size 1 Billion 1 Billion

Tile Size ∼52M (1 month) ∼ 25M (2 weeks)

Total GPU time 375.2 hours 375.3 hours

Spot Job Time 2.5 days 10hours 3min

Approximate Spot Cost 480 USD 620 USD

Intermediate Data Size 102.2 GB 196.4 GB

Table 4.5: Optimized CPU and GPU SCAMPDP cost on a single AWS instance

Instance Type c5.18xlarge p3.2xlargs
Hardware 72 Cores 1 Tesla V100
Cost/hr 3.06 USD/hr 3.06 USD/hr

Input Size Runtime (s) Runtime (s) (speedup)

218 7 0.28 (25x)
219 14 0.68 (20x)
220 32 2.0 (16x)
221 76 7.0 (11x)
222 252 25.8 (9.8x)
223 933 96.8 (9.6x)
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4.3.3 CPU Comparison

Table 4.5 compares the performance of our GPU implementation of SCAMPDP to a CPU

implementation running on a 72-core c5.18xlarge instance (Intel Skylake CPU). The CPU

implementation saturates performance at an input size of 221, after which its runtime scales

quadratically, as expected. At the time of writing, the c5.18xlarge has the same on-demand

price on AWS as a p3.2xlarge which employs one V100 GPU. While it is difficult to compare

cross-architecture performance, we can and do compare price per performance, which is

shown in bold as a factor of improvement of the GPU over the CPU. In this case, the GPU

is approximately one order of magnitude more cost-efficient. The price per performance for

smaller input sizes is an imperfect basis for comparison: we could have used a smaller spot

instance type to achieve better price per performance on a CPU when small input data

sizes fail to saturate the 72 available cores on the c5.18xlarge instance.

4.3.4 Precision Evaluation

Consider the three data snippets shown in Figure 4.6. Each has a constant region longer than

the chosen motif length m. Constant regions are a source of numerical instability. Many

scientists are interested in the similarity of z-normalized subsequences. Z-normalization

divides each data point by the standard deviation of the entire subsequence. For a constant

region, the standard deviation is 0. Near-constant subsequences are also problematic, be-

cause they pass a bit-level test for two distinct values but result in division by a number

very close to 0.
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Constant regions are common. For example, in medical datasets, we have observed

constant regions caused by:

Disconnection Artifacts: These may occur due to disconnection of a monitoring lead,

e.g., during a bed change.

Hard-Limit Artifacts: Some devices have a minimum and/or maximum threshold defined

by a physical limit of the technology. If the true value exceeds the limit for a period of

time, a constant value occurs for the duration (Figure 4.6.center).

Low Precision Artifacts: Many devices record at low-precision fixed-point; observed

constant values may not be constant at a higher precision.

Figure 4.6: Three time series containing a constant region caused by different issue [29].
left) An ECG (heart) with a disconnection artifact. center) An EOG (eye movement) with
a hard-limit artifact. right) An ECoG (finger flexion) with constant region caused by low
precision recording.

In most cases, disconnection artifacts saturate to a Pearson Correlation of 1 or a

z-normalized Euclidean Distance of 0, and are removed later via a post processing step. If

small peaks and valleys are important in a low-precision artifact scenario, the MP can be

computed and stored in double-precision.
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4.3.5 Comparison with Previous Update Method

Figure 4.7 compares SCAMP’s update method (Equations 4.1-4.5) with the prior method

implemented in GPU-STOMPopt (Equations 3.2 and 3.5). We compute the result first in

double precision, then plot the absolute error in computed Pearson Correlation between the

double and single precision for both SCAMP and GPU-STOMPopt.

The bottom and middle of Figure 4.7 elucidate how Equations 3.2 and 3.5 (GPU-

STOMPopt’s update method), completely fail in single precision on this dataset. We capped

the error at 1 for GPU-STOMPopt, which is half of the range of Pearson Correlation. The

actual values reported by GPU-STOMPopt were many times larger than the entire range

of Pearson Correlation.

In contrast, SCAMP only exhibits error in constant regions that arise due to

disconnection artifacts. Here, a domain expert can easily clean up SCAMP’s results with

minimal effort by omitting these regions from consideration when analyzing the output of

SCAMP. In contrast, GPU-STOMPopt fails to produce a meaningful result across almost

most of the dataset.

4.3.6 General Considerations for Precision

Next, we analyze the effect of reducing precision on various datasets of different lengths.

We use a tile size of 1 million for SCAMP while GPU-STOMPopt computes across the

entire length of the input in one go, as it does not perform tiling. We generate the MP

using SCAMPDP , SCAMPSP and GPU-STOMPopt with single and double precision. We

used a window length longer than the longest flat artifact region in the data, to allow us
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to isolate errors caused by the update formula from the inherent loss of information from

artifacts that cannot be represented in lower precision.

Table 4.6 presents the results of the experiment. Altogether SCAMP was three

or more orders of magnitude more accurate than STOMP on these datasets. Each entry

in Table 4.6 is the maximum absolute error found between the double and single-precision

MP calculations. We highlight absolute errors that exceed 0.01 in red to emphasize that a

domain scientist would not consider these results sufficiently accurate to use or report.

SCAMPSP suffers substantial accuracy loss compared to SCAMPDP but achieves

higher performance. If a user’s dataset and application can tolerate the loss of accuracy,

there is much to be gained in terms of efficiency. We observe that SCAMPSP works well

on data that is highly regular with a small min-max range, exemplified by ECG data.

Figure 4.7: Single precision error comparison between GPU-STOMPOPT and SCAMP on
White Fly EPG dataset. top) original data. middle) SCAMP absolute error. bottom)
GPU-STOMP absolute error.

SCAMPSP completely fails on the Earthquake dataset in Table 6. This is because

the large earthquake’s signal has a magnitude greater than 107, which cannot be represented
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Table 4.6: Absolute error (Pearson Correlation) for various datasets/algorithms. Red de-
notes high error

Maximum Absolute Error Size (m) SCAMPSP STOMPSP

Whitefly EPG 2.5M (1000) 3.75 ∗ 10−2 1.89 ∗ 101

ECG 8.4M (100) 3.14 ∗ 10−4 2.07 ∗ 10−3

Earthquake 1.7M (200) 6.35 ∗ 10−1 3.17 ∗ 103

Power Demand 10M (4000) 4.85 ∗ 10−2 2.22 ∗ 10−1

Chicken 9M (1000) 4.92 ∗ 10−2 2.27 ∗ 101

99.9 percentile absolute error Size (m) SCAMPSP STOMPSP

Whitefly EPG 2.5M (1000) 3.00 ∗ 10−3 1.55 ∗ 101

ECG 8.4M (100) 4.40 ∗ 10−5 4.02 ∗ 10−4

Earthquake 1.7M (200) 6.08 ∗ 10−1 1.94 ∗ 103

Power Demand 10M (4000) 8.52 ∗ 10−3 1.29 ∗ 10−1

Chicken 9M (1000) 1.96 ∗ 10−3 1.70 ∗ 101

precisely by single-precision floats. It may be possible to reduce the error of SCAMPSP

for more types of data, but we leave this task for future work.

4.4 Case Studies in Seismology

Figure 3.18 and 4.1 show that motifs are important to many domains. We limit our case

studies reported in this chapter to seismic data, which provides information about Earth’s

interior structure and processes. We define seismic data to be any recorded motion (e.g.,

displacement, velocity, acceleration) measured using seismic instruments at the Earth’s

surface. Detected and located seismic events (i.e. earthquakes) can be used for studying

earthquake source processes and source physics, fault behavior and interactions, for de-

termining Earth’s velocity structure, and to constrain seismic hazard [34]. Many of these

applications benefit from detection of smaller events, which can be missed due to insensitive

detection algorithms, or human analyst error [16]. Improvements to seismic data instru-

ments, networking and data management, and reductions in cost, have resulted in a power
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law increase in seismic data volume [48]. Probing this huge volume of data is an ongoing

challenge.

Performing query searches for seismic data can increase the detectability of seismic

events by one order of magnitude [76][89]. However, this method requires a priori known

queries (often referred to as ‘waveform templates’ in seismology) as input.

Although waveforms of events in a local earthquake catalog can be used, this relies

on suitable events being present in the catalog. While an ’autocorrelation’ motif discovery

method can identify suitable queries, it is expensive computationally in terms of memory

and time [18][84]. The analysis in [18] was restricted to one hour of data, which limited the

number of discoverable motifs.

