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Improving the accuracy of energy baseline models for commercial

buildings with occupancy data

Xin Liang1,2, Tianzhen Hong2,*, Geoffrey Qiping Shen 3

Abstract 

More than 80% of energy is consumed during operation phase of a building’s life cycle, so

energy efficiency retrofit  for  existing buildings  is  considered a  promising way to  reduce

energy use in buildings. The investment strategies of retrofit depend on the ability to quantify

energy savings by “measurement and verification” (M&V), which compares actual energy

consumption  to  how  much  energy  would  have  been  used  without  retrofit  (called  the

“baseline” of energy use). Although numerous models exist for predicting baseline of energy

use, a critical  limitation is that occupancy has not been included as a variable. However,

occupancy rate is essential for energy consumption and was emphasized by previous studies.

This  study  develops  a  new  baseline  model  which  is  built  upon  the  Lawrence  Berkeley

National Laboratory (LBNL) model but includes the use of building occupancy data. The

study  also  proposes  metrics  to  quantify  the  accuracy  of  prediction  and  the  impacts  of

variables.  However, the results show that including occupancy data does not significantly

improve the  accuracy of the baseline model,  especially  for HVAC load.  The reasons are

discussed  further.  In  addition,  sensitivity  analysis  is  conducted  to  show the  influence  of

parameters  in  baseline  models.  The  results  from  this  study  can  help  us  understand  the

influence of occupancy on energy use, improve energy baseline prediction by including the

occupancy  factor,  reduce  risks  of  M&V  and  facilitate  investment  strategies  of  energy

efficiency retrofit. 

Keywords: Baseline Model; Occupancy; Building Energy Use; Measurement and 

Verification; Energy Efficiency Retrofit.
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1 Introduction 

The buildings sector consumes 40% of the total primary energy in the United States [1], and

the  consumption  has  continued to  increase,  particularly  in  developing countries  [2].  The

buildings sector is thus responsible for a quarter of the total global greenhouse gas (GHG)

emissions  [3], and this proportion can reach around 50% in the United States (U.S.) with

adverse impact on global environment, healthcare, and economy [4]. Furthermore, in the life

cycle of a building, more than 80% of energy consumption occurs during the actual operation

stage, rather than the construction stage  [5]. Therefore, improving the energy efficiency of

existing  buildings  is  a  key  issue  for  reducing  the  total  energy  consumption  and  GHG

emissions.

Energy efficiency retrofit for existing buildings is considered a promising method to achieve

the target of energy savings  [6].  Numerous previous studies indicated energy retrofit  can

significantly benefit the environment, society, and economy by improving energy efficiency

[6,7], reducing emissions [8,9], controlling resource usage [10], enhancing the reputation of

building owners [11], improving the health and productivity of occupants [12,13], reducing

operation  costs  [14],  increasing  rent  and  occupancy  rates  [15,16],  and  creating  job

opportunities [17].

Owing to the significant benefits on energy conservation and other aspects of society, energy

efficiency retrofit has been emphasized around the world. For example, the U.S. government

passed the Energy Policy Act (EPA) of 2005 and Executive Order (EO) 13423, which require

that 15% of the total number of existing buildings should be retrofitted to improve energy

efficiency by 2015 compared with the 2003 baseline. Approximately 30 billion US dollars are

assigned to conduct energy efficiency retrofit of existing buildings and facilities [7]. Incented

by the  policies,  the  market  to  provide  energy  efficiency services  through  energy  service

companies (ESCOs) has been blooming in the last decade [8]. 
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Energy performance contracting (EPC), which is a financing package provided by ESCOs, is

a commonly used market mechanism to implement energy efficiency retrofit. EPC includes

energy savings guarantees and associated design, implementation and operation services [2,

9]. The profit (or the payment to ESCOs) of an EPC is mainly from the amount of energy cost

savings after retrofit. The energy savings can be defined as the difference between how much

energy the building consumed after retrofit, and how much it would have consumed without

the retrofit. The former can be obtained from utility meters, and the latter, which is referred to

as the energy use “baseline”, is not measurable but can only be obtained by prediction. The

accuracy of the baseline prediction can significantly impact the energy saving assessment,

investment  return  and  payback  period.  Furtherly,  it  can  likewise  impact  the  investment

strategies and development of the building retrofit market.

The whole process of predicting baseline and assessing energy saving is called “measurement

and verification” (M&V)  [10]. The mechanism of M&V approaches is first monitoring the

energy use of buildings, then developing mathematical models trained by observed data, and

finally predicting baseline of energy use based on the developed models. Xia and Zhang [10]

present a mathematical description of the M&V problem and cast a scientific framework for

the basic M&V concepts, propositions, techniques and methodologies.  Mathieu, et al. [11]

proposed a regression-based model to predict baseline electricity consumption of commercial

buildings and industrial facilities.  Coughlin, et al. [12] evaluated the performance of three

average-based models for baseline.  Granderson,  et  al.  [13] proposed an  automated M&V

method  for  evaluating  model  performance.  Granderson  and  Price  [14] summarized  five

baseline  models,  including both  average-based models  and regression-based models,  and

compared  the  predictive  accuracy  of  these  models  with  several  metrics.  More  complex

mathematical models of M&V have been emerged, including multivariate regression models,

exponential smoothing models, neural network models, and Fourier series models [15-18].
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Uncertainty of M&V models is important, since not only the value of the baseline, but also

the  accuracy  and  reliability  of  the  prediction  are  critical  to  energy  efficiency  retrofit.  It

provides the stakeholders (e.g., ESCOs, building owners, facility managers) the information

of  investment risk,  which is critical  in decision making.  For  example,  if  the  post-retrofit

energy use will be 30% lower than the baseline, but the uncertainty exceeds 30%, it is then

very risky to invest in this retrofit  project.  Walter,  et  al.  [8] emphasized the influence of

uncertainty and assessed uncertainty of M&V for 17 buildings by calculating the percent

differences  between  predicted  baseline  and observed data.  The  results  showed there  was

considerable uncertainty in baseline prediction: 5 out of 17 buildings had more than 20%

uncertainty, and in an extreme case it was more than 60%.

