Title
MoS$_2$ Nanosheets-Cyanobacteria Interaction: Reprogrammed Carbon and Nitrogen Metabolism.

Permalink
https://escholarship.org/uc/item/52448589

Journal
ACS nano, 15(10)

ISSN
1936-0851

Authors
Chen, Si
Shi, Nibin
Huang, Min
et al.

Publication Date
2021-10-01

DOI
10.1021/acsnano.1c05656

Peer reviewed
MoS₂ Nanosheets–Cyanobacteria Interaction: Reprogrammed Carbon and Nitrogen Metabolism

Si Chen,∇ Nibin Shi,∇ Min Huang,∇ Xianjun Tan, Xin Yan, Aodi Wang, Yuxiong Huang, Rong Ji, Dongmei Zhou, Yong-Guan Zhu, Arturo A. Keller, Jorge L. Gardea-Torresdey, Jason C. White, and Lijuan Zhao*

Cite This: ACS Nano 2021, 15, 16344−16356
Read Online

ABSTRACT: Fully understanding the environmental implications of engineered nanomaterials is crucial for their safe and sustainable use. Cyanobacteria, as the pioneers of the planet earth, play important roles in global carbon and nitrogen cycling. Here, we evaluated the biological effects of molybdenum disulfide (MoS₂) nanosheets on a N₂-fixation cyanobacteria (Nostoc sphaeroides) by monitoring growth and metabolome changes. MoS₂ nanosheets did not exert overt toxicity to Nostoc at the tested doses (0.1 and 1 mg/L). On the contrary, the intrinsic enzyme-like activities and semiconducting properties of MoS₂ nanosheets promoted the metabolic processes of Nostoc, including enhancing CO₂-fixation-related Calvin cycle metabolic pathway. Meanwhile, MoS₂ boosted the production of a range of biochemicals, including sugars, fatty acids, amino acids, and other valuable end products. The altered carbon metabolism subsequently drove proportional changes in nitrogen metabolism in Nostoc. These intracellular metabolic changes could potentially alter global C and N cycles. The findings of this study shed light on the nature and underlying mechanisms of bio-nanoparticle interactions, and offer the prospect of utilization bio-nanomaterials for efficient CO₂ sequestration and sustainable biochemical production.

KEYWORDS: transition metal dichalcogenides, nanobio, cell factory, carbon sequestration, metabolic reprogramming, carbon fixation

INTRODUCTION: Transition metal dichalcogenides (TMDs) are promising two-dimensional (2D) materials.¹ Molybdenum disulfide (MoS₂), as one of the most important TMDs, possesses excellent electrical, optical, electrochemical, and biological properties, which enable a wide variety of electronics, biomedicine, and energy applications.² In addition, the high density of active surface sites makes them ideal for biochemical sensing applications. MoS₂ can be used as biosensors for metabolites, nucleic acids, proteins, metal ions, and even a cell.³ Recently, MoS₂ nanosheets have been used for environmental applications, including wastewater treatment, adsorption, photocatalysis, membrane-based separation, and disinfection.⁴ The increasing use of MoS₂ nanomaterials, especially in the environmental field, will likely lead to the significant release of MoS₂ nanosheets into the environment.⁵ Thus, understanding the environmental behavior and biological effects of this material is critically important for its safe and sustainable use.

Cyanobacteria were the first organisms that performed oxygenic photosynthesis on earth and are commonly assumed to be a critical node in the evolution of life.⁶ In addition to their roles in evolution, cyanobacteria are major drivers of the biogeochemical cycling of carbon (C) and nitrogen (N).⁷ It is estimated that 20−30% organic carbon on the earth is derived from photosynthetic carbon fixation by cyanobacteria.⁸ In addition, cyanobacteria are the primary N₂-fixing microorganisms in marine environments.⁹ Cyanobacteria inhabit diverse aquatic and terrestrial environments,¹⁰ ensuring significant coexisting and interaction with natural or engineered nanomaterials. Given the important ecological
function of cyanobacteria, investigating the environmental implication of nanomaterials such as MoS$_2$ nanosheets on cyanobacteria is of great importance.

