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Abstract

Background and purpose: Chest wall toxicity is observed after stereotactic body

radiation therapy (SBRT) for peripherally located lung tumors. We utilize machine

learning algorithms to identify toxicity predictors to develop dose–volume

constraints.

Materials and methods: Twenty‐five patient, tumor, and dosimetric features were

recorded for 197 consecutive patients with Stage I NSCLC treated with SBRT, 11 of

whom (5.6%) developed CTCAEv4 grade ≥2 chest wall pain. Decision tree modeling

was used to determine chest wall syndrome (CWS) thresholds for individual fea-

tures. Significant features were determined using independent multivariate methods.

These methods incorporate out‐of‐bag estimation using Random forests (RF) and

bootstrapping (100 iterations) using decision trees.

Results: Univariate analysis identified rib dose to 1 cc < 4000 cGy (P = 0.01), chest

wall dose to 30 cc < 1900 cGy (P = 0.035), rib Dmax < 5100 cGy (P = 0.05) and

lung dose to 1000 cc < 70 cGy (P = 0.039) to be statistically significant thresholds

for avoiding CWS. Subsequent multivariate analysis confirmed the importance of rib

dose to 1 cc, chest wall dose to 30 cc, and rib Dmax. Using learning‐curve experi-

ments, the dataset proved to be self‐consistent and provides a realistic model for

CWS analysis.

Conclusions: Using machine learning algorithms in this first of its kind study, we

identify robust features and cutoffs predictive for the rare clinical event of CWS.

Additional data in planned subsequent multicenter studies will help increase the

accuracy of multivariate analysis.
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1 | INTRODUCTION

Stereotactic body radiation therapy (SBRT), or stereotactic ablative

radiotherapy (SABR), is an increasingly used radiation modality for

the treatment of primary early‐stage1 and metastatic lung tumors.2

SBRT has been shown to provide effective local control with accept-

able toxicity.3 It is the preferred treatment modality for medically

inoperable stage I non‐small‐cell lung cancer (NSCLC) patients, and

there is emerging evidence and investigation regarding its role for

selected operable NSCLC patients,4–6 as well as for stage I small‐cell
lung cancer patients.7,8

The chest wall has been identified as an organ at risk for SBRT,

with chest wall toxicities of any grade ranging from 2% to 45% fol-

lowing SBRT.9–12 Radiation‐related chest wall toxicity can result from

radiation‐induced rib fracture or chest wall syndrome (CWS). In the

absence of rib fracture, CWS is caused by radiation‐induced neu-

ropathy of the intercostal nerves or nerve branches, chest wall

edema, chest wall fibrosis, or hairline rib fractures not clearly visible

on imaging.12–14

There is currently a paucity of data on standard dose–volume

constraints for the chest wall, with no clear consensus on how to

balance target coverage versus chest wall/rib sparing or how factors

like fractionation impact CWS. A commonly used constraint is chest

wall dose to 30 cc < 30 Gy,15 yet there is no prospectively validated

data to support this threshold. There have been efforts in recent

years to identify the risk factors for rib fractures and CWS and to

refine the clinical and dosimetric predictors of chest wall toxicity

using dose–response models.15–18

One challenge in evaluating predictive factors for CWS is the

low and varying range of events observed.14,17,19 Machine learning

has previously been used in radiation oncology for a variety of prob-

lems, from quality assurance to outcome prediction.20–26 In circum-

stances where the event being analyzed is relatively uncommon,

machine learning algorithms are advantageous in magnifying events.

This is achieved by developing models that can learn from and make

predictions of a given dataset. Examples include hierarchical cluster-

ing models which can iterate quickly through different features and

cutoffs in order to identify potentially predictive factors based on

how effectively events are separated from nonevents.26 The use of

these computational algorithms to mine raw data can filter out noise

and identify the pertinent factors when the number of events is

smaller than the number of features. This current study, the first of

its kind, utilizes such algorithms to identify specific dosimetric

thresholds predictive for CWS in 197 consecutive patients with

Stage 1 NSCLC treated with SBRT.

