MoS$_2$ Nanosheets–Cyanobacteria Interaction: Reprogrammed Carbon and Nitrogen Metabolism

Si Chen,$^\mathrm{V}$ Nibin Shi,$^\mathrm{V}$ Min Huang,$^\mathrm{V}$ Xianjun Tan, Xin Yan, Aodi Wang, Yuxiong Huang, Rong Ji, Dongmei Zhou, Yong-Guan Zhu, Arturo A. Keller, Jorge L. Gardea-Torresdey, Jason C. White, and Lijuan Zhao$^\ast$

**ABSTRACT:** Fully understanding the environmental implications of engineered nanomaterials is crucial for their safe and sustainable use. Cyanobacteria, as the pioneers of the planet earth, play important roles in global carbon and nitrogen cycling. Here, we evaluated the biological effects of molybdenum disulfide (MoS$_2$) nanosheets on a N$_2$-fixation cyanobacteria (Nostoc sphaeroides) by monitoring growth and metabolome changes. MoS$_2$ nanosheets did not exert overt toxicity to Nostoc at the tested doses (0.1 and 1 mg/L). On the contrary, the intrinsic enzyme-like activities and semi-conducting properties of MoS$_2$ nanosheets promoted the metabolic processes of Nostoc, including enhancing CO$_2$-fixation-related Calvin cycle metabolic pathway. Meanwhile, MoS$_2$ boosted the production of a range of biochemicals, including sugars, fatty acids, amino acids, and other valuable end products. The altered carbon metabolism subsequently drove proportional changes in nitrogen metabolism in Nostoc. These intracellular metabolic changes could potentially alter global C and N cycles. The findings of this study shed light on the nature and underlying mechanisms of bio-nanoparticle interactions, and offer the prospect of utilization bio-nanomaterials for efficient CO$_2$ sequestration and sustainable biochemical production.

**KEYWORDS:** transition metal dichalcogenides, nanobio, cell factory, carbon sequestration, metabolic reprogramming, carbon fixation

**INTRODUCTION**

Transition metal dichalcogenides (TMDs) are promising two-dimensional (2D) materials.$^1$ Molybdenum disulfide (MoS$_2$), as one of the most important TMDs, possesses excellent electrical, optical, electrochemical, and biological properties, which enable a wide variety of electronics, biomedicine, and energy applications.$^2$ In addition, the high density of active surface sites makes them ideal for biochemical sensing applications. MoS$_2$ can be used as biosensors for metabolites, nucleic acids, proteins, metal ions, and even a cell.$^3$ Recently, MoS$_2$ nanosheets have been used for environmental applications, including wastewater treatment, adsorption, photocatalysis, membrane-based separation, and disinfection.$^4$ The increasing use of MoS$_2$ nanomaterials, especially in the environmental field, will likely lead to the significant release of MoS$_2$ nanosheets into the environment.$^5$ Thus, understanding the environmental behavior and biological effects of this material is critically important for its safe and sustainable use.

Cyanobacteria were the first organisms that performed oxygenic photosynthesis on earth and are commonly assumed to be a critical node in the evolution of life.$^6$ In addition to their roles in evolution, cyanobacteria are major drivers of the biogeochemical cycling of carbon (C) and nitrogen (N).$^7$ It is estimated that 20−30% organic carbon on the earth is derived from photosynthetic carbon fixation by cyanobacteria.$^8$ In addition, cyanobacteria are the primary N$_2$-fixing microorganisms in marine environments.$^9$ Cyanobacteria inhabit diverse aquatic and terrestrial environments,$^{10}$ ensuring significant coexisting and interaction with natural or engineered nanomaterials. Given the important ecological
function of cyanobacteria, investigating the environmental implication of nanomaterials such as MoS$_2$ nanosheets on cyanobacteria is of great importance.

In terms of cellular interactions, nanoscale particles are known to penetrate lipid bilayers of cell membrane. As such, MoS$_2$ nanosheets may penetrate cyanobacterial cells, and the diverse surface chemistry of this material makes interaction with biological molecules highly likely. Cao et al. have shown that MoS$_2$@HSA can rapidly interact with blood proteins and immune cells. In addition, MoS$_2$ nanosheets have semi-conducting properties, and in nature, semiconducting nanomaterials are similar to chlorophyll molecules in that both materials can be excited by photons, generating photoexcited electrons. The relatively small band gap (1.3 eV) of MoS$_2$ allows most of the solar spectrum to be harvested. As such, MoS$_2$ nanosheets located in thylakoid membrane have the potential to help cyanobacteria harvest greater energy per photon. Recent studies have revealed that semiconductors can transfer photogenerated electrons to non-photosynthetic bacteria, promoting their growth and cellular metabolism.

Whether additional solar energy from semiconducting nanomaterials can be harvested and be used to stimulate the metabolism of cyanobacteria accordingly remains largely unknown. In addition, MoS$_2$ nanosheets can be oxidized by O$_2$ environmentally, subsequently releasing Mo ions, and given that Mo is a required nutrient, these released ions may induce certain biological processes. The changes of metabolism induced by either nanoparticulate or ionic Mo will be reflected by the metabolite profile of the cell. Metabolites are the end products of cellular metabolic reactions, and changes in the metabolite profile can represent a complex network of biological events that reflect the physiologic state of the organism. Therefore, metabolomics, studying the complete set of metabolites, offers a snapshot of cellular physiology in response to MoS$_2$ nanosheet exposure.

