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SPECIAL REPORT

The Radiological Society of North America (RSNA) has 
organized at least one artificial intelligence (AI) competi-

tion per year for the past 6 years, engaging a worldwide 
audience to raise awareness about real-world medical im-
aging problems that can be addressed with AI (1–4). The 
goals of these competitions include the following: (a) to 
advance the state of the art through innovative solutions to 
the contest task; (b) to provide a head-to-head comparison 
of the performance of different approaches on the same 
data; (c) to develop and publicize high-quality and publicly 
available imaging datasets; (d) to present the technologies, 
standards, and challenges of radiology to the AI and data 
science community; and (e) to provide an opportunity for 
physicians and data scientists to develop AI skills applicable 
to medical imaging and exposure to cutting-edge AI tech-
niques. These competitions offer a unique opportunity for 
trainees to learn from both their own experiences and other 
competitors’ approaches and for raising awareness about 
radiology and AI among medical students. In each compe-
tition, contestants are given a clinically oriented task, such 
as identifying and locating fractures or hemorrhage, as well 
as an expert-curated dataset on which to train their mod-
els. The participants whose model scores the highest on a 

predetermined performance metric (5) (eg, accuracy, F1 
score, mean absolute error [MAE]) are declared the com-
petition winners. Organizing such competitions depends 
on the availability of high-quality datasets (6).

The purpose of this article is to provide an in-depth 
analysis of the challenges and processes encountered when 
organizing medical imaging AI competitions, with a spe-
cific focus on the creation and curation of high-quality 
datasets. By detailing the critical aspects of use-case defi-
nition, dataset construction, data extraction, and de-iden-
tification, we aim to offer valuable insights and guidance 
to researchers, competition organizers, and institutions en-
gaged in advancing the state of the art in medical imaging 
through AI. We also emphasize the importance of ethical 
considerations, patient privacy, and data security in the 
context of medical imaging competitions.

Overview of Challenges
Creating and curating high-quality datasets for medical 
imaging AI challenges require substantial coordination 
and collaboration. Obtaining medical imaging data can 
be difficult because of patient privacy and data security 
concerns and the resources required to safely extract and 
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The Radiological Society of North America (RSNA) has held artificial intelligence competitions to tackle real-world medical imaging 
problems at least annually since 2017. This article examines the challenges and processes involved in organizing these competitions, with a 
specific emphasis on the creation and curation of high-quality datasets. The collection of diverse and representative medical imaging data 
involves dealing with issues of patient privacy and data security. Furthermore, ensuring quality and consistency in data, which includes 
expert labeling and accounting for various patient and imaging characteristics, necessitates substantial planning and resources. Overcom-
ing these obstacles requires meticulous project management and adherence to strict timelines. The article also highlights the potential of 
crowdsourced annotation to progress medical imaging research. Through the RSNA competitions, an effective global engagement has been 
realized, resulting in innovative solutions to complex medical imaging problems, thus potentially transforming health care by enhancing 
diagnostic accuracy and patient outcomes.
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addressed with AI and success is uncertain; competitions are gen-
erally unsatisfying when the outcome is that no one can develop a 
successful algorithm and generally focus on tasks that are known 
to be achievable, like predicting bone age from hand and wrist 
radiographs, identifying intracranial hemorrhage on head CT 
scans, and detecting cancer on mammograms. Research models 
should be evaluated using datasets that match clinical truth as 
closely as possible so that the performance metrics are predictive 
of what would be observed in clinical practice. In contrast, be-
cause the main goal of the competition is education, the private 
test sets used in competitions should be optimized to be similar 
to the provided training and validation data so that the selec-
tion of competition winners is as fair as possible and minimizes 
the element of randomness. The disadvantage of that approach 
is that the best models are not selected on their generalizability 
to data from other institutions. Moreover, an AI competition is 
generally guided by a strict and unwavering timeline; the lure of 
increasing the complexity of the competition (predicting more 
diseases, annotating a larger dataset, or with a more detailed an-
notation scheme) must be tempered by time limitations.