In terms of cellular interactions, nanoscale particles are known to penetrate lipid bilayers of cell membrane. As such, MoS$_2$ nanosheets may penetrate cyanobacterial cells, and the diverse surface chemistry of this material makes interaction with biological molecules highly likely. Cao et al. have shown that MoS$_2$@HSA can rapidly interact with blood proteins and immune cells. In addition, MoS$_2$ nanosheets have semiconducting properties, and in nature, semiconducting nanomaterials are similar to chlorophyll molecules in that both materials can be excited by photons, generating photoexcited electrons. The relatively small band gap (1.3 eV) of MoS$_2$ allows most of the solar spectrum to be harvested. As such, MoS$_2$ nanosheets located in thylakoid membrane have the potential to help cyanobacteria harvest greater energy per photon. Recent studies have revealed that semiconductors can transfer photogenerated electrons to non-photosynthetic bacteria, promoting their growth and cellular metabolism. Whether additional solar energy from semiconducting nanomaterials can be harvested and be used to stimulate the metabolism of cyanobacteria accordingly remains largely unknown. In addition, MoS$_2$ nanosheets can be oxidized by O$_2$ environmentally, subsequently releasing Mo ions, and given that Mo is a required nutrient, these released ions may induce certain biological processes. The changes of metabolism induced by either nanoparticulate or ionic Mo will be reflected by the metabolite profile of the cell. Metabolites are the end products of cellular metabolic reactions, and changes in the metabolite profile can represent a complex network of biological events that reflect the physiologic state of the organism. Therefore, metabolomics, studying the complete set of metabolites, offers a snapshot of cellular physiology in response to MoS$_2$ nanosheet exposure.

In the present study, we investigated the biological effects of two phases of MoS$_2$ nanosheets (1T and 2H) on a N$_2$-fixing cyanobacteria (Nostoc sp. (N. sphaeroides)). Nostoc were exposed to different concentrations (0, 0.1, and 1 mg/L) of 1T or 2H MoS$_2$ for 96 h. The impacts of MoS$_2$ on the growth of Nostoc was evaluated by determining the optical density at 680 nm (OD 680), chlorophyll content, and dry weight. Meanwhile, gas chromatography–mass spectrometry (GC-MS) based metabolomics was used to evaluate changes in the metabolome, and the mechanistic significance of these changes as a function of MoS$_2$ exposure was evaluated.
study provides valuable information on the environmental risk of MoS2 nanosheets.

RESULTS AND DISCUSSION

Characteristics of MoS2 Nanosheets. The scanning electron microscopy (SEM) images show that both 1T and 2H MoS2 nanosheets possessed a flake-like morphology (Figure 1A,B). The transmission electron microscopy (TEM) images further confirmed the ultrathin nanosheet structures of 1T and 2H MoS2 (Figure 1C,D). TEM images also reveal that the mean sizes for 1T and 2H MoS2 nanosheets are 150 ± 20 and 350 ± 50 nm, which suggest that the 2H phase MoS2 nanosheets have a larger size compared to 1T MoS2. The crystal phases of 2H and 1T MoS2 nanosheets were characterized by X-ray diffraction. The characteristic peaks for 2H MoS2 are evident by the XRD patterns (Figure 1E), while the (002) peak of 1T MoS2 shifts to a lower degree of 9.3°, accompanying the formation of a second-order peak at 18.6°. This phenomenon was associated with newly formed lamellar structure with enlarged interlayer spacing by NH4⁺, which was consistent with previous reports. The diffraction pattern of trigonal prismatic (2H) and octahedral (1T) MoS2 nanosheets was consistent with the diffraction pattern originally presented by Zhu et al. Dynamic light scattering (DLS) analysis revealed hydrodynamic diameters of 1T and 2H MoS2 in nanopore water of 312 ± 38 and 947 ± 6 nm, respectively, with z potential values of 5.6 ± 0.46 and 6.0 ± 3.9 mV, respectively. These indicate the significant difference in size but not charge between two phases of MoS2 nanosheets.

Dissolution of MoS2 Nanosheets. The degradation and dissolution behavior of nanomaterials in the environment is of critical importance for assessing the environmental fate and biological effects. Thus, the dissolution of MoS2 nanosheets in both water and cultivation medium (BG11-N) was
monitored over 96 h. As shown in Figure 1F, metallic 1T MoS₂ nanosheets have a much greater dissolution rate than that of 2H MoS₂ in both water and BG11-N media. At 96 h, the dissolution rate of 1T MoS₂ reached 23.5 and 34.6% in water and BG11-N, respectively. This indicates that 1T MoS₂ is relatively unstable in the environment, producing a pool of soluble Mo ions that will coexist with particulate MoS₂ in environmental media. Therefore, 1T MoS₂ nanosheets will pose both a “nonspecific” risk and Mo ions risk to receptors. In contrast, 2H MoS₂ nanosheets are more stable, with dissolution rates of 2.4 and 4.8% in water and BG11-N, respectively. Thus, material-specific or nonspecific effects will be dominant for 2H MoS₂ nanosheets when released into the environment. The dissolution is mediated through oxidation of the MoS₂ nanosheets, and the released soluble species is molybdate ion (MoO₄²⁻).