Other studies have performed motif discovery by converting seismic time series to

small and dense proxies, and computing a Locality-Sensitive Hash (LSH) [13][110][80], an

approximate and reduced-dimension nearest neighbor search. This approach was ∼143x

faster than autocorrelation for one week of continuous data, but produced false positive

and false negative results [110]. In addition, LSH requires the careful selection of multiple,

data set-specific tuning parameters, a process that requires visual inspection and validation

against the results of other methods.

In contrast, SCAMP can exactly search datasets that can only be searched ap-

proximately using current methods. We consider the milestone of one billion data points

(∼579 days, ∼1.5 years) of seismic data with a 20 Hz sample rate. In two examples, we

demonstrate how and why transitioning motif discovery timescales from hours of data to

years of data is a potential game changer for the field of seismic data mining.
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4.4.1 Detecting Foreshocks and Aftershocks

The town of Parkfield, located on the San Andreas fault in central California, experienced

four magnitude ∼6 earthquakes in the 20th Century: 1901, 1922, 1934 and 1966 [10].

A repeat event was predicted to occur between 1985 and 1993, spurring the ”Parkfield

Earthquake Prediction Experiment”, which tried to capture the earthquake with the best

available instrumentation. The actual event (the ”mainshock”) occurred ’late’ in 2004,

and was recorded in extraordinary detail by the low-noise, borehole seismometers of the

Parkfield High Resolution Seismic Network (HRSN) [10][54]. Many of these earthquakes

were detected and cataloged in real-time at the Northern California Earthquake Data Center

(NCEDC) by an automated procedure, and quality checked for false positives by human

analysts.

We use this catalog as a reference to investigate i) whether the HRSN data contain

information on any aftershocks that were not included in the NCEDC catalog, and ii)

whether there was any change in behavior before the mainshock, we ran SCAMP on 580

days (1,002,240,008 points) of data from Parkfield. We use 20 Hz horizontal component

seismic data (from 28-11-03 to 9-7-05) from the HRSN station VCAB, centered on the 2004

Parkfield mainshock time (i.e. 28-9-04). We set the query length at 100 samples (5 seconds).

We band-pass filtered the data between 2 and 8 Hz, a frequency range that can detect low

signal-to-noise ratio earthquakes.

Figure 4.8 shows a zoom-in of two sections of the waveform and their corresponding

MPs. The motifs for aftershocks of the Parkfield earthquake have a very characteristic

shape. The MP drops abruptly as the query window begins to capture the beginning of the
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earthquake waveforms, followed by a gradual increase back to the background noise level,

indicating that the two waveforms being compared have similar shapes at their beginnings,

and dissimilar shapes at their ends.

Figure 4.8: Examples of a waveform snippet (top) and corresponding MP shape (bottom) for
aftershocks of the Parkfield earthquake. left) a small aftershock. right) a larger aftershock
with a waveform amplitude that is three orders of magnitude larger.

The first arrivals (first motions) of seismic waves have polarities (either up or

down) that reflect both the mechanism of the earthquakes that generated them and their

location relative to the station. The initial drop in the MP indicates the waveforms have the

same first motion polarity. The next few seconds of arrivals to the station include reflections,

refractions and reverberations of seismic waves – collectively referred to as the seismic ‘coda’

– which are much more sensitive to differences in earthquake location, and therefore much

less similar between pairs of events [3]. The duration of the gradual increase in the MP is

longer for the larger event (Figure 4.8.right), consistent with the empirical relationships of

signal duration (and coda length) with event magnitude [53][20]. We propose two important

applications of MP results to seismology: ii) The abrupt initial drop of the MP can select

the first motions of seismic events, which is an ongoing challenge in seismology [69][81]. (ii)

The length of the MP valley from the sudden drop to its recovery can help to measure the

coda length, which correlates with earthquake magnitude [20][53].
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Next, we performed an event-detection experiment using a MP containing the

Pearson Correlation Coefficient (MPCC, for short). Pearson correlation is bounded in

the range [-1,+1], can be trivially converted to Euclidean Distance, and is widely used in

seismology studies [77][67][88]. We count the number of MPCC peaks separated by at least

100 samples (5 seconds) to prevent overcounting the same earthquake when multiple peaks

are present for one event. Long traces of seismograph data often contain repeated patterns

corresponding to special types of sensor noise; these are easy to filter, as they create near

perfect motifs. We count the number of MPCC peaks in the range [0.90, 0.99].

Figure 4.9: Daily number of discovered motifs for 580 days of data centered on the Parkfield
earthquake (04/09/28), measured on the horizontal component of station VCAB, located
10 km from the epicenter. Motifs are selected based on the peak MPCC values.

Figure 4.9 shows the number of MPCC motifs per day for our 580 days of VCAB

data. Although we targeted the Parkfield earthquake, we detected other nearby earthquakes

and their aftershocks, notably the 2003 Mw 6.5 San Simeon event, and two other moderate

(Mw 4.0–4.5) earthquakes nearby. A series of motif peaks in the lead-up to the Parkfield

mainshock (around 04/07/01) do not correspond to events in the regional earthquake cata-
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log, and may represent previously undetected foreshock activity; we have reported them to

collaborators in seismology to investigate.

Figure 4.10: The number of events in the USGS NCSN Catalog (green line) and the number
of motifs detected using SCAMP (red line) for the Parkfield earthquake aftershock sequence.
For the catalog events we considered all events in a box with length 200 km centered on
the Parkfield mainshock epicenter. The start of seismicity in this plot is 4 days prior to the
Parkfield earthquake

Figure 4.10 compares the total number of motifs in the MPCC range [0.9, 0.99]

over the first 90 days of the Parkfield aftershock sequence with the number of catalog

aftershocks reported in the NCEDC catalog. This analysis reports ∼16x more detections

than those reported by the NCEDC. Some of these thresholding-based detections may be

station artifacts, but visual inspection suggests that they account for less than 5% of the

events.

We also fit the Omori-Utsu aftershock rate equation [101] to the detected and

catalogued aftershocks of the Parkfield earthquake.

Figure 4.11 shows that the number of motifs per day fit the Omori-Utsu law almost

perfectly. Values retrieved from the Omori-Utsu rate equation can provide information

about the physics of the mainshock [42] and also even can be used for forecasting large

aftershocks [72].
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Figure 4.11: A fit of an Omori-Utsu relationship [101] (i.e. the law that describes aftershock
rate behavior) to the number of motifs per day for the first 30 days after the Parkfield
mainshock. The R-squared of 0.988 indicates a very good fit and shows how the number of
motifs can describe the expected aftershock behavior almost perfectly.

4.4.2 Detecting Subtle Seismic Motifs

Low frequency earthquakes (LFEs) are seismic events that occur deep in the crust and

typically have very low signal-to-noise ratio signals. LFE recurrence is a proxy for move-

ments at the roots of fault zones, and may be useful in short-term earthquake forecasting

[93][71][85]. LFEs have been observed in the Cascadia subduction zone, where the Juan de

Fuca plate subducts beneath the North American plate, from coastal Northern California to

Vancouver Island. This ‘megathrust’ fault has the potential to produce great (magnitude

∼9) earthquakes [8], motivating LFE detection in this region. Their low signal-to-noise

ratios make detecting them challenging and time consuming (e.g., requiring sophisticated

methods and visual inspection; [15][92][18]).

In order to see if we can detect these novel events in this region, we ran SCAMP

on 579 days of data (start date 2006/03/01) for the vertical component of station I02A,

located near Mapleton, OR. We band-pass filter these data at 2–8 Hz and resample them to
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Figure 4.12: Discovered motifs for 579 days of seismic data recorded on the vertical channel
of station I02A, located near Mapleton, OR. The number of discovered motifs based on
MPCC thresholding method shows two six-month periods were detected motifs gradually
increase, that start in mid-2006 and mid-2007. We believe many of these motifs are low
frequency earthquakes (see Figure 4.13).

20 Hz. We set the query length to 200 (10 seconds), based on the length of LFE templates

used in previou[15].

Figure 4.12 shows the motif density over time for this experiment. The number

of motifs starts to increase around August 2006 and decrease in November 2006, and again

increase in June 2007 and start to decrease around October 2007. We visually inspected

some of these motifs (in both time and frequency domain) and classified them in four

categories: i) regular earthquakes (less frequent, Figure 4.13. left.) ii) weather or human

related signals (frequent), iii) Station artifact (less frequent), iv) LFE-like signals (frequent,

Figure 4.13.right). Confirming a signal to be LFE is not easy, typically requiring detection

at several stations and visual inspection of its frequency spectrum. In Figure 4.13 we show

a discovered motif that was confirmed as a true LFE in [15]. Note that the MP for the

LFE is not as low as regular earthquake but much lower than the background noise (Figure

4.13).