In the present study, we investigated the biological effects of two phases of MoS$_2$ nanosheets (1T and 2H) on a N$_2$-fixing cyanobacteria (Nostoc sp (N. sphaeroides)). Nostoc were exposed to different concentrations (0, 0.1, and 1 mg/L) of 1T or 2H MoS$_2$ for 96 h. The impacts of MoS$_2$ on the growth of Nostoc was evaluated by determining the optical density at 680 nm (OD 680), chlorophyll content, and dry weight. Meanwhile, gas chromatography–mass spectrometry (GC-MS) based metabolomics was used to evaluate changes in the metabolome, and the mechanistic significance of these changes as a function of MoS$_2$ exposure was evaluated.
study provides valuable information on the environmental risk of MoS₂ nanosheets.

RESULTS AND DISCUSSION

Characteristics of MoS₂ Nanosheets. The scanning electron microscopy (SEM) images show that both 1T and 2H MoS₂ nanosheets possessed a flake-like morphology (Figure 1A,B). The transmission electron microscopy (TEM) images further confirmed the ultrathin nanosheet structures of 1T and 2H MoS₂ (Figure 1C,D). TEM images also reveal that the mean sizes for 1T and 2H MoS₂ nanosheets are 150 ± 20 and 350 ± 50 nm, which suggest that the 2H phase MoS₂ nanosheets have a larger size compared to 1T MoS₂. The crystal phases of 2H and 1T MoS₂ nanosheets were characterized by X-ray diffraction. The characteristic peaks for 2H MoS₂ are evident by the XRD patterns (Figure 1E), while the (002) peak of 1T MoS₂ shifts to a lower degree of 9.3°, accompanying the formation of a second-order peak at 18.6°. This phenomenon was associated with newly formed lamellar structure with enlarged interlayer spacing by NH₄⁺, which was consistent with previous reports. Dynamic light scattering (DLS) analysis revealed hydrodynamic diameters of 1T and 2H MoS₂ in nanopore water of 312 ± 38 and 947 ± 6 nm, respectively, with ζ potential values of 5.6 ± 0.46 and 6.0 ± 3.9 mV, respectively. These indicate the significant difference in size but not charge between two phases of MoS₂ nanosheets.

Dissolution of MoS₂ Nanosheets. The degradation and dissolution behavior of nanomaterials in the environment is of critical importance for assessing the environmental fate and biological effects. Thus, the dissolution of MoS₂ nanosheets in both water and cultivation medium (BG11-N) was
monitored over 96 h. As shown in Figure 1F, metallic 1T MoS₂ nanosheets have a much greater dissolution rate than that of 2H MoS₂ in both water and BG11-N media. At 96 h, the dissolution rate of 1T MoS₂ reached 23.5 and 34.6% in water and BG11-N, respectively. This indicates that 1T MoS₂ is relatively unstable in the environment, producing a pool of soluble Mo ions that will coexist with particulate MoS₂ in environmental media. Therefore, 1T MoS₂ nanosheets will pose both a “nonspecific” risk and Mo ions risk to receptors. In contrast, 2H MoS₂ nanosheets are more stable, with dissolution rates of 2.4 and 4.8% in water and BG11-N, respectively. Thus, material-specific or nonspecific effects will be dominant for 2H MoS₂ nanosheets when released into the environment. The dissolution is mediated through oxidation of the MoS₂ nanosheets, and the released soluble species is molybdate ion (MoO₄²⁻).²⁴

**Influence of MoS₂ Nanosheets on Nostoc Growth.** The growth rate of Nostoc was monitored via measuring OD 680 at 24 h intervals over 96 h. The results show that OD 680 were unchanged upon exposure to either MoS₂ nanosheet (1T and 2H) at either dose (Figure 2A). Chlorophyll a levels are another standard method for determining growth rates of photosynthetic organisms.²⁵ The chlorophyll a growth curve shows that exposure to MoS₂ nanosheets did not impact pigment content (Figure 2B). Malondialdehyde (MDA) is the product of lipid peroxidation of the cell membrane, and its content reflects the degree of oxidative damage. **Supporting Information** Figure S1 shows that MDA content was unchanged upon exposure to MoS₂ nanosheets, indicating no oxidative stress was induced. SEM micrographs show that Nostoc cells cultivated with 1T or 2H MoS₂ appeared intact, indicating no damage to the cell membrane (Figure 2C). Together, these findings suggest that both phases of MoS₂ nanosheets exerted minimal negative impacts on Nostoc growth.