Influence of MoS₂ Nanosheets on Nostoc Growth. The growth rate of *Nostoc* was monitored via measuring OD 680 at 24 h intervals over 96 h. The results show that OD 680 were unchanged upon exposure to either MoS₂ nanosheet (1T and 2H) at either dose (Figure 2A). Chlorophyll a levels are another standard method for determining growth rates of photosynthetic organisms. The chlorophyll a growth curve shows that exposure to MoS₂ nanosheets did not impact pigment content (Figure 2B). Malondialdehyde (MDA) is the product of lipid peroxidation of the cell membrane, and its content reflects the degree of oxidative damage. Supporting Information Figure S1 shows that MDA content was unchanged upon exposure to MoS₂ nanosheets, indicating no oxidative stress was induced. SEM micrographs show that *Nostoc* cells cultivated with 1T or 2H MoS₂ appeared intact, indicating no damage to the cell membrane (Figure 2C). Together, these findings suggest that both phases of MoS₂ nanosheets exerted minimal negative impacts on *Nostoc* growth.

GC-MS-Based Metabolomics. Although MoS₂ nanosheets did not exert overt toxicity to *Nostoc*, the materials’ complex surface chemistry enables interaction with intracellular biomolecules, potentially affecting the metabolism of *Nostoc*. In order to evaluate the potentially altered biochemical pathways, GC-MS-based metabolomics was performed. By using GC-MS, 294 metabolites were identified and semi-quantified in *Nostoc* cells. In order to assess the variation of the measured metabolome between groups, multivariate sparse partial least-squares-discriminant analysis (sPLS-DA) was performed. The score plot indicates good separation of the four MoS₂ groups (*Nostoc* in the presence of MoS₂) from the control group (*Nostoc* in the absence of MoS₂; Figure 3A). These data indicate that both phases of MoS₂ nanosheets altered the metabolite profile of *Nostoc*, and the alteration occurred in a somewhat dose-dependent manner. Generally, 2H MoS₂ nanosheets induced more pronounced metabolic changes than did 1T MoS₂ at the same dose. To focus on the most important features that contributed to the separation between MoS₂ groups and the control group, metabolites with a sPLS-DA VIP score > 0.1 were selected for the final discriminant feature list (Figure 3B). A total of 43 metabolic features significantly distinguished the MoS₂ and control groups. Interestingly, all of these metabolites were up-regulated upon MoS₂ exposure. The relative abundance of these metabolites followed a uniform pattern: 2H MoS₂ at 1 mg/L > 2H MoS₂ at 0.1 mg/L > 1T MoS₂ at 1 mg/L > 1T MoS₂ at 0.1 mg/L > Control. This systematic positive modulation of metabolic processes in *Nostoc* driven by MoS₂ is both interesting and promising. This suggests that MoS₂ at both doses are generally beneficial for *Nostoc* metabolism. In addition, our previous study found that antioxidant related metabolites, such as phenolic acids and polyphenols, are very sensitive to environmental stressors. For example, Ag NPs at 0.1 mg/L resulted in a considerable decrease of antioxidant compounds. In contrast, all of the detected antioxidants in *Nostoc*, including catechin, 4-hydroxycinnamic acid, resveratrol, 1,2,4-benzenetriol, epicatechin, pelargonic acid, 3,4-dihydroxycinnamic acid, chlorogenic acid, and α-tocopherol, were unaffected upon MoS₂ exposure (data not shown). This indicates that MoS₂ had limited impacts on oxidative stress in *Nostoc*, which is consistent with the above-mentioned data on MDA and the growth rate.

Carbon Metabolism. It is noteworthy that several key intermediates in the Calvin cycle were significantly increased upon MoS₂ exposure, including d-glyceraldehyde-3-phosphate (G3P, 2−7-fold), dihydroxyacetone phosphate (DHAP, 2−10-fold), 3-phosphoglyceric acid (3-PGA, 1−6-fold), d-ribulose-5-
phosphate (Ru-5-P, 2−13-fold), D-fructose-1,6-bisphosphate (FBP, 1−4-fold), D-fructose-6-phosphate (F-6-P, 2−12-fold), and glucose-6-phosphate (G-6-P, 2−8-fold) (see box plot in Figure 4A). In addition, the final product of the Calvin cycle, glucose, was significantly increased by 3−16-fold upon exposure to two phases of MoS2 nanosheets at both

Figure 4. Significantly changed carbon and nitrogen related metabolites in Nostoc. Box plot showing the relative abundance of Calvin cycle associated metabolites (A) and amino acids (B). Nostoc were cultivated in BG11-N growth media with different concentrations of 1T or 2H MoS2 for 96 h.
concentrations (Figure 4A). For photosynthetic microorganisms, the Calvin cycle is the sole CO2-fixation pathway, in which CO2 is reduced into carbohydrate metabolites. The up-regulation of Calvin cycle intermediates may suggest that both semiconducting 2H MoS2 and metallic 1T MoS2 nanosheets can augment CO2-fixation pathways in Nostoc, although the mechanisms by which MoS2 exposure could enhance the CO2 fixation of Nostoc are unknown. In marine, freshwater, and terrestrial environments, Nostoc, being an important N2-fixing cyanobacteria, could have close contact with natural or engineered MoS2 nanosheets; and this environmental interaction could significantly alter carbon metabolism of the Nostoc. In a non-photosynthetic bacteria (Moorella thermoacetica), the carbon-fixation-related Wood–Ljungdahl metabolic pathway has been found to be activated by CdS nanoparticles. Importantly, this augmented carbon fixation was attributed to semiconducting properties of CdS. Under light illumination, photoelectrons excited from semiconducting CdS provided additional reducing power for the bacteria. In the current study, the underlying mechanism for the MoS2-enabled reprogramming of the carbon metabolism is unknown but could be related to a similar boosting of intracellular reducing power.