We cannot overemphasize the importance of meticulous 
project management and the adherence to carefully constructed 
timelines in the orchestration of AI competitions so they can 
be launched on time. As we reflected on our experiences in or-
ganizing competitions, we found that the deceptive vastness of 
time seemed to envelop us in the early stages, creating an illu-
sion of endless preparation time. This complacency, however, 
often gave way to a startling reality check as we found ourselves 
considerably behind schedule, rushing to make up for lost time. 
Let this serve as a cautionary tale, underscoring the importance 
of diligent planning, including a detailed timeline with clear 
milestones and continuous progress checks. The orchestration 
of these competitions is a marathon, not a sprint, and success 
hinges heavily on consistent pacing and unwavering attention 
to the timeline. A punctual launch happens not by accident but 
by the culmination of deliberate, daily efforts stringently aligned 
with a clear timeline.

Figure 1 demonstrates the overall processes to organize medi-
cal imaging AI competitions.

AI Challenge Task
An initial step in designing an AI competition is to specify 
the task or tasks. One of the key differentiators between an 
AI research project and an AI competition is that in a research 
project, one often chooses problems where it is initially unclear 
whether it is possible to successfully address the problem with 
AI, like predicting survival from imaging studies or predicting 
who will develop a disease based on a normal examination. In 
contrast, competitions are generally built around tasks where 
there is high confidence that existing AI methods can address 
the defined use case or problem, like localizing consolidations 
on chest radiographs and fractures on cervical spine CT scans. 
In addition, as a medical specialty society, the RSNA tries to 
select competition tasks that are directly clinically relevant. 
That means considering the clinical needs, relevance to patient 
outcomes, and trade-off between task specificity and complex-
ity. For health care professionals creating machine learning 

de-identify imaging data from clinical archives (7). Collecting 
a sufficiently diverse and representative data cohort often re-
quires participation from multiple health care facilities involv-
ing different geographic locations, diverse patient populations, 
and disparate imaging modalities.

Another challenge in creating high-quality datasets for medi-
cal imaging AI is the shortage of expert annotators to label the 
data with “ground truth”—the output that we expect the model 
to produce when provided with the data as input. Medical imag-
ing data are complex, and accurate labeling requires specialized 
domain knowledge. This is compounded by the fact that pro-
ducing high-quality annotations can be both time-consuming 
and costly, as well as necessitating the effort to organize the logis-
tics of annotation. That is further complicated when nonimag-
ing data are a critical element of the dataset, such as the clinical 
outcome, laboratory, pathology, or genomic markers. The reason 
for the added effort in dealing with these other modalities is two-
fold: gathering data from other silos (laboratory information sys-
tem, electronic health record) and the usual lack of standardiza-
tion in generation of the data (staining of pathologic specimens, 
genomic methods).

Creating a high-quality dataset requires substantial attention 
to the quality and consistency of data in the dataset. Medical im-
aging data can vary in ways that are significant to AI algorithms, 
depending on factors such as the modality, manufacturer, imag-
ing protocol, patient age, sex, ethnicity, and comorbidities. Sub-
stantial planning is required to construct a database that mini-
mizes bias and is appropriately diverse in representation. Because 
of heterogeneity in how imaging data are collected and orga-
nized across and even within different medical centers, creating 
a high-quality dataset requires careful curation, normalization, 
and cleaning of the data to ensure consistency and comparability 
of each element of the dataset. On the other hand, it is key that 
datasets still represent the real-world clinical setting to increase 
the chances of generalizability to daily clinical use.

Planning and hosting an AI competition are very different 
from planning and executing a multi-institutional collaborative 
research project. For instance, research projects are most inter-
esting when they tackle a task that has not yet been adequately 

Abbreviations
AI = artificial intelligence, AUC = area under the receiver operating 
characteristic curve, DICOM = Digital Imaging and Communi-
cations in Medicine, HIPAA = Health Insurance Portability and 
Accountability Act, MAE = mean absolute error, PHI = protected 
health information, RSNA = Radiological Society of North 
America

Summary
Organizing artificial intelligence competitions for medical imaging, 
such as those held by the Radiological Society of North America, 
requires intricate processes for creating and curating high-quality 
datasets. These competitions have successfully fostered global collabo-
ration, advanced medical imaging research, and have the potential to 
transform health care.

Keywords
Use of AI in Education, Artificial Intelligence
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personnel, compliance officers, and privacy officers, and can 
help facilitate submission of appropriate documentation, su-
pervise data discovery, data de-identification, and data transfer.

