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Abstract

Data-driven modeling directly utilizes experimental data with machine learning techniques to 

predict a material’s response without the necessity of using phenomenological constitutive models. 

Although data-driven modeling presents a promising new approach, it has yet to be extended to the 

modeling of large-deformation bio-tissues. Herein, we extend our recent local convexity data-

driven (LCDD) framework ((He and Chen, 2020) to model the mechanical response of a porcine 

heart mitral valve posterior leaflet. The predictability of the LCDD framework by using various 

combinations of biaxial and pure shear training protocols are investigated, and its effectiveness is 

compared with a full structural phenomenological model modified from Zhang et al. (2016) and a 

continuum phenomenological Fung-type model (Tong and Fung, 1976). We show that the 

predictivity of the proposed LCDD nonlinear solver is generally less sensitive to the type of 

loading protocols (biaxial and pure shear) used in the data set, while more sensitive to the 

insufficient coverage of the experimental data when compared to the predictivity of the two 

selected phenomenological models. While no pre-defined functional form in the material model is 

necessary in LCDD, this study reinstates the importance of having sufficiently rich data coverage 

in the date-driven and machine learning type of approaches. It is also shown that the proposed 

LCDD method is an enhancement over the earlier distance-minimization data-driven (DMDD) 

against noisy data. This study demonstrates that, when sufficient data is available, data-driven 

computing can be an alternative method for modeling complex biological materials.
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1. Introduction

Constitutive modeling based on the hyperelasticity theory has been a conventional approach 

for modeling the mechanical responses of soft biological tissues under multiaxial loads for 

many decades. The seminal work by Fung et al. (1979) provided the foundation for the 

development of phenomenological constitutive models. These phenomenological models 

have been used for various applications, such as finite element modeling of the iris (Pant et 

al., 2018) and cardiac heart valves (May-Newman and Yin, 1998; Prot et al., 2007), where a 

strain energy density function (SEDF) with a specific functional form is constructed a priori. 
Oftentimes, the specific SEDF with calibrated material constants works well only under 

certain deformation modes and strain ranges, leading to limited predictivity (see the 

numerical demonstrations in Sections 3.2-3.4). For example, the improper SEDF yielded 

physiologically incorrect interpretation in the inverse finite element mitral valve modeling 

(Lee et al., 2014; Lee et al., 2017).

With significant advances in data science and machine learning technologies, immense 

progress has been made to establish data-driven computing as an alternative for the 

conventional constitutive modeling. Data fitting based on neural networks has been explored 

for engineering materials (Bhattacharjee and Matouš, 2016; Ghaboussi et al., 1991; 

Ghaboussi et al., 1998; Heider et al., 2020; Liu et al., 2019; Wang and Sun, 2018). Unlike 

the traditional material identification techniques (Bonnet and Constantinescu, 2005; 

Madireddy et al., 2015; Mihai and Goriely, 2017; Moussawi et al., 2013) that require a pre-

defined constitutive model form, Kirchdoerfer and Ortiz introduced a new data-driven 

computing paradigm to directly integrate the material identification with modeling 

procedures, where the material’s stress-strain data collected from laboratory experiments are 

integrated with physics laws in the simulation processes (Kirchdoerfer and Ortiz, 2016; 

Stainier et al., 2019). When enhanced with machine learning techniques, this data-driven 

modeling approach could properly capture complex material responses without pre-defined 

constitutive models provided that sufficient experimental data is available.

Data-driven computing has been applied to linearly elastic materials and dynamic structures 

(Kirchdoerfer and Ortiz, 2016, 2018), with recent extensions to non-linear elasticity (Ibañez 

et al., 2017; Ibañez et al., 2018). Moreover, it has been inverted for identification of 

admissible stress-strain relations from non-homogeneous experimental data (Leygue et al., 

2018), which is analogous to inverse finite element modeling. Despite these advances, data-

driven methods have not been applied to soft tissue biomechanics, and their effectiveness has 

yet to be carefully examined by comparing with the conventional constitutive modeling.

The objective of this work is to apply data-driven modeling to soft biological tissues by 

extending the local convexity data-driven (LCDD) computational framework (He and Chen, 

2020) which couples manifold learning with nonlinear elasticity for modeling a 
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representative mitral valve leaflet’s nonlinear anisotropic mechanical responses. Owing to 

the proposed manifold learning scheme that projects data onto a convex space for 

dimensional reduction, this method is shown to be robust against noisy data and outliers.

The remaining of this paper is organized as follows. Details of the proposed LCDD 

modeling framework, the experimental data acquisition and protocols for LCDD training 

and predictions, and the constitutive models for comparisons with the proposed LCDD 

method are given in Section 2. In Section 3, the LCDD modeling of a porcine mitral valve 

posterior leaflet based on biaxial tension and pure shear experimental data are investigated. 

In this section, three study scenarios, considering different sets of experimental data for 

model training and predictions, are used to examine the performance of the proposed LCDD 

method. The effectiveness of the LCDD approach is also compared with the modeling 

results based on the two phenomenological models. The concluding remarks are provided in 

Section 4.