Biochemicals Production. Bacteria invest fixed carbon into growth, survival, and the generation of new biomass. Given that Nostoc species are filamentous, the OD value cannot accurately reflect the actual biomass. Thus, dry weight was determined by a microbalance (Mettle Toledo XP56) in order to know whether MoS2 exposure increased the biomass of Nostoc. Results show that the biomass did not differ between groups, although 2H MoS2 at 0.1 mg/L did increase biomass, albeit it in a statistically insignificant fashion (Figure S2). This suggests that Nostoc did not use the fixed carbon for biomass accumulation but, instead, maintained the population and directed excess carbon into alternative metabolic pathways, potentially enhancing the production of various biochemicals. For instance, several important carbohydrates such as maltotriose, cellobiose, arabinose, and palmitinitol were increased 1.5−5.6-fold upon MoS2 exposure (Figure S3). Moreover, a number of unsaturated fatty acids and their precursors, including myristic acid (17−32%), palmitic acid (30−83%), palmitelaidic acid (2−10-fold), oleic acid (3−12-fold), linoleic acid (4−13-fold), linolenic acid (5−9-fold), behenic acid (31−57%), lignoceric acid (15−50%), and 2-monolein (1.6−3.7-fold) were significantly increased upon exposure to MoS2 nanosheets (Figure S4). This indicates that MoS2 exposure boosted fatty acid biosynthesis in Nostoc. Fatty acids are valuable biofuels, and genetically modified cyanobacteria have been used to increase the fatty acid production for this purpose.

In addition to fatty acids, we found that exposure to both 1T and 2H MoS2 significantly increased the synthesis of a variety of valuable biochemicals. For example, (r)-3- hydroxybutyric acid (3HB), a precursor to synthesize biodegradable plastics poly(hydroxyalkanoates) (PHAs) and many related chemicals, was increased 2.5−6.9-fold upon exposure to MoS2 nanosheets. Myo-inositol is a precursor for many valuable biochemicals used in the functional food and pharmaceutical industry; the abundance of myo-inositol increased 20−38-fold upon exposure to MoS2 nanosheets. In addition, r-myo-inositol-4-phosphate, the downstream product of myo-inositol, increased 603−1620-fold compared to unamended controls. Additionally, high-value metabolites such as glucosamine (5−18-fold), dehydroascorbic acid (DHA, 7.5−36 fold), chenodeoxycholic acid (CDCA, 1.8−5.9-fold), β-sitosterol (6−21-fold), and formononetin (FMT, 1.5−6.7-fold) were all significantly increased upon exposure to MoS2 (Figure S5); these high-value-added compounds are widely used in the cosmetics, pharmaceutical, and food industries.

Taken together, these findings demonstrate that MoS2 nanosheets exhibit great potential to augment photosynthetic CO2 fixation and biochemicals production; this systemic MoS2-driven
increase in cyanobacterial metabolic output has far reaching implications.

Cyanobacteria are usually regarded as promising cell factories;34 they can fix atmospheric CO\textsubscript{2} and simultaneously produce hydrogen35,36 and other valuable chemicals and biofuels through endogenous metabolic pathways.37 However, low solar to energy conversion efficiencies and limited light harvesting capacity remain as critical bottlenecks for the commercial application of cyanobacteria-based cellular factories.38 To date, metabolic engineering and synthetic biology are strategies commonly used to accelerate metabolism and improve the efficiency of cellular factories.39,40 Compared to genetic engineering to alter specific metabolic pathways, exogenous nanomaterial stimulation to modulate bacterial metabolism is a more straightforward and potentially more robust platform for efficient and sustainable CO\textsubscript{2} capture and large-scale biochemicals production.