**GC-MS-Based Metabolomics.** Although MoS₂ nanosheets did not exert overt toxicity to Nostoc, the materials’ complex surface chemistry enables interaction with intracellular biomolecules, potentially affecting the metabolism of Nostoc. In order to evaluate the potentially altered biochemical pathways, GC-MS-based metabolomics was performed.²⁶ By using GC-MS, 294 metabolites were identified and semi-quantified in Nostoc cells. In order to assess the variation of the measured metabolome between groups, multivariate sparse partial least-squares-discriminant analysis (sPLS-DA) was performed. The score plot indicates good separation of the four MoS₂ groups (Nostoc in the presence of MoS₂) from the control group (Nostoc in the absence of MoS₂; Figure 3A). These data indicate that both phases of MoS₂ nanosheets altered the metabolite profile of Nostoc, and the alteration occurred in a somewhat dose-dependent manner. Generally, 2H MoS₂ nanosheets induced more pronounced metabolic changes than did 1T MoS₂ at the same dose. To focus on the most important features that contributed to the separation between MoS₂ groups and the control group, metabolites with a sPLS-DA VIP score > 0.1 were selected for the final discriminant feature list (Figure 3B). A total of 43 metabolic features significantly distinguished the MoS₂ and control groups. Interestingly, all of these metabolites were up-regulated upon MoS₂ exposure. The relative abundance of these metabolites followed a uniform pattern: 2H MoS₂ at 1 mg/L > 2H MoS₂ at 0.1 mg/L > 1T MoS₂ at 1 mg/L > 1T MoS₂ at 0.1 mg/L > Control. This systematic positive modulation of metabolic processes in Nostoc driven by MoS₂ is both interesting and promising. This suggests that MoS₂ at both doses are generally beneficial for Nostoc metabolism. In addition, our previous study found that antioxidant related metabolites, such as phenolic acids and polyphenols, are very sensitive to environmental stressors. For example, Ag NPs at 0.1 mg/L resulted in a considerable decrease of antioxidant compounds.²⁷ In contrast, all of the detected antioxidants in Nostoc, including catechin, 4-hydroxycinnamic acid, resveratrol, 1,2,4-benzenetriol, epicatechin, pelargonic acid, 3,4-dihydroxycinnamic acid, chlorogenic acid, and α-tocopherol, were unaffected upon MoS₂ exposure (data not shown). This indicates that MoS₂ had limited impacts on oxidative stress in Nostoc, which is consistent with the above-mentioned data on MDA and the growth rate.

**Carbon Metabolism.** It is noteworthy that several key intermediates in the Calvin cycle were significantly increased upon MoS₂ exposure, including D-glyceraldehyde-3-phosphate (G3P, 2–7-fold), dihydroxyacetone phosphate (DHAP, 2–10-fold), 3-phosphoglyceric acid (3-PGA, 1–6-fold), D-ribulose-5-
phosphate (Ru-5-P, 2−13-fold), D-fructose-1,6-bisphosphate (FBP, 1−4-fold), D-fructose-6-phosphate (F-6-P, 2−12-fold), and glucose-6-phosphate (G-6-P, 2−8-fold) (see box plot in Figure 4A). In addition, the final product of the Calvin cycle, glucose, was significantly increased by 3−16-fold upon exposure to two phases of MoS$_2$ nanosheets at both
For instance, several important carbohydrates such as maltotriose, celllobiose, arabinose, and palmitinitol were increased 1.5–5.6-fold upon MoS2 exposure (Figure S3). Moreover, a number of unsaturated fatty acids and their precursors, including myristic acid (17–32%), palmitic acid (30–83%), palmitelaidic acid (2–10-fold), oleic acid (3–12-fold), linoleic acid (4–13-fold), linolenic acid (5–9-fold), behenic acid (31–57%), lignoceric acid (15–50%), and 2-monoolein (1.6–3.7-fold) were significantly increased upon exposure to MoS2 nanosheets (Figure S4). This indicates that MoS2 exposure boosted fatty acid biosynthesis in Nostoc. Fatty acids are valuable biofuels, and genetically modified cyanobacteria have been used to increase the fatty acid production for this purpose.30

In addition to fatty acids, we found that exposure to both 1T and 2H MoS2 significantly increased the synthesis of a variety of valuable biochemicals. For example, (r)-3-hydroxybutyric acid (3HB), a precursor to synthesize biodegradable plastics poly(hydroxyalkanoates) (PHAs) and many related chemicals,11 was increased 2.5–6.9-fold upon exposure to MoS2 nanosheets. Myo-inositol is a precursor for many valuable chemicals used in the functional food and pharmaceutical industry;32 the abundance of myo-inositol increased 20–38-fold upon exposure to MoS2 nanosheets. In addition, d-myo-inositol-4-phosphate, the downstream product of myo-inositol, increased 603–1620-fold compared to unamended controls. Additionally, high-value metabolites such as glucosamine (5–18-fold), dehydroacetic acid (DHA, 7.5–36 fold), cheno-deoxycholic acid (CDCA, 1.8–5.9-fold), β-sitosterol (6–21-fold), and formononetin (FMT, 1.5–6.7-fold) were all significantly increased upon exposure to MoS2 (Figure S5); these high-value-added compounds are widely used in the cosmetics, pharmaceutical, and food industries.33 Taken together, these findings demonstrate that MoS2 nanosheets exhibit great potential to augment photosynthetic CO2 fixation and biochemicals production; this systemic MoS2-driven

Figure 5. Metabolic pathways involved in carbon and nitrogen metabolism in cyanobacteria (Nostoc sphaeroides). Pathways were generated by mapping labeled metabolites onto known metabolic pathways. Each arrow shows the direction of the reaction. RuBP, ribulose 1,5-bisphosphate; Ru5P, d-ribulose-5-phosphate; F6P, d-fructose-6-phosphate; G3P, glyceraldehyde-3-phosphate; 3-PGA, 3-phosphoglyceric acid; PEP, phosphoenolpyruvate; Pyr, pyruvate; Cit, citrate; ICit, isocitrate; 2-OG, 2-oxoglutarate; SSA, succinic semialdehyde; Suc, succinate; Fum, fumarate; Mal, malate; Arg, arginine; His, histidine; Pro, proline; Glu, glutamic acid; Gln, glutamine; Ile, isoleucine; Met, methionine; Val, valine; Phe, phenylalanine; Tyr, tyrosine.
increase in cyanobacterial metabolic output has far reaching implications.