2. Methods

2.1 Nonlinear data-driven computational framework

2.1.1 Overview on the theory—The data-driven computational framework can be 

formulated by the following minimization problem

min
z ∈ E

min
z ∈ C

ℋ(z, z), (1)

where z and z are the physical state (e.g., stresses and strains obtained by physical 

simulations) and the measured data (e.g., stresses and strains from experimental 

measurements), respectively, ℋ is a functional to compute the distance between z and z, E is 

a set of all measurements collected under different experimental protocols, and C denotes 

the dataset satisfying the equilibrium and compatibility condition (i.e., the strain-

displacement relation). The standard solution procedures of this data-driven problem are 

based on fixed-point iterations, where the minimization of ℋ with respect to z and z are 

performed iteratively until the intersection of two datasets in C and E is found within a 

prescribed tolerance (Fig. 1). The minimization corresponding to the physical state is 

denoted as the global step, whereas the one associated with the experimental data as the 

local step.

For modeling biological tissues, the Green strain E and the second Piola-Kirchhoff (2nd PK) 

stress S are considered as the strain and stress measures. The functional ℋ involves the 

strain energy-like and complementary energy-like components, expressed as

ℋ(z, z) = ℋ((E, S), (E, S)) = ∫
Ω

dE
2 (E, E) + dS

2 (S, S)dΩ , (2)

where
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dE
2 (E, E) = 1

2(E − E):M: (E − E), dS
2 (S, S) = 1

2(S, S):M−1: (S − S) . (3)

Here, M is a positive definite coefficient matrix that provides multi-dimensional weights to 

the distance measure between the experimental stress-strain data z = (E, S) and the physical 

stress-strain state z = (E,S). In the numerical studies for nonlinear materials, M is defined as 

a diagonal matrix, in which each diagonal component is the ratio of the standard deviations 

of the associated components of the stress-strain experimental data. Although being 

empirical in selecting M , this treatment generally yields satisfactory results in our 

numerical tests in this study.

To consider large deformations in soft tissue materials, we formulate the data-driven 

computational framework based on the finite strain theory (Belytschko et al., 2013). Given a 

candidate data (E, S) from the experimental dataset E , the global step of the data-driven 

solver in Eq. (1) is expressed as

min
u, S∫ΩX[dE

2 (E(u), E) + dS
2 (S, S)]dΩ , (4)

subject to: DIV(F(u) ⋅ S) + b = 0 in ΩX, and (5)

(F(u) ⋅ S) ⋅ N = t on Γt
X . (6)

Equations (5) and (6) are the equilibrium equation and the associated natural boundary 

condition, respectively, where F is the deformation gradient tensor, E = (FTF − I)/2 , u is the 

unknown displacement field, b is the body force at the initial configuration ΩX, t is the 

traction on the natural boundary Γt
X, and N is the surface normal on Γt

X. Note that in the 

displacement-based formulation, F and E are obtained from u, denoted as F(u) and E(u). 

The constrained minimization problem in Eqns. (4)-(6) can be solved numerically using the 

Lagrange multiplier approach with a standard finite element or reproducing kernel particle 

method (RKPM, Chen et al. (1996) and Chen et al. (2002)) meshfree numerical solver. The 

detailed computational formulations are provided in Appendix A.

2.1.2 Computational algorithm for the proposed LCDD nonlinear solver—The 

employed data-driven computational method does not rely on any pre-assumed constitutive 

model for the relationship between S and E. Instead, it searches for a stress-strain pair (E, S) 

from the experimental measurement set E that is closest to the physics strain-stress pair 

(E,S).

In this study, the manifold learning data-driven solver proposed by (He and Chen, 2020) is 

employed to seek for the solution z∗ = (E∗, S∗) that minimizes Eq. (1) for a given (E,S) 

obtained from Eqns. (4)-(6). Because the strain-stress pairs (Eα, Sα) are numerically 
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computed at the integration points Xα, the minimization of Eq. (1) with the functional in Eq. 

(2) is reduced to the following minimization problem associated to each integration point Xα

(Eα
∗, Sα

∗) = arg min
(Eα, Sα) ∈ ℰα

dE
2 (EαEα) + dS

2 (Sα, Sα), α = 1, ⋯, m , (7)

and thus, called the local step. In Eq. (7), ℰα is the material data space reconstructed by the 

locally-convex manifold associated with (Eα, Sα), m is the total number of integration points 

employed in the solver in Eqns. (A.3)-(A.5). The key idea of the LCDD solver is to 

construct a locally-convex subset ℰα using k neighboring material data points in E closest to 

the given local state (Eα, Sα), called k-nearest neighbors, and solve Eq. (7) by using the 

penalty relaxation and non-negative least squares (see Table A1 of Appendix A). In this 

study, the default value for the number of neighbors is k = 6. By imposing suitable 

smoothness and convexity in the locally-convex manifold, LCDD yields stable data-driven 

computing results against noisy data and outliers (He and Chen, 2020). Note that when the 

raw experimental dataset E is directly used for the local step in the solver, the standard 

distance-minimization data-driven (DMDD) method (Kirchdoerfer and Ortiz, 2016) is 

recovered. More details about constructing the locally-convex data set ℰα by means of 

manifold learning can be found in He and Chen (2020). The effectiveness of the proposed 

data-driven computational framework for modeling a transversely isotropic hyperelastic 

material under uniaxial tension based on the synthetic stress-strain data generated by the 

Holzapfel model (Holzapfel, 2002) is first verified in Appendix B.

