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Approaching gradience in acceptability with the tools of signal detection 
theory 
 
Brian Dillon (University of Massachusetts, Amherst) 
Matthew W. Wagers (University of California, Santa Cruz) 
 

Intuitive judgments of sentence acceptability form the empirical basis of experimental           
syntax, and an important component of many psycholinguistic investigations (Cowart, 1997;           
Schutze, 1996). For this reason, one central methodological concern for experimental           
syntacticians is how best to collect and analyze acceptability judgment data. Experimental            
syntacticians continue to extend and refine the tools used to measure sentence acceptability. In              
this chapter we seek to contribute to this methodological expansion. We discuss the difficulties              
inherent in getting a quantitatively precise measurement of sentence acceptability. We suggest            
that the tools of signal detection theory can be applied to common acceptability judgment data.               
This analytical approach offers both an explicit theory of how speakers give acceptability             
judgments in the context of a rating task, and yields more precise measurements of sentence               
acceptability. The approach we outline builds on the work of previous researchers advocating             
similar approaches to acceptability data (e.g. Bader & Häussler, 2010; Mauner, 1995), as well              
as research on the magnitude estimation method for measuring acceptability judgments (Bard,            
Robertson & Sorace, 1996). The central goal of our chapter is to make the tools of Signal                 
Detection Theory accessible to experimental syntacticians; to this end, we present a specimen             
experiment and a worked, tutorial-style analysis of acceptability judgment data using Signal            
Detection Theory. 

1 Measuring acceptability: A brief overview 

There are a variety of methods for measuring sentence acceptability in experimental            
contexts. These methods differ both in the response options offered to participants and the task               
presented to participants. For measuring the acceptability of a single sentence in isolation,             
binary yes-no acceptability judgments, n-point Likert scales, and continuous ‘thermometer’          
ratings (Featherston, 2008) are all widely used. Other techniques invite participants to compare             
one sentence against another. For example, in two alternative forced-choice tasks (2AFC), the             
participant chooses the more acceptable of two sentences presented. In magnitude estimation            
(ME) tasks, the participant is asked to rate a target sentence relative to a baseline (or modulus)                 
sentence (Bard et al., 1996). For a detailed explanation of each type of experiment, we refer the                 
reader to Schütze & Sprouse (2014). 

For all of these techniques, we might ask: how well can each acceptability measure              
recover true differences in acceptability between sentence tokens, or between classes of            
sentences? Head-to-head comparisons of the various acceptability measurements suggest that          
the different methods yield largely similar qualitative results for many sentence contrasts. In             
other words, if sentences of Type A are more acceptable than sentences of Type B as                
measured with one of the techniques above, other methods will generally recover this (ordinal)              
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difference with high reliability (Bader & Häussler, 2010; Sprouse & Almeida, 2011, 2017;             
Weskott & Fanselow, 2011). Commonly used methods in experimental syntax have a number of              
desirable properties: they generally have high test-retest reliability (Langsford, Perfors,          
Hendrickson, Kennedy & Navarro, 2018), and in many cases yield results that are consistent              
with those achieved with informal methods of acceptability judgment collection (Sprouse &            
Almeida, 2017). In short, if the experimental syntactician is interested in establishing that there              
exists a simple contrast between two classes of sentences, she has a number of reliable,               
powerful tools available at her disposal. It is fairly straightforward for a researcher to answer the                
binary question is sentence type A better than, or worse than, sentence type B? 

However, it is less straightforward to answer the more gradient sister question: to what              
extent is sentence type A better than, or worse than, sentence type B? This is because this                 
question implies that the researcher has a reliable quantitative measure of the acceptability             
differences between two classes of sentence, such that she can offer a meaningful,             
quantitatively precise answer to this gradient question. It is widely acknowledged that this             
question is difficult to answer satisfactorily with existing techniques. To take one example: the              
quantitative differences between two sentence types on a Likert scale (or even in a binary               
yes/no rating context) do not have any inherent meaning; they are filtered through an individual               
participant’s interpretation of the response scale. This renders claims based on the absolute             
magnitude of a difference on a Likert scale suspect, for reasons that we make precise below. 

For researchers interested in the gradient acceptability question--to what extent is           
sentence type A better than, or worse than, sentence type B?--magnitude estimation has             
occupied a special place among other experimental techniques for measuring acceptability. In            
their 1996 paper, Ellen Bard and colleagues argued that linguistic acceptability should be             
understood in terms similar to other psychophysical judgments. That is, acceptability constitutes            
psychological evidence in the same way that judgments of luminosity or loudness constitute             
psychological evidence that can be measured and modeled. The judgment of acceptability            
reflects a hidden, or latent, cognitive variable that can be reliably measured, one which is the                
truer guide in explaining the sources of gradience. From this perspective, acceptability            
judgments could be measured using some of the same tools that psychophysicists had             
developed to quantify gradient psychological evidence in other domains. Magnitude estimation,           
one technique for doing this, was originally proposed by Stevens (1956) as a means of               
providing measurements of psychological evidence on a ratio scale; that is, a measurement             
scale with equal-sized units of measurement on which quantitative differences can be defined             
and directly interpreted, and for which there exists a true zero point. An example of a ratio-scale                 
measurement is height, which has a clear zero point, licensing ratio comparisons among             
measurements (e.g. Aunt Mary is twice as tall as Timmy). A related type of measurement is that                 
of an interval scale measurement. Interval scale measurements differ from ratio scale            
measurements in not having a fixed zero point. An example is temperature measured in              
degrees Fahrenheit, which has no interpretable zero point, although it does offer equal-sized             
units of measurement.  

The promise of a true ratio (or interval) measurement of acceptability set magnitude             
estimation apart from other techniques for measuring acceptability, which generally offered           
either ordinal measurements (Likert scales, yes-no ratings) or categorical measurements          
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(2AFC). Ordinal measurements allow researchers to establish a rank ordering among sentence            
classes, but they do not allow more precise measurements of the quantitative differences             
between sentences. This is because the differences between points on a Likert rating scale              
need not be equal-sized units of ‘acceptability’: there is no guarantee that the difference in 2-3                
on the Likert scale is the same as the difference between 4-5 on the Likert scale. Thus, Likert                  
ratings (and yes-no judgments) allow researchers to establish whether sentence type A is more              
acceptable than sentence type B with high fidelity, but they do not tell us by how much.                 
Magnitude estimation seemed to correct that, and offer a true ratio scale judgment of              
acceptability. And since interval scale or ratio scale measurements of acceptability are required             
to provide a satisfactory answer to the gradient question, this methodological advance allowed             
the development and testing of theories that make fine-grained, quantitative predictions about            
acceptability (see, e.g., Aarts, 2007; Keller, 2000; Lau, Clark & Lappin, 2017; Sorace & Keller,               
2005). 

Unfortunately, it has turned out to be less straightforward to apply ME to acceptability              
judgments than to other psychophysical judgments of stimulus quality. Unlike judgments of            
brightness or loudness, say, there is no objective physical stimulus against which acceptability             
judgments can be compared. The ‘physical axis’ for brightness/loudness stimuli is important,            
because it allows researchers to validate the ME measurements by comparing the consistency             
of participant judgments against objective physical measurements of the stimulus. Since there is             
no physical axis for acceptability judgments, this is not possible. In its place, Bard and               
colleagues demonstrated that ME judgments of acceptability showed good cross-modal          
consistency: highly similar results were found when subjects estimated acceptability using a            
numerical value and when they estimated acceptability using line length. This cross-modal            
consistency is expected if there is a stable underlying acceptability percept that is ‘read out’ in                
the various measurement contexts; the missing physical axis in ME judgments is implied by the               
cross-modal consistency (Stevens, 1960; Bard et al., 1996). Despite this promising early result,             
several subsequent studies have raised questions about the utility of magnitude estimation as             
applied to acceptability judgments. Importantly, Sprouse (2011) provided evidence that          
participants may be unable to make true ratio judgments for acceptability (more precisely, he              
argued that the commutativity assumption of magnitude estimation does not hold). That is,             
participants are unable to reliably evaluate multiplicative statements like Sentence A is twice as              
acceptable as Sentence B; however, that raters can make this sort of ratio judgment is a core                 
assumption of ME. These types of ratio judgments rely on there being a true ‘zero point’ on the                  
scale being measured. It is thus unclear that there is any such a zero point for acceptability                 
judgments (Sprouse, 2011). If Sprouse’s argument is correct, then the cognitive assumptions            
concerning magnitude estimation do not hold, and the claim that acceptability measured in this              
way offers a true ratio measure of acceptability is rendered suspect. Furthermore, Langsford et              
al. (2018) showed that magnitude estimation has among the lowest test-retest reliability of the              
major experimental techniques for measuring acceptability reviewed here, although the absolute           
values of test-retest reliability were overall still quite high. Lastly, in a series of acceptability               
judgment experiments, Weskott and Fanselow (2011) showed that magnitude estimation is not            
more informative than Likert or binary ratings in that the proportion of variance accounted for by                
experimental manipulations (a measure of effect size) was not significantly different between            
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magnitude estimation and the other tasks. In light of these results, it cannot be claimed that                
magnitude estimation provides a true, ratio-scale measurement of acceptability, and on a more             
practical level, it cannot be said that it more reliably recovers differences in acceptability              
between classes of sentences than other techniques of measuring acceptability (if anything, it             
seems to perform slightly less well than other widely used techniques: Langsford et al., 2018;               
Sprouse & Almeida, 2017).  

2 We really do want to address the gradient question 

One upshot of the preceding review is that if a researcher is interested only in               
establishing whether sentence class A is reliably more acceptable than sentence class B, then              
ordinal measurements of acceptability such as Likert scales or binary judgment measures serve             
the task very well. Similarly, if a researcher wishes to establish an acceptability ranking across a                
range of sentence classes, these same ordinal or categorical measures will suffice, and are              
quite easily deployed. In light of this, does experimental syntax really need to develop tools to                
answer the gradient question? Is there any value in getting a truly ratio, or interval measure of                 
acceptability? We believe there is value in this, for two reasons. 

2.1 Reason 1: Disconnects between statistical hypotheses and substantive        
hypotheses 

The first reason that interval scales of measurement are of broad importance is that even               
if a researcher’s substantive hypotheses do not critically depend on obtaining a precise interval              
measurement of acceptability, this same researcher’s statistical hypotheses almost always do.           
This disconnect between what is measured and what a statistical test assumes can lead to               
spurious conclusions. One very common situation where this arises is testing interaction effects             
in crossed factorial designs. For example, Sprouse, Wagers, and Phillips (2012) constructed a             
2x2 factorial design to measure the presence of island effects. This experimental design             
crossed the site of extract for a wh-dependency (a matrix gap or embedded clause gap) with the                 
type of embedded clause (an island environment or not). They reasoned that if the penalty for                
embedded wh-movement was greater when the embedded clause was an island than when it              
was not, then this would constitute evidence for some additional penalty levied on extractions              
from islands. In other words, they expected to see a superadditive interaction of gap position               
and embedded clause type. Statistically, this superadditivity is realized as an interaction in an              
ANOVA or similar. This statistical interaction corresponds to a difference-of-differences score           
(see Fig 1A.). If the difference of differences is not zero, then the experimental factors in the 2x2                  
design interact, such that the effect of one factor depends on the level of the other. This use of                   
this additive factors logic over Likert scale ratings is ubiquitous (indeed, we have routinely used               
this in our own work). 
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Figure 1: A: Sprouse et al.’s factorial design. In their design, they measured the              

difference in acceptability between the matrix and embedded gap conditions for non-islands            
(Δ-island), and the same acceptability difference for islands (Δ+island). The difference of these two              
differences (ΔDoD) measures the extent to which the difference is acceptability is greater for the               
island environments than non-island environments. B: A hypothetical illustration of how scale            
bias could create a spurious interaction in the difference of differences. The top figure shows               
four hypothetical distributions of acceptability for the four conditions in Panel A. These             
distributions are defined so that the difference of differences among them is zero. The vertical               
lines mark the demarcation of response boundaries on a Likert scale; on the lower end of the                 
scale, there is compression of the boundaries between rating categories. Because of this             
compression, averaged Likert ratings for these four conditions present a spurious superadditive            
interaction that is due to properties of the response scale, rather than the underlying              
acceptability distributions. 