In general, we detect fewer than 150 motifs per day in this dataset. This means that

in order to discover LFEs a seismologist needs to inspect fewer than 150 sub-windows per
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Figure 4.13: left) An example of an earthquake waveform snippet (top) and MP shape
(bottom) in the vicinity of a discovered motif for a ‘regular’ earthquake. right) A waveform
snippet and corresponding MP from a confirmed LFE (identified by [15]).

day of data, a task that would take minutes to perform. In contrast, the traditional visual

inspection method for detecting LFEs (e.g., brute force checking [92]) requires inspection

of thousands of sub-windows (e.g., 17280 sub windows with a 5 second skip), potentially

taking hours for each day of seismic data. Running SCAMP before searching for these

subtle and important motifs could potentially provide a large time savings for seismologists

and make their discovery much easier in this domain.

These results were obtained by post-processing an MP produced by SCAMP; pos-

sibilities for further refinement remain open. These results show that SCAMP can detect

LFEs, and has the potential to more generally explore the seismicity of the southern Cas-

cadia subduction zone and other similar regions. We believe that SCAMP has a rich future

in seismic data mining – a discipline that traditionally suffers from false negatives – and

other domains that produce time series.

4.5 Chapter 4 Summary

SCAMP exactly searches for motifs in time series at the data-center scale. To the best of

our knowledge, this work is the first time any research effort has reported performing a
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quintillion exact pairwise comparisons on a single time series dataset. Likewise, we believe

this to be the first work to do exact motif search on more than one year (1.59 years to

be precise) of continuous earthquake data. All code has been made freely available to the

general public [114], whom we invite to confirm, extend, and exploit our efforts.
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Chapter 5

LAMP - An Approximate Matrix

Profile for Massive Archives and

Fast Moving Streams

5.1 Introduction

By efficiently computing all of the “essential” distance information between subsequences in

a time series, the Matrix Profile makes many analytic problems, including classification and

anomaly detection, easy or even trivial. However, for many tasks, in addition to archives of

data, we may face never-ending streams of newly arriving data. While there is an algorithm

to maintain a Matrix Profile in the face of newly arriving data, it is limited to streams

arriving on the order of one Hz and with small archives of historical data. However, in
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domains as diverse as seismology, neuroscience and entomology, we may encounter datasets

that stream at rates that are orders of magnitude faster.

In this chapter we introduce LAMP, a model that predicts, in constant time, the

Matrix Profile value that would have been assigned to an incoming subsequence. This

allows us to exploit the utility of the Matrix Profile in settings that would otherwise be

untenable. While learning LAMP models is computationally expensive, this stage is done

offline with an arbitrary computational paradigm. The models can then be deployed on

resource-constrained devices including wearable sensors. We demonstrate the utility of

LAMP with experiments on diverse and challenging datasets with billions of datapoints on

a simple desktop machine. Using LAMP, we can achieve more than 10000x speedup over

exact methods on the same data.

In previous chapters we saw ways to compute the Matrix Profile using tiling and

batching. However, the MP can also be computed incrementally, enabling streaming ver-

sions of algorithms which exploit the MP.

STOMPI [109] is the current state of the art algorithm for maintaining the matrix

profile on streaming data. However, STOMPI has a problem: the time required to update

the MP slowly grows as a function of how much data we have seen. Suppose we start

monitoring a new 5 Hz process at midnight on Sunday. Initially, we can use STOMPI to

maintain the MP, and have plenty of cycles to spare. However, by Wednesday at 10:25 AM,

when we have seen just over one million datapoints and we can no longer maintain the MP

fast enough , the next datapoint will arrive before STOMPI is finished updating the matrix

profile for the last datapoint.
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We can push back this time horizon with faster machines, but the reprieve is

temporary. At some point, the growing computational demands will outstrip our resources.

To make this concrete let us preview two real-world applications of our system that we

will later revisit in our experiments. In Figure 5.1.top we show a classification problem for

telemetry for insects. The recording apparatus produces a snippet that we must classify

in to one of several classes. We have just 1/100th of a second to do this, before the next

snippet arrives.

Figure 5.1: Two time series subsequences (shown in red) that need to be quickly processed.
top) An example of data from an insect EPG (Electrical Penetration Graph) apparatus.
bottom) An example of a trace from a seismograph.

In Figure 5.1.bottom we show a snippet from a seismograph. Here the sampling

rate (after some inline processing) is slower, with new snippets arriving every 1/20th of a

second. However, to answer the question posed, we need to compare this data with four

years of data, or 2.53 ∗ 109 datapoints.

The problem is exacerbated by the fact that we would like to deploy MP-based al-

gorithms on embedded devices with very little computational power. This would potentially
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allow analytics to be done “at the edge” [73], reducing the network and power overhead of

transmitting data.

In this work, we propose to solve this problem by introducing a Learned Approxi-

mate Matrix Profile (LAMP), which enables constant time approximation of the MP value

given a newly arriving time series subsequence. With this approximate value, we can do

most of the analytics based on the MP, including anomaly detection and classification.

5.2 Related Work and Background

In this section, we first introduce all necessary definitions before considering related work.

5.2.1 Definitions

Chapters 3 4, and [109] defined the matrix profile in terms of the Euclidean distance between

z-normalized subsequences. However, in this chapter, we define the matrix profile in terms

of the Pearson correlation. This is because it creates results limited to the intuitive range

of [-1, 1]. For example, seismologists may prefer to filter out weakly matching sequences for

some analytic task, perhaps by setting a correlation threshold to say 0.8 [90]. Working with

correlation allows them to reuse such a threshold on multiple datasets, without having to

worry about the sampling rate of the length of the subsequences. In contrast, for Euclidean

distance, any threshold discovered would have to be recalibrated for new sampling rates or

subsequence lengths.

Given a query subsequence Ti,m and a time series T , we can compute the correlation

between Ti,m and all the subsequences in T . We call this a correlation profile:
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Definition 6 A correlation profile Ci corresponding to query Ti,m and time series T is a

vector of the Pearson correlations between a given query subsequence Ti,m and each subse-

quence in time series T . Formally, Ci = [ci,1, ci,2, ..., ci,n−m+1], where ci,j(1 ≤ j ≤ n−m+1)

is the Pearson correlation between Ti,m and Tj,m.

It is important to recognize that using correlation does not change the informa-

tion contained from the previous matrix profile (Definition 4), as the Pearson correlation

can be converted to z-normalized Euclidean distance in constant time using Equation 4.5.

Moreover, the ranking of all the top-K nearest neighbors to a time series is identical under

Pearson correlation and between z-normalized Euclidean distance.

Once we obtain Ci, we can extract the nearest neighbor of Ti,m in T . Note that

if the query Ti,m is a subsequence of T , the ith location of correlation profile Ci is 1 (i.e.,

ci,i = 1) and close to 1 just to the left and right of i. This is the same trivial match

discussed in Section 3.1.4. Like before, we avoid such matches by ignoring an “exclusion”

zone of length m
4 before and after i, the location of the query. In practice, we simply set

ci,j (i − m
4 ≤ j ≤ i + m

4 ) to negative infinity, and the nearest neighbor of Ti,m can thus be

found by evaluating max(Ci).

We wish to find the nearest neighbor of every subsequence in T . This nearest

neighbor information is stored in two “meta time series”, the matrix profile and the matrix

profile index:

Definition 7 A matrix profile P of time series T is a vector of the Pearson correlation

between every subsequence of T and its nearest neighbor in T . Formally:
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P = [max(C1),max(C2), ...,max(Cn−m+1)], where Ci (1 ≤ i ≤ n−m+1) is the correlation

profile Ci corresponding to query Ti,m and time series T .

The ith element in the matrix profile P tells us the Pearson correlation from

subsequence Ti,m to its nearest neighbor in time series T. However, it does not tell us

the location of that nearest neighbor; this is stored in the companion matrix profile index,

which in this case is computed very similarly to the previous Definition 5, except we use

max instead of min.

Definition 8 A matrix profile index I of time series T is a vector of integers: I =

[I1, I2, ..., In−m+1], where Ii = jifci,j = max(Ci).