Institutional Review Board and Agreements
Once initial interest has been established, the next step is to 
negotiate a data usage agreement with local compliance and 
privacy officers, as well as obtain approval from the local insti-
tutional review board. This process establishes the terms under 
which data will be shared and ensures that all necessary legal 
and ethical issues are considered. This will often include speci-
fied guarantees regarding de-identification and protection of 
confidentiality, as in the real world; each country has different 
data protection laws, such as the Health Insurance Portabil-
ity and Accountability Act (HIPAA) in the United States, the 
General Data Protection Regulation in Europe, and the Gen-
eral Personal Data Protection Law in Brazil. It is important to 
allow for sufficient lead time for local approvals because this 
process may take several months. These processes can often be 
expedited when participating institutions share their data usage 
agreement, data sharing agreement, and institutional review 
board documents with one another.

Data Discovery
Once the legal and ethical considerations have been ad-
dressed, the next step is for each site to perform discovery 
on the local data stores or clinical archives at each site and 
inventory examinations that meet the requirements provided 
by the challenge organizers. The time involved can vary de-
pending on the search tools available, the complexity of the 
search, the local prevalence of the classes, and the consistency 
of imaging protocols (eg, scanning parameters, such as se-
quences and section thickness). Locating appropriate controls 
can be almost as time-intensive as identifying the target class; 
it is important that negative cases differ from positive cases 
only in the presence of the finding of interest but otherwise 
be drawn from the same distribution of patient demographic 
characteristics and reason for examination. It has been help-
ful for the organizers to provide “pseudo code” search queries 

competitions, selecting the right tasks for a medical imaging 
dataset is key. Focus on identifying areas where machine learn-
ing can notably improve such aspects as diagnostic accuracy 
or disease progression. Ensure these tasks directly influence 
patient outcomes, such as through early disease detection. Bal-
ance the task’s clinical specificity with its complexity, aiming 
for tasks that address precise medical issues while also pushing 
the boundaries of what is currently achievable in medical di-
agnostics and treatment planning. This approach ensures that 
tasks are both clinically relevant and technically challenging.

It is necessary to consider whether the specific imaging data 
required to achieve the task exist and are obtainable in sufficient 
quantity, including appropriate controls. This is done by asking 
contributing sites to perform discovery on their local data. An-
other key aspect of a use-case definition is whether expert anno-
tation is required to establish ground truth for the proposed da-
taset, which is decided by the organizing committee based on the 
difficulty of the task (eg, it is safe to rely on trainees to identify 
body part, but neuroradiologists are needed to diagnose multiple 
sclerosis). This involves determining whether it is feasible to an-
notate the data and estimating how many examinations in each 
class are needed to achieve reasonable performance in addressing 
the task. Differentiating the performance of entrants requires a 
minimum number of positive cases in the test set, which helps 
estimate the total size of the test set based on the prevalence of 
the disease. To determine the feasibility of annotating the data, 
the committee members propose annotation schemes and anno-
tate a small sample themselves to measure the time per study and 
also the cognitive effort to avoid inducing annotator burnout 
and quitting.

Dataset Construction

Recruitment
The first step in creating a dataset for medical imaging AI is 
engaging with institutions that may become prospective data 
donors to gauge their interest in contributing data. This often 
involves recruiting clinical champions from each contributing 
site who can provide introductions to relevant staff, such as IT 

Figure 1: Overall processes to organize medical imaging artificial intelligence competitions, from months 1 to 12. IRB = institutional review board.
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excluded (eg, tumors and postoperative changes in the degenera-
tive lumbar spine MRI dataset).

Data Extraction
Data extraction heavily depends on the IT infrastructure and 
technical expertise of the contributing sites. Some sites have 
off-the-shelf software to automatically extract batches of stud-
ies, whereas others must extract data manually using less so-
phisticated tools. Not all institutions have all studies available 
in online clinical archives, so some studies may have to be 
retrieved from backups. Data stored in long-term storage are 
often compressed using unique formats across multiple stor-
age media, which adds complexity to the process of mapping, 
extracting, and decompressing the studies.