 
However, ANOVA-style interactions with Likert ratings -- even z-transformed ratings --           

are potentially problematic. The reason is straightforward: the difference-of-differences logic,          
and the statistical tests used to evaluate the difference-of-differences score, critically relies on             
the assumption of an interval scale. That is, these tests assume that we can meaningfully               
compare the relative magnitude of the difference between pairs of conditions that sit at different               
points on the response scale. This assumption is not met in ordinal data, such as common                
Likert rating data or yes/no rating data. This opens up the possibility of misleading patterns in                
the data: differences in how a response scale is interpreted at the high and low end can create                  
spurious interactions (for extensive discussion, see Loftus, 1978; Heit & Rotello, 2014; Rotello,             
Heit & Dubé, 2015). We suspect that most researchers using these techniques are implicitly              
aware of this possibility: we believe it to be widely recognized that so-called floor or ceiling                
effects can create spurious interactive patterns in bounded response scales (see also Liddell &              
Kurschke, 2018). The point we raise here is that similarly spurious interactions may obtain, for               
essentially similar reasons, even in the absence of obvious floor or ceiling effects. 
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For example, consider Figure 1, Panel B. In this hypothetical example, there is             
compression in the response categories at the lower end of the response scale: the distance               
between the edges of the 2 category is smaller on the underlying acceptability dimension that it                
is for the 5 category, for example. This corresponds to an experimental context where a               
participant is overall less willing to assign lower values on the response scale. In Figure 1B,                
however, the underlying pattern of acceptability is one that is entirely additive between the four               
hypothetical conditions: the difference of differences in the means of the four Gaussian             
distributions represented is zero. However, this underlying additive pattern interacts with the            
differences in the width of the category boundaries in the response task. As a result, we see an                  
illusory interactive pattern in the ratings that mirrors a superadditive effect. Most importantly, if              
similar compression occurs across participants, then common methods of removing scale bias            
such as z-scoring will not remove it.  

This simple example is intended to illustrate that in principle, properties of the response              
scale can interact with perfectly additive underlying patterns, and yield spurious interactive            
patterns when the resulting rating data are analyzed as if they were simple, interval measures of                
acceptability. This is only a hypothetical demonstration, however: It is not currently known             
whether this observation puts actual claims in the experimental syntax literature in peril , and we               1

do not wish to imply that any single interactive pattern is in fact an artifact of scale properties.                  
However, it is a potential danger, and failure to recognize this has mislead researchers in               
related fields, for decades in some cases (for example, Rotello, Heit and Dubé (2015) show that                
the widely-studied belief bias effect is indeed an artifact of response biases that are similar in                
nature to the scale compression effects we are concerned with here). It suggests that at a                
minimum, researchers should adopt statistical practices for analyzing interactions in judgment           
experiments that do not implicitly assume an interval response scale.  

2.2 Reason 2: We can get more out of acceptability judgment measures 

The second reason to seek an interval scale for measuring acceptability judgments is             
that establishing such a measurement for acceptability is a critical first step for asking more               
fine-grained questions about gradient effects on acceptability judgments. This arises when           
quantifying the relative impact various constraints have on acceptability cross-linguistically          
(Alexopoulou & Keller, 2007; Almeida, 2014; Häussler, Grant, Fanselow & Frazier, 2015; Kush,             
Lohndal & Sprouse, 2018; Sprouse, Caponigro, Greco & Cecchetto, 2016), as well as attempts              
to directly model the gradience in acceptability judgments (Lau, Clark & Lappin, 2017; Sprouse,              
Yankama, Indurkhya, Fong & Berwick, 2018; Warstadt, Singh & Bowman, 2018). 

To take one example of a research question that critically turns on having an interval               
measurement of acceptability: Dillon, Staub, Levy and Clifton (2017) were interested in            
measuring the acceptability of sentences like (2): 

 
(2) Which flowers is the gardener planting?   

1 In fact, we have reason to believe that the example chosen here is not a spurious interactive pattern: 
ROC Analysis of the original data in Sprouse, Wagers & Phillips (2012) shows that the interactions 
reported in that paper are not due to scale compression. 
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(2) is an object wh-question; the subject of the sentence is the gardener. Despite this,               

the sentence appears to be ill-formed. Dillon and colleagues proposed the plural wh-phrase             
which flowers interferes with the processing of the agreement on the auxiliary that immediately              
follows (one particular example of an agreement attraction-like effect: for recent summaries of             
this large research area, please consult Bock & Middleton, 2011 and Franck, 2011). One              
question that Dillon and colleagues asked of examples like (2) was whether the illusion of               
ungrammaticality was complete: when raters judged sentences like (2) to be unacceptable,            
were they treating it as a fully ungrammatical sentence? In other words: is the illusion of                
unacceptability in (2) more akin to a bistable perception of ungrammatical / grammatical             
agreement (a linguistic version of the Necker cube, perhaps), or do sentences like (2) simply               
occupy an intermediate level of acceptability, perhaps because of interference or difficulty in             
processing the complex agreement relationships in these examples? 

A visual inspection of their data suggested a bimodal distribution of ratings for examples              
like (2). This in turn suggests that the answer to this question was that the perception of these                  
sentences was essentially bimodal, with participants variably treating it as a fully acceptable or              
fully unacceptable sentence. Dillon and colleagues supported this observation using a formal            
model of the acceptability judgments given to sentences like (2). In brief, they found that the                
distribution of judgments in examples like (2) is well modeled by a simple mixture model               
according to which participants treat (2) as if it were fully ungrammatical on approximately 30%               
of trials, and on the remaining trials as if it were fully grammatical. A comparable model that                 
allowed for a more gradient level of acceptability fit the data poorly.  

However, Dillon et al (2017) noted that a weakness of their approach was that it               
assumed that the ratings on the Likert scale constituted interval measurements. If this             
assumption is not met, then their conclusions may not hold. For example, spurious bimodality              
could arise in a distribution of ratings over Likert scales if participants were for some reason                
unwilling or resistant to offer responses in the middle of a Likert scale (i.e. if there were scale                  
compression in the middle of the scale). This kind of non-linearity in the mapping between               
underlying perception of acceptability and the response scale could create an illusion of             
bimodality in the responses, which in this hypothetical example would simply reflect a bias              
towards offering extreme responses on the response scale. If true, this would imperil these              
authors’ conclusion about this particular linguistic illusion (we return to this effect later on in the                
chapter) . 

2.3 The problem, The solution 

The reason that Likert and binary ratings do not yield interval scale measurements             
essentially boils down to what we will call response bias: what internal criterion do participants               
set on their internal perception of acceptability to render a ‘yes’ judgment in a binary task? What                 
internal criteria does a participant set to render a judgment of a 2 or a 3 on a Likert scale? Or to                      
use a term more commonly used in the experimental syntax literature: what is their scale bias?                
Participants are free to interpret the rating task they are presented with as they will. This means                 
that the threshold for labeling a sentence ‘acceptable’ in a binary task may well vary from one                 
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rater to another, even if they have identical underlying perceptions of a stimulus’ acceptability.              
Similarly, what makes a sentence a ‘5’ on a 7-point Likert rating task is likely to vary from                  
participant to participant in ways that are idiosyncratic and not of central interest to the               
experimental syntactician. 

In the context of a Likert rating experiment, it is common to take a z-score transform of                 
each participants’ ratings to address this kind of scale bias. That is, each participant’s mean               
rating is subtracted from each response, and divided by that participant’s standard deviation.             
This normalizes ratings across participants, but it cannot be guaranteed to result in a truly               
interval measure.  

However, an alternative approach is to attempt to directly model the underlying            
acceptability values and the response thresholds. From this perspective, we take seriously the             
claim that sentence acceptability derives from a latent, unobserved cognitive variable that is             
read out or reflected in different acceptability measures; it is this underlying variable that we               
wish to recover and measure. As a starting point, we might take this to be a scalar                 
(unidimensional) real value. This underlying value is mapped onto response categories in the             
context of an experiment when participants set an internal criterion or criteria and compare their               
perception of acceptability for a given sentence token to their internally determined criteria. This              
sort of latent variable model seeks to recover the underlying acceptability values by jointly              
modeling the underlying latent acceptability variable and the response criteria (e.g. the response             
bias). In one study, Langsford et al (2018) applied one widely studied latent variable model to                
binary judgment data: the Thurstone model. Applied to acceptability judgments, a Thurstone            
model seeks to recover the latent acceptability structure in a class of sentence comparisons              
through a series of pairwise comparisons among sentences (in this sense, it is formally similar               
to the ELO system for establishing chess rankings, which has also been applied to acceptability               
judgment data; Sprouse et al., 2018). 

The Thurstone model is one example of a latent variable model for modeling judgment              
measures; other statistical approaches such as ordinal regression models may be interpreted in             
a similar fashion (Liddell & Kruschke, 2018). The great strength of the latent variable              
approaches is that they offer an explicit theory of how numbers get placed on the response                
scale in the context of a judgment experiment, and in doing so, offer a framework for inferring                 
the underlying acceptability values from readily available judgment measures such as Likert            
scales or binary judgment acceptability decisions. In the following section, we discuss how to              
apply one relatively well-understood type of latent variable approach, Signal Detection Theory,            
to acceptability judgment data.  

2.4 Signal Detection Theory and acceptability judgments  

One broad, widely-used framework for modeling decision-making processes under         
uncertainty is Signal Detection Theory (SDT; Macmillan & Creelman, 2005). This framework is             
commonly applied to an observer’s judgments of whether some stimulus is present or absent.              
One very common example of this is a recognition memory task, where participants are asked               
to decide if a stimulus is one that they previously studied (stimulus present) or not (stimulus                
absent). The standard SDT analytical approach categorizes response behavior in an experiment            
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like this into hits (e.g. stimulus present responses when it is the correct response), and false                
alarms (e.g. stimulus present responses when it is not). SDT describes how the distribution of               
hits and false alarms in a detection task can be used to recover different aspects of the stimulus                  
detection process, such as how clearly can the observer discriminate signal from noise (e.g.              
their sensitivity) and what is the threshold they use in rendering their judgments (e.g. their bias).                
Although it is most commonly applied in detection tasks, the theoretical model of the decision               
process implied by SDT is very broad. According to SDT, the decision process is seen as a                 
mapping from a noisy, continuous cognitive signal onto one or more discrete response options              
offered to a participant in an experimental setting.  