The occupancy rate is a key uncertainty factor of M&V. Numerous previous studies indicated

that the occupancy rate had significantly positive correlation with the energy use in buildings

[19-26]. Occupants in buildings influence energy use in buildings in three major ways [27]:

(1) sensible and latent heat gains from occupants, (2) occupants’ need of thermal comfort,

visual  comfort  and  indoor  air  quality,  and  (3)  occupant  behavior  and  interactions  with

building systems and controls [28, 29]. In addition, in commercial buildings, the occupancy

rate may increase after energy retrofit, due to lower utility bills, better indoor environment

and higher social reputation  [30-32].  Miller, et al.  [33] indicated the office buildings with

green features will have 2-4% occupancy rate premium. Wiley, et al. [34] specified that the

office  buildings  with  LEED  certification  will  increase  up  to  16-18%.  Therefore,  if  the

occupancy rate is changed after energy retrofit, the baseline of energy use should be adjusted.

Although a number of previous studies emphasized the importance of occupancy factor in

predicting the baseline, few studies, if not none, used occupancy factor in baseline prediction

models, probably due to the highly stochastic activities and data limitation. Therefore, several

research questions related to M&V remain to be answered: Does occupancy rate significantly
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impact the accuracy of baseline prediction? If yes, how to quantitatively evaluate the impact

on prediction accuracy? How is the influence of occupancy on baseline models compared to

that of other impact factors (e.g., outdoor air temperature, day of week), stronger, weaker or

equal? Is it feasible to improve prediction accuracy of energy baseline by using occupancy

data? Nowadays, most commercial buildings have access control system, which can obtain

occupancy data  in  short  time  intervals.  These  data  provide  a  new opportunity  to  deeply

analyze the impact of occupancy on the accuracy of baseline prediction.

To  address  the  aforementioned  questions,  this  study  proposes  a  novel  method  to

quantitatively evaluate how accuracy of energy baseline models is improved by including the

occupancy factor. Different from previous models, the proposed model of this study considers

the occupancy data as independent variables rather than external uncertainty, shown in Figure

1.  Although influence of  occupancy has been emphasized by numerous previous studies,

traditional models have not included occupancy data in the functions of energy prediction.

Therefore,  in  traditional  models,  occupancy  is  an  external  uncertain  factor,  which  can

negatively impact the accuracy of energy prediction. Contrarily, in this study, the occupancy

data is considered as an independent variable so that the influence of occupancy can be fitted

by the function and evaluated by the prediction results. The results of this study showed the

accuracy  of  energy  prediction  is  improved.  From  theoretical  perspective,  including

occupancy data  can  improve the  prediction  accuracy,  since  the  uncertainty  of  occupancy

factor  can  be  controlled  and  reduced,  and  less  uncertainty  can  improve  the  prediction

accuracy. 
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Figure 1 Comparison of traditional models and the proposed model

The results of this study reveal that the influence of occupancy on the accuracy of energy

prediction. In addition, since the performance of models varies across hours and systems, the

proposed method zooms into  the  hourly  performance and different  systems (i.e.,  HVAC,

lighting, plug load and total load) of baseline models. Another important feature of this work

is it only uses simple algorithm, excluding complex mathematical processing, and the input

data is available in most commercial buildings. That means the proposed method is relatively

easy to be implemented, and can be well adopted for practical projects. The results of this

study can help us understand the quantitative influence of occupancy on energy use and

energy baseline models.

2 Methodology 

2.1 Framework of evaluating occupancy impact on baseline prediction
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The methodology to evaluate occupancy influence on baseline prediction comprises of four

steps, illustrated in Figure 2.

Figure 2 Framework of evaluating occupancy impact on baseline prediction

Step 1: Problem Definition and Data Preparation. One aim of this step is to clarify problem

definition, boundary, assumption and key metrics of success. The scope of this study focuses

on  the  energy  baseline  prediction  in  office  buildings.  Since  there  are  normally  fewer

occupants in office buildings on weekends,  this study only focuses on the energy use on
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weekdays. The key metric, which is to assess different models and factors, is the similarity

between prediction results and observed data.

The other aim of this step is to prepare data for the analysis in the next steps. It includes

acquiring, harmonizing, rescaling, cleaning and formatting data. Due to the failure of sensors,

stochastic noise and other interference factors, the raw data set may contain missing data,

error data and unstructured data. Before data mining, the raw data should be pre-processed to

provide the valid data for further analysis. In this study, three types of data are required (i.e.,

outdoor air temperature, energy use and occupancy count data). Outdoor air temperature can

be obtained from sensors outside buildings or database of weather stations. Energy use data

can be obtained from electricity meters in buildings. Occupant number can be obtained from

the records of access control system. All these data are recorded with timestamps of short-

time  intervals,  typically  at  5  to  15  minutes.  Using  the  short-time  “interval  data”  can

significantly reduce the duration of data required in baseline models [8].

Step 2: Correlation Analysis. This step is to verify the correlation between occupancy rate and

total  energy consumption of buildings. The total  energy consumption can be divided into

several sub-systems (e.g., HVAC, lighting system and plug load) by using sub-meters. Then,

the more occupancy-dependent sub-systems, which have higher correlation with occupancy

rate, can be revealed. Scatter plots are applied to visualize correlations qualitatively, while

statistical analysis is applied to calculate correlations quantitatively. Correlation coefficients

and significance levels are main criteria of correlation test. If occupancy rate and energy use

are significantly correlated, the next step will be executed.

Step  3:  Evaluation  and  Comparison  of  Accuracy  of  Baseline  Models.  This  step  is  to

quantitatively evaluate the influence of occupancy on the accuracy of baseline models. First,

three baseline prediction models are implemented to predict baseline of energy use based on

the observed data. Two models, which do not include occupancy factor, are adopted from
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previous studies. The other one, using occupancy data, is the proposed method in this study.