Another concern with extracting large batches of studies from 
the production picture archiving and communication system is 
the risk of instability in clinical viewing systems that could jeop-
ardize clinical workflows. It is advised to schedule large data ex-
tractions during times of low clinical workload or use a research 
picture archiving and communication system.

Handling large numbers of files involves unique difficulties. 
Uploading hundreds of thousands of files to cloud storage using 
a web browser frequently causes some files to be dropped in the 
transfer process. Tools such as rsync (typically used at the com-
mand line) help to avoid this issue; even if any loss of connection 
happens, rsync will seamlessly restart the process such that no 
files are lost (8). Compressing multiple files into a single larger 
file increases the transfer rate over the internet, not only because 
the total size is reduced but because transferring a single file is 
faster than multiple files, even if the total size is the same.

Coding skills are valuable to automate extraction, compres-
sion, series selection, and de-identification of Digital Imaging 
and Communications in Medicine (DICOM) studies. Often, it 
is necessary to customize data curation with methods and tools 
that are not readily available off the shelf. For example, it is pos-
sible to code a script to automatically select the required series by 
filtering DICOM studies based on the metadata using complex 
rules to select such features as specific planes and section thick-
nesses. Figure 2 provides an example of such a script. Even with 
these approaches, some series may be incomplete or cover the 
wrong anatomic region. Manual quality assurance is essential to 
ensure a high-quality dataset.

Finally, it is important to allow enough time for the technical 
steps involved in creating the dataset and to provide guidance 
on-the-go as necessary. This could involve providing training 
and support to local staff to ensure that the data are extracted 
and prepared correctly.

Data De-identification
Protected health information (PHI) refers to any data created 
for the purpose of providing care service to a patient that can 
be used to identify an individual. If not properly managed, the 
unauthorized release of such information could lead to serious 
privacy violations and potential patient harm. Furthermore, 
various laws and regulations, such as the HIPAA in the United 
States, mandate stringent protection of PHI, imposing heavy 
fines and penalties for breaches.

to achieve more consistent search results across sites. Control 
groups may be difficult to acquire for such tasks as mam-
mography for breast cancer detection (definition of negative 
includes negative follow-up or negative biopsy results), clas-
sification of brain tumor radiogenomics (genetic methods 
to define positive MGMT methylation vary across institu-
tions), and detection of cervical spine fracture and abdominal 
trauma (injuries can happen in multiple anatomic locations 
per patient, creating association biases).

Several iterations of data discovery and inventory may be 
necessary before the site can proceed with data extraction and 
de-identification. If a site has limited experience in this area, it 
may be helpful to identify the tools and techniques that are avail-
able for finding, accessing, and preparing the necessary data and 
training personnel to perform the steps. If there is known non-
uniformity in how the imaging data are acquired at a site, it may 
be necessary to obtain a summary of imaging protocols at each 
site to ensure that the dataset is representative of the types of ex-
aminations that are commonly performed and to confirm with 
the challenge organizers that the data will be appropriate to be 
included in the final dataset. Identifying appropriate examina-
tions that fit the specific use case often involves the use of natural 
language processing techniques to search radiology reports or 
electronic medical record databases to identify relevant examina-
tions. For example, donating institutions used natural language 
processing to identify positive cases for the following competi-
tions: intracranial hemorrhage detection, pulmonary embolism 
detection, brain tumor radiogenomic classification, cervical 
spine fracture detection, screening mammography breast cancer 
detection, and abdominal trauma detection. Alternatively, if the 
required number of cases is not overwhelmingly high, some sites 
might consider manual report review.

There is no objective method to determine the dataset size for 
tasks that have never been tackled. If there is literature describing 
AI models for the task, we can use that information to estimate 
the achievable accuracy for a given dataset size. If no literature 
about the task exists, one option is to quickly assemble a dataset 
with available data and train a model. That not only allows for 
dataset size estimation but also guarantees that the task is solv-
able by a machine learning model. Having defined the size of the 
dataset, one way to secure sufficient data is to grow vertically (ask 
for more studies from each donating institution) and/or hori-
zontally (enroll more donating institutions).