This perspective on the decision-making process has value for the experimental           
syntactician, because a similar decision process is plausibly at work when speakers are asked              
to categorize linguistic stimuli into discrete categories in a judgment task. This hypothesized             
decision process for both binary rating tasks and n-point Likert tasks is rendered graphically in               
Figure 2. The strength of SDT is that it allows independent estimation of the underlying cognitive                
signal (in our case, the latent Acceptability values), as well as the likelihood that a participant                
will respond with one response category over another (that is, response bias or scale bias).  

There have been several previous attempts to apply Signal Detection Theory to            
acceptability judgment tasks. Mauner (1995) was one early, important application of these tools.             
Mauner argued that SDT was critical for analyzing grammatical judgment data given by             
agrammatic aphasic patients. To our knowledge, the underlying SDT theory for acceptability            
judgments was most explicitly developed by Bader and Häussler (2010), who proposed a model              
of a binary acceptability judgment task grounded in SDT. On Bader and Häussler’s analysis, the               
process of rendering an acceptability judgment could be logically decomposed into two distinct             
processes: the first is the computation of a continuous acceptability value for a given sentence,               
and the second is a mapping from that continuous acceptability value on one of two response                
options in a binary rating task. Their model explained how continuous acceptability can be              
converted to the probability of a response in one of two categories, which in turn gave insight                 
into why Bader and Häussler found such a tight correlation between continuous (ME) and              
discrete (binary Y/N judgments) measurements of acceptability in their experiments (see also            
Weskott & Fanselow, 2011, for a similar result). Moreover, Bader and Häussler showed that              
their simple two-stage decision model was able to achieve a close fit to their experimental data.                
That is, in their data, the proportion of ‘acceptable’ responses was well modeled by a continuous                
distribution of acceptability and a single decision criterion that mapped that continuous value of              
acceptability into a binary Y/N decision. In short, SDT offers a theory of how categorical               
responses arise in acceptability judgment experiments while being based on a fundamentally            
continuous, noisy signal of acceptability.  
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Figure 2: The process of rendering a binary or n-point Likert acceptability judgment from the               
perspective of Signal Detection Theory. The first step involves computing or determining the             
acceptability of a given sentence token. Decision criteria (vertical lines) are overlaid on this              
distribution. The second step involves mapping that value to one of the presented response              
options using these decision criteria to determine what response option is appropriate for a              
given token. 

 
Dillon, Andrews, Rotello and Wagers (2019) further developed Bader and Häussler’s           

Signal Detection Theoretic model of the acceptability judgment task. In their experiment, they             
measured speeded binary acceptability judgments, followed by a three point confidence rating            
task. In their analysis, they combined the rapid acceptability judgment and the graded             
confidence ratings into a six point scale, ranging from very confident unacceptable to very              
confident acceptable. On their analysis, the decision process that yields the resulting six point              
rating scale is fundamentally identical to Bader and Häussler’s model: first, the acceptability of a               
sentence is computed, and second, that continuous acceptability value is mapped to one of a               
number of response criteria. The sole difference between the two models is the number of               
response thresholds necessary to model the data: a binary decision can be generalized to any               
arbitrary n-point rating scale by positing n-1 decision criteria, which in turn partition the              
continuous acceptability signal into the n distinct, ordered response categories at the decision             
stage of the model. 

This model of a scaled rating task implies important new routes of analysis of              
acceptability data, which we will discuss in detail below. In broad strokes, these analytical              
approaches seek to deconfound sensitivity from bias. In the present context, sensitivity refers to              
the distance between two sentence types in the underlying perceptual space; the term             
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sensitivity is borrowed from classical Signal Detection Theory, where it referred to an individual’s              
ability to discriminate signal from noise (i.e. their sensitivity to whether a stimulus is present).               
Applied to acceptability judgments, the Signal Detection Theoretic notion of sensitivity is the             
linguist’s notion of contrast between a pair of sentences or sentence classes: SDT-theoretic             
measures of sensitivity quantify the degree of contrast between a minimal pair of sentence              
types, and so yields an answer to the gradient acceptability question to what extent is sentence                
type A better than, or worse than, sentence type B? Perhaps more precisely put, the analysis                
technique we pursue here allows the researcher to answer the question of to what extent does                
sentence type A contrast with sentence type B? 

One familiar technique for computing independent measures of sensitivity and bias is            
simple d’ analysis. d’ measures the distance between the mean value of two distributions in               
standard deviation units. Strictly speaking, d’ is a measure of discriminability between two             
classes of stimuli in the decision space that supports judgments about the stimuli. Sensitivity in               
the context of acceptability judgment data is most appropriately understood as the distance             
between the two classes of sentence in the decision space that supports the acceptability              
judgment. At this early stage, we remain unclear what precisely the underlying decision space              
that supports acceptability judgments is. On the plausible hypothesis that response behavior in             
an acceptability judgment task arises by mapping a unidimensional psychological value of            
Acceptability onto one of the proferred response options (Bader & Häussler, 2010), then the              
discriminability measure d’ can be considered a distance measure between the location of the              
acceptability distributions for two classes of stimuli. While on certain assumptions, the            
discrimination measures can be taken to be measures of acceptability, they should not be              
assume to directly reflect a measurement of grammaticality absent a linking hypothesis about             
how acceptability measures relate to grammaticality. Furthermore, this interpretation of d’ only            
holds if the research is willing to adopt certain assumptions about the shape of the underlying                
distributions of acceptability judgments. For example, the d’ measure of discriminability assumes            
that the underlying distributions of acceptability are normal distributions, and that the two             
distributions compared have equal variance (although as we will see below, the equal variance              
assumption is not always justified).  

However, there are other techniques for identifying independent measures of sensitivity           
and bias that make fewer theoretical assumptions about the data. It is possible to relax the                
assumption of equal variance; in this case, an appropriate measure of discriminability is da, a               
measurement of the distance between the means of the two distributions expressed in units of               
their root mean squared standard deviation. Other techniques can be readily applied to common              
experimental data. In an experimental context where there are multiple, distinct response            
criteria (such as a Likert scale task, or a dual task that jointly measures acceptability and                
confidence), it is possible to construct an empirical receiver operating characteristic (ROC). An             
ROC curve can yield a measure of sensitivity as well. In our context, this sensitivity indexd may                 
constructed between two conditions in an acceptability judgment experiment. For a Likert scale,             
the empirical ROC is constructed by calculating the observed proportion of responses at the              
highest possible rating for both conditions; the resulting pair of values provides the x and y                
coordinates of the first point on the empirical ROC. The second point on the ROC is the                 
proportion of responses in either the most acceptable rating category, or the response category              
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just below that (e.g. 6 and 7 on a 7-point Likert scale). The subsequent points on the ROC                  
reflect the cumulative proportion of responses at each possible response category; the final             
point on the empirical ROC is (1,1), reflecting the fact that all responses on a Likert scale fall                  
into either the lowest response or above it. In the next section, we illustrate the calculation of an                  
ROC curve in detail. At an intuitive level, the ROC visualizes how the distribution of responses in                 
two experimental conditions differ on a point-by-point basis across the response scale. This             
method of comparing two conditions allows for a much more precise characterization of how two               
conditions may differ in acceptability that goes beyond the standard analyses of central             
tendency. 

The SDT measures of sensitivity are directly related to other latent variable approaches             
to measuring acceptability. For example, d’ is directly comparable to the inferred posterior             
acceptability in the Thurstone approach or the ELO approach when those measures assume             
equal variance between stimulus categories (Langsford et al., 2018). A similar interpretation is             
valid for ordinal regression (Liddell & Kruschke, 2018). However, the variance in the underlying              
acceptability associated with a category of sentence stimuli is not generally known. It is not at all                 
obvious that different classes of sentence stimuli should have comparable variances; and our             
experience has taught us that they are often different. 

At this juncture, it bears repeating that without explicitly modeling or measuring the             
underlying distribution of acceptability, it is very difficult to infer anything about the underlying              
distribution of acceptability. This distribution cannot be read directly off Likert ratings, whether             
they are z-transformed or not: what surfaces as bimodality in the Likert responses could simply               
be an artifact of the arbitrary placement of the response criteria, biases towards extreme              
responses, etc. The approach we describe here is critical for researchers interested in analyzing              
differences in the distribution of acceptability ratings across conditions, as the distribution of             
ratings on a response scale cannot be safely assumed to be a faithful reflection of the                
underlying acceptability distribution. The decision process can distort the underlying          
acceptability distribution substantially, and so there is value in explicitly modeling this aspect of              
the acceptability judgment task even if such a ‘task model’ is orthogonal to the researcher’s               
primary theoretical interest.  

The perspective developed here is a first, but critical, stepping stone. If the signal              
detection framework satisfactorily models acceptability judgments in Likert scale rating data,           
then it may offer a general framework for recovering interval scale differences in acceptability              
ratings between different classes of sentence. We now turn to a worked, tutorial style example               
of applying SDT-style data analysis to Likert rating data.  

3 Tutorial: SDT & D-linking 

In this section we will work an example with actual data, derived from an experiment designed                
to measure the acceptability of extraction dependencies and how that depends on d-linking (see              
Goodall, 2015). Our goals are two-fold. First, we seek to provide a simple proof-of-concept that               
the task model implied by SDT analysis provides a good approximation to response behavior in               
a real data set (see also Bader & Häussler, 2010). Second, we aim to give a tutorial-style                 
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introduction to the application of these techniques to facilitate the wider application of these              
techniques. 

First we spend a little time talking through the method and design considerations. While              
familiar, they are not identical to a “run of the mill” syntax experiment. The topics and methods                 
discussed in this tutorial are familiar from other areas of psychology, engineering and even              
radiology -- but they have not often been offered for an experimental syntax application. For               
reasons of space, we are unable to give a full treatment of all the various issues raised by this                   
analysis. We recommend that the interested reader pair this section with the more complete and               
justified discussion of these issues in MacMillan & Creelman (1991/2005) and, in particular, their              
discussion of ratings experiments (Chapter 3).  

3.1 Specimen Experiment 

3.1.1 Method 

An ROC curve is revealing about the underlying distribution of Acceptability, the latent cognitive              
variable of interest, because it takes relative measurements of two Acceptability distributions at             
multiple criterion placements. There are a number of experimental design parameters that can             
be used to cause participants to adopt different biases (see MacMillan & Creelman, 2005): for               
example, using payoffs to differentially reward correct yes-responses and correct no-responses;           
or using instructions that convey misleading estimates of the ‘true’ rate of Grammatical and              
Ungrammatical stimuli. But the use of a ratings experiment is perhaps the simplest means for               
estimating an ROC curve, and, in our experience, a quite reliable means for doing so. In our                 
specimen experiment, we explicitly asked people to first classify the stimuli and then rate their               
confidence on a 3-pt scale. As a consequence, they effectively gave a rating on an 1-6 scale .                 2

We did not put them under time pressure to give either judgment . We implemented the               3

experiment using Ibex on IbexFarm (Drummond, 2013). 

3.1.2 Study Design Considerations 

Our design must give participants a genuine opportunity to make a choice. And we need to                
compare the acceptability of classes of sentences that differ in a theoretically well-defined way.              