2.2 Application to tissue biomechanics of the heart valve leaflet

2.2.1 Tissue preparation and biaxial mechanical testing—The biaxial 

mechanical testing data of one representative porcine mitral valve posterior leaflet (MVPL) 

tissue was used to evaluate the effectiveness of the proposed LCDD modeling. In brief, one 

porcine heart obtained from a local slaughterhouse (Country Meat Co., Oklahoma) was 

cleaned and dissected to retrieve the MVPL. The central 10 × 10 mm section was excised 

(Fig. 2a). Three thickness measurements were taken via a digital caliper (Westward 1AAU4–

0.01mm resolution), and the measurements were averaged to obtain the MVPL tissue’s 

thickness tMVPL. The sample was next mounted to the BioTester system equipped with 1.5N 

load cells (CellScale, Ontario, Canada) by using four BioRakes delimiting a 7.5×7.5 

effective testing region (Fig. 2b). The tissue’s circumferential and radial directions were 

aligned with the BioTester’s x- and y-directions. The mounted specimen was submerged in a 

37 °C saline bath and characterized using our previously-developed biaxial mechanical 

testing protocol for the atrioventricular heart valve leaflets (Jett et al., 2018; Laurence et al., 

2019; Ross et al., 2019). The biaxial testing consisted of: (i) ten preconditioning cycles of 

equi-biaxial tensions (TCirc = TRad = Tmax), during which a preload of 1% of Tmax were 

applied, to restore the tissue’s in vivo configuration (Chuong and Fung, 1986), and (ii) ten 

cycles of 11 different biaxial tension protocols (Table 1). Specifically, there are nine biaxial 
tension protocols (Fig. 2c) and two pure shear protocols during which the area is kept 

constant under combined tension-compression loads (i.e., λCircλRAD = 1.0, Fig. 2d). Here, 

λCirc and λRad are the circumferential and radial stretches, respectively. Note that the MVPL 

specimen was loaded at 4.42 N/min to Tmax = 100 N/m according to its physiological 
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condition (Grashow et al., 2006; He et al., 2005; Krishnamurthy et al., 2009). The 

deformation gradient tensor F and the 2nd PK stress tensor S were computed by

F =
λCirc 0

0 λRad
= 1

L
ux 0
0 uy

and S = 1
tMV PL

F−1diag [TCirc, TRad] , (8)

where L = 7.5 mm, and ux and uy are the x- and y-displacements, respectively. Note that the 

shear component of E is negligible when using tine-based mounting (Labrosse et al., 2016). 

The resulting stress-strain data z = (E, S) = ([ECC, ERR], [SCC, SRR])T  were used for the 

subsequent comparative study.

Remark:  In data-driving computing for transversely isotropic materials such as the heart 

valve leaflet, the material orientation should be consistently defined in the material dataset 

and the simulation model. The material dataset can be rotated “offline” to ensure the 

alignment of fiber orientations between the specimen and the dataset. In this work, we 

collected the experimental data and performed the data-driven simulation under the same 

fixed global coordinates.

2.2.2 Study scenarios to validate the performance of the proposed LCDD 
method—Three study scenarios were considered to evaluate the performance of the 

proposed LCDD method. Two constitutive models (see Section 2.2.3) were also used in 

these study scenarios as a reference for the proposed LCDD method. Selected biaxial testing 

protocols from the MVPL data were employed for constructing experimental dataset E, also 

referred to as model training data, for the LCDD computing and SEDF model parameter 

calibration, and predictions were made using other protocols that are not considered in the 

model training data. Note that the simulation results were obtained by using the tissue 

model’s given boundary conditions associated with the testing protocols (Fig. 2e). The root-

mean-square deviation normalized with respect to the maximum stress of the data (NRMSD) 

was used as a measure to assess the predictability of each method.

i. Scenario 1: Protocol 1 for training (single equi-biaxial tension protocol), and 

Protocols 3 and 5 for predictions to investigate model’s performance in 

extrapolation with limited information provided.

ii. Scenario 2: Protocols 10 and 11 (pure shear protocols) for both model training 

and predictions to examine model’s predictability, considering kinematic states 

with combined compression and tension.

iii. Scenario 3: Protocols 1, 3, 4, 7, and 8 (mixed biaxial tension and pure shear 

protocols) for training, and predictions for 2, 5, 6, and 9 to study model’s 

interpolative and extrapolative predictabilities.

2.2.3 Constitutive modeling for comparisons with the LCDD method—Two 

constitutive models were used for the study scenarios described in Section 2.2.2. The first is 

a full structural model modified from Zhang et al. (2016) that does not consider the layer-

specific properties
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SFSM = ηm I − C33C−1 + ηecirc I4, circ − 1 d1Ncirc ⊗ Ncirc

+ ηerad I4, rad − 1 d2Nrad ⊗ Nrad

+ ηc∫− π
2

π
2 Γ(θ; μΓ, σΓ) ∫

0

Eens(θ) D(x; μD, σD)
1 + 2x

1
1 + 2x − 1

1 + 2Eens(θ)

N(θ) ⊗ N(θ)dθ .