The algorithms of the three models will  be illustrated in detail  in Section 2.2.  Then,  the

prediction  results  are  compared across  the  three  models.  The method and metrics of  the

evaluation will  be  introduced in detail  in  Section  2.3.  The results  can  show whether  the

occupancy data improves the accuracy of baseline prediction. If the prediction accuracy is

significantly improved by occupancy data, the next step will be executed.

Step 4: Prioritization of Impact Factors. Based on horizontal comparison across models in the

last  step, this step further evaluates influence of occupancy factor by vertical  comparison

across factors. Besides the number of occupants, there are various uncertain factors which

can  impact  energy  consumption  of  buildings  (e.g.,  outdoor  air  temperature,  facility

degradation  and climate  change).  It  is  important  to  understand not  only the  influence of

occupancy factor, but also its priority compared to other impact factors. Namely, this step is

to identify which factor is more critical to the accuracy of baseline prediction. The results can

provide guidance for selecting factors in baseline models. The method and metrics of the

factor comparison will be introduced in detail in Section 2.4.

2.2 Baseline prediction models 

Three baseline models are implemented to demonstrate the methodology. The first model is a

simplistic “native” model, which only depends on one variable, the time of week. It serves as

a comparative “floor” of performance [14]. The second model was developed by researchers

at LBNL (Lawrence Berkeley National Laboratory), which includes two variables, outdoor

air temperature and the time of week  [8]. The third one is based on the LBNL model but

includes the occupancy variable. The variables included in each model are illustrated in Table

1.
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Table 1 The variables included in each baseline model

Time of week Outdoor air temperature Occupancy number

Model 1
(the MW model)

√

Model 2 
(the LBNL model)

√ √

Model 3 
(the new model)

√ √ √

Model 1: the MW (mean-week) model. This model only depends on one variable, the time

of week. Consider 
N

observed data points, where data point 
n

 is from time 
nt

including the

observed load data  
L

,  
1,...,n N

.  The  method is  presented by Equation  (1),  where  
p
nL

denotes the prediction of baseline at point 
n

, and 
time

 denotes the time of the week (e.g., 10

am on Monday).  For  example,  the  prediction  of  10  am on a  Monday is  the  average  of

historical data for 10 am on all Mondays. 

, ( )p p
n n time timeL L Mean L 

                                                (1)

Model 2: the LBNL model. This is a regression model including the variables of outdoor air

temperature and the time of week. The temperature is considered as an important factor of

energy use in buildings. The correlation between temperature and energy use is non-linear. In

occupied mode, the temperature and energy consumption are normally positively correlated

at higher temperature (due to cooling), negatively correlated at lower temperature (due to
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heating), and relatively un-correlated at moderate temperature (due to no cooling or heating).

Therefore,  the  piecewise-continuous  regressions  of  temperature  variable  are  used  in  the

LBNL model. There are two parts of energy use in this model, one is the time-dependent

portion  
,

p
n timeL

and the other one is temperature-dependent portion  
,

p
n tempL

.  
p
nL

, the predictive

baseline of total energy use at point 
n

, is the sum of these two portions, shown in Equation

(2).

, ,
p p p
n n time n tempL L L 

                                                       (2)

The  time-dependent  portion  
,

p
n timeL

 mainly  represents  the  different  features  of  energy

consumption among different times. For example, the load is normally lower at night than at

working time. 
,

p
n timeL

 is modeled by dividing a week into 120 one-hour time slots (24 hours

multiply 5 weekdays). An indicator 
,n i

and a coefficient 
i
 are assigned to each time slot 

iS
,

for 
1,...,120i 

. The whole time-dependent portion 
,

p
n timeL

can be calculated by summing the

products of indicators and coefficients of all time slots, shown in Equation (3).
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120

, ,1

p
n time n i ii

L  


 
                                                      (3)

The indicator  
,n i

,  which is defined in Equation (3),  serves to select which coefficient is

active. For a given point 
 nt
, only one indicator is one, while other 119 indicators are zero.

When 
, 0n i 

, the coefficients have no effect.

,

          

        

1

0  
n i

n i
n i

if t S

if t S






 



                                                    (4)

The temperature-dependent portion 
,

p
n tempL

 mainly represents the different features of energy

consumption among different temperatures, which is probably most related to the heating and

cooling systems behaviors. As aforementioned, 
,

p
n tempL

 is modeled by a piecewise-linear and

continuous function. A number of temperature intervals need to be divided for this piecewise-

linear function and a temperature component  
,n j

 and a coefficient  
i
 is assigned to each
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interval.  The  temperature  
nT

is  the  sum  

,1

TN

n n jj
T 


 

,  where  
TN

 is  the  number  of

temperature intervals and 
,n j

 is the portion of the 
nT

 in interval 
j
. For example, in the case

study of [8], four intervals are defined (i.e., 20-40 ℉, 40-60 ℉, 60-80 ℉, 80-100 ℉). If the

given  temperature  
70nT 

℉,  the  values  of  four  components  are  
,1 20n 

℉,

,2 20n 
℉, 

,3 10n 
℉, 

,4 0n 
℉. The whole temperature-dependent portion 

,
p
n tempL

can be

calculated  by  summing  the  products  of  temperature  components  and  coefficients  of  all

intervals, shown in Equation (5).

, ,1

TNp
n temp j n jj

L  


 
                                                      (5)

The predictive baseline  
p
nL

 by Equation (2) can be transformed to Equation (6), where the

coefficients 
i
 and 

j
can be computed by training with observed data.

 
120

, , , ,1 1

TNp p p
n n time n temp i n i j n ji j

L L L    
 

    
                            (6)
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Model 3: the new model. This new model is developed from the LBNL model by including

the  occupancy  variable.  Besides  the  outdoor  air  temperature  and  the  time  variables,  the

occupancy  variable  is  added  in  this  model.  The  predictive  baseline  
p
nL

 comprises  three

portions (i.e.,  the time-dependent portion  
,

p
n timeL

,  the temperature-dependent portion  
,

p
n tempL

and  the  occupancy-dependent  portion  
,

p
n occL

).  It  is  described  in  Equation  (7),  where  the

methods for computing 
,

p
n timeL

 and 
,

p
n tempL

 are the same as the LBNL model.