2 We suspect that much existing experimental syntax data, collected along an n-point             
Likert-style scale, could be profitably re-analyzed as a ROC curve – provided that the              
experiment was designed so that some conditions can be reasonably identified as sources of              
Hits, and others as sources of False Alarms. We have reanalyzed some of our own datasets,                
and find that the assumptions of an unequal variance normal-normal model are typically met              
(see section 3.2.2). This is an obvious area for future research.  
3 Technically the yes/no grammaticality judgment timed out after 10 sec, but we consider it                
virtually untimed. The mean of participant median response times was 1360 ms for             
grammaticality judgments, and 840 ms for confidence judgments. A version of our experiment             
with a 2000 ms deadline to give the grammaticality judgment yielded comparable sensitivity             
results. If one were interested in fine-grained modeling of RT distributions, then using the              
untimed task is probably preferable. 
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Therefore we must have a clear hypothesis about the mechanism that distinguishes two             
sentence classes. We adopt the hypothesis that d-linking improves the distinctiveness of            
wh-phrases -- and thus their retrievability. Therefore we should compare sentences that differ             
not only in whether or not the wh-phrase is lexically restricted; but crucially also in whether or                 
not retrieval is required to interpret the sentence grammatically. 

Consider the following grammatical sentence: 
 

(3) Who do you think that the new professor is going to persuade? 
 
What would be an appropriate control for (3)? It should elicit an opposite response in the binary                 
judgment task, i.e., “No”, and differ minimally from (3) along almost every dimension, except the               
theoretically relevant ones.  

To recognize (3) as grammatical, the perceiver must successively (i) encode the            
displaced wh-phrase, (ii) identify the contexts in which gaps could occur, and, when they do, (iii)                
retrieve the filler phrase (Wagers, 2013). Therefore we constructed (4) as a control.  

 
(4) Who thinks that the new professor is going to persuade? 
 

(4) has a short matrix subject extraction that imposes comparable demands for (i), but              
effectively blocks the processes associated with (ii)-(iii). At the same time, it uses nearly the               
same lexical items, the same bi-clausal structure, the same argument structure, etc. It             
necessarily contrasts in the matrix subject. Using the local person you in (3) enables a               
reasonable comparison, since pronominal subjects are known to engender minimal additional           
complexity and to effectively level subject/non-subject extraction differences (Gordon, Hendrick,          
& Johnson, 2001). 

The verb in (3-4) was selected to be obligatorily transitive: for example, practically all              
speakers of English require persuade to have a complement DP (Gahl, Jurafsky & Roland,              
2004). This is important, because we want the acceptability in (3) to depend on the               
subprocesses of dependency comprehension succeeding. If the verb were optionally transitive           
(e.g., attack), the comprehender might assign (3) high Acceptability without engaging the            
processes of a theoretical interest, i.e., without finding a legitimate grammatical derivation.            
(5)-(6) are exactly the same as (3)-(4), but with a lexically restricted wh-phrase. 

 
(5) Which donor do you think that the new professor is going to persuade? 
(6) Which donor thinks that the new professor is going to persuade? 
 

Finally, we must de-correlate grammaticality from whether or not there’s a matrix subject             
(4,6) or embedded object (3,5) dependency. If participants implicitly learned this connection,            
then it would be possible to correctly classify the grammatical/ungrammatical stimuli without            
deeply parsing the sentences. It is in principle possible to do this by manipulating the filler                
sentences. We chose, instead, to do it as part of the experimental design by inserting an                
indefinite DP (someone/anyone) in the embedded object positions. 
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(7) Who do you think that the new professor is going to persuade anyone? 
(8) Who thinks that the new professor is going to persuade anyone? 
(9) Which donor do you think that the new professor is going to persuade anyone? 
(10) Which donor thinks that the new professor is going to persuade anyone? 
 
This design thus realizes 8 conditions: WhP (bare, or d-linked), Embedded VP-type (gap, or              
filled gap), and Grammaticality (grammatical, or ungrammatical). Table 1 repeats the full design             
with condition labels. 
 

 VP WhP Gram. Sentence 

1 
 

Gap  bare  Gram  Who do you think that the new professor is going to persuade? 

Ungram  Who thinks that the new professor is going to persuade? 

2 
 

dlink  Gram  Which donor do you think that the new professor is going to persuade? 

Ungram  Which donor thinks that the new professor is going to persuade? 

3  Filled 
Gap 

bare  Gram  Who thinks that the new professor is going to persuade anyone? 

Ungram  Who do you think that the new professor is going to persuade anyone? 

4  dlink  Gram  Which donor thinks that the new professor is going to persuade anyone? 

Ungram  Which donor do you think that the new professor is going to persuade 
anyone? 

Table 1 Example Item Set 

3.2 Analysis 

3.2.1 Simple sensitivity and bias 

There are several possible ways to analyze the data that result from a forced-choice experiment               
with confidence ratings. Let us start with the simplest SDT analysis, based on just the binary                
judgment data. In Table 2 below, we’ve summarized the response outcomes by condition. For              
each condition, the empirical proportion correct (p.c) and its complement proportion error            
(p.err) is reported. In the final columns, p.c and p.err are annotated with a traditional SDT                
label: Hit (Correct yes), False Alarm (FA; Incorrect yes), Miss (Incorrect no), Correct Rejection              
(CR; Correct no). Numbering of the table rows indicates condition pairs to be compared (“scaled               
against one another”), and within the p.c and p.err columns, the values to be scaled are                  
placed in bold. 
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  VP WhP  Grammaticality  correct  error p.c p.err p.c_type p.err_type 

1 gap bare  gram            237      120  0.664  0.336 Hit Miss 

1 gap bare  ungram          236      118  0.667  0.333 CR FA 

2 gap dlink gram            242      115     0.678  0.322 Hit Miss 

2 gap dlink ungram          248      110     0.693  0.307 CR FA 

3 fld bare  gram            311      46  0.871 0.129 Hit Miss 

3 fld  bare  ungram          293      66  0.816  0.184 CR FA 

4 fld  dlink gram            288      71  0.802 0.198 Hit Miss 

4 fld dlink ungram          315      42  0.882  0.118 CR FA 

Table 2 Binary Judgment Results 
 

Based on the forced-choice responses alone, we can quantify participants’ aggregate           
performance, factored into sensitivity and bias. Note that in this analysis, we are analyzing data               
aggregated across participants. In principle d’ could be calculated on an individual basis,             
however, and that clustered data further submitted to inferential tests. Bearing this in mind, we               
proceed with the aggregated approach, and return to the perils and pitfalls of this in section 4.3. 

The d’ measure of sensitivity, discussed above, is the distance between two            
Acceptability distributions expressed in standard deviation units. To compute d’, therefore, we            
must convert the probabilities in Table 2 into standard deviation units, or z-scores, using the               
inverse cumulative normal distribution function. This is Φ-1(•) in standard notation, and here we               
use the somewhat zippier notation z(•) for that function. 
 
(11) d’ = z(Hits) - z(FA) NB: z(p.Hits) = -z(p.Miss); z(p.FA) = -z(p.CR) 
 
In R this distribution is implemented by the function qnorm, which takes a probability as its                
argument and returns a z-score . For the Bare WhP conditions, with a gapped VP, we calculate                4

d’ as follows, with representative R code below. 
 
(12) # Write a function to implement d’=z(Hits)-z(FA) 

sensitivity.ev <- function(Hits, FA){ 
  dprime <- (qnorm(Hits) - qnorm(FA)) 
  return(dprime) 

} 
> sensitivity.ev(0.664, 0.333) 
[1] 0.855049 

4 The Normal probability distribution is defined from -∞ to +∞, and even for very large z-scores, there is an                    
infinitesimal non-zero density. Therefore, the inverse Normal will return ±∞ for either z(0) or z(1). In group                 
data, and even in most experimental syntax applications, this will not often be a problem because it will be                   
rare to have perfect performance. However in individual data, it is more likely a participant will respond                 
entirely consistently in at least one condition. In those cases, a correction must be made so that z(•) is                   
defined. The simplest option is to add a trial to the total count, and then split it evenly between “Yes” and                     
“No”. Thus someone who gave 10 out of 10 (correct) yes responses, would be coded as having a                  
corrected p.c of 10.5/11, or 0.955, and a correct p.err of 0.5/11, or 0.045. This is a form of ‘smoothing’                    
that is used when estimating probabilities off of empirical data; for a full discussion of the different                 
approaches to correcting for extreme performance, see (Hautus, 1995). 
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Under the assumption of equal variance, this value implies a distribution of underlying             
acceptability as depicted in Figure 3: two standard normal distributions whose means are             
separated by 0.85 standard deviations. Observe that these two distributions overlap           
substantially, and errorful performance is thus guaranteed. Participants will sometimes          
misidentify grammatical sentences as ungrammatical, and vice versa. 
 

 

Figure 3    Implied Equal-Variance Signal/Noise Distributions in Bare/VP Gap conditions 
 

The optimal strategy to minimize errors is to set a response criterion halfway between              
the two peaks of the distributions -- i.e., where the two density functions intersect (indicated by                
the dashed line; Theodoridis & Koutroumbas, 2009). For any given value of acceptability the              
ratio of the heights of these two distributions (the black Grammatical distribution; the dark grey               
Ungrammatical distribution) define the odds that a given Acceptability value was drawn from             
that distribution. For higher values of acceptability, the odds in favor of the grammatical              
distribution grows. Where the two intersect, the odds are even -- so values above that point on                 
the x-axis should elicit a Grammatical/yes response and values below that point should elicit an               
Ungrammatical/no response. We can characterize bias in the experiment as how far away from              
this optimum the actual criterion was set. This value, c, can be calculated as follows: 
 
(13) # Write a function to implement c=-[z(Hits)+z(FA)]/2 

bias.ev <- function(Hits, FA){ 
  bias <- (qnorm(Hits)+qnorm(FA))*(-1/2) 
  return(bias) 
} 
> bias.ev(0.664, 0.333) 

[1] 0.004119758 

 
In our dataset it is very close to 0, which suggests that overall bias is low in the experiment. The                    
positive sign indicates a (slight) relative surplus of “No” responses; we will refer to positive               
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values of c as ‘conservative’ response strategies, and negative values of c as ‘liberal’ response               
strategies. We can spot check this calculation by observing that Hits (0.664) in the Grammatical               
condition are nearly identical to Correct Rejections in the matched Ungrammatical condition            
(1-0.333=0.667; please see Table 2). 

A positive value for c, indicates that the empirical response criterion is somewhat higher              
(more conservative) than optimal: there are more ‘no’ responses than optimal. Had there been              
more ‘yes’ responses than optimal, we would have expected a greater Hit rate in grammatical               
conditions, but a lower Correct Rejection rate in ungrammatical conditions. And correspondingly            
we would have obtained a negative c. In Table 3, the values for d’/sensitivity and c/bias are                 
given for pairs of conditions, grammatical and ungrammatical variants, within each level of             
VP-type and WhP-type. Impressionistically we can see that d-linked wh-phrases increase           
participants’ sensitivity to conditions with a Gap in embedded object position, but not those with               
a Filled Gap (i.e., indefinite DP argument). There is bias shift in VP Filled Gap conditions, from                 
more “yes” responses than optimal (negative c) when the WhP is bare to more “no” responses                
than optimal (positive c), when the WhP is d-linked. The bias measure c, in the context of our                  
current experimental design, may be interpreted as a reflection of factors that influence the              
acceptability of a sentence class that are independent of the contrast of interest. For example,               
our observation that c was greater for the filled d-link conditions means that there is some                
feature of the filled-gap d-linking stimuli that caused participants to reject them at higher rates               
than we would have expected: participants exhibited a tendency to reject these sentences. The              
fact that this effect was found in c, our bias measure, indicates that whatever the source of this                  
effect, it is unrelated to the process of constructing a filler-gap dependency. It may be of                
independent interest in its own right, but in order to isolate and identify the source of this effect,                  
we would need to find a plausible hypothesis about its source, and construct an experimental               
design that would allow us to isolate and test the factors that do create this effect. At present,                  
this effect of d-linking appears to be a general effect on this class of sentences that is unrelated                  
to the process of filler-gap dependency completion.  
 