(9)

Herein, ηm, ηecirc, ηerad, and ηc are the moduli for the non-fibrous ground matrix, 

circumferentially-aligned elastin fibers (with orientation Ncirc = [cos 0°, sin 0°]T), radially-

aligned elastin fibers (with orientation Nrad = [cos 90°, sin 90°]T) and collagen fibers, 

respectively. I4 = N · (CN) is the fourth invariant of the right Cauchy-Green deformation 

tensor C = FTF, d1 and d2 describe the nonlinearity of the elastin fiber response, Γ(θ; μr, σr) 

is the orientation distribution function with the mean and standard deviation of (μr, σr), 

Eens(θ) = N(θ)·[EN(θ)] is the collagen fiber ensemble strain, and D(x; μD, σD) is the fiber 

recruitment function with μD and σD as the mean and standard deviation.

The second model is the Fung-type strain-based model (Tong and Fung, 1976) with the 

SEDF form

W = c
2 exp a1ECC

2 + a2ERR
2 + 2a3ECCERR − 1 , (10)

where c, a1, a2, and a3 are the model parameters, and ECC and ERR are the circumferential 

and radial Green strains, respectively (Fig. 2a-b). Note that the shear terms and the higher-

order coupling terms could be included in the Fung-type model in Eq. (10) for materials 

subjected to more profound in-plane shear and with extremely large deformations, such as 

the one in Sun et al. (2003).

The constitutive model parameters in Eqns. (9)-(10) were obtained by nonlinear least-

squares fitting to the acquired biaxial testing data using an in-house differential evolution 

optimization (DEO) program (Yu et al., 2014). Briefly, npop uniformly-distributed sets of 

material parameters were generated, and the residual rj was computed for each parameter set

rj = 1
ndata

∑
i = 1

ndata
SCC

exp − SCC, j
model 2 + SRR

exp − SRR, j
model 2

1 ∕ 2

, j = 1, …, npop . (11)

Herein, ndata is the number of experimental data, the superscript denotes either the 

experimental data or model prediction, and SCC and SRR are the circumferential and radial 

2nd PK stresses, respectively. The residual values and the Euclidian distances associated with 

the current best parameters were used to update the DEO parameters exploratively or 

exploitatively. This iterative optimization was repeated until the residual threshold was 

reached (max rj < 5×10−7) or the residual difference between any two consecutive iterations 
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was negligible (< 1×10−7). The optimal parameters were then used for predictions of other 

experimental protocols (see Section 2.2.2).

3. Results and Discussion

3.1 Study scenario 1 (single equi-biaxial tension training protocol)

In this study, Protocol 1 was used for training, and Protocols 3 and 5 were used for 

prediction validation. Both the proposed LCDD method and the chosen two constitutive 

models yielded excellent fits to the equi-biaxial tension protocol, whereas the DMDD 

approach was less accurate in capturing the material’s high-tension responses (Fig. 3a). The 

predictions for Protocols 3 and 5 (Figs. 3b-c) showed that the performance of the proposed 

LCDD method is deteriorated as the prediction protocols move beyond the model training 

range (e.g., NRMSD=0.271 vs. 0.019 for Protocols 5 vs. 1), since insufficient information 

about the tissue’s stress-strain behaviors was used in model training (i.e., only Protocol 1). 

This trend was shared by the two constitutive models but was less obvious for the full 

structural model (NRMSD=0.006-0.096) and with similar predictions to the LCDD method 

for the Fung-type model (NRMSD=0.003-0.265).

3.2 Study scenario 2 (pure shear training protocols)

In the first part of this study, both pure shear protocols (Protocols 10 and 11) were used in 

model training. The proposed LCDD nonlinear solver yielded better predictions than the 

DMDD approach (NRMSD=0.013-0.030 vs. NRMSD=0.069-0.103, 1st column of Fig. 4a-

b). While both the LCDD and the DMDD approaches could reasonably predict pure shear 

protocols, the two constitutive models had an apparent difficulty in capturing the 

compressive behaviors (2nd and 3rd columns of Fig. 4a-b). These results demonstrate the 

advantage of the data-driven approaches, in which model predictions are not limited by a 

pre-defined stress-strain relationship and instead rely on the quality and completeness of the 

experimental data.

In the second part of this study, when training with only one pure shear protocol and 
predicting the same pure shear protocol (Fig. 4c-d), the proposed LCDD method resulted in 

excellent fits (NRMSD≤0.016), whereas the DMDD is less accurate in capturing the large 

pure shear deformation (NRMSD>0.093). The DMDD method appears to have relatively 

inferior predictability for nonlinear, large-deformation bio-tissues, because its search for the 

measurement data is based on the closest Euclidean distance, which presents difficulties for 

high-dimensional data. In contrast, the proposed LCDD nonlinear solver improves this 

weakness through a local manifold learning process. For constitutive modeling, the full 

structural model exhibits a similar behavior of not capturing the compressive deformations, 

whereas the Fung-type model properly captures both pure shear protocols when trained 

individually.

