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ABSTRACT: Many per- and polyfluoroalkyl substances (PFASs) pose
significant health hazards due to their bioactive and persistent bioaccumulative
properties. However, assessing the bioactivities of PFASs is both time-
consuming and costly due to the sheer number and expense of in vivo and in
vitro biological experiments. To this end, we harnessed new unsupervised/semi-
supervised machine learning models to automatically predict bioactivities of
PFASs in various human biological targets, including enzymes, genes, proteins,
and cell lines. Our semi-supervised metric learning models were used to predict
the bioactivity of PFASs found in the recent Organisation of Economic Co-
operation and Development (OECD) report list, which contains 4730 PFASs
used in a broad range of industries and consumers. Our work provides the first
semi-supervised machine learning study of structure−activity relationships for
predicting possible bioactivities in a variety of PFAS species.
KEYWORDS: per- and polyfluoroalkyl substances, PFAS, machine learning, bioactivity, semi-supervised learning

■ INTRODUCTION
Since the 1930s,1 per- and polyfluoroalkyl substances (PFASs)
have been used in several consumer products (including fire-
fighting foams) due to their outstanding stability and water/oil
repellant properties.2 However, these compounds pose
significant risks to the environment and biosystems. The
presence of PFASs in surface water and groundwater can result
in exposure to organisms, subsequently leading to accumu-
lation in the body, with adverse effects on the liver, kidneys,
blood, and immune system.2,3 Because of these deleterious
effects, there is a pressing need to identify and understand the
bioactivity of PFAS-based compounds that can adversely affect
human health.

For these reasons, several international groups including the
Organisation of Economic Co-operation and Development
(OECD), United States Environmental Protection Agency,
Food and Drug Administration, European Chemicals Agency,
European Food Safety Authority, and Ministry of Ecology and
Environment (China) continue to monitor PFASs that are
produced in the global market.4,5 According to a 2018 OECD
report, more than 4700 PFASs currently exist as manufacturers
bring new forms of PFASs into industrial and consumer
products (it is worth pointing out, however, that not all 4700
structures exist in commerce). Nevertheless, among the wide
varieties of PFAS molecules, the potential hazards of these new
forms remain largely unknown.

Due to the sheer number of PFAS species, in vivo and in vitro
biological experiments are both time-consuming and costly. As
such, the construction of predictive and reliable quantitative-

structure activity relationship (QSAR) models6−8 is essential
for assessing the bioactivities of these contaminants (even for
PFAS species that are yet to be made). Specifically, a QSAR
model that can accurately predict the bioactivities of PFASs
can be harnessed to screen several of these contaminants,
saving immense time and experimental resources. While there
have been prior machine learning studies on PFAS
molecules,9,10 most of these approaches used supervised
learning techniques to suggest general structure−bioactivity
trends after postprocessing of the data (i.e., the focus was on
aggregate data for all targets as opposed to analyzing chemical
trends specific to each target).

In this work, we present a new QSAR model using semi-
supervised metric learning techniques to assess which chemical
functional groups affect bioactivities toward specific biological
targets. Semi-supervised learning is a different machine
learning approach that has the advantages of both supervised
and unsupervised learning. It can be used on a dataset with
primarily unlabeled data and only a few labeled data. Like
unsupervised learning, it can also automatically cluster
unlabeled data. Our approach is integrated with molecular
docking calculations to predict possible bioactivities of PFAS

Special Issue: Data Science for Advancing Environ-
mental Science, Engineering, and Technology