  VP WhP  d’ c 

1 gap bare  0.855  0.004 

2 gap dlink 0.966  0.021 

3 filled bare  2.031 -0.115 

4 filled dlink 2.034  0.168 

Table 3 Summary of Sensitivity and Bias in the Equal Variance Analysis 
 

The foregoing analysis is a convenient representation of our forced-choice data -- one             
which is arguably more digestible, as it transforms the dimensionality of the summary from 8               
numbers to 4, setting bias aside. However, it makes a crucial assumption, one which we will                
usually find it necessary to relax. In Figure 3 the underlying Acceptability distributions have              
equal variance. But what if the Grammatical and Ungrammatical distributions over acceptability            
were not equal in variance? For the reasons explored in Section 4.2, knowing whether one class                
of sentences gives rise to a narrower or broader natural range of Acceptability values could be                
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as theoretically revealing as knowing the centers of the distributions. To determine this, it will be                
necessary to construct a Receiver Operating Characteristic curve, or ROC curve. 

3.2.2 Receiver Operating Characteristic Curve 

A ROC curve describes Hits as a function of False Alarms across different degrees of bias. In                 
our specimen experiment, we can construct this curve by grading our Y/N judgments using their               
confidence ratings. Consider the data just for the VP:Gap/WhP:Bare conditions, given in Table             
4. 
 
  VP    WhP   Grammaticality Answer.cr             No   Yes 

 1  gap   bare  gram           Not confident         16    13 

 2  gap   bare  gram           Somewhat confident    53    78 

 3  gap   bare  gram           Very confident        51   146 

 4 gap   bare  ungram         Not confident         23    15 

 5  gap   bare  ungram         Somewhat confident    90    60 

 6  gap   bare  ungram         Very confident       123    43 

Table 4 Confidence Ratings in VP:Gap/WhP:Bare Conditions 
 

To construct the ROC, let us first reshape this table into a series of tables, as illustrated                 
in Table 5. First, starting with “Raw Counts”, we order the responses along a scale from “Very                 
Confident” yes-responses to “Very Confident” no-responses.  

While we analyze data from an experiment that combined a binary judgment of             
acceptability with a confidence rating, this is not necessary for the analysis that follows. In fact,                
the ROC analysis we pursue here is one that is in principle possible for any n-point Likert scale                  
data. To highlight this equivalence, the columns in Table 5 are numbered from 6 to 1                
descending. This numbering is both for convenience of reference but also to reinforce the              
mapping onto a common Likert response scale, and show how this analysis would be applied to                
similar data. While the analytical tools offered here may be applied to Likert scale data without                
loss of generality, it is not obvious that the quantitative results we report below would replicate                
with judgments collected in the Likert scale method (see Wagers & Dillon, in prep). 

 
Raw Counts 

Grammatical?  YES NO  

Confidence Very Smwhat Not Not Smwhat Very Sum 

 ‘6’ ‘5’ ‘4’ ‘3’ ‘2’ ‘1’  

GRAM  146 78 13 16 53 51 357 

UNGRAM  43 60 15 23 90 123 354 

 
Cumulative Counts 

19 



 
 

Grammatical?  YES NO  

Confidence Very Smwhat Not Not Smwhat Very Sum 

 ‘6’ ‘5’ ‘4’ ‘3’ ‘2’ ‘1’  

GRAM  146 224 237 253 306 357 357 

UNGRAM  43 103 118 141 231 354 354 

 
Cumulative Proportions 

Grammatical?  YES NO  

Confidence Very Smwhat Not Not Smwhat Very Sum 

 ‘6’ ‘5’ ‘4’ ‘3’ ‘2’ ‘1’  

GRAM  0.41 0.63 0.66 0.71 0.86 1 357 

UNGRAM  0.12 0.29 0.33 0.40 0.65 1 354 

 
Table 5 Transforming Confidence Ratings to an ROC Curve. Data shown are from 
the VP Gap / WhP Bare conditions. 
 

Column 6 contains the most “Very Confident” Yes responses to grammatical conditions.            
As a proportion (146/357), this represents 0.41 of all responses in that condition. Column 6 also                
contains the number of “Very Confident” Yes responses to ungrammatical conditions; as a             
proportion (43/354), this represents 0.12 of all responses in that condition. We can think of this                
pair <0.12, 0.41> as a <FA, Hit> pair representing performance achieved with maximal no bias               
-- only the highest Acceptability values would elicit a Yes under that bias, and even then a few                  
ungrammatical trials fall within that range. If we move to the next most stringent No bias, we                 
would include the responses under Column 5: 146+78 Yes-responses to grammatical conditions            
(=224; =0.63) and 43+60 Yes-responses to ungrammatical conditions (=103; =0.29). Thus our            
next <FA, Hit> pair is <0.29,0.63>. We continue doing this across the entire table - moving from                 
conservative No-biased criteria to liberal Yes-biased criteria. Ultimately, we will have generated            
a series of 6 pairs, culminating in <1,1>. Intuitively, <1,1> is what happens when we say “Yes”                 
to every trial: correctly capturing 100% of the grammatical conditions, but also trivially             
subsuming 100% of the ungrammatical conditions.  

In Table 5, “Cumulative Proportions,” we’ve computed these pairs, and in Figure 4 (left              
column) we’ve plotted them, with False Alarms on the x-axis, and Hits on the y-axis. To                
complete these empirical ROCs, we added the point <0, 0>: what happens when we say No to                 
every trial. Finally, we’ve gone ahead and - via the same method - computed the ROCs for all                  
conditions in the experiment. In the right column, we’ve z-transformed each <FA, Hit> pair with               
the qnorm function. By inspecting the shape of these plots, we can already make a few                
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first-pass conclusions about the underlying shape of the Acceptability distribution. Let us focus             
on the VP Gap conditions (in the top panels). 

  
Figure 4 ROCs, Left, and zROCs, Right, for All Comparisons 
 

Firstly, in both the ‘raw’ and z-transformed ROC curves, the dotted line indicates zero              
discrimination. But all curves representing our data, in blue, sit comfortably above that - our               
participants thus demonstrated the ability to discriminate between the grammatical and           
ungrammatical conditions. This is akin to a positive d’ in the simple, equal variance calculation               
we performed in the previous section.  

Secondly, notice that when we transformed the bowed ROC curve into z-coordinates,            
the resulting curve (for VP Gap) conditions is essentially a straight line. This is a good tell that                  
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the underlying distribution of acceptability is indeed normal (although this is in principle             
compatible with other distributions of acceptability). To a first approximation, this linear function             
seems consistent with the Gaussian observer model proposed by Bader & Häussler (2010).             
However, things look less clearly linear for the VP Filled Gap conditions, which still exhibit some                
curvilinearity in zROC space. As discussed below in Section 4.2, this is consistent with an               
underlying Acceptability distribution that is bimodal, or has some other kind of mixture             
distribution. The convex zROCs could also be attributed to other sources of noise in the data                
(Ratcliff, McKoon & Tindall, 1994). 

Finally, you’ll notice that the zROC line in VP Gap conditions is not quite parallel to the                 
diagonal, and is somewhat shallow. In fact, its slope is less than 1. This is evidence that there is                   
more variance in the Acceptability distribution for grammatical conditions than for ungrammatical            
conditions. Intuitively, the slope tells you the rate at which Hits accrue relative to False Alarms.                
A slope less than 1 means that Hits accrue relatively more slowly than False Alarms, a fact                 
which implies greater variance in the signal (Grammatical) distribution. More precisely, the slope             
of the zROC is the ratio of the variance in the noise distribution to the variance in the signal                   
distribution. For a slope of s, and a signal distribution whose variance is scaled to 1, then the                  
variance of the noise distribution will be s; if instead the noise distribution’s variance is scaled to                 
1, then the slope of the zROC is 1/s, and s is the variance in the signal distribution. 

In (14) we make a simple estimate of s by calling Rs `lm` function, which returns the                 
intercept and slope (in that order) . For WhP:Bare/VP:Gap conditions, s is 0.8216. 5

 
(14) > zFA <- qnorm(FA) 

> zHits <- qnorm(Hits) 
> lm(zHits~zFA) 

 
Call: 
lm(formula = zHits ~ zFA) 

 
Coefficients: 
(Intercept)     zFA   

  0.7609          0.8288  
 
The fact that the variance of the underlying Acceptability distributions is unequal complicates the              
use of d’ as a simple measure of sensitivity because the obtained sensitivity will now vary with                 
criterion. In geometric terms, d’ can be thought of as the distance between the zROC and the                 
chance diagonal (zHits = zFA). When the slope of the zROC is 1, then this distance is constant                  
across the range of zFA, and can be read directly off the intercept. But now distance to the                  
zROC line varies along the range of zFA, and therefore d’ varies. If we want to express                 

5 We offer estimate only as an example. It is not generally advisable to use linear regression to find the                    
slope; this is because the x- and y-coordinates in the ROC both constitute dependent variables, and the                 
estimate of each is subject to uncertainty. Getting a reliable estimate of s involves fitting a full SDT model                   
to the data, for example using Maximum Likelihood Estimation. To make a full UVSDT analysis               
accessible to researchers with a range of modeling backgrounds, Pazzaglia, Dubé and Rotello (2013)              
published an implementation of this using Excel’s SOLVER function.  
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sensitivity by a single number, then we will have to take into account the fact that the underlying                  
Acceptability distributions differ in their variance.  

The measure da makes a kind of compromise by scaling the difference in the means of                
the Acceptability distributions by the root-mean-square average of their variances. Algebraically,           
this comes to the expression in (15), and the R calculation illustrated in (16). The value d’2 is the                   
y-intercept of the empirical zROC. 
 

(15) da d2’ = √ 2
1+ s 2

·  

 
(16) > emp.zROC <- lm(zHits~zFA) 

> deetwo <- coef(emp.zROC)[1] # y-intercept 
> s <- coef(emp.zROC)[2]      # slope 
> da <- function(deetwo, s) sqrt(2/(1+s^2)) * deetwo 
> da(deetwo, s) 
[1] 0.8285487 

 
The equation above may not be entirely intuitive at first. But, it has another guise in a                 
proportional measure of sensitivity that is perhaps more visually comprehensible: Az.  

Az is the area under the fitted normal ROC curve. Figure 5 demonstrates this graphically               
for the Bare/VP Gap conditions. The observed data points are given in blue, and the solid black                 
line is the best-fitting curve to those points, constrained to describe the ratio between two               
normal distributions. The shaded area corresponds to all points <x,y> below the solid black line:               
here it covers 72.1% of the area, or Az = 0.721. If there were no sensitivity in our experiment,                   
such that Hits = FA, then Az would be 0.5 -- everything below the major diagonal. If there were                   
perfect sensitivity, the shading would fill the entire plot, and Az would equal 1.  