Figure 5.2 shows the relationship between correlation matrix, correlation profile

(Definition 6) and matrix profile (Definition 7). Each element of the correlation matrix ci,j

is the correlation between Ti,m and Tj,m (1 ≤ i, j ≤ n−m+ 1) of time series T .

Figure 5.3 shows a visual example of a correlation profile and a matrix profile

created from the same time series T.

Note that as presented above, the matrix profile can be considered a self-join [109]:

for every subsequence in a time series T, it records information about its (non-trivial-match)

nearest neighbor in the same time series T. However, as mentioned before in Section 3.1.4

we can trivially generalize it to be an AB-join [109]: for every subsequence in a time series

A, it records information about its nearest neighbor in time series B. Note that A and B can

be of different lengths, and that in general, AB-join 6= BA-join. This becomes important

to the following definitions.
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Figure 5.2: The relationship between the correlation matrix, correlation profile and matrix
profile. A correlation profile is a column (also a row) of the correlation matrix. The matrix
profile stores the maximum (off diagonal) value of each column of the correlation matrix;
the location of the maximum value within each column is stored in the companion matrix
profile index.

Figure 5.3: top) A correlation profile Ci created from Ti,m shows the correlation between
Ti,m and all the subsequences in T . The values in the dark zone are ignored to avoid trivial
matches. bottom) The matrix profile P is the element-wise maximum of all the correlation
profiles (Ci is one of them). Note that the two highest values in P are at the location of
the 1st motif in T . (Adapted from Figure 3.4).

We are now able to introduce the definitions immediately relevant to the problem

at hand. First, we consider the output of the STOMPI algorithm [109], which is the exact
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matrix profile for all data seen up to the current time in a streaming setting. This will serve

as our ground truth or oracle.

Definition 9 An Oracle Matrix Profile (OMP) of a stream S is the matrix profile of the

entire stream; it encodes the nearest neighbor for all subsequences in the history of the

stream, where the nearest neighbor can be any observed subsequence of S.

Given a new set of k consecutive subsequences observed from S: the OMP can

be updated via STOMPI in time O((S + k)k), which is the time it takes to compute the

AB-join between S and k and the self-join of k. For data with a very low sample rate, it

might be enough to simply maintain the OMP. However, in many cases this is untenable

because the cost of maintaining the OMP grows as more data is observed. Therefore, we

assume we have a representative subset of S that we can use as a proxy.

Definition 10 A Representative Matrix Profile (RMP) of a stream S is the matrix profile

of the entire stream, where the nearest neighbor can only occur in some representative subset

R consisting of observed subsequences of S. Formally, RMP is the AB-join between S and

R where RMP encodes the nearest neighbor of each subsequence of S in R. Note that an

exclusion zone must be applied to each subsequence in R when comparing to its ‘original

copy’ in S.

We can update the RMP in time O(Rk) which is the time it takes to compute the

AB-join between R and k. Note that the time complexity per update no longer depends on

the entire history of the stream. For some applications this might be enough. However, for

applications with a high sample rate, large R, or on systems with low computational power,

this will still likely be above our compute budget and we will need something better.
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Definition 11 A Learned Approximate Matrix Profile (LAMP) of a stream S is the out-

put of a learned model that compresses R into a fixed-size compressed representation. It

approximates the RMP of S.

Using this definition, we can now perform updates in O(k), no longer depending

on the size of the representative dataset.

5.2.2 Motivation and Formal Problem Statement

Assume we have a continuously arriving stream of time series from a sensor. We may wish to

take the most recent subsequence of length m and compare it with an archive of previously

collected data. There are multiple reasons why we may wish to do this, including:

• Classification: We may have partitioned our archive of previously collected data

into labeled subsets, for example wild-type — mutant [17] or ingestion — probing —

salivation [108]. In this case we have an implicit nearest neighbor classifier.

• Anomaly Detection: In some domains, we can expect that all newly arriving sub-

sequences should be close to a pattern we have already observed. A pattern that is

not (formally a “time series discord” [6]) may signal the discovery of an anomaly.

• Segmentation: In [37] it was shown that a very competitive time series sematic

segmentation algorithm can be built on top of the Matrix Profile.

A more formal problem statement is:

Problem Statement: Given a streaming time series and representative subset

of data from that stream, subject to the constraint that data must be analyzed at the time
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of arrival, approximate the matrix profile values associated with this newly arriving data,

such that they closely approximate the matrix profile values that would be produced by

existing exact methods.

5.2.3 Dismissing Apparent Solutions

Before introducing LAMP, here we will take the time to dismiss some apparent solutions

to the task at hand.

• Indexing: Would it be possible to just index the data, and perform a nearest neighbor

search for each arriving subsequence? Recall that the seismology example shown in

Figure 5.1.bottom would require us to index 2.53 ∗ 109 datapoints. The fastest query

times for datasets approaching this size are three to four orders of magnitude slower

than our required processing rate [32]. Moreover, virtually every indexing techniques

takes a variable and unpredictable amount of time to answer queries. Thus, even if we

had a much slower arrival rate where the index could keep up on average, and we had

a highly optimized index running in main memory, it is always possible that we could

see multiple slow-to-process subsequences in a row, and therefore run out of time.

• Dictionary Building/Numerosity Reduction: Could we not just build a compact

“dictionary” of events and brute force search it in the time allowed? There are many

papers that suggest something like this, and it is good idea in limited circumstances.

For example, it seems to be possible to explicitly build a full dictionary of heartbeats;

several papers have explicitly suggested this “We model heartbeats by dictionaries..”

[19]. However, heartbeats are a relatively easy case, as there are algorithms that
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can robustly extract individual phase-aligned beats. In contrast, we are interested in

datasets where this is not possible in general, because the target behavior is highly

polymorphic, and only weakly labeled. Consider Figure 5.4, which shows some exam-

ples of a single behavior from an insect. We know it reflects a single behavior because

an entomologist labeled the entire five-minute session with the label Xylem-Ingestion.

However, it not clear that we could build a dictionary to summarize this class, either

with an algorithm or using significant human labor.

Figure 5.4: Six random examples of insect Xylem-Ingestion behavior, from a single insect,
taken from a five-minute window.

In a sense, LAMP is implicitly both indexing and dictionary building. The intu-

ition behind LAMP can be summarized as: If a data object is conserved in the training

data (dictionary building) then make sure it is represented in the LAMP model (index).

However, unlike indexing, LAMP can return an answer in strictly bounded constant time,

and unlike dictionary building, LAMP does not need carefully curated data.

5.2.4 Related Work

LAMP touches on many aspects of data mining, time series analysis, classification, stream-

ing data and deep learning. However, we believe that there is no direct competitor to LAMP

currently. While there exists a technique to incrementally update the Matrix Profile [109],
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it is limited to settings where the update rate is relatively slow, on the order of ∼1 Hz.

As the original authors point out [109], there are many domains where this is more than

sufficient. However, domains in medicine, seismology and life sciences (i.e. entomology)

can produce data at least two orders of magnitude faster than this. While one instance of

LAMP uses a deep neural network, it is important for us to note that we are not claiming

any contribution to deep learning. We simply assume that the current state-of-the-art can

be plugged into our framework.

5.3 Method

In order to avoid ever-growing computational cost as more data is observed, we will assume

that we have some representative time series, R, observed from the stream. For example,

the insect data we empirically consider in 5.4 is collected each day, seven days a week in

ten to sixteen-hour sessions. We can take a single day of this data, and use it as our R, for

all sessions recorded on subsequent days.

Given R, we can generate the RMP (Definition 10) for the stream. The RMP is

illustrated in Figure 5.5. If our comparison data is truly representative of the stream, then

this RMP will very closely resemble the oracle OMP (Definition 9).

If R is small and our sample rate is low enough, say, under one million datapoints,

with a sample rate of 1 Hz, then we are done. We can approximate the matrix profile values

of new subsequences in time O(||R||). However, if the representative dataset is large, or we

are working with low power hardware, then the computational complexity would likely still

be above our compute budget for typical streaming rates.
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Figure 5.5: Illustration of comparisons to compute the ab-join MP with a representative
dataset (Linear in the length of R)

Thus, in order to truly have a useful method in the general case, we need an

algorithm that does not depend on the full size of the representative dataset. To this

end, we implement LAMP (Definition 11), which models the representative dataset in a

compressed, fixed-memory-size model, which requires a fixed time budget to process each

arriving datapoint. Figure 5.6 illustrates this idea.