Cyanobacteria are usually regarded as promising cell factories;\textsuperscript{34} they can fix atmospheric CO\textsubscript{2} and simultaneously produce hydrogen\textsuperscript{35,36} and other valuable chemicals and biofuels through endogenous metabolic pathways.\textsuperscript{37} However, low solar to energy conversion efficiencies and limited light harvesting capacity remain as critical bottlenecks for the commercial application of cyanobacteria-based cellular factories.\textsuperscript{38} To date, metabolic engineering and synthetic biology are strategies commonly used to accelerate metabolism and improve the efficiency of cellular factories.\textsuperscript{39,40} Compared to genetic engineering to alter specific metabolic pathways, exogenous nanomaterial stimulation to modulate bacterial metabolism is a more straightforward and potentially more robust platform for efficient and sustainable CO\textsubscript{2} capture and large-scale biochemicals production.

Nitrogen Metabolism. Certain cyanobacteria can perform oxyergic photosynthesis and nitrogen fixation simultaneously,\textsuperscript{41,42} including the selected \textit{Nostoc} in this study. Importantly, a number of amino acids and their derivatives were significantly increased in \textit{Nostoc} in the presence of 1T or 2H MoS\textsubscript{2} nanosheets (Figure 4B, box plot). Serine and glycine, both of which are related to photosynthetic respiration, were significantly increased by 1.6−3.7-fold and 1.7−4.9-fold, respectively, upon exposure to MoS\textsubscript{2} nanosheets. In addition, amino acids derived from pyruvate, including alanine (1.9−5.4-fold), valine (0.68−2.9-fold), and isoleucine (0.88−3.9-fold), were all significantly elevated by MoS\textsubscript{2}. Amino acids derived from oxaloacetate (OAA), such as aspartic acid (0.46−2.3-fold), lysine (0.83−6.3-fold), and threonine (0.74−3.0-fold), were also elevated upon exposure to MoS\textsubscript{2}. Proline, derived from 2-oxoglutarate (2OG), was significantly increased 1.4−2.6-fold compared to control. Phenylalanine, tyrosine, and tryptophan serve as precursors for important secondary metabolites related antioxidant activity\textsuperscript{43} and were all also significantly increased. The relative abundance of these significantly changed amino acids followed the same pattern: 2H MoS\textsubscript{2} at 1 mg/L > 2H MoS\textsubscript{2} at 0.1 mg/L > 1T MoS\textsubscript{2} at 1 mg/L > 1T MoS\textsubscript{2} at 0.1 mg/L > Control (Figure 4B), which is very similar to that of the carbon-related metabolites.

The increases in amino acids levels suggest that MoS\textsubscript{2} nanosheets could have increased N\textsubscript{2} fixation. As such, we determined the total nitrogen content in \textit{Nostoc} in the absence and in the presence of MoS\textsubscript{2} nanosheets. Surprisingly, the total N level remained unchanged regardless of nanosheet type or

Figure 6. Antioxidant enzyme-mimicking properties and semiconducting activities of MoS\textsubscript{2} nanosheets. (A and B) POD-like activities of 1T and 2H MoS\textsubscript{2}. (C and D) Levels of ROS and total antioxidant capacities in cyanobacteria (\textit{Nostoc sphaeroides}) exposed to different concentrations (0.1 and 1 mg/L) of 1T or 2H MoS\textsubscript{2} nanosheets for 96 h. (E) Schematic diagram of the electron transferring process between 2H MoS\textsubscript{2} nanosheet and cyanobacteria under visible light irradiation. (F) Transition photocurrent of MoS\textsubscript{2} and MoS\textsubscript{2}−cyanobacteria system under light on/off cycles.

16350
dose (Figure S6). Thus, an alternative mechanism for the increased amino acid production must be at play. Nitrogen metabolism is closely linked with carbon metabolism through the tricarboxylic acid (TCA) cycle (Figure S5). Since MoS2 nanosheets enhanced carbon-fixation-related metabolic pathways, *Nostoc* likely enhanced nitrogen (amino acid) assimilation to keep pace with increased CO2 fixation, because the metabolism needs to balance the C/N ratio.44,45 In summary, MoS2 exposure enhanced carbon fixation and subsequently altered nitrogen metabolism. Given the important ecological function of cyanobacteria, these cellular changes in C and N metabolism are notable and, at a large scale, could potentially influence global biogeochemical cycling of C and N.46