More generally, the area under the ROC curve is one important index of sensitivity. If               
one assumes that the underlying distributions that generate the ROC are normal, then Az equals               
the area under the curve (AUC). However, it is also possible to calculate the area under the                 
ROC curve without making this assumption about the parametric shape of the underlying             
distributions; in this case, the area under an empirical ROC can be calculated by simply using                
the ‘trapezoid’ method, that is, successively summing the areas of trapezoids that connect the              
points in the empirical ROC (Melo, 2013). It remains to be seen whether, in general, the                
assumption of normal acceptability distributions yields a good fit to acceptability judgment data.             
In our experience, however, fitted normal-normal ROCs often yield a very good fit to empirical               
ROCs (indeed; this can be seen in Figure 5: the empirical points lie quite close to the fitted                  
curve). 

Az can be converted to da and vice-versa. The equation and code-snippet in (17) shows               
how to do this in both directions. We used the R library pROC (Robin, Turck, Hainard, Tiberti,                 
Lisacek, Sanchez, & Müller, 2011) to fit the normal-normal ROC curve in Figure 5, to compute                
Az and to create the plot. In Section 4, we return to some recommendations about software and                 
procedures. 

 
(17) a. da= Φ-1(Az) · √2 
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> Az2Da <- function(Az) qnorm(Az)*sqrt(2) 
> Az2Da(0.721) 

[1] 0.8284672 

 

b. Az= Φ (da/ )· √2  

> Da2Az <- function(Da) pnorm(Da/sqrt(2)) 
> Da2Az(0.8284672) 

[1]  0.721 

 

 
Figure 5 ROC for VP Gap/WhP Bare Condition illustrating Az 
 

Table 6 summarizes the 4 crucial comparisons in our experiment, reporting both da and              
Az. Finally we report s, the ratio of the variance in the noise/ungrammatical distribution to the                
signal/grammatical distribution, as estimated from the zROC line. Figure 6 plots the implied             
Acceptability distributions. 
 

VP WhP  da Az s  

1 gap bare 0.83 0.72 0.83    

2 gap dlink 0.86 0.73 0.89  

3 filled bare  2.0 0.91 0.92 

4 filled  dlink 1.9 0.91 0.95 

Table 6 Summary of Sensitivity and Variance in Unequal Variance Analysis 
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Figure 6 Implied Unequal-Variance Signal/Noise Distributions  

3.3 Interpreting the Results 

Constructing the ROC curve shows that, in our experiment, d-linking had, a best, a modest               
impact on sensitivity (and a non-significant one; see section 4.1). It did not greatly shift the                
distribution of Acceptability. There was a modest effect on s, suggesting relatively less variance              
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in the grammatical distribution when the WhP was d-linked compared to when it was bare .               6

Participants were considerably more sensitive in VP Filled Gap conditions. We hypothesize that             
this is because all of the information required to discriminate between grammatical and             
ungrammatical conditions accumulates before retrieval is ever necessary. The presence of the            
‘filled gap’ is enough to classify the ungrammatical sentences as ungrammatical. In other words,              
in these sentences, retrieval may never happen (cf. Wagers & Phillips, 2014). Interestingly here              
d-linking modestly reduces sensitivity, which suggest that the distinctiveness, or goodness-of-fit,           
of the restricted wh-phrase makes it a tempting, if ungrammatical, lure to integrate into the filled                
gap site. 

4 Further Considerations, Caveats and Future Research Opportunities 

In this chapter, we have pointed out that many standard methods of measuring             
acceptability judgments fall short as true interval measurements of acceptability, a situation that             
interferes with the statistical analysis of acceptability judgment data, and which presents a             
problem for researchers interested in drawing inferences from the distribution and gradience in             
their acceptability judgment data. Following Bader & Häussler (2010), we proposed that Signal             
Detection Theory offers a set of analytical tools that can resolve these issues. We presented a                
specimen experiment aimed at investigating the processing of filler-gap dependencies using           
acceptability judgment measurements, and a worked Signal Detection Theoretic analysis of           
these data. We discussed simple indices of sensitivity (such as d’ ) and ROC analysis as ways                 
of quantifying the contrast in acceptability between two types of sentences. 

For reasons of space, this is as far as this chapter can take us. However, there are many                  
open, unresolved issues; researchers interested in applying SDT to their own judgment data will              
face these issues in practice. Here we briefly mention a few. 

4.1 Why SDT? 

A plausible reaction to our proposal might be: why bother with all of this, just to analyze                 
acceptability judgment data? The SDT approach we offer here might strike the reader as a               
solution in search of a problem. Indeed, we have not offered a clear example of a spurious claim                  
in the literature that results from not taking into account the analytical considerations we raise               
here. It remains an open question whether there are such examples to be found, and our aim                 
here is not to find one such an example to hold up as a demonstration. 

Instead, we would like to suggest that the SDT approach we advocate here is worthy of                
consideration in its own right for several reasons. First, and perhaps foremost, is the simple               
observation that most work in experimental syntax implicitly, yet incorrectly, assumes that data             
from Likert ratings offers an interval scale. This assumption underlies the simple tabulation of              

6 Our results are not straightforwardly compatible with the finding of Goodall (2015) that d-linking 
improves acceptability even in non-island dependencies. That paper does note the existence of 
prior studies which also found limited effects of d-linking in non-island dependencies. But we do 
not read too much into this apparent non-replication, given the substantial differences between 
our two studies. We leave it as an area for future investigation. 
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descriptive statistics like mean rating value and standard error, and the interval scale             
assumption is required for inferential statistical tests (most pressingly for those involving            
interactions). Despite this, it is widely recognized that ordinal Likert rating data does generally              
yield interval measurements of acceptability (cf. Cowart, 1997). Happily, interval-scale          
measurements are precisely what SDT’s measures of discriminability and bias offer. And as we              
have shown here, the SDT analysis can be carried out using Likert rating data. In our view, this                  
motivates the use of SDT for the analysis of those rating data.  

Second, it seems to us that the theoretical perspective implied by the SDT model--a              
Gaussian observer who maps a noisy, unidimensional acceptability value onto one of a handful              
of discrete response options--is a useful theoretical perspective on the acceptability judgment            
process. It offers a precise model for how acceptability judgment responses are given in the               
context of a judgment task, and it makes explicit the key parameters of the acceptability               
decision task (acceptability versus scale usage). Should it prove to be a valid model of the                
acceptability judgment task, this model will allow researchers to ask more precise questions             
about acceptability judgment data.  

Last, there is a broader reason why we think the SDT perspective is useful for               
experimental syntax: it suggests a useful experimental design heuristic. In our specimen            
experiment, we expanded the experimental design of Goodall (2015) to include ungrammatical            
and grammatical variants of each condition. Part of this motivation was analytical: SDT analysis              
requires the analyst to sample both from the ‘signal’ and the ‘noise’ distributions, which the latter                
offering an unacceptable baseline that in turn allows the analyst to quantify response bias or               
scale usage for a given structural configuration. But these baselines also served to make a               
more diagnostic experimental design. Specifically, they allowed us to potentially distinguish the            
impact of d-linking on the retrieval of a filler phrase (i.e. the hypothesis we were testing) from                 
other nuisance factors that might have contributed to differential ratings for d-linked and bare              
wh-phrases. In the context of our SDT analysis, these nuisance factors were captured in our               
‘response bias’ measures, which reflected baseline differences in the ratings between d-linked            
and bare-wh phrases. For example, we speculated that raters might offer more generous ratings              
for d-linked sentences overall, simply because they contain more lexical content. This would             
amount to a ‘response bias’ in favor of d-linked sentences, creating higher ratings for d-linked               
sentences for reasons independent of the factors of interest (e.g. memory retrieval processes):             
including structurally matched, unacceptable controls allowed us to diagnose this. However, we            
hasten to add that this issue is not limited to d-linking phenomena we study here: it can be very                   
difficult to establish exactly what features of a sentence contribute to a judgment of its               
acceptability. The SDT analysis and concomitant design heuristics may prove useful to            
experimental syntacticians in developing experimental designs that can help reduce some of            
this interpretive uncertainty. 

4.2 Inference and software recommendations 

In our tutorial we focused on computing descriptive indices of sensitivity and bias from              
experimentally collected data. Statistical inference from a sample data with ROCs is less             
straightforward. For both descriptive fitting of ROC curves, as well as statistical inference, we              
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recommend the pROC package (Robin et al., 2011). This package implements a number of              
common statistical tests for ROC data in R, and allows for straightforward fitting of ROC curves                
using model syntax familiar from other R packages (see Robin et al., 2014, for a complete                
introduction to pROC). We illustrate this syntax in (18). The basic roc function estimates an               
empirical ROC; here, we are fitting the ROC in Figure 5, to evaluate sensitivity in the bare                 
wh-phrase conditions with a gapped VP. The basic call to roc fits an empirical ROC, and returns                 
a measure of sensitivity (AUC) that is calculated using the trapezoid method on the empirical               
ROC. Grammaticality is a binary factor with two levels, gram and ungram , which             
contribute our hit and false alarm rights respectively. ordinal is our six-point response             
variable defined above, ranging from 6 (very confident ‘Yes’ responses) to 1 (very confident ‘No’               
responses). 
 
(18) > roc.gap.bare <- roc(Grammaticality ~ ordinal,  data = bare.gap.data) 

> roc.gap.bare 
Call: 

roc.formula(formula = Grammaticality ~ ordinal, data =  bare.gap.data)   
 

Data: ordinal in 357 controls (Grammaticality gram) > 354 cases                   
(Grammaticality ungram). 
Area under the curve: 0.7063 
 
The AUC for the empirical ROC is .7063; again, this is calculated assuming no particular               

functional form for the underlying distributions. However, a normal-normal ROC can be fit by              
setting smooth to TRUE: 
 
(19) > roc.gap.bare <- roc(Grammaticality ~ ordinal, smooth=T, data = bare.gap.data) 

> roc.gap.bare 
Call: 

roc.formula(formula = Grammaticality ~ ordinal, data =  bare.gap.data)   
 

Data: ordinal in 357 controls (Grammaticality gram) > 354 cases (Grammaticality                     
ungram). 
Smoothing: binormal  
Area under the curve: 0.721 

 
Here, the normal-normal fitted AUC is equivalent to Az above. One benefit of using              

pROC is that once an roc object has been fitted, there are several methods that can be applied                  
to the fitted curve to calculate inferential statistics. For example, confidence intervals over ROC              
statistics can be calculated with ci(), which will yield stratified bootstrapped confidence intervals. 

In addition to confidence intervals, roc.test() implements a statistical test for statistically            
significant differences in area under the curve (AUC) or partial AUC for a pair of ROC curves.                 
The partial area under the ROC curve, pAUC, is the AUC computed for some portion of the                 
ROC curve (Ma, Bandos, Rockette & Gur, 2013). One problem that arises in the context of                
statistical inference for paired ROC curves is the problem of correlated observations across the              
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curves: for a discussion of how the techniques discussed here address this issue, see Hanley               
and McNeil (1983), and Robin et al. (2014). 

One straightforward and flexible method of testing for a reliable difference between two             
ROC curves relies on a bootstrap procedure: for B bootstrap replicates, the data are resampled               
(with replacement), and for each replicate, the statistic of interest is calculated (Efron &              
Tibshirani, 1994). For a comparison of two ROC curves, the normalized difference between the              
two resulting AUCs is well approximated by a normal distribution; thus, a Z statistic can be                
calculated by bootstrap, which then yields a p-value for a statistical test of the hypothesis that                
the AUCs of the two curves differ (Robin et al., 2014). Alternative approaches to testing               
differences between the AUC for two correlated ROCs is that of Delong, Delong and              
Clarke-Pearson (1988), which uses an approximation of the variance-covariance matrix          
between correlated ROCs, and Venkantraman (2000), which uses a permutation test applied            
directly to the ROC curves themselves, rather than to the AUC. 