Figure 5.6: Illustration of approximation of the matrix profile using a model learned from
a representative dataset.
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There are many learned models we can choose to summarize the training data; we

choose to highlight two of these in this work.

5.3.1 Top K Diverse Motifs

Table 5.1 explains our method for extracting the Top-k diverse motifs from a training

dataset. In line 1 we compute its exact MP using SCAMP (see Chapter 4), then in line 2-3

we sort the MP to generate a list of the top motifs. Then in lines 5-11 we create a model

which contains a set of diverse motifs such that no pair is closer to each other than the

diversity threshold.

There are other methods for selecting a diverse set of k motifs. For example,

prior work investigated the k-diversification problem for time series [33]. We leave such

considerations for future work.

There are several advantages to using the Diverse Motifs model as the subroutine

for LAMP. It is highly interpretable; every subsequence in the model (everything that the

model “knows”) can be directly visualized. Additionally, adding examples to the model is

as simple as appending to a list.

Moreover, because the motifs are sorted by their utility, we can use the Diverse

Motifs model as an anyspace model. An anyspace model is the analogue of an anytime

algorithm [109], but with memory as the limiting factor. For example, suppose we create a

10,000 motif model to use in an insect monitoring task in a lab (See Figure 5.12). However,

later the entomologist has the idea to run experiments in the field with a small memory

limited device such as a raspberry pi, which only has space or compute resources for say
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Table 5.1: Training and Predicting using the Top-k Motifs LAMP Representation

Procedure Train

Require: time series t, subsequence length m, number of motifs to extract k, diversity
threshold d.

1: MP := SCAMP(t, m)
2: indexes := sequence(0,length(MP))
3: indexes := argsort(indexes, MP)
4: model := [], count = 0
5: while count < length(MP) and length(model) < k do
6: considered := t[indexes[count]:indexes[count] + m]
7: if IsDiverse(considered, model, d) then
8: model.append(considered)
9: end if

10: count := count + 1
11: end while
12: return model

Procedure IsDiverse

Require: c (candidate sequence to check), curr (list of current motifs), t, (diversity thresh-
old)

1: for sequence in curr do
2: if correlation(c, sequence) ¿ t then
3: return false
4: end if
5: end for
6: return true

Procedure Predict

Require: s, (observed sequence), model (top-k motifs returned by Train)
1: maxcorr := -1;
2: for motif in model do
3: corr := correlation(motif, sequence)
4: if corr > maxcorr then
5: maxcorr := corr
6: end if
7: end for
8: return maxcorr

2,500 motifs. We can simply truncate off the bottom 3
4 of the motifs and push the model

onto the smaller device. The main disadvantage of this method is that it is essentially

uncompressed. Since the size of the model affects the number of operations required to
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perform the prediction, performing inference when k is large can be slow and prohibitively

expensive to run in real-time.

5.3.2 Neural Networks

Using a neural network as the basis of the LAMP model has many advantages. We can utilize

any of the infrastructures built up around deep learning over the last several years, including

GPU optimized code, embedded platform support, and ongoing research in accuracy/speed

tradeoffs, which can allow us to adapt to a stream’s sample rate according to our platform.

While LAMP is agnostic to the actual network used, in this work we use the

simplified version of Resnet [46] proposed by [106] for time series classification, but with

the activation on the output layer changed to sigmoid to enable regression. We also modify

the input and output of the Resnet model to support multiple predictions at once. i.e. Each

of our inputs consists of J z-normalized subsequences of length M from the data, extracted

with stride S. This procedure defines an extraction window in the time series, W , where

||W || = JS + M − 1. We can slide W across the time series and extract a new input for

the neural network for each position of W . Following this logic, each input to the neural

network is a vector of length M with J channels, where we set M as the subsequence length

parameter of the matrix profile. For each input, the neural network outputs JS LAMP

values, one for each subsequence in W . Figure 5.7 shows the outline of our scheme.

This input scheme has three main advantages over a single subsequence input

scheme:
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Figure 5.7: LAMP neural network input scheme

• Reduces overfitting by increasing the dimensionality of the output space. Intuitively,

a larger output dimension provides regularization and leads to smoother predictions.

• Enables faster processing by GPUs and CPUs by exposing additional parallelism

through the added dimensionality.

• Enables the convolutional network to learn short-term time dependencies in the data.

It is important to note that when the subsequence length is very long, the inputs

to the neural network also get large. Though it is possible to perform subsampling and

other types of dimensionality reduction on the input before sending it to a LAMP model,

we have found that the most effective way to reduce the amount of input to the model is to

increase the extraction stride S. In almost all applications, this is a reasonable assumption.

For example, if a classifier correctly predicts that you are running at time 17sec,

and that you are running at time 19sec, it is a reasonable assumption that you were also

running at all times in-between. For very long subsequence lengths, there is a large overlap

between the information contained in consecutive or close-by subsequences, so a moderate

increase in the extraction stride typically causes an imperceptible accuracy loss in these

cases.
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For the experiments in this paper, we set W = 256, S = 8, J = 32. We set

the learning rate to 1e − 3 and we use the Adam [51] optimizer for stochastic gradient

descent with a batch size of 32. We optimize the network for the mean squared error

loss between the predicted and exact RMP values for our training data. These all reflect

common values/practices in the literature. We did not carefully optimize the model, as we

wish to demonstrate the robustness of our overall system. The network is implemented in

Keras and available at [113].

5.3.3 Configuring the Model Size

It is useful to consider how to select the size of a LAMP model, as this can be done de-

terministically before model construction. Given the computational capability c (FLOP/s)

of a system and the sample rate r (Hz) of a stream we can compute the maximum size of

a model, in terms of the number of FLOPs possible per inference step using the equation

FLOPs = cr. Once we know our limitations, we can choose a model appropriate for our

specific use case.

It is also important to note that in many of these applications we do not need

the result immediately even in a real-time application. For example, if our sample rate

is 100Hz, perhaps we don’t need to make decisions based on every single new datapoint,

but only once per second. In this case, we can process multiple subsequences at once via

batching, like in our neural network input scheme, which is more efficient computationally,

and can help give additional context to our predictions.
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5.4 LAMP Evaluation

To ensure that our experiments are reproducible, we have built a website [113] which con-

tains all data/code/raw spreadsheets for the results, in addition to many experiments that

are omitted here for brevity. Unless otherwise stated, all experiments were run on a system

with an Intel Core i7-8700K CPU and 32GB RAM.

For neural network LAMP, we used the parameters discussed in Section 5.3.2 for all

experiments. Clearly tuning the neural networks could produce improved results, however

we wanted to demonstrate the generality of LAMP models and to show that they can work

well “out of the box”. Similarly, for Diverse Motifs LAMP we use a hard-coded diversity

threshold of 0.95 unless otherwise noted.

In the following section we evaluate LAMP in the most direct way possible. Recall

that the goal of LAMP is to predict the value that the much slower full Matrix Profile algo-

rithm would have produced, thus we can both visualize and measure the difference between

the OMP and LAMPs output. However, in some sense this is an indirect measurement for

most practitioners. They typically only care about the classification or detection accuracy of

their higher-level tasks which would exploit LAMP. Thus, in the remainder of the paper we

will offer detailed case studies to demonstrate that LAMP can offer real-time performance

even in challenging scenarios.
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5.4.1 LAMP method evaluation

In Table 5.2, we compare the performance of various model types with a subsequence length

of 100 on various architectures. The values in the table are measured in subsequences per

second. The first two rows show the Diverse Motifs model with various settings for K. We

did not implement these methods on the GPU, which is why no results are reported for

the Tesla P100. For these models, our implementation was unbatched; it used only a single

thread and processed just a single subsequence at a time.

Table 5.2: LAMP Inference Performance for m = 100

Diverse Motifs Inference Rates (Hz)

Params Tesla P100 GPU CPU (i7-8700K) Raspberry Pi 3

K = 1000 N/A 4852 434.8
K = 60000 N/A 403 16.9

Neural Network Inference Rates (Hz)

Params Tesla P100 GPU CPU (i7-8700K) Raspberry Pi 3

J = 1, S = 1, Batch = 1 125 200 9.2
J = 32, S = 8, Batch = 1 51.2K 85.3K 2782
J = 32, S = 8, Batch = 128 482K 206K 5461

The bottom 3 rows show the results for our neural network scheme with various

levels of batching. The first row is completely unbatched. The neural network is shown

every subsequence individually and predicts a matrix profile value for each one. The sec-

ond row uses the default settings that we presented in the Section 5.3.2 with an input of

32 subsequences with stride 8, each inference produces 256 LAMP values. This enables

increased efficiency and other advantages described in Section 5.3.2. The last row uses

a second level of batching where the neural network inputs are batched. Depending on

how quickly decisions must be made, a user can choose a method of batching to suit their
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constraints. Differences in speed between single input and batched input are only because

of the added data locality and dimensionality, which allow for exploiting multiprocessor

and SIMD architectures. As mentioned previously, LAMP model inference time is dataset

agnostic, depending only on the model size and input size.