**Mechanism for MoS2 Induced Metabolic Reprogramming in Nostoc.** The above results indicate that both 1T and 2H MoS2 nanosheets at relatively low dose (0.1 mg/L) profoundly reprogrammed the central carbon metabolism in *Nostoc*. We are curious about the underlying mechanism for this significant and potentially important metabolome shift. Both the nanomaterial itself and Mo ions released from the nanosheets may contribute to the observed biological response of the *Nostoc*. Given the fact that 1T phase MoS2 with higher dissolution rate (supplying more Mo ions) induced much less pronounced metabolic changes compared to 2H phase MoS2, we consider the mechanism by which MoS2 nanosheets reprogram *Nostoc* metabolism to be more strongly linked to the nanoscale material, instead of Mo ions. To verify this hypothesis, additional experiments were conducted to test whether Mo ions can induce similar metabolic reprogramming. *Nostoc* were then cultivated in BG11-N growth media amended with different concentrations (0, 4, 5, and 9 µg/L) of Mo ions (Na2MoO4·2H2O) for 96 h, and the collected *Nostoc* cells were subjected to the metabolomics analysis as described above. Importantly, neither the unsupervised PCA nor the supervised PLS-DA model detected any significant separation between the Mo ion groups and control group (Figure S7), indicating that Mo ions did not shift the *Nostoc* metabolome. All metabolites (Calvin cycle related metabolites, fatty acids, and amino acids) that were found to be significantly increased upon exposure to MoS2 nanosheets remained unaffected by MoO42− treatment. These results clearly indicate that the significant metabolic reprogramming of *Nostoc* driven by MoS2 nanosheets is not due to the released Mo ions but is a function of the nanoscale properties of this important material, although Mo is an essential element and participates in a wide range of metabolic processes.

Thus, it is likely that small-sized MoS2 nanostructures gain the entry into the cells, and once there, certain intrinsic biological and optical—electrical properties of MoS2 nanostructures directly drive the metabolic changes. Chen et al.47 showed that MoS2 nanosheets possess intrinsic multienzyme-mimicking activities, including superoxide dismutase (SODs), catalases (CATs), and peroxidases (PODs), under physiological conditions (pH 7.4, 25 °C). Thus, MoS2 nanosheets possess ROS (reactive oxygen species) scavenging activities. For oxygenic photosynthetic organisms, ROS are inevitably generated by photosynthetic electron transport.48 When the excitation of photosynthetic pigments exceeds metabolic demand, subsequent electron transfer reactions can lead to ROS generation.49 Light-driven electron transport transfers electrons from the acceptor site of photosystem I (PSI) to various acceptors in the membrane, including oxygen. For example, there is direct electron transfer from reduced ferredoxin to O2, generating superoxide radicals (O2−).50 The generated ROS may induce oxidative damage, diminishing photosynthetic efficiencies. As such, if MoS2 nanosheets with antioxidant capacities reach the thylakoid membrane, it may improve the redox status of PSI and PSII embedded in the membrane by scavenging ROS and subsequently increase photosynthetic efficiency. To verify these hypotheses, we first determined the POD-, CAT-, and SOD-like activities of both phases of MoS2 nanosheets. Results showed that 1T and 2H MoS2 nanosheets exert weak CAT- (Figure S8) and no SOD-mimicking activity (data not shown). However, both 1T and 2H MoS2 nanosheets exhibit excellent POD enzyme-mimicking activities (Figure 6A,B), which can catalyze detoxification of H2O2 to H2O. It is noteworthy that 2H MoS2 possessed greater POD-mimicking activities and also resulted in more pronounced metabolic reprogramming as compared to 1T MoS2. This may indicate that the enhancement of CO2 fixation is tightly linked to the intrinsic catalytic activities of MoS2. The underlying mechanism for MoS2 nanosheets has POD-mimicking activities is attributed to the electron transferring capacities of the nanomaterial.57 Both Mo4+ and Mo6+ exist on the surface of the MoS2 nanosheets, and the nanomaterial can act as an electron shuttle between the two valences. We further determined ROS levels in *Nostoc* exposed to different concentrations of 1T or 2H MoS2 nanosheets. Interestingly, exposure to both phases of MoS2 nanosheets significantly decreased intracellular ROS levels (p < 0.05, t test) as shown by the conversion of the dye 2′,7′-dichlorofluorescin diacetate (DCFH-DA) to its fluorescent form 2′,7′-dichlorofluorescein (DCF) (Figure 6C). This indicates that MoS2 nanosheets can lower ROS levels in *Nostoc* cells. Total antioxidant capacity (TAC) is an important parameter for assessing antioxidant potential.51 In the presence of MoS2 nanosheets, the TAC was significantly (p < 0.05, t test) increased by 25.7 to 28.7% (Figure 6D). On the basis of these results, we speculate that MoS2 nanosheets may enhance the efficiency of the light reactions by catalyzing the conversion of H2O2 to H2O in light reaction center. The light reaction supplies the energy and reducing power (ATP and NADPH) for the subsequent carbon-fixation stage of photosynthesis, boosting the Calvin cycle.

In addition to enzyme-mimicking activities, 2H MoS2 also possess excellent optical and electronic properties. The small band gap (1.3 eV) makes MoS2 capable of harvesting much of the solar spectrum.4 Under illumination, the intracellular semiconducting MoS2 nanosheets can absorb light and generate photoexcited electrons that may be transferred to the electron transport chain of photosynthetic machinery and supply reducing powder for *Nostoc*. In Giraldo et al.,52 semiconducting single-walled carbon nanotubes (SWNTs) were shown to promote the photosynthetic activity of chloroplasts. The explanation for the photosynthetic enhancement by SWNTs was attributed to electron transfer between SWNTs and the chloroplast. On the other hand, extracellular large-sized MoS2 nanosheets may also have the possibility to transfer the photoelectrons to *Nostoc*, providing the reducing power for *Nostoc* metabolism. To verify this hypothesis, a light–MoS2–*Nostoc* reaction system was established in a single chamber to enable measurement of key photoelectrochemical parameters (Figure 6E). Under light illumination, the MoS2–*Nostoc* hybrid exhibited greater photocurrent density (6.12%; Figure 6F), suggesting that a photoinduced
extracellular electron transfer process was occurring from the semiconducting nanomaterial to the Nostoc cells.