A bootstrap test in pROC applied to two fitted ROC curves using the code in (20). Here,                 
we fit two ROCs to the data, and submit them to a simple test of significance using roc.test(): 
 
(20) > roc.test(roc.gap.bare, roc.filledgap.bare, method = 'b’, are.paired=T) 

Bootstrap test for two ROC curves 
 

data:  roc.gap.bare and roc.filledgap.bare 
D = -8.4598, boot.n = 2000, boot.stratified = 1, p-value < 2.2e-16 
alternative hypothesis: true difference in AUC is not equal to 0 
sample estimates: 
Smoothed AUC of roc1 Smoothed AUC of roc2  

           0.7210194            0.9122634  
 

The bootstrap test yields a test statistic D, which is the normalized difference in the               
AUCs between the two ROCs across bootstrap replicates (Robin et al., 2014; see Hanley &               
McNeil, 1983 for how this value is calculated for paired ROCs); this test statistic is compared to                 
a standard normal distribution to derive a p-value. By default, roc.test() will yield a two-sided test                
of the alternative hypothesis that the true difference in the AUC between the two ROC curves is                 
not 0. The value of the test statistic in this particular example is large; correspondingly, we can                 
reject the null hypothesis that the AUC for the gap and filled-gap ROCs are the same. This test                  
suggests that the observation we made above--that raters showed greater sensitivity to            
grammaticality in filled-gap over gap-less structures--is likely to generalize beyond the present            
data set. 

Some caveats to the preceding are in order. The structure of a typical experiment in               
experimental syntax or psycholinguistics is considerably more complex than that assumed by            
the out-of-the-box tests in pROC. The typical psycholinguistic experiment is typically a            
repeated-measures design with multiple random grouping factors; most commonly, these          
grouping factors are participant and stimulus item (it has been standard practice in             
psycholinguistics to treat stimulus as a random factor since Clark, 1973). For the last decade or                
so, the complex hierarchical structure to the data of the typical psycholinguistic experiment has              
driven rapid advances in the statistical treatment of these datasets (e.g. Baayen, Davidson &              
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Bates, 2008; Jaeger, 2008). The out of the box ROC tests ignore this important correlational               
structure in the data. These violated assumptions as a result may result in an inflated Type I                 
error rate for tests applied to these ROC curves. To sidestep this issue, Dillon et al. (2019)                 
resampled at the level of individual participants in a bootstrap test for differences in the key                
statistics they report; this is in essence a by-participants analysis, with no guarantee that the               
effect will generalize to other experimental items. At present, we know of no straightforward              
implementation of this participant-level bootstrap procedure that can be deployed out of the box;              
however, interested readers may consult Dillon et al. (2019), and download associated code at              
https://osf.io/sd3hu/. See the Appendix for a regression-based alternative that allows (limited)           
mixed-effects modeling. 

4.4 Variance in underlying distributions 

 
In this chapter we have focused on the role that ROC analysis can play in distinguishing                

sensitivity from bias in acceptability judgment experiments. However, ROC analysis also allows            
researchers to evaluate the relative variance in two stimulus categories: above, we did this by               
estimating the slope of the zROC. For normal-normal ROC curves, the slope of the zROC is the                 
ratio of the noise distribution’s variance to that of signal distribution; in the example above, we                
set the signal distribution’s variance to 1. Thus s represented the noise distribution’s variance              
and the slope of the zROC alike. Because the slope of the zROC reflects the ratio of the                  
variances of the two distributions, the empirical (z)ROC is informative not just about the distance               
between the underlying acceptability distributions, but also the relative variance in those            
distributions.  

In other areas where ROC analysis is applied, a difference in slope has proven to be                
theoretically meaningful. To take one prominent example, this pattern of unequal variances is             
widely observed in the recognition memory literature (Ratcliff, Sheu & Gronlund, 1992). This             
indicates there is greater variance in the distribution of memory strength for studied items over               
unstudied lure items; this increased variance might arise, for example, if the distribution of              
memory strengths for studied items included a mixture of successfully encoded items and items              
that were not successfully encoded (Ratcliff et al., 1992; de Carlo, 2002). The shape of the ROC                 
can also in principle reflect more unusual distributions of acceptability. For example, if one              
underlying distribution is bimodal or other type of mixture distribution, then the resulting ROCs              
can exhibit curvilinearity (see de Carlo, 2002, for extended discussion).  

The shape of the ROC may be of theoretical interest to the extent that it illuminates                
differences in how two distributions of acceptability judgments differ. To illustrate this, let us              
return to the bimodal distribution of acceptability judgments in Dillon et al (2017). (21a) is the                
critical configuration that Dillon and colleagues wanted to investigate; recall that the central             
empirical question was whether the distribution of ratings associated with these examples was             
bimodal or unimodal. (21b) is a matched ungrammatical control from Dillon et al’s study that can                
be used for the purposes of SDT scaling. 

 
(21) a. Which flowers is the gardener planting?  
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b. Which flowers is the gardeners planting?  
  
The aggregated distribution of ratings is in the leftmost panel of Figure 7. It can be seen                 

that there is a pronounced bimodality for (21a). Earlier, we raised the concern that the               
conclusions Dillon et al drew on the basis of this were a potential artifact of how the scale is                   
used. However, consider this worry in light of the empirical ROC and ZROCs presented in the                
middle and rightmost panels of Figure 7. Here, it can be seen that there is a pronounced                 
curvilinearity in the ROC that is characteristic of a bimodal or mixture distribution (de Carlo,               
2002). The ROC analysis is consistent with the conclusion reached on the basis of reasoning               
about the distribution of raw Likert ratings: the curvilinear (z)ROC is exactly what is expected if                
the underlying distribution of acceptability values is bimodal. In other words, the (z)ROC             
suggests that the underlying acceptability distribution for sentences like which flowers is the             
gardener planting is bimodal, just as is the Likert ratings.  

Although in this instance, the conclusion licensed by the raw data and the ROC analysis               
align, this is not guaranteed. The broader point is that claims based on apparent distributions in                
Likert data are not watertight; ROC analysis can help secure empirical conclusions based on the               
distribution of rating data.  
 

 
Figure 7 Diagnosing Bimodality with ROC Analysis: A reanalysis of the data from           
Dillon et al. (2017). The ROC and zROC suggest that the bimodality in the rating data does not                  
reflect a simple bias towards extreme responses in the task.  

4.5 Individual and group level analysis 

Throughout, we have aggregated our data across participants. This step merits careful            
scrutiny: it is not guaranteed, in general, that the pattern seen in the aggregated data               
characterizes the data pattern seen for any one individual. For this reason, the pattern seen in                
the aggregate should be approached cautiously. Likewise, the variability seen in the aggregated             
data may stem from within-participant variation or between-participant variation. In analyzing the            
group-level ROCs, we make the implicit assumption that the participants share the same             
sensitivity, criterion locations, and slope of the zROC.  
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This assumption is almost certainly too strong. However, aggregating data across           
participants is often necessary, as not many experiments yield a sufficient number of data points               
per condition per subject to allow reliable estimates of the points of an empirical ROC at an                 
individual level. For practicality reasons, then, most experimental syntacticians will be analyzing            
group-level measures of sensitivity. What is the effect of this aggregation on those measure?              
MacMillan and Kaplan (1985) show that the sensitivity estimates from aggregated data are             
biased estimates of the true sensitivity, but that the bias is slight: the effect of aggregation                
slightly underestimates the true sensitivity for a given comparison (see also MacMillan, Rotello &              
Miller, 2004). MacMillan et al (2004) note that the pooling of data across participants is preferred                
when the number of observations per individual is low (as is often the case in acceptability                
judgment experiments); they argue that the biasing effects of pooling data are likely to be               
modest, and that the estimates of sensitivity are less biased when based on aggregated data               
than when based on averaging individual-level estimates of sensitivity, when the amount of data              
for any one individual is small (Hautus, 1997).  

Still, it seems fair to say that further research is necessary to understand exactly how               
group-level ROC statistics reflect individual-level variation in experiments with the structure of a             
typical within-subjects and within-items design used in experimental syntax. An alternative           
approach to the issue is suggested by researchers deploying similar techniques, such as the              
speed-accuracy trade-off (SAT) method (e.g. McElree, 2000; McElree, Foraker & Dyer, 2003).            
Like ROC analysis, SAT analysis requires stable estimates of Hit rates and False Alarm rates at                
multiple points, and in multiple conditions; also, like ROC analysis, group-level analysis may             
yield a data pattern that doesn’t characterize the performance of any one individual participant              
(Liu & Smith, 2009). For this reason, SAT experiments typically involve collecting much more              
data at the individual level than is common in experimental syntax; most published SAT studies               
involve more than 30 observations per participant for each hit or false alarm rate estimate.               
Although this would allow more robust estimates of the ROC curve at an individual level basis,                
there are other obvious practical difficulties that travel along with this approach; it may require               
multiple testing sessions to gather sufficient data from a single individual, and with so many               
repeated observations, a participant may adapt to the structures being tested over the course of               
the experiment. 

4.6 Conclusions 

In this chapter, we have sketched how Signal Detection Theory can be applied to              
acceptability judgment data. We have argued that latent variable models such as SDT hold              
substantial promise for experimental syntacticians by offering a way of precisely answering the             
quantitative question in experimental syntax: to what extent is sentence type A better than, or               
worse than, sentence type B? We offered a worked, tutorial style analysis of a sample data set                 
to show how ROC analysis can be applied to a data set that has a similar structure to Likert                   
rating tasks and binary forced-choice acceptability judgments in experimental syntax. 

In closing, we noted several challenges that arise in the context of the analytical              
approach pursued here. In particular, there are unresolved issues concerning statistical           
inference using ROCs, and it remains unclear exactly to what extent aggregating data across              
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participants will distort estimates of sensitivity and bias in acceptability judgment experiments. A             
bit further afield, we note that the paradigm we used here--binary judgments with a secondary               
confidence rating--may yield results that are different from the Likert scale ratings that are more               
commonly deployed in the experimental syntax literature. Head-to-head comparisons of these           
methods of collecting judgment data would be valuable. Despite these challenges, we hope to              
have communicated our enthusiasm for this approach, and the promises we see for its              
application to acceptability judgment data.  

5 Appendix: cumulative ordinal regression models and SDT 

An unequal variance signal detection theory model can be estimated as a particular             
parameterization of a cumulative ordinal regression model (DeCarlo, 1998). Ordinal regression           
models are most appropriate for ordered response categories, including the responses           
produced from Likert-type trials. Here we’d like to briefly spell-out the connection to SDT, for two                
reasons. Firstly, to show you how an SDT analysis can be conducted in the more familiar setting                 
of regression. But also, to urge consideration of the broad class of ordinal regression models,               
with or without an SDT interpretation, as a superior alternative to linear regression or              
ANOVA-style approaches that treat acceptability ratings as numbers instead of response           
categories. Ordinal regression is not yet widely used in the analysis of acceptability judgment              
studies, but it can overcome many of the pitfalls we mentioned in Section 2.1. These are                
discussed in much greater detail by Liddell & Kruschke (2018) and an excellent practical              
overview and tutorial is given by Bürkner & Vuorre (2019) using R and the Bayesian brms                
package. DeCarlo (2003) presents an SDT-as-ordinal-regression tutorial using SPSS. Below we           
use the R library ordinal (Christensen, 2019), which we like for its user-friendly syntax and its                
capability for estimating (some) mixed-effects cumulative models as well. 