It is also necessary to establish a local quality assurance strat-
egy to assess the quality of the data at the study level. This could 
involve checking images and reports for expected findings to en-
sure that the dataset is complete and accurate. Once a cohort of 
candidate examinations has been extracted, it is useful to ran-
domly audit a subsample of examinations to ensure the desired 
results. We have learned from past challenges that donating in-
stitutions are heterogeneous in their ability to follow the instruc-
tions to deliver data in the defined format. We frequently receive 
examinations with nonpertinent body parts (eg, chest CT in 
the cervical spine fracture dataset), with wrong contrast phase 
(eg, angiography series while the requirement was nonenhanced 
series only for the cervical spine fracture dataset), with wrong 
section thickness, or containing diseases that should have been 
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It should be anticipated that difficulties pertaining to DI-
COM tags may arise, particularly upon interacting with an 
unfamiliar modality. Modalities such as mammography and 
tomosynthesis may present more issues because of their sub-
stantial use of private tags and metadata. Although DICOM 
documentation is comprehensive, the management of private 
DICOM tags using Python scripts often involves numerous 
undisclosed methods. Some of these techniques are inade-
quately documented in standard resources, such as StackOver-
flow, or lack documentation entirely.

When curating the dataset, even technically adept contribu-
tors will make mistakes. Consider adding a second layer of data 
quality or protocol check after receiving data from sites. Visual 
inspection (by human reviewers) for secondary capture objects, 
dose reporting sheets with PHI, and burned-in pixel data are 
necessary. Coding can be used to implement optical character 
recognition on pixel data to remove embedded PHI that varies in 
location inside the image (13). For PHI that is fixed for a given 
manufacturer, RSNA CTP DICOM Pixel Anonymizer is an ap-
propriate tool (14). However, this process is usually not flawless, 
necessitating manual reviews for accuracy.

Metric Design
The metric choice should consider the purpose of the compe-
tition. Binary classification competitions can work well with 
metrics such as log-loss, accuracy, the area under the receiver 
operating characteristic curve (AUC), precision, recall, F1, and 
others. Class imbalance can overestimate accuracy and AUC, 
and F1 is often a better choice in that scenario (15). In seg-
mentation tasks, metrics such as Dice similarity coefficient and 
intersection over union (IoU or Jaccard similarity) are more 
appropriate than accuracy and AUC because there is often a 
large class imbalance.

Some metrics are more clinically oriented (more familiar to 
health care professionals), such as sensitivity, specificity, positive 
and negative predictive values, and accuracy. Other metrics, such 
as AUC and log-loss, are more difficult to generalize to expected 
clinical performance but can reflect finer variations in perfor-
mance, allowing for differentiation of submissions. Regardless 
of the choice of metric to rank participants in the leaderboard of 
the competition, the model output from each participant can be 
used to calculate all clinically oriented metrics in the postcompe-
tition analysis; however, the ordering of participants by different 
metrics will usually be different.

Another consideration for the choice of metrics is the dif-
ficulty of the task. Using AUC for easy tasks might create a lead-
erboard where the top participants achieve very similar results. 
For example, classifying sex from chest radiographs will result 
in most participants being in the 0.99 AUC range, making the 
results statistically similar and undermining the discrimination 
power. In that context, more rigorous metrics, such as F1, may 
help discriminate between the top performers.

Metrics that rely on binarized predictions (precision, recall, 
specificity) incur a higher risk of ties (participants achieving the 
same value for the metric), particularly when the test set has a 
low absolute number of cases. Increasing the test set size or using 
probabilistic metrics (AUC, log-loss, MAE) reduces the risk of 

The concept that drives data de-identification is simple: re-
move protected PHI from shared data. However, in practical 
terms, the de-identification of DICOM images is a complex 
task. Most publicly available de-identification tools are not 
HIPAA-compliant, and automated DICOM de-identification is 
not infallible; thus, manual checks are necessary (9).

The RSNA Artificial Intelligence Committee has created a pro-
cess considered less prone to PHI leakage. It includes three steps: 
allow-listing, dumping of unique strings, and manual check. 
Allow-listing consists of recreating a DICOM file that includes 
only allowed tags. It helps guarantee that no unintended content is 
contained in the resultant file. Dumping unique values for each el-
ement in the metadata reduces the workload of the manual checks 
while keeping all values that appear at least once (10). This en-
sures that any PHI will be shown in the manual check. The RSNA 
has also developed a popular open access tool called Anonymizer, 
which will simultaneously extract DICOM data from an archive 
and de-identify the data (11). This solution is both convenient and 
efficient for extracting large datasets. A step-by-step guide on how 
to use Anonymizer can be found elsewhere (12).