, , ,
p p p p
n n time n temp n occL L L L  

                                               (7)

The occupancy-dependent portion  
,

p
n occL

 mainly represents the different features of energy

consumption  among  different  occupant  numbers,  which  is  probably  most  related  to  the

occupant behaviors (e.g., turning on lights when arriving). Similar to  
,

p
n tempL

,  
,

p
n occL

 can be

modeled by a piecewise-linear and continuous function,  since the dependence of load on

occupant  number  is  not  a  linear  function  either.  The  occupant  number  and  energy

consumption are normally positively correlated when buildings are moderate-occupied, but
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are relatively un-correlated when buildings are heavily-occupied, since no more appliances

can be turned on.

A number of occupancy intervals need to be divided for this piecewise-linear function and an

occupancy component  
,n k

 and a coefficient  
k

 is assigned to each interval. The Occupant

number 
nO
 is the sum 

,1

ON

n n kk
O 


 

, where 
ON

 is the number of occupancy intervals and

,n k
 is the portion of the 

nO
 in interval 

k
. For example, if occupant intervals are defined (i.e.,

0-10,  10-20,  20-50, 50-100, 100-200) and the given number of occupants  
120nO 

, the

values of five components are  
,1 10n 

,  
,2 10n 

,  
,3 30n 

,  
,4 50n 

,  
,5 20n 

.

The whole occupancy-dependent portion 
,

p
n occL

can be calculated by summing the products of

occupancy components and coefficients of all intervals, shown in Equation (8).

, ,1

OINp
n occ k n kk

L  


 
                                                      (8)
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The predictive baseline  
p
nL

 by Equation (7) can be transformed to Equation (9), where the

coefficients  
i
 ,

j
 and  

k
 can be computed by regressing with observed data. Then the

baseline of energy consumption can be predicted with the obtained coefficients.

 
120

, , , , , ,1 1 1

T ON Np p p p
n n time n temp n occ i n i j n j k n ki j k

L L L L      
  

       
            (9)

In the model of this case study, 
TN

 is set to 2 with the intervals (0-45℉, 45-100℉), and 
ON

is set to 4 with the intervals (0-10, 10-50, 50-100, 100-200).

2.3 Computing the accuracy of baseline models

The accuracy of baseline models can be quantified by the metric  
CVRMSE

 (coefficient of

variation of the root mean square error) [14]. 
CVRMSE

 is the root mean square error divided

by the mean of the data, which indicates the relative size of error. For example, a value of 0.1

means the difference between prediction and observed data is 10% of observed data. The

equation for 
CVRMSE

 is provided in Equation (10), where 
ob
nL

 and 
p
nL

 are the observed data

and baseline prediction reprehensively, and N is the size of the data set.

16



2

1

1

( )
N ob p

n nn

N ob
nn

L L

NCVRMSE
L

N













                                                    (10)

Cross-validation  is  applied  to  facilitate  the  quantification  of  the  baseline  accuracy.  The

observed data is partitioned into several subsets.  Some parts of them are used for model

fitting and training, and other parts are used for validating. Then, the process is iterated by

changing training set and validation set. In this study, the time interval to partition observed

data is one month, since it is normally the utility bill period. First, the model is fitted by the

data in one or several intervals (the training length can vary, and the sensitivity analysis of

training length will be discussed in Section 3.5),  and is validated by the data in the next

interval. Then, the training set and validation set are shifted, and the process of training and

validating  is  repeated  until  the  end  of  data  set.  The  schematic  of  the  cross-validation

processes is shown in Figure 3.
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Figure 3 Schematic of the cross-validation processes

In each step, a 
CVRMSE

value can be obtained, and the finial indicator of prediction accuracy

is the average of
CVRMSE

,  
CVRMSE

.  The equation for  
CVRMSE

 is shown in Equation

(11), where 
mCVRMSE

 is the 
nMAE

in the m-th step, and M is the number of steps.

1

M

mm
CVRMSE

CVRMSE
M

 
                                                 (11)

2.4 Calculating the influence of variables 

Besides comparing the accuracy of models,  understanding the impact of each influencing

factor is critical in baseline prediction. As shown in Figure 4, Model 1 includes the variable

of time while Model 2 includes the variables of time and temperature. If the accuracy of

Model 2 is improved, it should be caused by the incremental information of temperature. 
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Figure 4 The process of calculating the influence of variables

Since Model 1 and 2 are linear models, the impact of temperature factor  
tempImpact

can be

defined as the accuracy improvement of Model 2 compared to Model 1, shown in Equation

(12).

2 1

2

(%) 100%Model Model
temp

Model

CVRMSE CVRMSE
Impact

CVRMSE

 

                         (12)

Likewise, as shown in Figure 4, the contribution of occupancy factor 
occImpact

can be defined

as the accuracy improvement of Model 3 compared to Model 2, shown in Equation (13),

since the only difference between these two models is the variable of occupancy. If there are

other  impact  factors  involved in  baseline  models,  the  contribution  of  one  factor  can  be
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defined with the same method: comparing the accuracy by controlling all other factors and

changing the target factor.

3 2

3

(%) 100%Model Model
occ

Model

CVRMSE CVRMSE
Impact

CVRMSE

 

                         (13)

3 Results

3.1 Data preparation

A case study was conducted to show how to quantify the availability of occupancy impact on

the accuracy of baseline prediction by the proposed method. Building 101 in the Navy Yard,

Philadelphia,  Pennsylvania  U.S.  was used  in  this  case  study.  The building is  one  of  the

nation’s most highly instrumented office buildings and is the temporary headquarters of the

U.S. Department of Energy’s Energy Efficient Building Hub (EEB Hub) [35]. Various sensors

have been installed by EEB Hub since 2012 to acquire building data of occupants, facilities,

energy consumption and environment. The profile of Building 101 is shown in Table 2.