In summary, the enhanced CO2 fixation and biochemical production upon exposure to MoS2 is likely the result of the intrinsic catalytic and optical/electrical activities of MoS2 nanosheets, instead of the released Mo ions. Figure 7 summarized the proposed pathways for MoS2 nanosheets altering metabolic processes in Nostoc.

CONCLUSIONS

The findings of this study have important implications for understanding the interaction between nanomaterials and photosynthetic microorganisms. First, we found that MoS2 exposure at low dose (0.1 mg/L) can dramatically reprogram carbon and nitrogen metabolism of Nostoc, an important N2-fixation cyanobacteria. In modern oceans, the release of anthropogenic nanomaterials is increasing due to the wide application of nanotechnology across an array of sectors. Cyanobacteria occupy a broad range of habitats across fresh water, marine, and terrestrial environments. This enables significantly cyanobacterial interaction with the discharged nanomaterials. Thus, nanomaterials with exceptional physicochemical properties may alter the elemental biogeochemical cycles via reprogramming intracellular metabolism. Second, we found that MoS2 nanosheets exposure can boost the CO2-fixation-related Calvin cycle and can subsequently enhance the production of valuable biochemicals. Thus, the MoS2–Nostoc system might be an alternative approach for atmospheric CO2 capture and simultaneous efficient microbial cell factory functions, providing a sustainable strategy to alleviate critical environmental and energy problems. Third, using the catalytic active sites of nanomaterials to accelerate metabolism of bacteria might be a straightforward approach to promote the efficiency of cyanobacteria-based cell factory beyond metabolic engineering and synthetic biology. Mechanistic investigations related to CO2 fixation and the potential to exploit these critical metabolic outputs are currently underway, especially to use 13C-labeled metabolic flux analysis to accurately evaluate the carbon fixation and metabolism process.

METHODS

Preparation and Characterization of MoS2 Nanosheets. MoS2 nanosheets with hexagonal (2H phase) or octahedral (1T phase) crystal structures were prepared according to Liu et al.52 2H MoS2 nanosheets were prepared by a facile hydrothermal method. Initially, 0.5 mmol of (NH4)6Mo7O24·4H2O and 0.85 mmol of thiourea were dissolved in 35 mL of H2O. After stirring for 30 min, the solution was transferred into a 50 mL Teflon-lined stainless-steel autoclave and kept at 220 °C for 24 h. After the autoclave was cooled to room temperature, the products were collected by centrifugation (13000 rpm, 20 min), washed with distilled water and ethanol for several times, and dried at 60 °C under vacuum. 1T MoS2 nanosheets were prepared by a similar procedure except 1 mmol of (NH4)6Mo7O24·4H2O and 30 mmol of thiourea were used. Field emission scanning electron microscopy (FE-SEM) images were obtained on a Hitachi SU8010 microscope (Japan). High-resolution transmission electron microscopy (HRTEM) was also conducted (FEI Tecnai G2F30 Netherland). X-ray diffraction (XRD)
was conducted on using a Bruker D8 diffractometer with Cu Kα X-rays. Raman spectra were from a Horiba Jobin spectrometer. The hydrodynamic diameter and ζ potential of the MoS2 nanosheets in ultrapure water was measured via dynamic light scattering (DLS; Zetasizer Nano ZS, Malvern). A MoS2 stock suspension of 0.1 mg/L for DLS analysis was sonicated (KH-100DB, Hechuang Ultrasonic, Jiangsu, China) at 45 kHz for 30 min to obtain a well dispersed suspension.

MoS2 Nanosheet Dissolution Experiment. The dissolution of Mo ions from 1T and 2H MoS2 nanosheets was done in deionized water and in the cultivation solution (BG11-N). Specifically, 1 mg of the 1T or 2H phase of MoS2 was added to 100 mL of deionized water or BG11-N solution, followed by incubation for 96 h. Samples were collected at 20 min and 24, 48, 72, and 96 h. At each sampling time, 10 mL of suspension was transferred into a centrifugal ultrafiltrator (MAP003C38, 3 kDa, Pall, USA), followed by centrifugation at 8000g for 20 min to isolate released Mo ions. Four replicates were used in each treatment at each time point. The collected supernatant was acidified by concentrated HNO3 prior to quantification of Mo by inductively coupled plasma–emission spectrometry (ICP-OES; PQ 9000, Analytik Jena).