3.3 Study scenario 3 (mixed biaxial tension and pure shear training protocols)

In the last comparative study scenario, experimental protocols for training and predictions 

were selected to test data-driven methods’ interpolative and extrapolative prediction abilities, 

when predictions are within or outside the ranges of training data with mixed biaxial and 
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pure shear deformations. The proposed LCDD method provided a good prediction of 

training data itself (NRMSD=0.019) as well as interpolative predictions of Protocols 2 and 6 

(NRMSD=0.022; Fig. 5a), but the extrapolative predictions were less effective 

(NRMSD=0.132). The full structural model exhibited an excellent fit to the training data 

(NRMSD=0.020) as well as the interpolative (NRMSD=0.018) and extrapolative 

(NRMSD=0.019) predictions when biaxial deformations are considered for both model 

training and predictions. When the two pure shear protocols (Protocols 10 and 11) together 

with the biaxial deformation protocols were considered in model training, the LCDD 

predictions provided similar predictivity to the case without pure shear in training. On the 

other hand, the full structural model could not capture the compressive deformations due to 

its pre-defined functional form, and its overall performance was reduced compared to the 

case without pure shear in model training (Fig. 5b).

These results suggest that a sufficient coverage of deformation range in the training 

protocols is important to ensure reliable predictions for the LCDD method. The LCDD 

method with a direct search of experimental data could be more versatile for general 

deformations as long as the data set is sufficiently rich.

4. Conclusion

In this study, we have applied the LCDD nonlinear solver to modeling biological materials 

under finite deformations. The goal of the employed data-driven computational method is to 

solve biomechanics problems governed by conservation laws without using pre-defined 

material (constitutive) models, but rather, based solely on the experimentally-measured 

stress-strain data, to offer an alternative approach to the conventional constitutive modeling. 

A verification problem with synthetic material data was first conducted to validate the 

effectiveness of the proposed data-driven solver for nonlinear solids. Furthermore, the 

proposed data-driven method was used to model a porcine mitral valve posterior leaflet with 

the material data collected from biaxial and pure shear mechanical tests. In all the 

demonstrated verification and validation cases, our proposed LCDD method consistently 

outperforms the well-established DMDD method. The enhancement is achieved by 

introducing the local structure (i.e., material manifold) of the dataset via the cluster analysis 

and the locally convex manifold reconstruction.

The predictability of the LCDD framework by using various combinations of biaxial and 

pure shear training protocols were investigated, and its effectiveness was compared with a 

microstructure-informed structural phenomenological model modified from Zhang et al. 

(2016) and a continuum phenomenological Fung-type model (Tong and Fung, 1976). The 

LCDD method has comparable performance to the two constitutive models in both model 

training and interpolative predictions, but the LCDD method becomes less effective when 

the prediction is an extrapolation outside the range of the training data. The effectiveness of 

LCDD relies on the richness and quality of the data. While the microstructure-informed 

constitutive model exhibited very good predictivity as calibrated with biaxial tension 

protocols, it could not properly capture the compressive deformations when the pure shear 

protocols were incorporated into Study Scenarios 2 and 3. On the other hand, the proposed 

LCDD nonlinear solver appeared to be minimally affected whenever pure shear data are 
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used in model training. We showed that the predictivity of the proposed LCDD nonlinear 

solver is generally less sensitive to the type of loading protocols (biaxial and pure shear) 

used in the data set, while more sensitive to the insufficient coverage of the experimental 

data when compared to the predictivity of the two selected phenomenological models.

Constructing a good phenomenological model requires extensive knowledge and 

experiences in mechanics and materials. Machine learning approaches, on the other hand, 

were invented to alleviate the extensive requirement of human intelligence by integration 

with machine learning algorithms and big data, and could ultimately yield new discoveries 

that have not been discovered before. In the situation when the phenomenological models 

are not fully representative of the material behaviors, such as the inability to represent the 

pure shear deformation in the models employed in this study, the data-driven model could 

offer an alternative approach provided that the method is robust and that the material data is 

sufficiently rich.
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Appendix

Appendix A. Formulation of the Local Convexity Data-Driven (LCDD) 

Nonlinear Solver

A.1 The global step of the LCDD method

This section presents the solution procedures of the global step in the proposed LCDD 

nonlinear solver. The associated constrained minimization problem in Eq. (4) can be 

transformed into the following functional:

ℒDD(u, S, λ) = ∫
ΩX[dE

2 (E(u), E) + dS
2 (S, S)]dΩ

+ ∫
ΩXλ ⋅ [DIV(F(u) ⋅ S) − λb]dΩ − ∫ΓtX

λ ⋅ [(F(u) ⋅ S) ⋅ N − t ]dΓ,
(A.1)

where the subscript DD denotes the data-driven computational framework, (E,S) is the 

resultant data solution from the previous iteration, λ is the Lagrange multiplier in a proper 

function space. By means of integration by parts and the divergence theorem, we arrived an 

equivalent form as follows
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ℒDD(u, S, λ) = ∫
ΩX[dE

2 (E(u), E) + dS
2 (S, S)]dΩ

− ∫
ΩX[∇λ: (F(u) ⋅ S) − λb]dΩ + ∫ΓtX

λ ⋅ tdΓ + ∫ΓuX
λ ⋅ [(F(u) ⋅ S)

⋅ N]dΓ .