Table 2 The profile of Building 101

Location Philadelphia, US
Size 6410 m2 
Floor 3 floors
Constructed Year 1911
Building Usage Office

Four sensors are installed at  the gates of the building to record the number of occupants

entering and exiting.  The sensors are located at  the first floor in Building 101, shown in

Figure 5. This study uses the data from the year 2014 and the time step is five minutes. The

data format of raw sensor records is shown in Table 2. The set (
1,in nN

, 
2,in nN

, 
3,in nN

, 
4,in nN

)

20



denotes the number of entering occupants, while the set (
1,out nN

,
2,out nN

,
3,out nN

,
4,out nN

) denotes

the  number  of  exiting  occupants  at  the  n-th time  step.  Therefore,  the  number  of  total

occupants in building can be calculated by Equation (14).

1, 2, 2, 2, 3, 3, 4, 4,( )O in n out n in n out n in n out n in n out n
n

N N N N N N N N N       
            (14)

Figure 5 locations of occupancy sensors in Building 101

Table 3 The data format of sensor records

Time step
Sensor1 Sensor2 Sensor3 Sensor4

In Out In Out In Out In Out

1/1/2014 0:00 Nin1,1 Nout1,1 Nin2,1 Nout2,1 Nin3,1 Nout3,1 Nin4,1 Nout4,1

1/1/2014 0:05 ….. ….. ….. ….. ….. ….. ….. …..

1/1/2014 0:10 ….. ….. ….. ….. ….. ….. ….. …..

….. ….. ….. ….. ….. ….. ….. ….. …..

12/31/2014 23:50 ….. ….. ….. ….. ….. ….. ….. …..

12/31/2014 23:55 Nin1,n Nout1,n Nin2,n Nout2,n Nin3,n Nout3,n Nin4,n Nout4,n

The electricity consumption data of the whole building and sub-systems (i.e., lighting, HVAC

and plug load) was recorded by sub-meters in 15-minute intervals. Based on this data set, the

hourly,  daily  and monthly energy use of  each system can be calculated.  The outdoor air
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temperature  was  recorded  every  15  minutes.  Therefore,  all  the  three  categories  of  data

(occupancy, temperature and energy use) can be obtained by sensors and meters in Building

101. After harmonizing, rescaling, cleaning and formatting the raw data, it is ready for the

further analysis.

3.2 Correlation between occupancy and energy consumption

The correlation  between occupancy and energy consumption  was investigated with three

methods: time series, scatter plots and correlation coefficient tests. Figure 6 illustrates the

comparison  of  the  hourly  energy  consumption  and  the  occupant  number.  Similar  to  the

ASHRAE 90.1  standard,  the  occupancy  curve  during  24  hours  represents  the  dual-peak

feature, but the noon-drop is not as deep as that in the ASHRAE 90.1 standard. According to

the feature, the occupancy curve can be divided into six periods [36]: (1) the night period (7

pm to 6 am); (2) the going-to-work period (7 am to 9 am); (3) the morning period (10 am to

12 pm); (4) the noon-break period (12 pm to 1 pm); (5) the afternoon period (2 pm to 3 pm);

and (6) the going-home period (4 pm to 6 pm). According to the distribution of the boxplot,

the higher uncertainties of the occupant number occurred during going-to-work and going-

home periods. 

The main feature of energy consumption is similar to that of the number of occupants (lowest

at  night,  increasing  in  the  morning  and  decreasing  in  the  afternoon),  but  is  not  quite

synchronized. The energy consumption curve can be divided into four periods: (1) the valley

period (10 pm to 3 am); (2) the increasing period (4 am to 9 am); (3) the peak period (10 am

to 5 pm); (4) the decreasing period (6 pm to 9 pm). The energy consumption rises about three

hours earlier than occupants arriving, and falls around two hours later than occupants leaving.

It indicates that the operation schedule of building energy systems is around five hours longer

than  occupied  time  in  this  building.  In  addition,  it  needs  to  be  noted  that  the  energy
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consumption does not have dual-peak feature. Namely, the energy consumption keeps the

peak  value  during  noon-break,  which  indicates  the  lights,  HVAC  and  other  plug  load

equipment are not turned off when occupants leave for lunch. 

Figure 6 Hourly Energy consumption and occupant number in weekdays. Boxplots show median, quartiles,

extreme values, means (blue circles) and outliers (+) of the data set.

Figure 7 shows the correlation between the number of occupants and energy consumption by

scatter plots. The color bar indicates the time of the day. The color is closer to red when time

is closer to noon, while the color is closer to blue when time is closer to midnight. The total

load and occupant number present positive correlation.  Although not very significant,  the

trend can  be  discovered:  the  more  occupants  there  are,  the  higher  the  total  load is.  The

lighting and plug load systems show more significant positive correlation between energy use

and occupant number. Especially in the plug load system, the slope is high, which means a

given  change  of  occupant  number  will  cause  relatively  large  change  of  energy  use.
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Nevertheless, the occupant number does not show significant correlation with energy use in

HVAC systems.

Figure 7 The correlation between the number of occupants and energy consumption

To compare with occupancy, the temperature was likewise analyzed to show the correlation

with energy use. As shown in Figure 8, during night (blue dots), the total load is not related to

temperature. During daytime (yellow and red dots), there is significantly positive correlation

when temperature is higher than 40 ℉, otherwise, there is no significant correlation between

them. The HVAC system is similar to the total load, but the correlation is more significant.

There is no significant correlation in lighting and plug load systems. Since Building 101 uses

gas for heating rather than electricity, the total energy use does not rise in lower temperature.

However, the energy use in plug load system rises slightly in lower temperature, probably due

to personal electric heaters.
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Figure 8 The correlation between the temperature and energy consumption

Besides the visualization of correlation by scatter plots,  correlation analysis is adopted to

calculate the correlation coefficients, shown in Table 4. In vertical comparison, the coefficient

of occupant number (0.74) is 30% higher than that of temperature (0.44) in total energy use.

This premium becomes greater in lighting and plug load systems, which are 60% and 81%

respectively. The coefficients in HVAC system are approximately equal. Therefore, overall,

the  occupant  number  has  much  higher  correlation  with  energy  use  than  outdoor  air

temperature.