2 | MATERIALS AND METHODS

2.A | Patient inclusion

This study was approved by our institutional review board. A cohort

of 197 consecutive patients diagnosed with Stage I NSCLC and trea-

ted with SBRT from June 24, 2009, to July 31, 2013, to allow for

adequate toxicity follow‐up was identified. All patients were treated

to a biologically effective dose (BED) of ≥ 100 Gy in one of four

fractionation schemes: (a) 20 Gy × 3 fractions, 12.5 Gy × 4 fractions,

10 Gy × 5 fractions, or 7.5 Gy × 8 fractions. All patients were

planned with a constraint goal to keep 30 cc of the chest wall to

<30.0 Gy. Twenty‐five parameters (termed features in the machine

learning analysis) suspected of a correlation or previously

reported10,12,13,15,17,27–31 to associate with CWS were analyzed,

including patient and tumor characteristics and dosimetric features

were recorded for each patient. Toxicities were assessed using

CTCAEv4 criteria for chest wall pain, where Grade 1 represents mild

pain, Grade 2 represents moderate pain limiting instrumental activi-

ties of daily living (ADL), and Grade 3 represents severe pain limiting

self‐care ADL.

2.B | Feature definition

Twenty‐five features were analyzed in this study. They were classi-

fied in two subsets: (a) highly important features (n = 10) and (b)

important features (n = 15) by a thoracic radiation oncologist spe-

cializing in lung SBRT. Highly important features were features

judged to likely correlate to CWS based on the published literature

and clinical judgment. The important features group included those

hypothesized to be potentially clinically correlated with CWS with-

out any appreciable prior published data. The evaluated features

(Table 1) were as follows.

2.B.1 | Highly important features

Highly important features consist of chest wall dose to 30 cc, rib

dose to 1 cc, rib dose max, medically inoperable versus patient refu-

sal, dose per fraction, age, body mass index, tumor size (cm), PTV

volume (cc), and age at first fraction.

2.B.2 | Important features

Important features consist of total dose, diabetes (Y/N), diffusion

capacity of the lung for carbon monoxide (DLCO adj%), forced expi-

ratory volume (FEV1(L)), decadron/prednisone use, TNM status,

stage, histology, lung mean dose, lung dose to 1000 cc, lung dose to

1500 cc, lung volume receiving 20 gy, lung volume receiving 15 gy,

lung volume receiving 10 gy, and number of fractions.

All dosimetric indices were calculated with heterogeneity correc-

tions, using the analytical anisotropic algorithm (AAA), Eclipse Ver-

sion 11.0 (Varian Medical Systems, Palo Alto, CA, USA).

2.C | Univariate analysis

Univariate CWS thresholds for each feature collected were gener-

ated to split the patient population into high‐ and low‐risk subpopu-

lations. These thresholds were determined using decision stumps

(simple univariate thresholds) implemented in Matlab R2015a (Math-

Works Inc., Natick, MA, USA). In all cases, the deviance was used to
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measure how far the decision tree is from the target output. It is a

smoother version of the classification error and provides a measure-

ment of the quality of the description provided.32 Each threshold

was characterized by the probability of splitting out patients with

and without CWS into the appropriate subpopulations. In addition, a

generalization score was determined for each threshold, which was

defined as the ratio of true positives for out‐of‐sample to in‐sample

data. A cutoff of >0.75 was used for the generalization score, mean-

ing a similar split of the data would result at least 75% of the time.

The generalization score is used to characterize out‐of‐sample per-

formance of the univariate dosimetric thresholds, and it quantifies

how well these thresholds should perform for data that the algo-

rithm has not encountered.26 This analysis was performed under the

conditional assumption that the true distribution of patients satisfy-

ing the threshold is represented by the patients not developing

CWS.

2.D | Multivariate analysis

Two different algorithms were considered: decision trees, for inter-

pretability, and Random forests, for accuracy.33–35 Decision trees

partition the data into a disjoint number of subpopulations and make

a constant prediction at each subpopulation. Random forests predict

outcomes by averaging the output of hundreds of decision trees.36

For specifics about these algorithms, the readers are referred to

“The Elements of Statistical Learning,” a comprehensive book about

machine learning.36 In this work, the complexity of the models for all

algorithms was controlled by choosing hyperparameters (global con-

stants that control the complexity of the algorithms such as the

number of times data are allowed to be partitioned in a decision

tree) that minimized the leave‐one‐out cross‐validation of the

deviance. Leave‐one‐out cross‐validation refers to a method where

one observation is left out of the dataset, and then performing train-

ing on the remaining observations and predicting the observation

that the algorithm has not seen. Specifically, the complexity of the

decision tree was optimized through the use of minimum number of

observations per node (Min Number per Node). Smaller node sizes

result in complex trees that do well in explaining the training dataset

with which the algorithm is initially presented but may result in sub-

optimal results with the testing dataset. This hyperparameter con-

trols the number of observations a terminal node must have before

attempting a split. As our goal was to identify the thresholds that

best predict CWS in future patients, we tested various training sets

(10 training sets in a 10 K‐fold experiment) in order to select hyper-

parameter values that minimized the testing error.