Nitrogen Metabolism. Certain cyanobacteria can perform oxygenic photosynthesis and nitrogen fixation simultaneously,41,42 including the selected Nostoc in this study. Importantly, a number of amino acids and their derivatives were significantly increased in Nostoc in the presence of 1T or 2H MoS\textsubscript{2} nanosheets (Figure 4B, box plot). Serine and glycine, both of which are related to photosynthetic respiration, were significantly increased by 1.6−3.7-fold and 1.7−4.9-fold, respectively, upon exposure to MoS\textsubscript{2} nanosheets. In addition, amino acids derived from pyruvate, including alanine (1.9−5.4-fold), valine (0.68−2.9-fold), and isoleucine (0.88−3.9-fold), were all significantly elevated by MoS\textsubscript{2}. Amino acids derived from oxaloacetate (OAA), such as aspartic acid (0.46−2.3-fold), lysine (0.83−6.3-fold), and threonine (0.74−3.0-fold), were also elevated upon exposure to MoS\textsubscript{2}. Proline, derived from 2-oxoglutarate (2OG), was significantly increased 1.4−2.6-fold compared to control. Phenylalanine, tyrosine, and tryptophan serve as precursors for important secondary metabolites related antioxidant activity43 and were all also significantly increased. The relative abundance of these significantly changed amino acids followed the same pattern: 2H MoS\textsubscript{2} at 1 mg/L > 2H MoS\textsubscript{2} at 0.1 mg/L > 1T MoS\textsubscript{2} at 1 mg/L > 1T MoS\textsubscript{2} at 0.1 mg/L > Control (Figure 4B), which is very similar to that of the carbon-related metabolites.

The increases in amino acids levels suggest that MoS\textsubscript{2} nanosheets could have increased N\textsubscript{2} fixation. As such, we determined the total nitrogen content in Nostoc in the absence and in the presence of MoS\textsubscript{2} nanosheets. Surprisingly, the total N level remained unchanged regardless of nanosheet type or concentration. The lack of an increase in nitrogen content is consistent with the hypothesis that MoS\textsubscript{2} nanosheets could have increased N\textsubscript{2} fixation.

\textbf{Figure 6. Antioxidant enzyme-mimicking properties and semiconducting activities of MoS\textsubscript{2} nanosheets.} (A and B) POD-like activities of 1T and 2H MoS\textsubscript{2}. (C and D) Levels of ROS and total antioxidant capacities in cyanobacteria (\textit{Nostoc sphaeroides}) exposed to different concentrations (0.1 and 1 mg/L) of 1T or 2H MoS\textsubscript{2} nanosheets for 96 h. (E) Schematic diagram of the electron transferring process between 2H MoS\textsubscript{2} nanosheet and cyanobacteria under visible light irradiation. (F) Transition photocurrent of MoS\textsubscript{2} and MoS\textsubscript{2}−cyanobacteria system under light on/off cycles.
We consider the mechanism by which MoS$_2$ nanosheets exposure enhanced carbon metabolism. In summary, MoS$_2$ exposure enhanced carbon fixation and subsequently altered nitrogen metabolism. Given the important ecological function of cyanobacteria, these cellular changes in C and N metabolism are notable and, at a large scale, could potentially influence global biogeochemical cycling of C and N.

Mechanism for MoS$_2$ Induced Metabolic Reprogramming in Nostoc. The above results indicate that both 1T and 2H MoS$_2$ nanosheets at relatively low dose (0.1 mg/L) profoundly reprogrammed the central carbon metabolism in Nostoc. We are curious about the underlying mechanism for this significant and potentially important metabolome shift. Both the nanomaterial itself and Mo ions released from the nanosheets may contribute to the observed biological response of the Nostoc. Given the fact that 1T phase MoS$_2$ with higher dissolution rate (supplying more Mo ions) induced much less pronounced metabolic changes compared to 2H phase MoS$_2$, we consider the mechanism by which MoS$_2$ nanosheets reprogram Nostoc metabolism to be more strongly linked to the nanoscale material, instead of Mo ions. To verify this hypothesis, additional experiments were conducted to test whether Mo ions can induce similar metabolic reprogramming. Nostoc were then cultivated in BG11-N growth media amended with different concentrations (0, 4, 5, and 9 μg/L) of Mo ions (Na$_2$MoO$_4$.2H$_2$O) for 96 h, and the collected Nostoc cells were subjected to the metabolomics analysis as described above. Importantly, neither the unsupervised PCA nor the supervised PLS-DA model detected any significant separation between the Mo ion groups and control group (Figure S7), indicating that Mo ions did not shift the Nostoc metabolism. All metabolites (Calvin cycle related metabolites, fatty acids, and amino acids) that were found to be significantly increased upon exposure to MoS$_2$ nanosheets remained unaffected by MoO$_4^{2−}$ treatment. These results clearly indicate that the significant metabolic reprogramming of Nostoc driven by MoS$_2$ nanosheets is not due to the released Mo ions but is a function of the nanoscale properties of this important material, although Mo is an essential element and participates in a wide range of metabolic processes.