(A.2)

Following the standard variational approach (Felippa, 1994), we assume λ=0 on the 

essential boundary Γu
X and the last term in the above equation can be dropped, which is 

analogous to the homogeneous boundary condition for the test functions used in the 

Galerkin approximation. The stationary condition δℒDD(u, S, λ) = 0 with respect to u, S, and 

λ leads to the following three variational equations:

∫
ΩXδE(u):M: (E(u) − E)dΩ = ∫

ΩX(δFT(u) ⋅ ∇λ):SdΩ , (A.3)

∫
ΩXδS: (M−1:S − FT(u) ⋅ ∇λ)dΩ = ∫

ΩXδS:M−1:SdΩ, and (A.4)

∫
ΩXδ∇λ: (F(u) ⋅ S)dΩ = ∫

ΩXδλ ⋅ bdΩ + ∫ΓtX
δλ ⋅ tdΓ ≔ P ext(δλ) . (A.5)

From the above formulations, we can see that Eq. (A.3) relates a strain compatibility 

constraint on the displacement solution u to strain data E, and λ represents the displacement. 

Similarly, Eq. (A.4) relates the computational stress S and the measured stress data S. Lastly, 

Eq. (A.5) is a generalized equilibrium.

Remark: Because the LCDD framework proposed in He and Chen (2020) was developed 

based on the weak formulation, it can be easily extended to other energy-conjugate strain/

stress pairs. For example, the Cauchy stress and its energy conjugate strain (Euler-Almansi 

strain) or the first Piola-Kirchhoff (1st PK) stress and its energy-conjugate strain (transpose 

of the deformation gradient) can be used in the LCDD as long as the experimental data 

expressed in the same stress-strain measures are available. If the asymmetric stress-strain 

measures are employed in the LCDD framework, such as the 1st PK stress and the 

deformation gradient, they lead to the increased dimensions in the database and thus is less 

desirable. The selection of the energy-conjugate 2nd PK stress and Green-Lagrange strain in 

our study was due to their symmetry properties, the availability of the experimental 

information, and their reference with respect to the undeformed configuration.

If the stress approximation is constructed by either static condensation at the element level 

or nodal integration schemes, Equation (A.4) can be further recast into independent element-

wise or point-wise systems (He and Chen, 2020):
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S = S + M: (FT(u) ⋅ ∇λ) . (A.6)

By substituting Eq. (A.6) into Eqns. (A.3) and (A.5) and rearranging the equations, we 

obtained

Ju = ∫
ΩXδE(u):M:E(u)dΩ − ∫

ΩX δFT(u) ⋅ ∇λ :M: FT(u) ⋅ ∇λ dΩ

− ∫
ΩXδE(u):M:EdΩ − ∫

ΩX δFT(u) ⋅ ∇λ :SdΩ = 0 ,
(A.7)

and

Jλ = ∫
ΩX(FT(u) ⋅ δ∇λ):M: (FT(u) ⋅ ∇λ)dΩ + ∫

ΩX(FT(u) ⋅ δ∇λ):SdΩ = P ext

(δλ) .
(A.8)

The weak form system in Eqns. (A.7)-(A.8) needs to be solved by the Newton-Raphson 

method with respect to u and λ.

To numerically solve the above weak form system, in this study the variables u and λ are 

approximated by the reproduced kernel (RK) shape functions (Chen et al., 1996; Liu et al., 

1995) constructed using the linear basis functions and the cubic-B splines kernel function. 

These node-based RK approximation functions are employed for better numerical 

performance under large deformation without experiencing mesh distortion difficulties in the 

conventional mesh-based methods. The 2nd PK stress S is approximated by indicator 

functions so that it can be directly related to discrete stress data S in Eq. (A.6). Furthermore, 

the stabilized conforming nodal integration (SCNI) (Chen et al., 2002) is employed for the 

integration of the weak form in Eqns. (A.7)-(A.8). With SCNI framework, variables u, λ, 

and the associated E(u) and F(u) are computed at the nodal points (instead of integration 

points), making it very efficient for data-driven computing where local data search are only 

performed at the nodal points. More details about the employed discretization scheme can be 

found in He and Chen (2020).

A.2 The local step of the LCDD method

After the Green strain tensor E(u) and the 2nd PK stress tensor S are obtained and the weak 

form system Eqns. (A.7)-(A.8) and Eq. (A.6), respectively, they are then used to update the 

measurement data solution (E, S) from the experimental dataset using Eq. (7) via the 

proposed locally convexity-preserving machine learning algorithm (He and Chen, 2020).