After the data are de-identified, some hosting platforms, such 
as Kaggle, do a second round of de-identification to make sure 
the remaining tags are consistent and not a source of target leak-
age. Metadata in a dataset can lead to data leakage if they contain 
information that indirectly reveals sensitive data or gives away 
the answer to the prediction task. For example, a timestamp may 
reveal the order of events or a unique identifier might be cor-
related with a target variable, both leading to unrealistically high 
predictive performance during model training but poor perfor-
mance in real-world predictions.

Figure 2: Python script demonstrates how to read metadata from Digital Im-
aging and Communications in Medicine (DICOM) files and then use it to select a 
subset of images. In the example shown in this figure, we selected only CT images 
with a section thickness of 1.0 mm or less, but any combination of filters can be 
used to select the desired images. However, some DICOM metadata can be 
inconsistent, producing undesired results.

http://radiology-ai.rsna.org
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ties. MAE was used in the bone age competition; because the 
predicted age in months is a continuous variable, the chances of 
ties among participants is minimal.

In general, the more complex and novel the metric, the more 
likely there are to be unanticipated and unintended consequences 
of the metric. These consequences of the metric often create op-
portunities for contestants to “game” the metric—that is, to cre-
ate entries that score well on the metric but do not accomplish 
the task in a clinically useful or meaningful way. Metrics that 
attempt to capture findings at multiple levels are particularly 
subject to this because they may be gamed by entrants submit-
ting logically inconsistent results (eg, fracture at C3, no fracture 
overall for the study) to hedge difficult cases. On the other hand, 
metrics that consider more than one target variable can be fairer 
because they represent the model capabilities more holistically. 
Examples of these holistic metrics include the use of weighted 
log loss to account for fractures in multiple vertebral levels in the 
cervical spine fracture detection competition and to determine 
whether a pulmonary embolism is acute or chronic, its side, and 
the presence or absence of right ventricular overload in the pul-
monary embolism detection competition. Simple, well-proven 
metrics generally result in the fewest unpleasant surprises.

Data Annotation
The use case should guide the definition of the labeling scheme, 
which is usually a trade-off between the richness of informa-
tion and the annotation effort. The metric of the competition 
highly depends on the labeling scheme (eg, there is no way to 
use a segmentation Dice score if the region of interest on the 
image was not labeled with masks).

Receiving data prelabeled from the contributing site can pro-
vide key information regarding class distribution (eg, normal or 
abnormal) and can help expedite and organize the annotation 
process. Even with this information, the organizing team must 
perform a quality assurance process to validate the accuracy of 
the prelabel. This is often done by manually checking a sample 
of the data from each donating institution. Prelabeled data are 
useful because it is usually less time-consuming and less error-
prone to annotate a batch one knows is (or should be) entirely 
composed of positive cases. The same holds true for batches with 
only negative cases.

The schema for annotation encompasses three primary ele-
ments. First, the categorization of “readers” incorporates aspects 
such as the quantity of readers, their particular subspecialty 
training, and accumulated years of experience. Second, the “type 
of annotation” includes options such as point, line, bounding 
box, polygon, region of interest or mask, classification, and re-
gression. Last, the “level of annotation” can be dissected into 
image-level, series-level, study-level, and patient-level.

The orchestration of the annotation process necessitates mul-
tiple procedural stages. These include the recruitment of do-
main experts, preferably from subspecialty societies (subspecialty 
trained). We usually do not require a minimum number of years 
of experience. The process further necessitates the identification of 
an ample pool of willing experts to ensure redundancy. The delin-
eation of a manageable task is crucial, such as a task requiring ap-
proximately 10 hours of work that does not overly strain cognitive 

resources. Motivating annotators is an art. This has been done 
by offering a contributor position (group authorship) in the au-
thor list of an article describing the dataset, provided a minimum 
number of cases is annotated. Communicating a clear and feasible 
scope of work and deadline also helps keep annotators motivated.