The ordinal regression model derives ordered response categories from the          
classification of latent variables. The cumulative model, in particular, assumes a latent            
continuous distribution which is partitioned by a set of thresholds, analogous to the presentation              
in Figure 2 (bottom panel). The placement of the thresholds determines the probabilities of              
selecting each response category. Thus the set of thresholds are like the set of multiple               
response criteria assumed in a ROC curve analysis. Predictor variables in the regression shift              
these thresholds, analogous to a sensitivity parameter like the d family of parameters. Finally a               
scale, or variance, parameter can shrink or widen the latent distribution, just like the s parameter                
in a ROC analysis. 

It’s easiest to work an example. We will illustrate a basic ordinal regression model with               
our WhP:Bare/VP:Gap trials from Table 5. In Table 7 below, we show 10 trials from our dataset.                 
As before, we’ve mapped the set of <Judgment, Confidence> pairs onto a <1-6> scale, called               
rating. What matters here is that we’ve created an ordered factor. (Once again, it’s worth               
stressing that this decision is not tantamount to assuming complete task equivalence between a              
Likert-judgment and SDT confidence rating task; the degree of overlap between these tasks             
remains an open empirical question). 

 
   Item Condition Answer.gj          Answer.cr Grammaticality Rating 
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1    11         a       Yes      Not confident           gram      4 
2    22         b        No     Very confident         ungram      1 
3    32         b        No     Very confident         ungram      1 
4    23         a        No     Very confident           gram      1 
5     3         b       Yes Somewhat confident         ungram      5 
6     8         b       Yes     Very confident         ungram      6 
7     1         a        No     Very confident           gram      1 
8    12         a        No Somewhat confident           gram      2 
9     7         a       Yes     Very confident           gram      6 
10   24         a        No     Very confident           gram      1 
Table 7 Sample trials prepared for ordinal regression 
 
In (22) we define the Ungram level of Grammaticality as the reference level (thus it is coded as                   
a 0 in the regression; Gram is thus 1). In (23) we call the function clm and in Figure 8, we                     
visualize its interpretation. Like other lm-style functions, its primary argument is formula, which             
defines the regression equation. Here the dependent variable, on the left-hand side of ~, is               
rating and the fixed effect of Grammaticality is on the right-hand side. The link argument                 
species the distribution family to which the underlying latent variable belongs; and here we              
specify the use of the probit link, i.e., Φ-1(•) or z(•). By default, clm uses a logit link, and other                    
density functions are possible. 
 
(22) > bare.gap.data$Grammaticality <-  

relevel(bare.gap.data$Grammaticality, ref="ungram") 
(23) > evsdt.clm <- clm(formula = rating~Grammaticality,  

link = "probit",  
data = bare.gap.data) 

> summary(evsdt.clm) 
formula: rating ~ Grammaticality 
data:    bare.gap.data 
 
 link   threshold nobs logLik   AIC     niter max.grad cond.H  
 probit flexible  711  -1105.38 2222.75 6(2)  8.88e-09 1.4e+02 
 
Coefficients: 
                Estimate Std. Error z value Pr(>|z|)   
Grammaticality1  0.82054    0.08288     9.9   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Threshold coefficients: 
    Estimate Std. Error z value 
1|2 -0.34089    0.06344  -5.373 
2|3  0.25510    0.06248   4.083 
3|4  0.40541    0.06316   6.419 
4|5  0.51382    0.06387   8.045 
5|6  1.09124    0.07040  15.501 
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First, we focus on the table of Threshold coefficients, or θ, indicated in bold. These               

should be interpreted in standard deviates, because our latent variable is the Standard             
distribution 𝒩(0,1). They define the cumulative response probabilities for ungram responses. For            
example, the cumulative probability of responding with the first ordered category (1 ~             
“Ungrammatical/Very confident”) is Φ(θ1|2). Figure 8, Panel A, shows this graphically and (24)             
shows how to calculate the modeled cumulative response probabilities for the ungrammatical            
condition. 
 
(24) > pnorm(evsdt.clm$Theta) 
       1|2   2|3   3|4   4|5   5|6 
[1,] 0.367 0.601 0.657 0.696 0.862 
 
<INSERT FIGURE 8 HERE; ONLINE COPY> 
 

 
Figure 8 Relating cumulative ordinal regression models to SDT analysis 
 
The difference between gram and ungram responses is modeled as a shift in the thresholds by 
the Grammaticality coefficient βGRAM. Figure 8, Panel B, shows this graphically and (25) recovers 
the modeled values. 
 
(25) > pnorm(evsdt.clm$Theta - evsdt.clm$beta) 
       1|2   2|3   3|4  4|5   5|6 
[1,] 0.123 0.286 0.339 0.38 0.607 
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Instead of conceptualizing the thresholds as moving by βGRAM to the left, we could also               
imagine the density function is moving by βGRAM to the right, which Figure 8, Panel C, illustrates.                 
This makes it clearer that (23) is essentially just another representation of an equal-variance              
SDT model. Here βGRAM may be interpreted as d’. 

Overall the values we recovered in (24)-(25) do compare pretty well with the actual              
observations, as (26) shows, but it’s not perfect: in particular, for Grammatical sentences, we’ve              
very slightly underestimated the low ratings and overestimated the high ones.  
 
(26) > bare.gap.data %$% 

  table(Grammaticality, rating) %>%  
prop.table(1) %>%  
apply(1,cumsum) %>% t 

              rating 
Grammaticality     1     2     3     4     5 6 
        ungram 0.347 0.602 0.667 0.709 0.879 1 
        gram   0.143 0.291 0.336 0.373 0.591 1 
 
This shouldn’t be a surprise, however, since we discovered in the ROC curve analysis (Section               
3.2) that the variance in the underlying signal and noise distributions were not equal. We can                
account for this in an ordinal regression model by adding a scale parameter. (27) updates the                
model call in (23) with such a parameter. 
 
(27) > uvsdt.clm <- clm(formula = rating~Grammaticality, scale = ~Grammaticality,  

link = "probit",  
data = bare.gap.data) 

> summary(uvsdt.clm) 
formula: rating ~ Grammaticality 
scale:   ~Grammaticality 
data:    bare.gap.data 
 
 link   threshold nobs logLik   AIC     niter max.grad cond.H  
 probit flexible  711  -1103.22 2220.44 9(2)  1.02e-07 1.3e+02 
 
Coefficients: 
                   Estimate Std. Error z value Pr(>|z|)   
Grammaticalitygram   0.9076     0.1019   8.906   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
log-scale coefficients: 
                   Estimate Std. Error z value Pr(>|z|)   
Grammaticalitygram  0.18598    0.08978   2.071   0.0383 * 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Threshold coefficients: 
    Estimate Std. Error z value 
1|2 -0.38815    0.06789  -5.718 
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2|3  0.25211    0.06329   3.983 
3|4  0.41595    0.06425   6.474 
4|5  0.53483    0.06562   8.150 
5|6  1.17987    0.08417  14.018 
 
The scale parameter, estimated above as ~ 0.186, is reported on the log scale; (28) returns it to                  
the probit scale (it’s called zeta in ordinal’s CLM data structure).  
 
(28) > uvsdt.clm$zeta %>% exp 
Grammaticalitygram  
          1.204396  
 
We can interpret this value as follows: the latent variable that supports judgments in this               
experiment has standard deviation approximately 1.2 as great in the grammatical condition,            
compared to the ungrammatical condition. This corresponds to 1/s (or ~ 0.83) in our ROC               
analysis. Figure 8, Panel D, visualizes this CLM. (29) shows how the modeled values can be                
directly computed; they compare much more favorably to the actual data, than those generated              
by the model without a scale parameter. 
 
(29) > rbind(pnorm(uvsdt.clm$Theta, sd = 1),  

 pnorm(uvsdt.clm$Theta - uvsdt.clm$beta, sd = exp(uvsdt.clm$zeta))) 
       1|2   2|3   3|4   4|5   5|6 
[1,] 0.349 0.600 0.661 0.704 0.881 
[2,] 0.141 0.293 0.342 0.378 0.589 
 

We can close the circle on this demonstration by fully modeling the gap conditions in our                
d-linking data, with the call given in (30). As a reminder, the variable WhP indicates whether the                 
sentences included a d-linked wh-phrase; and the first two lines center the predictors so that               
Grammaticality:gram and WhP:dlink are represented as the positive values of their respective            
contrasts. 
 
(30) > contrasts(all.data$Grammaticality) <- -contr.sum(2)/2 

> contrasts(all.data$WhP) <- -contr.sum(2)/2 
clm(rating~Grammaticality*WhP,  

scale=~Grammaticality*WhP,  
data=gap.data, family="probit") %>% summary 

formula: rating ~ Grammaticality * WhP 
scale:   ~Grammaticality * WhP 
data:    subset(all.data, VComp == "gap") 
 
 link  threshold nobs logLik   AIC     niter max.grad cond.H  
 logit flexible  1426 -2208.33 4438.65 9(2)  5.92e-13 1.9e+02 
 
Coefficients: 
                     Estimate Std. Error z value Pr(>|z|)   
Grammaticality1        1.4002     0.1010   13.86   <2e-16 *** 
WhP1                  -0.0551     0.0974   -0.57     0.57   
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Grammaticality1:WhP1  -0.1169     0.1948   -0.60     0.55   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
log-scale coefficients: 
                     Estimate Std. Error z value Pr(>|z|)   
Grammaticality1        0.1526     0.0664    2.30    0.022 * 
WhP1                   -0.1083     0.0643   -1.68    0.092 . 
Grammaticality1:WhP1  -0.0802     0.1286   -0.62    0.533   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Threshold coefficients: 
    Estimate Std. Error z value 
1|2  -1.3140     0.0650  -20.21 
2|3  -0.2777     0.0576   -4.82 
3|4  -0.0387     0.0575   -0.67 
4|5   0.1314     0.0578    2.27 
5|6   1.1907     0.0656   18.16 
 

This ordinal regression result confirms our ROC analysis: grammatical sentences were           
associated with significantly higher ratings and were associated with greater variance in the             
underlying decision variable. In this experiment, we found no significant effect of D-linking on              
the location of the decision variable; however the negative WhP scale coefficient indicates that              
sentences with d-linked WhP phrases were associated with relatively less variance in the             
underlying decision variable . 7

Finally we note it is possible to incorporate random-effects structure into a “mixed”             
ordinal logistic regression. In ordinal/clmm this is limited to the location parameter (~ d’). For a                
more powerful set of options in the Bayesian framework, we point the reader to the brms                
package via the Bürkner & Vuorre (2019) tutorial. 

  

7 This result, marginally significant at p < .10, suggests a clear path for future research: that                 
d-linking can affect acceptability judgments not (only) by changing the location of the latent              
“Acceptability” variable, but by narrowing its distribution. This is potentially compatible with an             
interpretation of the d-linking effect according to which wh-dependencies involving lexically           
restricted wh-phrases are more likely to be correctly parsed. 
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