In horizontal comparison, the occupancy is more correlated to lighting and plug load systems,

while  the outdoor temperature is more correlated to  the HVAC system. These results are

consistent with common sense and previous studies  [36, 37], because the lighting and plug

load are controlled by occupants, but the HVAC system mainly depends on the outdoor air

temperature.
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Table 4 The correlation coefficients between occupancy/temperature and energy consumption

Total Electric

Load
HVAC Lighting Plug Load

Number of Occupants 0.74* 0.54* 0.73* 0.86*

Outdoor Air Temperature 0.44* 0.58* 0.13* 0.05*

* p-value <0.001

3.3 Accuracy of baseline models

The results  in  Section  3.2 have  proved that  the  occupant  number is  highly  correlated to

energy consumption. The further question is whether the accuracy of baseline models can be

improved by including the occupancy variable. To answer this question, Model 3, which uses

the time, outdoor air temperature and occupancy variables, is implemented to compare with

the previous methods. Since the volume of results is huge (a whole year in 1-hour intervals),

it is difficult to show all the results. Therefore, one week of results is shown in Figure 9, with

comparison of observed data and results of three models.
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Figure 9 The observed load and predicted load by three models (from 11th-15th August 2014)

The accuracy of each model, measured by 
CVRMSE

, is shown in Figures 10-13. The lower

value of 
CVRMSE

 indicates the higher accuracy.

 Figure 10 illustrates the accuracy of baseline models in total  load prediction.  The

values of 
CVRMSE

 in Model 1 are around 0.25 during working time. The peak values

are around 0.45, which are from 4 am to 6 am, and the valley values are around 0.1

which are at 8 pm. After including the outdoor temperature variable, the accuracy of
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Model 2 is improved significantly. The values of
CVRMSE

 are mostly below 0.15,

and higher 
CVRMSE

 values beyond 0.15 occur from 2 am to 6 am. The accuracy of

Model 3 is slightly improved from Model 2, and the shape of 
CVRMSE

 curve is very

similar.

 Figure 11 illustrates the accuracy of baseline models in HVAC load prediction.  It

indicates that Model 1 is poor at HVAC load prediction. The  
CVRMSE

 values in

Model 1 are mostly beyond 0.5, which means most prediction values deviate from

observed value  by  more  than  50%.  The  peak value  is  around 0.9  at  4  am.  After

including the temperature variable, the accuracy of Model 2 is improved significantly.

The values of  
CVRMSE

 drop to below 0.2 during daytime (6 am to 6 pm), but the

values  of  
CVRMSE

 are  still  higher  than  0.5  at  night  (from 7  pm to  3  am).  By

including  the  occupancy  variable,  the  accuracy  of  Model  3  is  not  significantly

improved in most time, except 7 pm to 12 am. The shape of 
CVRMSE

 curve is very
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similar. The big differences of accuracy in HVAC load prediction are probably caused

by  the  operation  schedule,  which  is  related  to  neither  occupancy  nor  outdoor

temperature in this building. It will be discussed in detail in Section 4.

 Figure  12  illustrates  the  accuracy  of  baseline  models  in  lighting  load  prediction.

Model 1 performs well at lighting load prediction. The 
CVRMSE

 values in Model 1

are mostly below 0.1. But the 
CVRMSE

 values rise sharply at 6 am and 9 to 10 pm.

After  including  the  outdoor  temperature  variable,  the  accuracy  of  Model  2  is

improved significantly at 6 am and 9 to 10 pm, which the 
CVRMSE

 values drop to

around 0.15. By involving the occupancy variable, the accuracy of Model 3 is slightly

improved in daytime (from 8 am to 6 pm), but not improved in other hours. The shape

of 
CVRMSE

 curve is very similar. 

 Figure 13 illustrates the accuracy of baseline models in plug load prediction. Model 1

performs well at lighting load prediction. The 
CVRMSE

 values in Model 1 are mostly

below 0.1. The two peak values of 
CVRMSE

 occur at 8 am and 6 pm. After including
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the outdoor temperature variable, the accuracy of Model 2 is improved, which the

CVRMSE
 values  drop  to  below  0.09.  By  involving  the  occupancy  variable,  the

accuracy of Model 3 is significantly improved, especially during working time (6 am

to 7 pm). All the 
CVRMSE

 values of Model 3 drop to below 0.08. Different from the

other two systems, the shape of  
CVRMSE

 curve of Model 3 for plug load is not

similar to that of Model 2. 
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Figure 10 The accuracy of baseline models for total electric load prediction

30



2 4 6 8 10 12 14 16 18 20 22 24
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

C
V

R
M

S
E

 

 

Model 1 Model 2 Model 3

Figure 11 The accuracy of baseline models for HVAC load prediction
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Figure 12 The accuracy of baseline models for lighting load prediction
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Figure 13 The accuracy of baseline models for plug load prediction

3.4 Contribution of the occupancy factor

The results in Section 3.3 confirmed the hypothesis that the occupancy data can improve

baseline prediction. The next step is to quantify the contribution of the occupancy variable,

and clarify whether this contribution is higher or lower than that of other factors. The result

can help determine the dominant factors in baseline models. In this step, the contributions of

occupancy and temperature  are  calculated and compared using the  method introduced in

Section 2.4.

Figure  14  illustrates  the  contribution  of  occupancy  data  on  the  accuracy  of  baseline

prediction. The results show that occupancy data improves lighting and plug load prediction

most significantly, especially during working time (8 am to 6 pm). But the improvement is

not  significant  in  HVAC  load  prediction,  lower  than  10%.  Overall,  the  occupancy  data

improves the total energy prediction by around 10% during daytime (6 am to 6 pm), but less

improvement at other times.
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Figure 14 The contribution of occupancy data on the accuracy of baseline prediction

The  statistical  results  of  contributions  of  occupancy  
occImpact

 and  outdoor  temperature

tempImpact
 are shown in Table 5. According to the results, the outdoor temperature variable

mainly  contributes  to  HVAC and  lighting  load  prediction,  while  the  occupancy  variable

mainly contributes to lighting and plug load prediction. The mean contribution of occupancy

variable on total energy prediction is 10%, which is much lower than the mean contribution

of the outdoor temperature variable (63%). Occupancy has higher correlation with energy use

but lower contribution on energy prediction, which seems inconsistent. The reasons of this

problem will be discussed in Section 4.