The selection of an appropriate annotation platform is es-
sential. Some ideal characteristics of an annotation platform 
for labeling data to train medical imaging AI models would in-
clude user-friendly interfaces, high-precision tools for detailed 
annotations, support for multiple imaging formats, integra-
tion capabilities with existing health data systems, the ability 
to manage large datasets efficiently, built-in quality control 
mechanisms, and collaboration support for multiple annota-
tors. Figure 3 depicts an example of a platform used to an-
notate datasets from previous competitions. The provision of 
multimedia instructions (including examples of positive and 
negative cases) for the annotation process is a key requirement, 
as is the initiation of a pilot annotation. This preliminary an-
notation aims to identify and select those who can accurately 
perform the required task. This is done by asking annotators to 
label a small batch of cases (10–20) after reading the instruc-
tions and having those labels reviewed by the organizing team. 
Annotators who do not follow the instructions have a chance 
to try again after feedback. It is a transparent process used to 
select who will annotate the dataset (Fig 4).

The quality assessment of annotation is conducted based 
on outputs from multiple annotators. Metrics are computed 
between each annotator and the “ground truth” defined by the 
organizers if a common pilot set is used for all annotators. In sce-
narios where different but overlapping pilot sets are assigned to 
annotators, the agreement between each annotator is calculated. 
A minimal competency metric is established that annotators 
must reach before gaining access to the actual data.

Those annotators who do not meet expectations are required 
to undergo retraining and retesting. Upon the successful launch 
of the dataset annotation, it is critical to ensure adherence to set 
deadlines. Concurrent monitoring of annotator progress and the 
quality of annotations is performed. Figure 4 shows a process 
to perform quality assurance during annotation. The overall an-
notation process takes around 2–3 months if there is no unan-
ticipated delay.

Batches are reassigned between annotators as needed to com-
pensate for incomplete assignments. Finally, the process culmi-
nates in the execution of sanity checks on the final annotation.

Frequent communication with annotators is recommended, 
including reiteration of annotation instructions, because misun-
derstandings are frequent, even after a round of practice cases.

Although some label noise in the training set (the publicly 
available data) is acceptable, the competition benefits from high-
quality curated labels in the test set (the privately held data used 
for evaluating each submission) so that participants are ranked 
according to a labeling accuracy metric. A minimum of three 
annotators are assigned to the test set, and a consensus method 
for labeling and region of interest is established (16). For ex-
ample, in the bone age challenge (1), test set labels were averaged 
over six different radiologist labelers, making the ground truth 
a continuous variable, whereas the clinical Greulich-Pyle bone 
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age assessed by a single reader was a discrete variable. The MAE 
between the winning model and the averaged ground truth was 
approximately 4 months, whereas the MAE between the win-
ning model and each of the six radiologists was greater than 4 
months, suggesting that the averaged ground truth was more ac-
curate than any of the six individual readers.

However, combining multiple labels is not always straightfor-
ward. In the pneumonia detection challenge, the ground truth 

of the test set was defined as the intersection of the annotators’ 
bounding boxes, which made the test set bounding boxes con-
sistently smaller than those in the training set drawn by a single 
annotator. Participants had to identify and correct for this differ-
ence to obtain the highest scores on the metric. 

In summary, using multiple readers generally increases the 
accuracy of annotations, but combining label data from mul-
tiple readers must be done with careful consideration to avoid 

Figure 3: Annotation platform used to annotate datasets in prior competitions. QA = quality assurance.

Figure 4: Proposed process to mitigate errors in dataset annotation. QA = quality assurance.
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introducing systematic differences between single-reader and 
multiple-reader annotations.

General Considerations

Team Building
In exploring the factors that contribute to the success of AI 
competitions, one key element emerges as pivotal: the assem-
bly of an effective and diverse team. This team should not only 
initiate and oversee the competition but also participate in its 
progression, from inception to completion. This includes mon-
itoring the drafting of manuscripts and conducting post hoc 
analyses when appropriate. Drawing from experiences within 
the RSNA, we believe that such team composition and func-
tion is the “secret sauce” behind the success of AI competitions. 
Teams should encompass a diverse range of individuals, includ-
ing veterans with experience hosting competitions and subject 
matter experts in the clinical subspecialty, AI, and statistics. In-
corporating novices into the team can help develop talent for 
future projects and spread the workload. This blend of skills and 
experiences can provide a balanced approach to managing and 
conducting such ventures, fostering innovation, and ensuring 
successful outcomes.