Thus, it is likely that small-sized MoS$_2$ nanostructures gain the entry into the cells, and once there, certain intrinsic biological and optical—electrical properties of MoS$_2$ nanostructures directly drive the metabolic changes. Chen et al. showed that MoS$_2$ nanosheets possess intrinsic multienzyme-mimicking activities, including superoxide dismutase (SODs), catalases (CATs), and peroxidases (PODs), under physiological conditions (pH 7.4, 25 °C). Thus, MoS$_2$ nanosheets possess ROS (reactive oxygen species) scavenging activities. For oxygenic photosynthetic organisms, ROS are inevitably generated by photosynthetic electron transport. When the excitation of photosynthetic pigments exceeds metabolic demand, subsequent electron transfer reactions can lead to ROS generation. Light-driven electron transport transfers electrons from the acceptor site of photosystem I (PSI) to various acceptors in the membrane, including oxygen. For example, there is direct electron transfer from reduced ferredoxin to O$_2$, generating superoxide radicals (O$_2^−$). The generated ROS may induce oxidative damage, diminishing photosynthetic efficiencies. As such, if MoS$_2$ nanosheets with antioxidant capacities reach the thylakoid membrane, it may improve the redox status of PSI and PSI embedded in the membrane by scavenging ROS and subsequently increase photosynthetic efficiency. To verify these hypotheses, we first determined the POD-, CAT-, and SOD-like activities of both phases of MoS$_2$ nanosheets. Results showed that 1T and 2H MoS$_2$ nanosheets exhibit excellent POD enzyme-mimicking activities (Figure 6A,B), which can catalyze detoxification of H$_2$O$_2$ to H$_2$O. It is noteworthy that 2H MoS$_2$ possessed greater POD-mimicking activities and also resulted in more pronounced metabolic reprogramming as compared to 1T MoS$_2$. This may indicate that the enhancement of CO$_2$ fixation is tightly linked to the intrinsic catalytic activities of MoS$_2$. The underlying mechanism for MoS$_2$ nanosheets has POD-mimicking activities is attributed to the electron transferring capacities of the nanomaterial. Both Mo$^{4+}$ and Mo$^{6+}$ exist on the surface of the MoS$_2$ nanosheets, and the nanomaterial can act as an electron shuttle between the two valences. We further determined ROS levels in Nostoc exposed to different concentrations of 1T or 2H MoS$_2$ nanosheets. Interestingly, exposure to both phases of MoS$_2$ nanosheets significantly decreased intracellular ROS levels (p < 0.05, t test) as shown by the conversion of the dye 2′,7′-dichlorofluorescin diacetate (DCFH-DA) to its fluorescent form 2′,7′-dichlorofluorescein (DCF) (Figure 6C). This indicates that MoS$_2$ nanosheets can lower ROS levels in Nostoc cells. Total antioxidant capacity (TAC) is an important parameter for assessing antioxidant potential. In the presence of MoS$_2$ nanosheets, the TAC was significantly decreased intracellular ROS levels (p < 0.05, t test) increased by 25.7 to 28.7% (Figure 6D). On the basis of these results, we speculate that MoS$_2$ nanosheets may enhance the efficiency of the light reactions by catalyzing the conversion of H$_2$O$_2$ to H$_2$O in light reaction center. The light reaction supplies the energy and reducing power (ATP and NADPH) for the subsequent carbon-fixation stage of photosynthesis, boosting the Calvin cycle.

In addition to enzyme-mimicking activities, 2H MoS$_2$ also possess excellent optical and electronic properties. The small band gap (1.3 eV) makes MoS$_2$ capable of harvesting much of the solar spectrum. Under illumination, the intracellular semiconducting MoS$_2$ nanosheets can absorb light and generate photoexcited electrons that may be transferred to the electron transport chain of photosynthetic machinery and supply reducing power for Nostoc. In Giraldo et al., semiconducting single-walled carbon nanotubes (SWNTs) were shown to promote the photosynthetic activity of chloroplasts. The explanation for the photosynthetic enhancement by SWNTs was attributed to electron transfer between SWNTs and the chloroplast. On the other hand, extracellular large-sized MoS$_2$ nanosheets may also have the possibility to transfer the photoelectrons to Nostoc, providing the reducing power for Nostoc metabolism. To verify this hypothesis, a light–MoS$_2$–Nostoc reaction system was established in a single chamber to enable measurement of key photoelectrochemical parameters (Figure 6E). Under light illumination, the MoS$_2$–Nostoc hybrid exhibited greater photocurrent density (6.12%; Figure 6F), suggesting that a photoenhanced
extracellular electron transfer process was occurring from the semiconducting nanomaterial to the Nostoc cells.

In summary, the enhanced CO₂ fixation and biochemical production upon exposure to MoS₂ is likely the result of the intrinsic catalytic and optical-electrical activities of MoS₂ nanosheets, instead of the released Mo ions. Figure 7 summarized the proposed pathways for MoS₂ nanosheets altering metabolic processes in Nostoc.