Two additional analyses were performed to control for overfit-

ting. First, the Min Number per Node was changed from 50 to 80 in

steps of 5. Second, for each hyperparameter, a random subsampling

of the patient population was performed where a predefined number

of patients ranging from 158 to 197 patients would be randomly

selected from the data set. One hundred iterations were performed,

and an aggregate decision tree was developed. All features that were

selected at least 10% of the time were compared to the maximally

selected feature.

The complexity of Random forests was controlled by selecting

the maximum number of splits allowed per individual tree and the

number of variables randomly subsampled. Unless otherwise speci-

fied, 500 individual decision trees were combined when Random for-

est was used. The default hyperparameter, the square root of the

number of features, was used for the number of feature subsamples

in Random forests. In all cases, artificial equal prior probabilities,

which is where the initial weights of the observations are up‐
sampled for the minority event (e.g., development of CWS) and

under‐sampled for the majority event (e.g., absence of CWS), such

that their sum would be equal, were used to avoid the inherent bias

in the algorithms due to the skewed dataset. One hundred iterations

were performed, and we identified features that have an out‐of‐bag
importance, which is at least 10% of the maximally selected feature.

The out‐of‐bag importance, as defined by Breiman, is an unbiased

estimator of the predictive value of a feature, which uses randomly

generated training sets by sampling with replacement.33,34

2.E | Learning‐curve experiments

In order to test the self‐consistency of our data, Learning‐curve
experiments were performed. In a Learning‐curve experiment,

TAB L E 1 List of all features selected for analysis. Each feature
selected for analysis is listed and broken down by classification as a
highly important or important feature.

Highly important

features

Chest wall dose to 30 cc

Rib dose to 1 cc

Rib dose max

Medically inoperable vs patient refusal

Dose per fraction

Age

Body mass index

Tumor size (cm)

PTV volume (cc)

Age at first fraction

Important features Total dose

Diabetes (Y/N)

Diffusion capacity of the lung for carbon

monoxide (DLCO adj%)

Forced expiratory volume (FEV1(L))

Decadron/prednisone use

TNM status

Stage

Histology

Lung mean dose

Lung dose to 1000 cc

Lung volume receiving 10 Gy

Number of fractions
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different numbers of patients are subsampled from the original data-

set, models are built using the subsampled data assumed to be train-

ing data, and then the training and testing errors are determined.

3 | RESULTS

3.A | Patient characteristics and identification of
features and thresholds predicting CWS

Twenty patients were treated with a 20 Gy × 3 fractions regimen,

102 patients were treated using a 12.5 Gy × 4 fractions, 66

patients were treated using 10 Gy × 5 fractions, and 12 patients

were treated using a 7.5 Gy × 8 fractions regimen. In our dataset,

11 patients developed Grade ≥2 chest wall toxicity. A univariate

analysis to identify optimal patient separation thresholds for CWS

development was performed on the initial set of 10 highly impor-

tant and 15 important patient features. This analysis revealed three

Highly important features, including chest wall dose to 30 cc

(P = 0.035), rib dose to 1 cc (P = 0.01), and rib dose max

(P = 0.05), and one important feature [lung dose to 1000 cc

(P = 0.039)], as statistically significant (Table 2). These four features

and their corresponding thresholds all met a generalization score of

>0.75.

3.B | Decision tree modeling

The decision tree analysis revealed that when evaluating different

node sizes ranging up to 100 patients per terminal node, values of

this hyperparameter ranging from 50 to 80 patients per terminal

node produce similar results in the testing dataset, with local minima

observed at 50 patients per node and 80 patients per node (Fig. 1).

When evaluating terminal node sizes above 80 patients per node,

the decision trees become overly simplified, resulting in the training

and testing dataset errors being similar.

Decision trees with node sizes of 50 and 80 patients per termi-

nal node are shown in Fig. 2. In the scenario where the Min Number

per Node = 50, our machine learning algorithm identifies rib dose to

1 cc < 4000 cGy as an important feature and dose threshold, with

only one of 93 (1.1%) patients below this threshold developing

CWS, as compared with 10 of 104 (9.6%) patients exceeding this

threshold. With these parameters, a second split was generated,

demonstrating that a smaller PTV volume is associated with a higher

incidence of CWS [Fig. 2(a)]. If instead, the Min Number per Node =

80, only the first split is obtained [Fig. 2(b)].