We note that the neural network is much more efficient in general, due in part

to a multitude of optimizations implemented by the Tensorflow developers and the deep

learning community at large. Given the resources, a more efficient solution to inference

with diverse motifs could be developed. However, it is also true that we have not actively

optimized the neural network for any particular inference task. Depending on the dataset

and other parameters of the problem, it might be possible to also make the neural network

significantly faster via speed/accuracy tradeoffs. For example, adjusting the extraction

stride S, applying quantization [43] or resource-constrained structure learning frameworks

such as Morphnet [39]. We defer such an investigation to future work.

Figure 5.8: Tradeoff between input subsequence length and inference rate for our neural
network method on three different architectures.

It is also important to note that because we are extracting subsequences and

sending them to the model for inference, the subsequence length parameter influences both

the size of the models and inference time, as more FLOPS are required to perform a single
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inference using larger subsequences. Figure 5.8 illustrates this tradeoff for our default neural

network method defined in Section 5.3.2.

Table 5.3: Comparison of LAMP Model Performance to Oracle

Dataset Correlation to Oracle (OMP)
Name Train/Test Split Exact RMP Neural Net Diverse Motifs K
Earthquake 20M/10M .965 .887 .731 60K
Street Mall 59K/17K .986 .690 .615 130
Insect EPG 2.5M/5M .973 .959 .625 12K

Table 5.3 illustrates how well our model fits the oracle for various datasets. The

RMP’s performance can be viewed as a performance measure of the training data. A perfect

LAMP model would achieve performance similar to the RMP. Note that as mentioned

previously, this is an indirect measurement, as practitioners will be mostly concerned with

classification or detection accuracy, which we discuss in the following sections. As mentioned

before, there is room for improvement here via parameter tuning, but we have explicitly

kept a single set of parameters for Neural Network LAMP to show its robustness. The

performance variation for the street mall dataset might be addressed via parameter tuning

or the addition of more training data. For the Diverse Motifs model, we report the number

of motifs used for that particular dataset. Due to the sensitivity of this parameter and the

differences in the size of each of the datasets we evaluated, we could not achieve acceptable

performance with the same K across the board.

Figure 5.9 shows a visual comparison of the performance of various LAMP models

on a snippet of the seismogram dataset from Table 5.3. Note the smoothness of the neural

network model and the improvement of the matches as K is increased for the diverse motifs
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model. For this figure, the diverse motif models were generated using a diversity threshold

of 0.85, the neural network settings were set to the default.

We have not reported training times for our experiments; however, most of the

Neural Network LAMP models were quickly trainable in under an hour or two on a Tesla

P100 GPU. The only exception to this is the large dataset presented in the next section,

which took approximately 1 day to train on the GPU.

Figure 5.9: Visual Comparison of LAMP methods for a snippet of earthquake data

5.4.2 Case Study in Seismology

Real-time seismic event detection is a primary task in seismology that has a direct impact

on earthquake physics, fault behavior and seismic hazard assessment studies [4][87][64].

Most modern seismic networks have implemented real-time streaming of data from their

remotely installed instruments to their seismic observatories. There, real-time event de-

tection methods are used to monitor earthquake activity and provide basic information on
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event occurrence, timing, and magnitude. This can have a direct impact on seismic hazard

assessment and response and early warning systems [4][64].

One of the most common real-time event detection methods is the short-term-

average/long-term-average (STA/LTA) method, which computes the ratio between the av-

erage seismogram amplitude over a short time window and a longer time window. We

expect that an earthquake will cause a sudden increase in the amplitude of the seismic

waveform in the short term, leading to a spike in the ratio [91]. This method is widely

used due to the ease of implementation and is effective at detecting large and/or close-by

events. However, it can fail to detect smaller or more distant earthquakes, whose average

waveform amplitudes are close to the noise floor. As a result, we speculate that many small

events are missing from seismic event catalogs. Finding these small events is of particular

significance in the seismology domain as they have a direct impact on studies of seismic

triggering, short-term earthquake forecasting, foreshock and aftershock behaviors, etc. [16].

In some cases, seismologists apply more sensitive detection methods to ‘mine’

these smaller events from the continuous waveform data. One recent example [83], used

query search (‘matched filtering’ in the terminology used by seismologists) to identify an

order of magnitude more small events than had been detected using traditional methods

in southern California. Such efforts show the power of a more sophisticated approach,

although this improvement in sensitivity is not without cost – in the southern California

case, the necessary computation required many hundreds of thousands of GPU hours [83].

Another limitation is that such methods use queries (‘template waveforms’ in seismology)

from the existing seismic catalog in order to search for more events, leaving the possibility
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of a remaining population of undetected earthquakes for which there are no appropriate

queries in the catalog.

We argue that LAMP is a potential solution for sensitive, rapid and inexpensive

real-time seismic event detection. A common sample rate for local earthquake detection is

100 Hz, which is in the range of sample rates for which LAMP can produce the MP for the

stream of seismic data in real-time, even on a relatively inexpensive device.

Note that there are many machine learning-based methods that have been pro-

posed for earthquake event detection in recent years [82][111]. These methods are usually

trained using existing catalogs, and are based on classified earthquake-noise training data

sets. The training data set in this case might pass on the insensitivity of the catalogs to the

models. LAMP is trained using the exact MP calculated from one year of data. The MP

for one year of data is very sensitive to earthquake occurrence and can increase the number

of event detections by ∼16 times (see Chapter 4). Rather than the binary classification of

earthquake and non-earthquake (noise), LAMP weights waveforms based on a range of MP

values (e.g. ∼0.5 to 1), based on their similarity to other events.

Here we test LAMP for a real seismic waveform data set and compare the results

with the existing catalog of earthquakes. We use a data set from a sensitive, low-noise,

borehole seismic station (station name ‘VCAB’, network ID ‘BP’) near Parkfield in central

California, close to a segment of the San Andreas fault where earthquakes occur frequently.

We train a neural network LAMP model using a 20 percent contiguous sample of

this exact MP that we generated for the 1 billion datapoints example in Chapter 4, for 580

days (2003-11-28 to 2005-07-09) of 20Hz seismic data. We then use LAMP to estimate the
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Table 5.4: Comparison of Detection Rates of Various Types of Seismic Events For Various
Detection Thresholds

Threshold W0 W1 W2 W3 W4 Total “False” Pos.

conservative 0.95 76% 37% 34% 27% 15% 61% 0.56%
:: 0.90 89% 65% 60% 54% 32% 79% 1.8%
:: 0.85 95% 80% 76% 70% 42% 89% 3.9%
liberal 0.80 98% 90% 88% 83% 47% 94% 7.8%

MP for 5.5 years of data (from 2005-07-10 to 2011-01-01) for the same seismic station. The

total inference time for this dataset of around 4 billion datapoints was approximately 20

minutes using the large batch inference configuration from Table 5.2 on a single GPU. By

extrapolating the performance of SCAMP in Chapter 4 to 4 billion datapoints, this is a

speedup of over four orders of magnitude.

We then use four different thresholds of 0.8, 0.85, 0.9 and 0.95 for detecting mo-

tifs. The smaller values are more liberal (sensitive), and more likely to include some false

positives. Then in Table 5.4 we compare our detection with earthquake information that

we obtained from the Northern California Seismic Network (NCSN) catalog [21]. Here we

use two different catalogs to validate the LAMP outputs. The first catalog contains events

whose seismic signals have been observed and picked at the station of interest, either by hu-

man analysts or by event detection algorithms (e.g., the STA/LTA method). These seismic

signal observations are reported with five different weights based on confidence (W0 to W4,

from ‘very strong detection’ to ‘weak detection’). In this work, we refer to this catalog as

the ‘event-station catalog’. The second catalog contains all detected earthquakes, whether

or not they were observed at this station, and we refer to it as the ‘event-only catalog’. In

this 5.5-year period, there were 9546 events in the event-station catalog and 26255 in the

event-only catalog. Note that the event-station catalog is a subset of the event-only catalog.
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We list our true positive detection rates for four different MP thresholds and for

different event-station weighted events in Table 5.4. In general, for the event-station catalog

we detect 94 percent of all events and 98 percent of the W0 events using a threshold of 0.8.