Nostoc Culture and Growth Conditions. Nostoc sphaeroides cyanobacteria were obtained from the Institute of Wuhan Hydrobiology, Chinese Academy of Sciences. The initial density was 1 × 10⁶ Nostoc cells mL⁻¹. BG11-N (composition in Table S1) was used as growth medium for Nostoc’s routine culture. Notably, given that one of the purposes of the study was to determine the impact of MoS2 on N₂ fixation, the growth medium of BG11-N is deficient in nitrogen. If a N source (NO₃⁻ or NH₄⁺) is abundant in the growth medium, nitrogenase will remain inactive, and the N₂ fixation is likely to be inhibited to a certain degree. The cyanobacteria were cultured at 25 ± 1 °C using a 12 h/12 h light/dark cycle under continuous cool light fluorescent lights with a total light intensity of 36 μM photons m⁻² s⁻¹.

Growth Rate and MDA Content of Nostoc. The Nostoc cell optical densities (biomass) were determined at 680 nm (OD 680) using a microplate spectrophotometer (Varioskan LUX, Thermo Scientific, America) according to the manufacturer’s instructions. Chlorophyll content was determined according to Sigl et al.34 The thioarbituric acid-reactive substances (TBARS) assay was used to determine MDA content as a measure of lipid peroxidation in cyanobacteria.35 Briefly, 1 mL of cyanobacterial cells was mixed with 2 mL of 10% trichloroacetic acid, and then centrifuged at 10000g for 15 min. A 1 mL supernatant was added to 3 mL of 0.67% thioarbituric acid; the mixture was heated in a water bath at 95 °C for 30 min. After cooling, the absorbance at 450, 532, and 600 nm was measured with a microplate reader (Synergy H4 Hybrid Reader, BioTek, America). 

SEM Observation of MoS2–Cyanobacteria. The morphology of cyanobacterial cells and the distribution of MoS2 on the cell surface were observed using SEM (FEI Quanta 250 FEG) equipped with an energy dispersive X-ray spectroscopy (EDS; Oxford Aztec X-MaxN80). Briefly, the samples were fixed in 2.5% glutaraldehyde, dehydrated in gradient concentrations of ethanol, and coated with a layer of gold, and then the images were observed and analyzed for MoS2 distribution using SEM and EDS.

Quantification of Metabolites in Nostoc Using GC-MS. MoS2 nanosheets (2H phase) at 0.1 mg/L were added to the cyanobacteria growth media (BG11-N, Table S1), followed by cultivation for 96 h. The extraction of metabolites from cyanobacteria cells and subsequent GC-MS quantification were conducted according to the protocol reported previously. Briefly, the cells (15 mL) were collected by centrifugation (3000 rpm, 20 min) for metabolome analysis. The cell pellets were then washed 3 times with PBS buffer. Subsequently, the washed cell pellets were immediately frozen in liquid nitrogen for 20s for complete metabolic inactivation.36 The frozen samples were stored at −80 °C. The metabolites were extracted from deep frozen cells using 1 mL of 80% methanol containing a defined amount of the internal standard 2-chloro-l-phenylalanine (0.3 mg·mL⁻¹) and 200 μL of chloroform to extract lipophilic metabolites. The mixtures were sonicated for 30 min followed by centrifugation. The collected supernatant was vacuum freeze-dried. The extracted compounds were derivatized using methoxylamine hydrochloride and N,O-bis-(trimethylsilyl) trifluoroacetamide (BSTFA). An Agilent 7890B gas chromatograph coupled to an Agilent 5977A mass selective detector (Santa Clara, CA, USA), with a DB-5MS fused-silica capillary column (30 m × 0.25 mm internal diameter with 0.25 μm film; Agilent J&W Scientific, Folsom, CA, USA), was used to analyze the samples. Quantification was reported as peak height using the unique ion as default. Metabolites were unambiguously assigned by the BinBase identifier numbers using retention index and mass spectrum as the two most important identification criteria. More details regarding sample derivatization and GC-MS analysis are referenced in a previous study.37

Metabolomics Data Analysis. For GC-MS data, a supervised sparse partial-leastsquares discriminant analysis (sPLS-DA) clustering method was run via online resources (http://www.metaoanalyst.ca/).38 Before sPLS-DA, data normalization (normalization by sum) was performed for general-purpose adjustment on the basis of the differences among samples, and data transformation (log transformation) was conducted to make individual features more comparable. The variable importance in projection (VIP) is the weighted sum of the squares of the sPLS-DA analysis, which indicates the importance of a variable to the entire model.39 A variable with a VIP greater than 0.1 is regarded as responsible for separation and is defined as a discriminating metabolite in this study.40 Biological pathway analysis was performed on the basis of the GC-MS data using MetaboAnalyst 2.0.41 The library used in pathway analysis is the Chlorella variabilis (green alga) KEGG pathway. The impact value threshold calculated for pathway identification was set at 0.1.42

Total Nitrogen Determination. The total nitrogen in the cyanobacteria was determined via persulfate oxidation.43 A 5 mL aliquot of cyanobacteria was placed in a colorimetric tube and diluted to 10 mL, followed by the addition of 5 mL of alkaline potassium persulfate (40 g of K₂S₂O₈ and 15 g of NaOH in 1 L of H₂O). The plug was tightened, and the sample was heated in a sterilized pan (120–124 °C, 30 min). Samples were then cooled to room temperature, followed by the addition of 1 mL of HCl (37% HCl; HCl: H₂O = 1:9) and dilution to 25 mL. The absorbance was measured at 220 and 275 nm using a UV spectrophotometer (UV2310II, Techcomp, China), with the calculation formula being A = A₂₂₀ − A₂₇₅. A set of known concentrations of potassium nitrate (KNO₃) (0, 1, 2, 4, 6, 10, 14, and 16 mg/L) were used to prepare a standard curve.