3.C | Feature robustness and data consistency

When introducing variation components of differing nodal size and

random subsampling of the population to test for feature robustness,

only rib dose to 1 cc and chest wall dose to 30 cc were selected as

features that influence development of CWS (Fig. 3). Random forest

analysis performed as part of a second and separate analysis of

robustness also identified rib dose to 1 cc and chest wall dose to

30 cc as predictors of CWS. Rib Dmax was additionally identified as

a potential predictor for CWS (Fig. 4), whereas PTV volume was

excluded.

Using learning‐curve experiments with different hyperparameters,

we found that as patient number in the training set increases, the

training error increased and the testing error decreased. The learn-

ing‐curve experiments established that our patient dataset is likely to

provide a true representation of the wider population with regard to

developing CWS (Fig. 5). This data consistency verification confirms

accepting the previously identified CWS predictors of rib dose to

1 cc < 4000 cGy, chest wall dose to 30 cc < 1900 cGy, and rib

Dmax < 5100 cGy (all P < 0.05).

4 | DISCUSSION

There is scarcity of clear literature and guidance on dosimetric

constraints for CWS. This study used a cohort of 197 consecutive

patients with Stage I NSCLC treated with SBRT to identify clini-

cally relevant predictive features. In this cohort, 11 (5.6%) patients

developed CTCAE v4 grade ≥2 chest wall pain. Prior studies sug-

gest rates of CWS, or chest wall pain without evidence of rib

fracture, range from 2% to 8%14,17,19 after SBRT, consistent with

our observations. Conventional analyses struggle to identify mean-

ingful clinically relevant thresholds for predicting toxicity due to

the low number of absolute events. Machine learning algorithms

are generally well suited to this challenge, given their advantages

in parsing large datasets in order to robustly stratify out rare

events.37

Prior efforts investigating predictors for chest wall toxicity are

generally conflicting or inconclusive on the relative importance of

risk factors, likely due to the limited number of patients and events

TAB L E 2 Significant features identified on univariate analysis.
Features with a CWS threshold with P < 0.05 (without adjustment
for multiple comparisons) and generalization value > 0.75. The
number of patients in each subgroup by feature threshold and the
number and percentage of patients developing CWS in each
subgroup are listed for reference. All features had missing values;
therefore, the number of patients is <197 for each.

Feature Thresholds Subpopulations risksa P value

Rib dose

to 1 cc

<4000 cGy (N = 83, 1 CWS event; 1.2%) vs

(N = 80, 8 CWS events; 10.0%)

0.010

Chest wall

dose

30 cc

<1900 cGy (N = 44, 0 CWS events; 0%) vs

(N = 134, 11 CWS events;

32.4%)

0.035

Lung dose

to 1000

cc

<70 cGy (N = 70, 1 CWS event; 1.4%) vs

(N = 126, 10 CWS events;

7.9%)

0.039

Rib Dmax <5100 cGy (N = 65, 1 CWS event; 1.5%) vs

(N = 98, 8 CWS events; 8.2%)

0.050

aPatient numbers do not add to 197 due to missing values present for

select parameters.
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assessed. A subset of prior studies of chest wall toxicity15,16 have

suggested that within the commonly used total dose and fractiona-

tion schemes for SBRT, dosimetric predictors do not result in signifi-

cantly different rates of toxicity. However, this does not imply that

rib and chest wall doses can be simply disregarded since (a) CWS

can result without the clinical appearance of rib fractures and (b)

increasing risk may still occur with increasing dose in a continuous

fashion.18 Other prior studies have examined factors including rib

Dmax, rib dose to 0.5 cc, 2 cc, rib V30, V40, chest wall Dmax, chest

wall dose to 8 cc, and chest wall V30, without clear indication of the

relative superiority or inferiority of one of these dosimetric factors

relative to the others.9,13,27,29,38,39 Global Dmax and fraction size are

also suggested to be important indicators of toxicity, with higher

rates of radiation‐induced rib fracture of ~50% for DMax > 54 Gy

and fraction size >8 Gy.16 Regarding the chest wall specifically, con-

straints of V30 Gy < 70 cc,12 V30 Gy < 35 cc,13 and D30 cc < 30

Gy have been recommended.15 Kimsey et al. examined chest wall

tolerance in SBRT and suggest that the D70 cc is an important fac-

tor to consider dosimetrically.15
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In this study, we analyzed 25 patient features, both dosimetric

and nondosimetric. Similar to the published literature, we found that

rib dose29 and chest wall dose13 are important dosimetric features.