For the thresholds of 0.95, 0.9 and 0.85 we have a true positive rate of 76, 89 and 95 percent

for strong detected events (weighed 0). This indicates that we had a very high true positive

rates with respect to the event-station catalog. Figure 5.10 shows an example of a detected

event waveform and the predicted MP for that event.

Figure 5.10: a) Example of an event from the event-station catalog detected by LAMP. b)
Example of an event detected by LAMP that was not in the event-station catalog but was
in the event catalog.

One interesting thing that we observe by experimenting with LAMP on this data

set is that when using the 0.9 threshold we detect 1962 events from the event-only catalog

that are not in the event-station catalog. This could be because these events occur far from

the station, and thus produce weak seismic signals that a human analyst or the STA/LTA

method could not identify, but have sufficiently similar characteristics to other events that

LAMP could identify. Figure 5.10.b is one example of such an event.
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After removing these ∼2k events plus the true positives from the event-station

catalog, we end up with 48454 detected motifs that are not associated with any catalog

events (i.e. not in either catalog; our “false” positives from Table 5.4). By visually inspecting

these detected motifs, we group them into four categories:

(i) Earthquake waveforms for events missed by the catalog (Figure 5.11.a).

(ii) Station glitches (Figure 5.11.b), which can be caused by voltage surges or the electro-

magnetic radiation from a lightning strike.

(iii) Station artifacts, such as internal instrument calibration pulses (Figure 5.11.c).

(iv) Harmonic noise, possibly related to human activity or surface activity (Figure 5.11.d).

For example, a gust of wind or earthmoving equipment.

Figure 5.11: Examples of various non-catalog events detected by LAMP. a) Earthquake not
in any catalog b) Station glitches c) Station artifacts d) Harmonic noise.
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Clearly type (i) is the most exciting for seismologists, allowing them to populate

their models and catalogs with additional examples that are currently missing.

Type (ii) and (iii) motifs can be easily removed from the data set by applying a

simple query search using one of these instrumental errors as a query. Note that future

LAMP models could be trained to ignore those signals. Type (iv) motifs can potentially be

investigated by using LAMP on several stations to constrain their locations, which may be

diagnostic of the source (e.g. a source located in the ocean might be caused by ocean waves

and storms; a source located at the land surface could be weather or human-mediated).

Approximately 5% of the motifs discovered do not fit into this classification and

are currently being investigated.

5.4.3 Case Study in Entomology

Across the world, there are hundreds of species of insects that feed by ingesting plant fluids.

Some of these insects can cause damage to their host plants by transmitting pathogens. As

a concrete example, the Asian citrus psyllid (Diaphorina citri) shown in Figure 5.12.left is a

vector of the pathogen causing huánglóngb̀ıng (citrus greening disease), which has already

caused billions of dollars of damage to Florida’s citrus industry in recent years, and is poised

to do more damage worldwide. To design effective interventions, entomologists worldwide

are attempting to understand the feeding behavior of such insects. As Figure 5.12 hints

at, one of the most important tools used to study such insects is an EPG apparatus, which

records the insects behavior as a one-dimensional time series [108].
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Figure 5.12: left) Fifty seconds of data collected from an EPG apparatus (center), which
measures the changes in resistance as an insect interacts with a host plant. This data comes
from a psyllid (right).

Dozens of labs worldwide collect such data, but to the best of our knowledge,

all analytics are conducted in post-hoc batch sessions, missing the opportunity to test

hypotheses in real time. For example, a recent paper suggests that the Asian citrus psyllid

changes its behavior in response to some “combination of long and short wavelengths”

[75]. Other research has suggested that various cocktails of volatile organic compounds can

modify their behavior [6]. With such a huge search space of optical and semiochemicals

parameters progress in designing interventions has been slow. Researchers have resorted to

making a single change each session then adjusting the intervention for next day’s session.

However, if we could measure the behavior the insects in real-time, the entomologists could

adaptively tune the optical and/or chemical mixture to optimize its effectiveness. Below we

will show that LAMP makes this possible.

We consider a dataset of insect behavior that records an Asian citrus psyllid feeding

on a Citrus natsudaidai (a type of orange). We took the first seven hours of data (2,500,000

datapoints), and using the annotations of [108], we created two classes:

Class A: Xylem Ingestion/Stylet Passage (181 min)

Class B: Non-Probing (235 min)
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Note that as the data snippets shown in Figure 5.1 and Figure 5.12 hint at, the

data here is very complex and noisy. Moreover, each class is polymorphic: Class A features

two different stages of a feeding behavior and Class B is something of a “catch-all” [108].

For our testing data we consider 1,013 minutes of data, collected from the same insect in

a later session. The class balance in that session happens to be almost equal, whereas the

class balance in the training data is more skewed, at about five to one.

We can use a combination of multiple LAMP models to create a nearest neighbor

classifier. Given a representative dataset of class A (RA), another from class B (RB), and

stream of EPG data (S), we can train two separate LAMP models. The first LAMP model,

MA, is trained to approximate the RMP of S where matches can only occur in RA. The

second model, MB, is trained to approximate the RMP of S where matches can only occur

in RB. Given a new subsequence I from S, we can produce the output of MA and MB when

they are shown I. We can then use the class represented by the model that generated the

largest value as the label for I. Table 5.5 shows the results for EPG classification across all

models.

Table 5.5: Comparison of EPG Classification Results

Method Accuracy (%)

Exact RMP 97.7
LAMP Diverse Motifs (K = 1600) 86.5
LAMP Neural Network 97.8
Direct Neural Network Classifier 99.2

Note that the neural network performs very slightly better than the exact RMP

for the same task, but the difference is not statistically significant. Note also that we have

trained a direct classifier using the same neural network used for LAMP but minimizing
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the binary cross entropy of the predicted labels versus the true labels. As expected, this

classifier performs better than a LAMP NN-classifier, as LAMP is not trained directly for

classification, However, LAMP remains competitive.

Figure 5.13 shows how the accuracy of the diverse motifs method improves as K is

increased. Note that the tradeoff between model size, efficiency, and accuracy is not always

clear cut.

Figure 5.13: Effect on accuracy of varying the number of diverse motifs in the LAMP model.

5.4.4 Case Study on Pedestrian Traffic

The two previous case studies highlight the use of LAMP to predict high correlations, which

are indicative of conserved structure. However, as we noted above, LAMP also predicts low

correlations, which can be indicative of anomalies. To test the utility of LAMP in this

context, we conducted the following experiment. As shown in Figure 5.14.top, we consider

pedestrian traffic data from Bourke Street in Melbourne. We trained LAMP on 6.7 years

of such data, beginning at 04/30/2009. For test data, we consider the following two years.

While the test data surely has natural “anomalies” (usual weather/cultural events), to have

some ground truth we embedded three synthetic anomalies:

• Reversed: A week of data was flipped backwards.
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• Replaced: A week of data was replaced by a week of data from a different location

in Melbourne (Southbank).

• Diminished: We simulated a sensor that slowly began to undercount over a week.

The first two anomalies are so subtle that they defy human inspection (Figure

5.14.top), and the third happens so slowly that examining only a few days at a time, it

would be impossible to detect. Nevertheless, as Figure 5.14.bottom shows, a LAMP model

with m = three days is able to correctly detect each of our three anomalies.

Figure 5.14: top) About 2% of the Reversed test dataset with embedded anomaly high-
lighted. bottom: left to right) The MP predicted by LAMP on two years of data with: no
anomaly, the Reversed anomaly, the Replaced anomaly, and the Diminished anomaly. All
three anomalous datasets have a significant dip in the LAMP output at the appropriate
location.

5.4.5 When can LAMP fail?

The results above offer evidence that the LAMP framework can be useful in diverse settings,

for diverse domains. Nevertheless, it is instructive to consider situations in which it can

fail. LAMP very clearly can fail in the presence of concept drift [107], new motifs that have
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never been seen before may arise from new underlying processes, and something that was

a motif before may become an anomaly in the future (and vice-versa).