Dataset Size
Large datasets in AI can greatly enhance the performance and ac-
curacy of models because of the increased diversity and representa-
tiveness of the data. They can enable complex models to generalize 
better, reduce overfitting, and allow for more intricate patterns to 
be learned. However, there are also drawbacks. Larger datasets de-
mand more computational resources and time for processing and 
training, which is a barrier for participants to join. Larger datasets 
may also increase the risk of privacy violations.

Data Preprocessing
AI models are heavily influenced by preprocessing techniques. 
That is why it is usually better to keep the images in their origi-
nal format, avoiding transformations such as resizing, refor-
matting, and windowing. Transformations can be lossy or loss-
less. Some researchers convert DICOM to other formats (eg, 
NifTI, PNG, or JPEG). If the transformation is lossless, it has 
no negative effect on model training. Training on JPEG is not 
necessarily a bad practice because JPEG is frequently the image 
format used in the pixel data in DICOM files. If preprocessing 
is necessary, make sure to provide the preprocessing code so 
that the final models created in the competition can be applied 
to external datasets.

Data Splitting
Some competition platforms have their own policies on how to 
split the data into training and test sets, which can change over 
time. Decide that early on, especially if you plan to refine only 
the test set labels. The data split policy includes choosing the 
percentage of data in the test set and the data distribution (the 
test set could have a similar or different distribution than the 
training set).

Licensing
Publicly releasing a dataset requires assigning a license to it. 
Otherwise, the dataset is not truly open because users will not 
have permission to use it under copyright laws, even if they 
have access to it. Licenses define how the data can be used and 
shared, and they should be as simple as possible (17). An ex-
ample on how to apply a license to your code can be found 
elsewhere (18).

Patient Privacy
When a dataset is released publicly, the major concern is the 
risk of exposing PHI. Creating many automated layers of de-
identification followed by manual checks is advised as a safety 
rule. One should never assume that automated tools work 
perfectly. Always manually double-check the dumped unique 
strings from DICOM metadata for the entire dataset before re-
leasing the data. Visual inspection of images is advised to avoid 
leakage of pixel-embedded PHI. Because this is a tedious task, 
it might not be possible to check the entire dataset, particu-
larly in larger ones. In that case, a sample of the data should 
be checked with particular attention to secondary capture and 
dose information.

Clinical Use of Winning Models
One of the deliverables of an AI competition is a set of usu-
ally state-of-the-art models that can be used in the next step 
of model validation: clinical testing. Although clinical use re-
quires regulatory approval, clinical research about the effect of 
AI in radiologic workflows can be done with AI models from 
competitions. Those studies tackle the human–machine inter-
action; most (if not all) use cases so far have human-in-the-
loop (or human in charge, AI-in-the-loop). We should not take 
for granted that AI models will improve clinical outcomes (19). 
Underreliance and overreliance of humans in AI can under-
mine the benefit of AI.

Conclusion
AI competitions have engaged a global community to effec-
tively address real-world medical problems. RSNA AI com-
petitions have demonstrated the potential of crowdsourced 
ground-truth annotation to advance medical imaging research 
and promote awareness about the need for innovative solu-
tions. The strategies and methods used to create datasets for 
these competitions have been described in detail, highlight-
ing the importance of careful dataset design to avoid potential 
pitfalls. Through the RSNA Artificial Intelligence Committee, 
these competitions have successfully brought together diverse 
perspectives and expertise to tackle complex challenges in 
medical imaging to set a standard for future competitions and 
collaborations in the field. Readers who want to participate in 
future challenges should watch out for the regular communi-
cations RSNA sends, usually by email. If you want to volun-
teer as an annotator, the call for annotators is usually done via 
subspecialty societies such as American Society of Emergency 
Radiology, Society of Abdominal Radiology, American Society 
of Neuroradiology, American Society of Spine Radiology, or 
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any other specialty, depending on the task of the competition. 
AI researchers who want to help organize new AI competitions 
can volunteer for the AI committee (20). Ultimately, these ef-
forts have the potential to transform health care by improving 
diagnostic accuracy and patient outcomes.
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