The key procedure is to recast the minimization problem in Eq. (7) with a convex feasible 

set ℰα associated with zα = (Eα, Sα) into the following constrained minimization problem 

for solving the optimal reconstruction weights wα∗ ∈ ℝk, ∀α=1, K, m:
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wα∗ = arg min
w ∈ ℝk

‖zα − ∑
i ∈ Nk(zα)

wizα
i ‖M ,

(A.9)

subject to ∑
i ∈ Nk(zα)

wi = 1 and wi ≥ 0 .
(A.10)

Herein, zα
i = (Eα

i , Sα
i ) are the raw data points in the experimental dataset E, and Nk(zα)

represents the indices of the k nearest neighboring data points to zα. A computationally-

feasible algorithm based on the Lawson-Hanson method (Lawson and Hanson, 1995) for 

non-negative least squares problem is introduced to solve Eqns. (A.9)-(A.10). The overall 

computational procedures of our proposed LCDD nonlinear solver are summarized in Table 

A1.

Appendix B. The Verification Problem – Uniaxial Tension of An 

Anisotropic Material

The effectiveness of the proposed data-driven computational framework is verified by 

modeling a transversely isotropic hyperelastic material under uniaxial tension (Fig. B1a) 

based on the synthetic stress-strain data generated by the Holzapfel model (Holzapfel et al., 

2000).

W (I1, I3, I4) = c1(I1 − 3) + k1
2k2

ek2(I4 − 1)2 − 1 + β(J − 1), (B.1)

where J = det(F) = I3, Ik
′s (k = 1, 3, 4) are the first, third, and fourth invariants of the right 

Cauchy-Green deformation tensor C = FTF, β is the penalty parameter for enforcing the 

incompressibility condition, and the model parameters are chosen as c1 = 10 kPa, k1 = 2.5 

kPa, k2 = 0.85.

The material database for the data-driven simulation was generated through the constitutive 

model based on Eq. (B.1). For simplicity, the strain data points Ei = {Exx
i , Eyy

i , Exy
i }, i = 1, 

…, p were uniformly selected from a parameter space [−0 .2,1.5]⊗[−0.25, 0.125]⊗[−0.1, 

0.1], where the number of data points is p = 203. Then, the corresponding stress data points 

Si = {Sxx
i , Syy

i , Sxy
i } were computed by using the following hyperelastic stress-strain 

relationship

S = ∂W
∂E

= ∂W
∂I1

∂I1
∂E

+ ∂W
∂I3

∂I3
∂E

+ ∂W
∂I4

∂I4
∂E

= 2c1 I − C33C−1 + 2k1(I4 − 1

)ek2(I4 − 1)2N ⊗ N .
(B.2)

Herein, the penalty parameter β = −c1C33 is the consequence of imposing the plane-stress 

condition, i.e., the Cauchy stress component σ33 = 0 (see more details in Fan and Sacks 
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(2014) and Lee et al. (2015)), C33 is the 3-3 component of C, and the fiber orientation N is 

chosen as [1,0,0]T. These strain and stress data points constitute the experimental dataset E.

In this example, a plane-stress uniaxial tensile deformation was modeled using the LCDD 

method with the above synthetic stress-strain data. The analytical solution to this uniaxial 

tension problem is

σxx = 2 ∂W
∂I1

+ ∂W
∂I4

λ2 + 2∂W
∂I1

λ−1, (B.3)

where σxx is the normal Cauchy stress component along the x-direction, and λ is the 

associated stretch ratio. The 2nd PK stress component under uniaxial tension can be 

computed: Sxx = λ−2σxx.

Note that the constitutive model-based simulation was chosen as the reference for the data-

driven computations. Specifically, the problem domain was discretized by 17×5 randomly-

spaced RKPM nodes. The numerical analysis was carried out using 10 loading steps, and the 

constitutive model-based reference solution was obtained by using the finite element 

software ABAQUS (Dassault Systèmes). The displacement result obtained by the proposed 

LCDD with 6 nearest neighbors in the local convex hall (k = 6, see Table A1) agreed well 

with the finite element reference solution (Fig. B1b). Figure B1c shows the good agreement 

between the LCDD prediction and the finite element reference solution, as well as the fast 

convergence of the solution from our LCDD method.
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Figure B1. 
(a) Schematic of a hyper-elasticity material using the Holzapfel’s model in Eq. B.1 subject 

to uniaxial tension, together with the RK discretization (black circles). (b) Comparison of 

the ABAQUS finite element reference solution and the RKPM model-based simulation 

solution. (c) Comparison of the stress vs. stretch relation between the proposed data-driven 

and the finite element reference solutions.

Table A1.

Computational algorithm of the proposed LCDD nonlinear solver.

Input: Given a measurement data set E , k-nearest neighbor (k-NN) hyper-parameter k, and a convergence tolerance ε