CONCLUSIONS

The findings of this study have important implications for understanding the interaction between nanomaterials and photosynthetic microorganisms. First, we found that MoS₂ exposure at low dose (0.1 mg/L) can dramatically reprogram carbon and nitrogen metabolism of Nostoc, an important N₂-fixation cyanobacteria. In modern oceans, the release of anthropogenic nanomaterials is increasing due to the wide application of nanotechnology across a range of sectors. Cyanobacteria occupy a broad range of habitats across fresh water, marine, and terrestrial environments. This enables significantly cyanobacterial interaction with the discharged nanomaterials. Thus, nanomaterials with exceptional physiochemical properties may alter the elemental biogeochemical cycles via reprogramming intracellular metabolism. Second, we found that MoS₂ nanosheets exposure can boost the CO₂-fixation-related Calvin cycle and can subsequently enhance the production of valuable biochemicals. Thus, the MoS₂—Nostoc system might be an alternative approach for atmospheric CO₂ capture and simultaneous efficient microbial cell factory functions, providing a sustainable strategy to alleviate critical environmental and energy problems. Third, using the catalytic active sites of nanomaterials to accelerate metabolism of bacteria might be a straightforward approach to promote the efficiency of cyanobacteria-based cell factory beyond metabolic engineering and synthetic biology. Mechanistic investigations related to CO₂ fixation and the potential to exploit these critical metabolic outputs are currently underway, especially to use ¹³C-labeled metabolic flux analysis to accurately evaluate the carbon fixation and metabolism process.

METHODS

Preparation and Characterization of MoS₂ Nanosheets.

MoS₂ nanosheets with hexagonal (2H phase) or octahedral (1T phase) crystal structures were prepared according to Liu et al.⁵² 2H MoS₂ nanosheets were prepared by a facile hydrothermal method. Initially, 0.5 mmol of (NH₄)₆Mo₇O₂₄·4H₂O and 0.85 mmol of thiourea were dissolved in 35 mL of H₂O. After stirring for 30 min, the solution was transferred into a 50 mL Teflon-lined stainless-steel autoclave and kept at 220 °C for 24 h. After the autoclave was cooled to room temperature, the products were collected by centrifugation (13000 rpm, 20 min), washed with distilled water and ethanol for several times, and dried at 60 °C under vacuum. 1T MoS₂ nanosheets were prepared by a similar procedure except 1 mmol of (NH₄)₆Mo₇O₂₄·4H₂O and 30 mmol of thiourea were used.

Field emission scanning electron microscopy (FE-SEM) images were obtained on a Hitachi SU8010 microscope (Japan). High-resolution transmission electron microscopy (HRTEM) was also conducted (FEI Tecnai G2F30 Netherland). X-ray diffraction (XRD)
was conducted using a Bruker D8 diffractometer with Cu Kα X-rays. Raman spectra were from a Horiba Jobin spectrometer. The hydrodynamic diameter and ζ potential of the MoS$_2$ nanosheets in ultrapure water was measured via dynamic light scattering (DLS; Zetasizer Nano ZS, Malvern). A MoS$_2$ stock suspension of 0.1 mg/L for DLS analysis was sonicated (KH-100DB, Hechuang Ultrasonic, Jiangsu, China) at 45 kHz for 30 min to obtain a well dispersed suspension. MoS$_2$ Nanosheet Dissolution Experiment. The dissolution of Mo ions from 1T and 2H MoS$_2$ nanosheets was done in deionized water and in the cultivation solution (BG11-N). Specifically, 1 mg of the 1T or 2H phase of MoS$_2$ was added to 100 mL of deionized water or BG11-N solution, followed by incubation for 96 h. Samples were collected at 20 min and 24, 48, 72, and 96 h. At each sampling time, 10 mL of suspension was transferred into a centrifugal ultrfiltrer (MAP003C38, 3 kDa, Pall, USA), followed by centrifugation at 8000g for 20 min to isolate released Mo ions. Four replicates were used in each treatment at each time point. The collected supernatant was acidified by concentrated HNO$_3$ prior to quantification of Mo by inductively coupled plasma–optical emission spectroscopy (ICP-OES; PQ 9000, Analytik Jena).

Nostoc Culture and Growth Conditions. Nostoc sp. was obtained from the Institute of Wuhan Hydrobiology, Chinese Academy of Sciences. The initial density was 1×106 Nostoc cells mL$^{-1}$. BG11-N (composition in Table S1) was used as growth medium for Nostoc’s routine culture. Notably, given that one of the purposes of the study was to determine the impact of MoS$_2$ on N$_2$ fixation, the growth medium of BG11-N is deficient in nitrogen. If a N source (NO$_3^-$ or NH$_4^+$) is abundant in the growth medium, nitrogenase will remain inactive, and the N$_2$ fixation is likely to be inhibited to a certain degree. The cyanobacteria were cultured at 25 ± 1 °C using a 12 h/12 h light/dark cycle under continuous cool light. After 16 days, the cells were collected and washed with PBS buffer, and then centrifuged at 900 g for 10 min.