Received: July 28, 2022
Accepted: August 23, 2022
Published: August 26, 2022

Letterpubs.acs.org/journal/estlcu

© 2022 The Authors. Published by
American Chemical Society

1017
https://doi.org/10.1021/acs.estlett.2c00530

Environ. Sci. Technol. Lett. 2023, 10, 1017−1022

This article is licensed under CC-BY 4.0

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hyuna+Kwon"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Zulfikhar+A.+Ali"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bryan+M.+Wong"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.estlett.2c00530&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.estlett.2c00530?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.estlett.2c00530?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.estlett.2c00530?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.estlett.2c00530?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.estlett.2c00530?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/estlcu/10/11?ref=pdf
https://pubs.acs.org/toc/estlcu/10/11?ref=pdf
https://pubs.acs.org/toc/estlcu/10/11?ref=pdf
https://pubs.acs.org/toc/estlcu/10/11?ref=pdf
https://pubs.acs.org/toc/estlcu/10/11?ref=pdf
https://pubs.acs.org/toc/estlcu/10/11?ref=pdf
https://pubs.acs.org/toc/estlcu/10/11?ref=pdf
pubs.acs.org/journal/estlcu?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.estlett.2c00530?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/journal/estlcu?ref=pdf
https://pubs.acs.org/journal/estlcu?ref=pdf
https://acsopenscience.org/open-access/licensing-options/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


molecules based on their chemical functional groups and
specific biological targets (e.g., genes, proteins, or cell lines).
Our approach first combines dimension reduction methods
with clustering methods to classify PFASs based on their
molecular structures. We then apply a semi-supervised metric
learning method to improve classification accuracy. Finally, we
use a molecular docking approach to shed light on the
physicochemical reasons for their bioactivity. Our study
provides the first unsupervised/semi-supervised learning
approach for screening potentially bioactive PFAS molecules
beyond conventional supervised learning or QSAR approaches.

■ METHODS
Our QSAR machine-learning framework, shown in Figure 1,
utilizes four sequential steps followed by a reasoning/validation

step: (1) collecting a training dataset from verified open-source
databases, (2) encoding those compounds into molecular
fingerprints, (3) clustering the data to predict chemical
properties based on the molecular fingerprints and assessing
the performance of the models, (4) evaluating the clustering by
choosing the optimal model and predicting molecular groups
responsible for bioactivity based on the clustering, and (5)
molecular docking simulations to rationalize the role of the
chemical functional groups. All of our machine learning
algorithms are publicly available (see Supporting Information).

In our first step, we obtained datasets from comprehensive
open-source databases, including PubChem’s BioAssay,11

Maximum Unbiased Validation,12 Toxicology in the 21st
Century,13 beta-secretase 1,14 and blood-brain barrier pene-
tration datasets,15 which are available from the Supporting

Figure 1. Machine-learning-based workflow for QSAR construction to predict bioactivity of PFASs.

Figure 2. Distribution of molecules in the CF dataset using semi-supervised metric learning. Each point represents a molecule that is either
bioactive (red circular edges) or inactive (light blue circular edges) toward (a) CYP2C9, (b) CYP3A4, (c) CYP2D6, and (d) ATXN. The olive
green-filled circles represent molecules having the substructure depicted in the plot; i.e., (a, b) ester groups, (c) phenylprimidyl groups, and (d) 4-
benzyl-2-(4-fluorophenyl)-1,2-thiazole. The pink-filled circles in (c) represent molecules with phenylethanone. The percentage value represents the
ratio of the number of bioactive molecules within the identified substructure. Table S3 lists the predicted substructures for specific targets.
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Information of ref 10. We used two different datasets without
further modification from ref 10: (1) the CF dataset, which
includes substances containing at least one −CF− moiety
(62 043 molecules), and (2) the C3F6 dataset, which includes
substances containing a perfluoroalkyl moiety with three or
more carbons (1012 molecules). For both datasets, we used
bioactivity data against 26 biological targets.

Encoding the compounds to molecular fingerprints followed
next in our framework. We used the extended connectivity
fingerprint (ECFP) featurization16 with a default diameter of 4
(i.e., ECFP4), which considers a maximum of four neighbors.
ECFPs are topological molecular representations developed for
substructure and similarity searching. By encoding molecular
structures into fingerprints, we obtained a binary array with a
constant length of 2048, making it a convenient input for the
unsupervised/semi-supervised learning models. Furthermore,
since the simplified molecular-input line-entry system
(SMILES) sequences for all PFAS molecules are readily
available, they can be easily converted into fingerprint-based
representations using the RDKit software package.17