Antioxidant Enzymes-Mimicking Activities of MoS₂ Nanosheets. The CAT-like catalytic performance of MoS2 nanosheets was evaluated according to Liu et al.44 The superoxide dismutase (SOD)-mimicking activities of MoS₂ nanosheets were measured using SOD colorimetric activity kit (Nanjing Jiechong Bioengineering Institute, Nanjing, China). The peroxidase-like (POD-like) catalytic activity of MoS₂ nanosheets was determined using a nanozyme-catalyzed colorimetric reaction according to Jiang et al.45 More details of these protocols are provided in the Supporting Information.

ROS and Total Antioxidant Capacities in Nostoc. The level of ROS in cyanobacterial cells was determined using 2',7'-dichlorodihydrofluorescein diacetate (H₂DCFDA) as a fluorescence probe.46 Cyanobacteria (2 mL) were centrifuged at 4 °C for 900 g for 30 min, the supernatant was removed, 1 mL of Tris-HCl (10 mM) was added, and the sample was centrifuged again. Then 100 μL of supernatant was added to 800 μL of Tris-HCl (10 mM) and 100 μL of H₂DCFDA (100 μm) and incubated at 37 °C for 30 min. The fluorescence signal was monitored with a microplate reader (Synergy H4 Hybrid Reader, BioTek, America) using an excitation wavelength of 488 nm and an emission wavelength of 525 nm.

The antioxidant capacity of Nostoc was assessed by ferric-reducing antioxidant power (FRAP) assay.47 First, the FRAP reagent was prepared freshly by mixing 300 mM acetate buffer (pH 3.6) with 10 mM tripyridyl-triazine (TPTZ) solution in 40 mM HCl and 20 mM FeCl₃·6H₂O in 10:1.1 ratio and kept at 37 °C. Then 10 mL of cyanobacterial cells were centrifuged at 900g for 30 min, the supernatant was removed, 1.5 mL of extracting agent (80% acetone

ACS Nano www.acsnano.org Article

ACS Nano 2021, 15, 16344–16356

16353

https://doi.org/10.1021/acsnano.1c05656
ACS Nano 2021, 15, 16344–16356
and ethanol; 1:1) was added to the precipitate, and the sample was extracted at 4 °C for 12 h in dark. The sample was then centrifuged at 1000g for 15 min, and to 50 μL of sample extract was added 1.5 mL of FRAP reagent. The samples were mixed and store in the dark at 37 °C for 4–5 h prior to measuring the absorbance of the mixture at 593 nm. A set of known concentrations of ferrous sulfate (FeSO₄) (0, 0.125, 0.25, 0.5, 1, and 2 mM) were prepared for a standard curve. The values obtained were expressed as mM of ferrous (Fe(II)) equivalent.

**Statistical Analysis.** For all data except GG-MS-based metabolomics data, a student’s t test was performed to evaluate the significance in the difference between the MoS₂ group and Control.

**ASSOCIATED CONTENT**

1. Supporting Information

   The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsnano.1c05656.

   Assay for determination of enzyme activities; (Table S1) BG11-N growth medium composition; (Figure S1) MDA content of Nostoc; (Figure S2) MoS₂ nanosheet exposure effects; (Figures S3–S5) relative abundance amounts; (Figure S6) total nitrogen content; (Figure S7) PCA and PLS-DA score plot; (Figure S8) activities of MoS₂ nanosheets (PDF)

**AUTHOR INFORMATION**

**Corresponding Author**

Lijuan Zhao — State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; orcid.org/0000-0002-8481-0435; Email: ljzhao@nju.edu.cn

**Authors**

Si Chen — State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China

Nibin Shi — State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China

Min Huang — State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China

Xianjun Tan — Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China

Xin Yan — State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China

Aodi Wang — State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China

Yuxiong Huang — Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; orcid.org/0000-0001-8124-643X

Rong Ji — State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; orcid.org/0000-0002-1724-5253

Dongmei Zhou — State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; orcid.org/0000-0002-7917-7954

Yong-Guan Zhu — Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China

Arturo A. Keller — Chemistry and Biochemistry Department, The University of Texas at El Paso, El Paso, Texas 79968, United States; orcid.org/0000-0002-7638-662X

Jorge L. Gardea-Torresdey — Bren School of Environmental Science & Management and Center for Environmental Implications of Nanotechnology, University of California, Santa Barbara, California 93106, United States; orcid.org/0000-0002-9467-0536

Jason C. White — The Connecticut Agricultural Experiment Station (CAES), New Haven, Connecticut 06504, United States; orcid.org/0000-0001-5001-8143

Complete contact information is available at: https://pubs.acs.org/doi/10.1021/acsnano.1c05656

**Author Contributions**

V.S.C., N.S., and M.H. contributed equally to this work.

**Funding**

This work is supported by National Natural Science Foundation of China under Grant Nos. 21876081 and 21906081.

**Notes**

The authors declare no competing financial interest.

**ACKNOWLEDGMENTS**

We thank Professor Hui Wei for helpful discussion and the group of Ye Zhang at Nanjing University for providing the electrochemistry workshop.

**REFERENCES**