Growth Rate and MDA Content of Nostoc. The Nostoc cell optical densities (biomass) were determined at 680 nm (OD 680) via the 1T or 2H phase of MoS$_2$ was added to 100 mL of deionized water or BG11-N solution, followed by incubation for 96 h. Samples were then cooled to room temperature, followed by the addition of 1 mL of HCl (37% HCl:H$_2$O = 1:9) and dilution to 25 mL. The absorbance was measured at 220 and 275 nm using a UV spectrophotometer (UV2310I, Techcomp, China), with the calculation formula being $A = \Delta A_{220} - A_{275}$, A set of known concentrations of potassium nitrate (KNO$_3$, 0, 1, 2, 4, 6, 10, 14, and 16 mg/L) were used to prepare a standard curve.

Antioxidant Enzymes-Mimicking Activities of MoS$_2$ Nanosheets. The CAT-like catalytic performance of MoS$_2$ nanosheets was evaluated according to Liu et al. 22 The superoxide dismutase (SOD)-mimicking activities of MoS$_2$ nanosheets were measured using SOD colorimetric activity kit (Nanjing Jiancheng Bioengineering Institute, Nanjing, China). The peroxidase-like (POD-like) catalytic activity of MoS$_2$ nanosheets was determined using a nonenzyme-catalyzed colorimetric reaction according to Jiang et al. 63 More details of these protocols are provided in the Supporting Information.

ROS and Total Antioxidant Capacities in Nostoc. The level of ROS in cyanobacterial cells was determined using 2′,7′-dichlorodihydrofluorescein diacetate (H$_2$DCFDA) as a fluorescence probe. 66 Cyanobacteria (2 mL) were centrifuged at 4 °C for 900 g for 30 min, the supernatant was removed, 1 mL of Trit-HCI (10 mM) was added, and the sample was centrifuged again. Then 100 µL of supernatant was added to 800 µL of Trit-HCI (10 mM) and 100 µL of H$_2$DCFDA (100 µm) and incubated at 37 °C for 30 min. The fluorescence signal was monitored with a microplate reader (Synergy H4 Hybrid Reader, BioTek, America) using an excitation wavelength of 488 nm and an emission wavelength of 525 nm.

The antioxidant capacity of Nostoc was assessed by ferric-reducing antioxidant power (FRAP) assay. 65 First, the FRAP reagent was prepared freshly by mixing 300 mM acetate buffer (pH 3.6) with 10 mM tripyridyl-triazine (TPTZ) solution in 40 mM HCl and 20 mM FeCl$_3$. 6H$_2$O in 10:1.1 ratio and kept at 37 °C. Then 10 mL of cyanobacterial cells were centrifuged at 900g for 30 min, the supernatant was removed, 1.5 mL of extracting agent (80% acetone

https://doi.org/10.1021/acsnano.1c05656
ACS Nano 2021, 15, 16344−16356

16353

ACS Nano www.acsnano.org

Article
and ethanol; 1:1) was added to the precipitate, and the sample was extracted at 4 °C for 12 h in dark. The sample was then centrifuged at 1000g for 15 min, and to 50 μL of sample extract was added 1.5 mL of FRAP reagent. The samples were mixed and store in the dark at 37 °C for 4–5 h prior to measuring the absorbance of the mixture at 593 nm. A set of known concentrations of ferrous sulfate (FeSO₄) (0, 0.125, 0.25, 0.5, 1, and 2 mM) were prepared for a standard curve. The values obtained were expressed as mM of ferrous (Fe(II)) equivalent.

Statistical Analysis. For all data except GG-MS-based metabolomics data, a student’s t test was performed to evaluate the significance in the difference between the MoS₂ group and Control.

ASSOCIATED CONTENT

1. **Supporting Information**

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsnano.1c05656.

 - Assay for determination of enzyme activities; (Table S1) BG11-N growth medium composition; (Figure S1) MDA content of *Nostoc*; (Figure S2) MoS₂ nanosheet exposure effects; (Figures S3–S5) relative abundance amounts; (Figure S6) total nitrogen content; (Figure S7) PCA and PLS-DA score plot; (Figure S8) activities of MoS₂ nanosheets (PDF)

AUTHOR INFORMATION

Corresponding Author

Lijuan Zhao — State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; orcid.org/0000-0002-8481-0435; Email: ljzhao@nju.edu.cn

Authors

- Si Chen — State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Nibin Shi — State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Min Huang — State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Xianjun Tan — Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Xin Yan — State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Aodi Wang — State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Yuxiong Huang — Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; orcid.org/0000-0001-8124-643X
- Rong Ji — State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; orcid.org/0000-0002-1724-5253

ACKNOWLEDGMENTS

We thank Professor Hui Wei for helpful discussion and the group of Ye Zhang at Nanjing University for providing the electrochemistry workshop.

REFERENCES