We then applied semi-supervised metric learning to the
generated fingerprints by training machine learning models to
predict the bioactivities of PFAS molecules by first (a) reducing
the dimension of the f ingerprint datasets and then (b) classif ying/
clustering them (see Figure 1). Our QSAR model used a semi-
supervised metric learning algorithm to automatically group/
classify molecules with similar bioactivities. Metric learning has
two main advantages: (1) its predictions are more efficient/
accurate since the model distinctly separates new molecular
representations according to their bioactivities (by reducing
the distance metric between the same-labeled pair of data and
increasing the distance between opposite-labeled pair of data),
and (2) it automatically generates a vector-shaped representa-
tion from the molecular fingerprint and can be directly
integrated with conventional dimension reduction methods.
The final clusters were selected based on the best Silhouette
score, which analyzes the distances of each data point to its
cluster and neighboring clusters.18 In short, a higher Silhouette
score indicates more distinct and separated clusters. We then
identified which substructures or molecular functional groups
played essential roles in determining the bioactivity of the
molecules.

Lastly, we conducted several molecular docking calculations
using Autodock19 to elucidate the physicochemical reasons for
the bioactivity trends obtained from our QSAR model (i.e.,
using ligand-protein binding conformations to rationalize the
role of chemical substructures that induces bioactivity on
biological targets.)

■ RESULTS AND DISCUSSION
3.1. Unsupervised vs Semi-supervised Machine

Learning. To systematically evaluate the performance of our
semi-supervised metric approach, we first performed traditional
unsupervised machine learning and compared the performance
of the two models. To maintain a concise discussion of our
results, the Supporting Information contains a detailed analysis
and comparison of our unsupervised vs semi-supervised
machine learning results. Figure S1 shows our clustering
results using unsupervised machine learning on the C3F6
dataset, and Figure S2 shows a comparison between the
unsupervised and semi-supervised results using the CF dataset
on two different targets. Table S3 summarizes the
substructures that induce bioactivity as predicted from our
unsupervised learning calculations. In summary, our extensive
analyses in the Supporting Information show that semi-
supervised metric learning performed significantly better than
unsupervised machine learning; as such, we only focus on the
results of the former in this manuscript.
3.2. Semi-Supervised Metric Learning. Figure 2 displays

true-positive ratios and classifications between bioactive/
inactive molecules on four representative targets that show
the best performance in the CF dataset using semi-supervised
metric learning (for example, in Figure 2a, we obtain a true-
positive ratio of 97.3% by computing the following
number of molecules containing esters and are also bioactive

number of ester containing molecules in the cluster
). Using the Max-

imum Common Structure (MCS) module in the RDKit
software package on bioactive molecules, we found that the
ester functional group is the critical substructure that causes
bioactivity on Cyps (Figure 2a−c) and ATXN (Figure 2d).
Table S4 summarizes the substructures predicted to play a vital
role in bioactivity toward nine different targets. The other 17
targets did not demonstrate as distinct clustering as the nine
targets in Table S4 due to a relatively weak correlation between
molecular structure and bioactivity.

Figure 3. Clustering of molecules predicted with unsupervised learning (dimension reduction) on CF datasets containing (a) chemical structures
and (b) chemical structures and binding affinities with CYP2C9. Each point represents a molecule that is either bioactive (red) or inactive (blue)
toward CYP2C9.
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We used structural alerts to cross-check the validity of the
predicted substructures that play a crucial role in bioactivity.
Within the bioinformatics community, structural alerts are
molecular functional groups associated with a particularly
adverse outcome, in our case, bioactivity.20,21 We cross-
referenced the CheMBL dataset to our machine learning
results since it contains structural alert information for some
PFAS molecules.22 Figure S3 shows structural alerts of the
molecules that are bioactive on CYP2C9, and, as mentioned
previously, the ester group was found to be the critical
structure that induces interaction with Cyps.23,24

3.3. Interactions between PFASs and Targets. We
carried out molecular docking calculations with Autodock21 to
rationalize the underlying molecular causes of bioactivities in
PFASs and predict their interaction with target enzymes. The
Supporting Information gives additional details of our
molecular docking calculations. We successfully docked all
PFASs into the active sites of the targets and binned the
binding affinity results based on their bioactivity with the
target. Figure S5 displays one of the bioactive structures with
the ester group of the CYP2C9-PFAS complex, methyl 4-[2-
propyl-1-({[4-trifluoromethyl)phenyl]sulfonyl}amino)-2-
hexen-1-yl]benzoate.