Decision trees were considered the baseline algorithm because of

the ability to produce models that are clinically interpretable and

could be validated according to prior clinical knowledge. Random

forest was used to evaluate feature importance and to generate and

explore additional hypotheses. By separating the data into training

(data used to create the models) and testing (data used to evaluate

the performance of the model and not seen during training) proper

estimation of the error expected for the algorithm could be estab-

lished. Training and testing errors refer to errors calculated on these

datasets. In addition, by using interpretable algorithms like decision

trees (those that produced models that clinical practitioners can

understand) and black box algorithms (those that produce models

that cannot be easy understood but are potentially more accurate)

like Random forests that combine the input of hundreds of trees into

one prediction different hypothesis and important features can be

automatically selected.33,35,36,40 If the data are self‐consistent, then
the training error increases along with the number of patients used

to build the model. Conversely, if true knowledge is acquired from

the data, then the testing error will decrease with the number of

patients used for training.

Our final model, which combines the results of the baseline anal-

ysis using decision trees and is supplemented by the results of Ran-

dom forests, specifically identify a cutoff of rib dose to

1 cc < 4000 cGy, chest wall dose to 30 cc < 1900 cGy, and rib

Dmax < 5100 cGy as important prognosticators (Table 2, Figs. 3 and

4). As the large majority of the patients in the data set were treated

using 10 Gy × 5 or 12.5 Gy × 4 fractionation schemes (85%), the

dosimetric predictors derived from this study are most applicable to

patients treated with either of these regimens.

While machine learning is a potentially powerful tool, indiscrimi-

nate use also has the potential to result in erroneous or invalid

results. In this study, we employ different hyperparameter settings

and utilize several different algorithms to validate findings and filter

out spurious results. Through use of multiple permutations, random

subsampling, variation in node size, and robust decision tree
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modeling, we identified the features that are likely to truly con-

tribute to the development of CWS. These data verification method-

ology allowed us to filter out an initial result, suggesting lower PTV

volumes contributed to increased CWS development [Fig. 2(a)]. Our

analysis also reliably reproduced rib dose to 1 cc as an important

feature, as well as confirming chest wall dose to 30 cc and rib Dmax

as robust features (Figs. 3 and 4).

Our findings are consistent with prior analyses illustrating the

importance of chest wall dose, but this analysis utilizes the added

advantage of machine learning to assign increased importance to a

specific chest wall dosimetric factor. This has the potential to

allow for informed, evidence‐backed clinical decision making in

scenarios where two or more planning goals may be mutually

exclusive and priority must be given to one. A prior study by Thi-

bault et al.17 suggests that location alone predicts for rib fracture,

with the incidence increased in peripherally located tumors. Their

efforts showed no significant predictive dosimetric criteria, with

the only other predictive clinical factor being the presence of

osteoporosis. Our data confirm the importance of tumor location,

as it follows that radiation dose in proximity to the chest wall

and ribs are necessary for the development of CWS. However,

our findings suggest that tumor location may be a surrogate for

dose received by the ribs and chest wall, which are the true dri-

vers of the development of CWS. Due to the relative rarity of

events, our machine learning approach may have allowed for us

to identify potentially relevant dosimetric factors that were not

identified by Thibault et al.

A potential shortcoming of this study, and other similar studies,

lies with the fact that CWS grading is inherently subjective. This is a

potential bias intrinsic to analyses of CWS. Our study is likewise

unable to compensate for this underlying subjectivity. Another limi-

tation of our study is that an exhaustive analysis of all possible vari-

ables and thresholds is prohibitive, despite utilizing machine learning.

With the chest wall constraints, we evaluated the commonly

employed constraint of chest wall dose to 30 cc. A weakness of this

approach is whether this choice represents the ideal volumetric con-

straint. Future investigations assessing continuous volumetric model-

ing of the chest wall constraint in addition to continuous dose

modeling are warranted. This could likewise be employed to other

relevant thoracic structures like the rib, akin to a prior effort by Pet-

terson et al.,29 and lung dose. Expanded datasets in future analyses

will add to the robustness of our findings, and future work will focus

on external validation in a multicenter analysis.

5 | CONCLUSIONS

The strength of this study, the first of its type, is in the use of

machine learning heuristic clustering analysis to identify factors in a

continuous fashion that would predict both for and against CWS by

incorporating patient‐ and tumor‐related variables and dosimetric

factors. From our analysis, we conclude that in patients treated with

SBRT using common and standard fractionation schemes

(4 × 12.5 Gy, 5 Gy × 10), providers should attempt to keep the rib

dose to 1 cc <4000 cGy, chest wall dose to 30 cc < 1900 cGy, and

rib Dmax < 5100 cGy in order to mitigate CWS. These novel and

clinically meaningful metrics provide a guide for treatment planning

of SBRT and contribute to the knowledge base for patient counsel-

ing and informed consent.
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