Table 5 The statistical profile of the contributions by occupancy and temperature factors

occImpact tempImpact

Max Mean Median Max Mean Median
HVAC 9% 5% 5% 72% 46% 64%

Lighting 21% 12% 7% 38% 13% 10%
Plug Load 27% 15% 9% 20% 10% 9%

Total 18% 10% 8% 66% 44% 57%
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3.5 Sensitivity analysis 

There are three critical parameters influencing the prediction results in baseline models. First

is the length of the training data period. The baseline models use previously observed data to

train and fit models.  The length of the training period will  impact the training effect and

further impact the accuracy of baseline prediction. The length should be neither too short nor

too long [8]. If the training is too short, it cannot provide enough information to fit the model.

If the training is too long, it may include useless or harmful information to the model. Since

the building performance and occupant activities change over time, the data of the building in

the distant past does not help predict the building performance in the future. For example,

over  a  period of  years,  the  base  load of  the  building is  likely changed.  There  will  be  a

considerable bias if using data from years ago. The number of occupants and their energy use

behaviors can be likewise changed during a long time, so the historical data can no longer

reflect the current building performance. 

The other two critical parameters are the piecewise number of occupancy and the outdoor

temperature in regressions. As mentioned in Section 2.2, Model 3 is piecewise-continuous

regressions of the occupancy and temperature variables. The piecewise number will impact

model fitting. Fewer segments will sacrifice accuracy of the model, while too many segments

can cause over-fitting and high computing cost.  Therefore,  how to define these segments

appropriately is an important issue in the baseline model. 

Sensitivity  analysis  is  applied  to  evaluate  the  influence  of  these  parameters  on  baseline

models. Figure 15 shows the accuracy of baseline models during different training periods.

The 
CVRMSE

 of Model 1 first increases with the training period and reaches the peak value
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at  five months,  then decreases.  It  can be explained that  when the training period is five

months, it uses training data from winter to predict the building performance in summer. As

Model 1 does not include the outdoor temperature variable, the prediction should be at lower

accuracy.  It  verifies  the  aforementioned  hypothesis,  that  longer  training  period  may  be

harmful to accuracy. The 
CVRMSE

 of Models 2 and 3 fluctuate in short training periods, and

reach convergence after three months. Their curves are almost coincident after three months,

and Model 3 is slightly below Model 2. In short training periods (one to three months), Model

3 shows faster convergence and narrower range of fluctuation. It can bring not only technical

but also economic benefits,  since the time for data gathering can significantly impact the

costs, investment return and payback period [8].

1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Months of training

C
V

R
M

S
E

 

 

Model 1 Model 2 Model 3

Figure 15 Accuracy of baseline prediction under different training periods 

Figure 16 shows the accuracy of Model 3 under different piecewise number of occupancy and

temperature data. For the temperature curve, The 
CVRMSE

 of Model 3 drops sharply from

one segment to two segments, then decreases slowly with more than two segments, where the
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changes are lower than 2%. It means the piecewise number of temperature should be more

than  2.  For  the  occupancy  curve,  the  
CVRMSE

 of  Model  3  stays  stable  over  different

piecewise numbers. Therefore, different segment definitions of the occupancy variable will

not impact the accuracy of model significantly.
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Figure 16 Accuracy of baseline prediction in Model 3 under different piecewise number of occupancy and
temperature data

4 Discussion

According  to  the  results  in  Section  3,  a  critical  question  needs  to  be  answered:  why

occupancy is  highly  correlated with  energy  consumption  but  contributes  less  in  baseline

prediction (coefficient is 0.74 but contribution is 10%). It seems inconsistent and nonsensical,

especially compared with the temperature variable  (coefficient is 0.44 but contribution is

63%).  There  are  two main reasons behind it.  One is that  the  occupant number is  highly

correlated with time, so the time variable has provided most information of the occupancy. In

the three baseline models, time of week is an important variable, which includes 120 one-

hour time slots (24 hours multiply five weekdays). Although occupant number changes over
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time stochastically and is in high uncertainty, the occupant number in each time slot is in

relatively low uncertainty. As shown in Figure 6, during 12 hours (7 pm to 7 am) of a day, the

uncertainty of occupancy is close to zero. During the other 12 hours, the uncertainty of most

occupancy data is under 20%. It means the time variable is highly correlated with occupancy

and  can  provide  most  occupancy  information.  Therefore,  the  occupancy  variable  cannot

provide much incremental information to the model.

The  other  reason  is  that  the  operation  schedule  mainly  depends  on  time  rather  than

occupancy. As shown in Figure 6, the operation time is much longer than occupied period.

For example, the energy consumption significantly rises from 4 am, and the load has reached

nearly 80% of mean peak load at  6 am, while there are fewer occupants in the building.

Figure 6 can likewise verify this issue. Except plug load, the energy consumption can nearly

reach peak value in the early morning and late  afternoon. It  means building systems are

controlled by operation schedule rather than occupants. Therefore, the time variable is better

to reflect energy consumption than the occupancy variable.

After  clarifying the  reasons of  the  last  question,  there  is  a  further  question:  whether  the

occupancy variable can be removed from baseline model due to its less contribution. On the

contrary, although the contribution of occupancy variable to accuracy is not as significant as

temperature in  this  case,  it  can be  an  important  indicator  in  M&V for  energy efficiency

retrofit. First, it can indicate the occupancy-related risk. According to the aforementioned first

reason, the contribution of occupancy variable is lower when occupancy is more correlated to

the  time.  In  this  case  study,  the  low contribution of  occupancy indicates  the  occupancy-

related risk is low in this building, mainly because it is an office building and the occupancy

is regular during one year. Conversely, the high contribution means the occupancy is highly

uncertain and stochastic. If the occupancy-related uncertainty is very high (e.g., hotels), it

needs  to  carefully  consider  the  occupancy-related  risk  in  retrofit  decision  making.
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Furthermore, it can clarify whether the changes of energy use are from retrofit or operation.