To verify the correlation between the Autodock binding
affinities and their bioactivity, we performed a dimension
reduction procedure using unsupervised learning on the CF
dataset, which consists of molecular structures with binding
affinity data (see Figure 3). We used unsupervised learning
here to make the point that unsupervised learning underper-
forms when only structural data is provided. Specifically, if the
classification accuracy is improved with additional feature
inputs, those features must contain some information to
discriminate among the population.25,26 In other words, if the
inclusion of binding affinity data enhances the clustering
accuracy, it provides another codescriptor for bioactivity.
Indeed, Figure 3 shows that descriptors consisting of chemical
structures and binding affinity data (panel b) give a better
separation/distinction between active and inactive molecules
compared to the unsupervised learning results based only on
chemical structures (panel a).
3.4. Bioactivity Predictions on the OECD Dataset. In

2018, the Global Perfluorinated Chemicals Group27 within the
OECD published a list of 4730 PFASs to develop regulatory
approaches for reducing the use of perfluorinated substances in
products. However, researchers have yet to discover the
bioactivities of the molecules in the list. Using the QSAR
model developed in this work, we give predictions and a
rationale for the bioactivities of molecules in the OECD list.

We performed molecular docking calculations on molecules
containing the ester group among the OECD list to verify
similar binding conformations. Of the 4730 PFASs in the
OECD list, 414 have an ester functional group. Figure S6
shows four different representative ester-containing molecules
bound to CYP2C9. In particular, the ester-containing
molecules in the OECD list bind strongly with Fe2+ of the
HEME group (an active site of Cyp enzyme), which is similar
to the binding interactions that we observed in the CF dataset.
Therefore, we expect a large portion of the 414 ester-
containing molecules among the OECD list to form strong
bonds with Fe2+ of the HEME group with a similar
conformation, leading to bioactivity toward Cyp enzymes.
Furthermore, based on our docking calculations, 87.7% of
these 414 molecules have a stronger binding affinity than −5

kcal/mol (the average binding affinity is −5.77 kcal/mol),
which falls in the range of the mean binding affinity of the
bioactive molecules from the CF dataset.

We then clustered the OECD dataset into 40 clusters using
the k-means clustering method. Using both the clustered
results (Figure 4b) and the distribution of ester-group-

containing molecules (Figure 4a), we found that clusters 13,
25, and 39 contain ester functional groups. Analyzing the CF
dataset, we found that the ester group plays a possible role in
bioactivity toward Cyp enzymes; that is, molecules in these
clusters have a high probability of being bioactive against
CYP2C9 and CYP3A4.

In summary, we have developed a new QSAR model
validated with CheMLB structural alerts and molecular
docking calculations, which constitutes the first application of
semi-supervised metric learning for predicting/rationalizing
bioactivities in PFASs. Using a semi-supervised metric learning
algorithm, our machine-learning-based QSAR model accu-
rately identified specific substructures, such as ester-containing
groups, that play a possible role in determining bioactivities.
With our semi-supervised learning approach, we obtained a
distinct classification between bioactive and inactive molecules,
resulting in an accuracy of up to 97.3% in the CF dataset. We

Figure 4. (a) OECD dataset classified by PC t-SNE and clustered
based on the k-means clustering method. The orange and yellow dots
represent ester-containing molecules. The colors closer to red
(yellow) represent a higher (lower) concentration of bioactive
molecules. (b) PFAS molecules included in the OECD list are
grouped into 40 clusters. Each point represents a molecule, and
clusters 13, 25, and 39 denote a high ratio of ester-containing groups.
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also used semi-supervised metric learning to automatically
classify/cluster and predict functional groups that could
possibly play a role in bioactivity.

In addition, our machine learning model proposed a few
significant substructures that could induce bioactivity, which
were subsequently examined with molecular docking calcu-
lations. Most importantly, our machine learning predictions on
bioactivities can provide a more efficient screening of
potentially bioactive PFASs that can be used to complement
in vitro assessments. All of our machine learning algorithms are
publicly available (see Supporting Information), and we
anticipate that researchers can further extend our methodology
to screen other contaminants or analyze the potential
bioactivity of PFAS molecules.
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