1
Initialization. Randomly initialize local data solutions zα

0 = Eα
0 , Sα

0 ∈ E, α = 1,⋯, m, and set 

iteration counter v = 0

2
While max

α = 1, ⋯, m
zα

v − zα
v − 1

M > ℰ

Global/Physical Update Step: Input zα
v

α = 1
m

a. Solve Eqns. (A.7)-(A.8) by the Newton-Raphson scheme for u(v) and λ(v)

b. Update computational states E(v) = E(u(v)) and S(v) by Eq. (A.6), and output 

zα
v

α = 1
m = Eα

v , Sα
v

α = 1
m

Local/Material Update Step (LCDD solver): Input zα
v

α = 1
m

, for α = 1,⋯, m

c. Select k-NN neighborhood Nk zα
v  for each local state zα

v , and assemble those nearest data 

points zα
i , i ∈ Nk zα

v ⊂ E into a matrix Zα

d. The solution of Eq. (7) is given by solving the regularized non-negative least-squares (NNLS) 
equation below by using a standard active-set NNLS solver (Tropp and Gilbert, 2007; Yaghoobi et 

al., 2015), and use wα∗ to output zα
∗ v + 1 = Zαwα∗

where wα∗ = arg min
w ∈ ℝk

zα
v − ∑i ∈ Nk zα

v wizα
i

M
, subject to ∑i ∈ Nk zα

v  wi = 1 

and wi ≥ 0

e. Update v ← v + 1

3 Solution is zα = Eα, Sα zα
v = Eα

v , Sα
v

, α = 1,⋯, m
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Figure 1. 
Geometric schematic of the proposed local convexity data-driven computational framework 

in Eq. (1) solved by an iteration scheme (with v the iteration counter) where z(v) ∈ C
(denoted by the blue stars) is the computation state on the physical manifold C at v-th 

iteration, {zi, i = 1, 2, …} (denoted by the gray circles) are the collected measurement data 

stored in E, ℰ is an underlying material manifold (or envelope) constructed based on the 

data, and Z denote the global phase space. The iteration scheme is decomposed into two 

update steps (see more details in Table A1): (i) the local (material) step where the data 

solution z∗ (denoted by the orange squares) is solved by projecting the given computational 

state onto the manifold ℰ of data set and (ii) the global (physical) step where the new 

computational state is obtained by projecting the given data solution onto C by enforcing the 

physical constraints. The convergent solution is denoted by z* (the green stars), which 

ideally is C ∩ ℰ.
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Figure 2. 
(a) Schematic of a mitral valve posterior leaflet (MVPL) tissue with the central (belly) 

region highlighted in orange, and (b) tissue specimen mounted to a biaxial testing system 

with applied tensions TCirc and TRad. Schematic of the mechanical testing protocols: (c) 

biaxial tensions, and (d) pure shear. (e) Schematic of the model of biaxial testing used in 

data-driven computations and constitutive modeling.
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Figure 3. 
Comparison of the training and prediction accuracies among the proposed LCDD nonlinear 

solver, the DMDD solver, and the constitutive models with the Fung-type SEDF and the 

modified full structural model : (a) training of the equi-biaxial tension data (Protocol 1) 

together with its prediction, (b) prediction of Protocol 3, and (c) prediction of Protocol 5.
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Figure 4. 
Comparison of the prediction performance among the proposed LCDD nonlinear solver, the 

DMDD solver, and the constitutive models with the Fung-type SEDF and the modified full 

structural model: (a) training using both Protocols 10 & 11 and the prediction of Protocol 10 

(tension in the circumferential direction and compression in the radial direction), (b) training 

using Protocols 10 & 11 and the prediction of Protocol 11 (tension in the radial direction and 
compression in the circumferential direction), (c) training of Protocol 10 together with its 

prediction, and (d) training of Protocol 11 together with its prediction.
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Figure 5. 
Comparison of the interpolative and extrapolative predictability between the proposed 

LCDD nonlinear solver and constitutive modeling with the modified full structural model: 

(a) training using Protocols 1, 3, 4, 7, and 8 without the pure shear protocols together with 

its predictions of Protocols 2 & 6 (interpolative) and Protocols 5 & 9 (extrapolative), and (b) 

training using Protocols 1, 3, 4, 7, and 8 together with the two pure shear protocols together 

with its interpolative and extrapolative predictions.
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Table 1.

Eleven protocols of the conducted biaxial mechanical testing with the experimentally-quantified tissue 

stretches of a representative MVPL specimen and their equivalent displacements used in the data-driven 

computations (see Fig. 2c-e).

Protocol ID Testing Protocol λCirc λRad ux (mm) uy (mm)

1 Biaxial Tension TCirc:TRad = 1:1 1.333 1.525 2.498 3.938

2 Biaxial Tension TCirc:TRad = 1:0.8 1.342 1.499 2.564 3.744

3 Biaxial Tension TCirc:TRad = 1:0.6 1.355 1.466 2.662 3.498

4 Biaxial Tension TCirc:TRad = 1:0.4 1.369 1.415 2.770 3.110

5 Biaxial Tension TCirc:TRad = 1:0.2 1.388 1.326 2.913 2.442

6 Biaxial Tension TCirc:TRad = 0.8:1 1.313 1.541 2.344 4.055

7 Biaxial Tension TCirc:TRad = 0.6:1 1.275 1.562 2.064 4.215

8 Biaxial Tension TCirc:TRad = 0.4:1 1.213 1.588 1.596 4.409

9 Biaxial Tension TCirc:TRad = 0.2:1 1.109 1.618 0.820 4.635

10 Pure Shear in x (x: tension, y: compression) 1.387 0.721 2.903 −2.093

11 Pure Shear in y (x: compression, y: tension) 0.620 1.612 −2.847 4.590

Note that the mounting size of the MVPL tissue specimen is 7.5x7.5 mm.
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