Some buildings cannot achieve the energy saving target after retrofit, and common disputes

are focused on whether it is caused by ineffective retrofit or inappropriate operation. If the

occupancy does not significantly change but the contribution of occupancy is abnormally

low, it indicates the operation schedule is inconsistent with the occupancy schedule and is

more responsible for the excessive consumption.

There  are  three  advantages  of  the  proposed baseline  model.  First,  this  study  defines  the

metrics to quantify the influence of occupancy. Numerous previous studies emphasized the

impact  of  occupancy on M&V, however  the  quantified influence of  occupancy is  under-

developed. Without this, it is difficult to improve baseline models as well as facilitate real

projects  of  energy efficiency retrofit.  Based on the  proposed metrics,  the  contribution  of

different  variables  in  the  baseline  models  can  be  analyzed and compared.  The  proposed

metrics can then be used to evaluate other factors in the baseline models. 

Second, the proposed method zooms into the hourly performance and different systems of

baseline models. Previous studies only provided the overall whole building results of baseline

prediction, but the performance of model varies across hours and systems. For example, the

load prediction for HVAC system is very accurate at daytime (
CVRMSE

 is less than 0.2), but

rises dramatically at night (
CVRMSE

 is more than 0.6), shown in Figure 11. To improve

baseline  models,  future  research  can  pay  more  attention  to  these  issues.  Therefore,  this

method provides a “magnifying lens”, which can help diagnosis and trouble shooting.
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Third, the proposed method requires simple input data and algorithm. Three types of data are

needed in the model, namely the occupancy data (available in most commercial buildings for

security reasons),  energy consumption (most commercial buildings have electricity meters

capable of providing short-interval data [8]) and the outdoor air temperature (available from

local temperature sensor or weather stations). Data limitation is a main barrier in data mining,

so  the  simple  data  requirement  is  a  considerable  benefit  for  modeling.  In  addition,  this

method only uses simple regression algorithm, which is easy to implement and fast in data

processing. 

The results of this study can be applied in energy efficiency retrofit projects. Before retrofit, it

can offer suggestions of data collection, decision making and risk assessment. For example, if

the projects are mainly for HVAC, occupancy factor can be ignored. However if the projects

are mainly for plug load,  it is necessary to collect occupancy data before retrofit since it

influences the energy baseline significantly. For the risk assessment, the results of this study

can also indicate the uncertainty of energy baseline model impacted by occupancy. If the

uncertainty is  relatively high,  the  investment  strategy may be changed.  After retrofit,  the

results of this study can improve the energy saving assessment by including the occupancy

factor. It is critical for ESCOs, since the profits of ESCOs mainly depend on the calculated

energy savings.

5 Conclusions

Baseline  prediction  is  a  key  issue  in  M&V and  energy  efficiency  retrofit  of  buildings.

Occupancy,  as  a  critical  impact  factor  of  energy  consumption,  has  been  emphasized  in

previous studies.  However,  few previous studies used the occupancy variable  in  baseline

models or quantified the influence of occupancy variable on baseline prediction.

This study develops a new baseline model by including the occupancy data into the existing

LBNL baseline model, and proposes metrics to quantify the accuracy of prediction and the
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impacts  of  variables.  First,  correlation  between  occupancy  and  energy  consumption  is

visualized and analyzed by time series plot,  scatter plot and statistical  method. Then, the

accuracies of the three baseline models are compared with the  
CVRMSE

 metric. Thirdly,

based on the accuracy of models, the contributions of variables are quantified and compared.

Finally,  the  sensitivity  analysis  is  conducted  to  evaluate  the  influence  of  parameters  in

models.

The main findings are highlighted as follows:

1) The correlation between occupancy and total building energy consumption is very

high.  Occupancy is most correlated to plug load and lighting,  with the correlation

coefficients of 0.86 and 0.73 respectively. Outdoor air temperature has much lower

correlation with energy consumption than the occupancy.

2) The contribution of the occupancy variable is relatively low (lower than contribution

of temperature). It is mainly because the time variable can provide most information

of occupancy and the operation schedule is inconsistent with the occupied time.

3) The model including the occupancy variable shows faster convergence and narrower

range  of  fluctuation  in  short  training  periods. When  training  periods  are  getting

longer, the results of the models with and without the occupancy variable are getting

closer.

4) The  piecewise  number  of  occupants  in  regression  does  not  impact  results

significantly. But the piecewise number of the outdoor air temperature should be more

than 2.
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There are several limitations of this study. First is the reliability of the source data. Due to the

sensor failure and other reasons, there is some missing data. And there is a small door used

occasionally, shown in Figure 5, which causes the entering number and exiting number to

sometimes not be equal. Although the deviation is lower than 5%, it still impacts the accuracy

of results. In addition, due to data availability, the case study only uses data from a single

building and the time span is one year, so the results should be used with caution. Building

101 is a typical office building, the occupancy is regular over time. It cannot represent other

building types with highly random occupancy (e.g., hotels). Third, there are various methods

for energy prediction (e.g., change-point regression, ANN, SVR, etc.). The LBNL model is

only  an  example  method  as  function  of  energy  prediction  in  this  study  to  calculate  the

occupancy influence on energy prediction quantitatively.  But based on the results  of this

study,  occupancy  data  can  be  included  in  more  methods  to  investigate  the  occupancy

influence in further study. 

Further research of occupancy in baseline prediction can focus on: (1) using larger data sets

for potentially  better  results;  (2) applying more methods and improving algorithm of the

baseline  model.  It  needs  to  consider  the  tradeoffs  among  result  accuracy,  algorithm

complexity  and  length  of  training  period;  (3)  comparing  occupancy  influences  among

different  types  of  buildings  and  developing  benchmarks  of  M&V for  energy  efficiency

retrofit.
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