We defer a detailed discussion on retraining of LAMP to mitigate the effects of

concept drift to Chapter 6 and future work. However, one simple way it can be done is to

keep track of the last segment of observed data and use that to augment the representative

dataset used to train LAMP. Every so often (or constantly in the background) we can retrain

LAMP based on this augmented training data, and when the new model is ready, we can

hot-swap the old model with the new and continue our inference.

5.5 Conclusion

We introduced LAMP, a flexible and generic framework that allow us to approximate the

Matrix Profile values in the face of fast-moving streams. Because the Matrix Profile is

at the heart of many time series algorithms for classification [90], motif discovery [109],

anomaly detection [109], segmentation [37] etc., LAMP allows such higher-level algorithms

to be used in real-time settings on fast moving streams that are currently untenable with

the standard Matrix Profile.
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Chapter 6

Future Work

6.1 Introduction and Disclaimer

This chapter introduces several future directions that researchers could take to extend the

concepts introduced in this dissertation. Some of this work has been prototyped already,

while other parts are speculative in nature. This chapter contains work which has not (as

of the writing of this dissertation) been peer-reviewed. While we have made our best effort

to present only facts in this chapter, the reader should assume that the claims presented in

the following sections could be proven incorrect upon further experimentation.

6.2 Extending the SCAMP Framework

The following subsections contain a brief summary of future work related to extensions of

the SCAMP framework (Chapter 4).
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6.2.1 SCAMP Reduction Variants

The MP is a reduction of the columns of the Distance Matrix. It reports the minmum dis-

tance (Definition 4), or maximum correlation (Definition 7) of each column. We can trivially

define other reductions as long as they can be computed similarly. For example, instead of

taking the maximum correlation of each column, we could find the sum or product of the

values. Additionally, we can specify a threshold such that we only evaluate computed cor-

relations above a certain threshold. This enables finding the count/frequency of sequences

which are highly correlated to the one in question. With some tuning, it might be possible

to generate a distribution of the correlations of each column by hashing them into buckets.

These operations can be equivalently performed on the distance profiles (Definition

3) or correlation profiles (Definition 6). However, if we are computing the entire distance

matrix, we can save a large amount of time by performing these reductions in-situ during

the matrix profile computation.

6.2.2 All-Neighbors SCAMP

Another way the SCAMP framework can be extended is to to enable the return of multiple

results per column of the distance matrix. Through clever use of GPU memory and atomic

operations we can generate all matches between iterations of the inner loop of SCAMP (see

Section 4.2.6).

A detailed description of the algorithms are left to future work. Essentially, we

leave the highly optimized inner loop alone, maintaining its high performance, and append

any values exceeding the threshold to a global array using atomic operations. If the number
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of outputs is relatively small, there is almost no overhead in doing this, in fact it can be

faster than the standard matrix profile computation. If there are a tremendous number of

matches, then we can have performance degradation of up to ∼5-10x. This is still far faster

than checking each subsequence’s distance profile individually.

For performance reasons, we cannot actually return every match in the matrix. If

one match occurs too close to another (approximately 500 subsequences apart, based on the

amount of elements covered by one complete run of SCAMP’s inner loop) then we will only

return the nearer of those two matches. This means that we can potentially miss matches

that are close together and this technique is an approximation of the true all-pairs result.

Using this clever technique, it is possible to generate a pooled or subsampled

version of very large distance matrices that would otherwise be impossible to view directly,

this is illustrated by Figure 6.1.
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Figure 6.1: top) EPG Data from an Asian citrus psyllid [108]. bottom) Distance matrix
showing implicit structure in the data. Each pixel represents the maximum correlation
between groups of hundreds of consecutive subsequences.

These low resolution distance matrices could also be used by downstream clustering

algorithms, for example spectral clustering [68] and biclustering [31], to unveil clusters that

occur independently of the time domain (e.g. repeated motifs or regimes in the data).

Rather than using a matrix to represent the data, we can also use graph repre-

sentations. Where each node represents a subsequence and edge between two nodes occurs

when the two subsequences have a correlation above the specified threshold.

All-Neighbors SCAMP is compatible with the other reduction types mentioned in

Section 6.2.1, for example we could return the motif frequency in the pooled matrix rather

than pooling via the maximum correlation.
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6.2.3 KNN SCAMP

It is also possible to remove the threshold parameter of All-Neighbors SCAMP and use an

adaptive threshold, keeping track of the kth nearest neighbor distance of each column of

the distance matrix. As SCAMP tiles are computed these thresholds can be dynamically

updated so that by the end of SCAMP’s execution, we have found the k nearest neighbors

of each subsequence, of course this is only approximate based on the assumptions in the

previous section. However, if each of the K nearest neighbors is sufficiently separated (500

subsequences or so apart) from the others, then this should produce the exact KNN.

6.3 Extending LAMP

The following subsections contain a brief summary of future directions that could be taken

with LAMP (see Chapter 5).

6.3.1 Dynamic LAMP

From the end of Chapter 5, a major disadvantage of LAMP as described thus far is that it

is not robust to any form of concept drift [107]. It is possible to improve this by building

a tree structure, which catalogs historical segments of data, and can be used to selectively

query various regions of historical data for matches. See Figure 6.2 for an illustration of

this structure.

The leaf nodes of this tree structure model each historical segment of data that

was observed. These segments can be checked by running predictions on new data with
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Figure 6.2: Illustration of a proposed LAMP tree structure. Enabling queries of data from
variable regions in history and provides a rough version of the matrix profile index (see
Definition 8) which can quantify how correlated a new segment of data is to any historical
segment.

the leaf node’s corresponding LAMP model. This LAMP model will output the expected

correlation of this new data to subsequences in that old segment of data.

The non-leaf nodes of this tree structure can be trained by combining the pre-

dictions of their children nodes. In other words, a parent node is trained to predict the

maximum correlation of any of its leaf nodes. This allows us to search the leaf nodes with

fewer prediction steps, which allows faster predictions using the tree.

6.3.2 Dynamic LAMP Retraining

By itself, the tree structure defined in the previous section is relatively weak. It only catalogs

a very sparse version of the distance matrix along the diagonal. However, we can retrain

the leaf nodes of this structure for better performance, see Figure 6.3 for an illustration.

By performing the retraining as shown in Figure 6.3 we reduce the sparsity of the

distance matrix represented by the tree. This will improve the results of future predictions
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Figure 6.3: Illustration of a proposed LAMP tree retraining scheme, where leaf nodes are
retrained via random selection. Green squares represent training which occurs during the
normal tree building process, dark blue squares represent segments of the search space which
are added via retraining.

as the distance matrix is better summarized. The amount of retraining performed can be

set according to the user’s computational resources and the incoming data sample rate.

6.3.3 Modeling other Similarity and Distance measures with LAMP

Using SCAMP, computing the Pearson Correlation Matrix is fast and efficient, we can

perform a comparison between subsequences in O(1). However there are other distance

measures which are not so easy to compute. For example, dynamic time warping distance

(DTW) [14] has a cost of O(m2), where m is the subsequence length. Is it possible to model

DTW using LAMP? This is an exciting direction left to future work.
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Chapter 7

Conclusions

The matrix profile enables the discovery of shape based information in time se-

ries. With insights from the matrix profile, data scientists and downstream algorithms can

trivially perform motif discovery, discord discovery, segmentation and more.

Through expanding upon the scalability of MP construction we can enable deeper

exploration into large time series datasets. This enhances the abilities data scientists and

other downstream algorithms, allowing them to gain a complete picture of the shape based

information in a dataset, even if it has hundreds of millions or billions of datapoints. As a

case study, we show that these large matrix profiles can be extremely useful in seismology,

where they can uncover many more events than exist in current seismic catalogs.

Using this highly scalable framework, we can generate enormous amounts of train-

ing data. Which allows us to push the boundaries of computation even further with a

Learned Approximate Matrix Profile. With this advancement, we can utilize LAMP to

compute an approximate matrix profile on streaming data from many sensors to generate
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a picture of what is happening with our data in real-time. Even further, we can push the

computation to the sensor, which enables active decision-making at the data source, rather

than transmitting everything to the data center.

This work enables much more through its applications. Researchers can work with

the matrix profile to tackle big datasets, and any of the use cases mentioned in this work

could be applied uncover new knowledge in these other domains. There are many forms of

time series data; only a minuscule fraction of them have been discussed in this work. The

reader is encouraged to use any part of this work to enhance their own research and data

mining techniques, and share their discoveries with the world.
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