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Abstract: The subject of healing and repair of damaged microelectrodes has become of particular
interest as the use of integrated circuits, energy storage technologies, and sensors within modern
devices has increased. As the dimensions of the electrodes shrink together with miniaturization
of all the elements in modern electronic devices, there is a greater risk of mechanical-, thermal-
, or chemical-induced fracture of the electrodes. In this research, a novel method of electrode
healing using electrokinetically assembled carbon nanotube (CNT) bridges is presented. Utilizing the
previously described step-wise CNT deposition process, conductive bridges were assembled across
ever-larger electrode gaps, with the width of electrode gaps ranging from 20 microns to well over
170 microns. This work represents a significant milestone since the longest electrically conductive
CNT bridge previously reported had a length of 75 microns. To secure the created conductive
CNT bridges, they are fixed with a layer of electrodeposited polypyrrole (a conductive polymer).
The resistance of the resulting CNT bridges, and its dependence on the size of the electrode gap,
is evaluated and explained. Connecting electrodes via conductive CNT bridges can find many
applications from nanoelectronics to neuroscience and tissue engineering.

Keywords: electrokinetic healing of electrodes; CNT; dielectrophoresis; electrokinetic assembly

1. Introduction

The durability and longevity of electronic components, including electrically con-
ductive traces and interconnections, are becoming increasingly more important due to
the ever-decreasing scale of electronic devices [1–4]. However, as new developments in
micro and nano fabrication enable these components to become dramatically smaller in
size and applications of microdevices have expanded, electrodes are exposed to greater
risk of mechanical, thermal, and chemically induced damage [1–3,5]. Therefore, the subject
of electrode repair gains new importance as it brings concurrent benefits of longer lifetime,
better device reliability, and reduced waste [4–7].

Much of the previous research in the field of microelectrode repair has focused on
encapsulation in self-restorative polymers which can repair cracks and discontinuities
that develop in the electrode. For example, in a 2013 article, Wang et al. successfully
demonstrated the use of a hydrogen-bond-directed self-healing polymer binder as a self-
healing mechanism for silicon-based anodes in lithium ion batteries [8]. The polymer-based
solution was used to repair electrodes fractured due to the cyclic lithiation/delithiation
electrochemical process and the attendant significant volumetric expansion and contraction
of the silicon electrodes [8].

Another method to achieve microelectrode repair via encapsulation was presented by
Sim et al. in which highly conductive silver nanowires are encapsulated in liquid crystal
graphene oxide (LCGO). The use of LCGO, as compared to more traditional polymers and
hydrogels, offered better restoration of electrical conductivity and of tensile strength [9].
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Healing of microelectrodes by sputtering metals on top of polymetric microfibers
has also been demonstrated. In Wang et al.’s 2018 study, a gold coating was sputtered
onto a single-layer microfibrous polycaprolactone network. Under applied strain, cracks
developed in the conductive gold coating while the underlying polymer system is elongated
but not fractured. The polymer fibers were successfully shrunk through heat treatment via
the application of steam, while the shrinkage of the underlying polymer network brought
fractured gold coating back into contact, restoring conductivity [10].

Other research into fabrication of more durable and reliable electrically-conductive
traces has focused on the development of flexible liquid-metal electrodes. In 2013, Liu et al.
proposed a method to direct print metallic films of GaInSn alloy for use as electrodes
within dielectric elastomer actuators. The liquid metal electrodes demonstrated significant
compliance under applied stress as well as relatively stable resistance with increasing strain.
Furthermore, this liquid metal electrode possessed two-dimensional self-healing capability
to repair gaps formed within the electrode, adding to its reliability [11]. Further research
into the development of flexible electrodes includes the use of biomimetic elastomeric
micropore film to increase the tensile limit and electrical stability of common conductive
substrates and metals [12].

The approach to guided repair of microelectrodes presented in this study focuses on
the use of carbon nanotubes (CNTs) known for their impressive electrical and mechanical
properties [13]. Since their introduction, CNTs have become ubiquitous components in a
variety of microdevices including sensors, batteries, and integrated circuits [14,15].

Many assembly techniques have been developed to manipulate and incorporate CNTs
into materials and devices [16–18]. Our research focuses on electrokinetic assembly that
employs electrical forces to manipulate small particles to create micro and nanoscale
structures. Specifically, dielectrophoretic (DEP) force is utilized to manipulate and arrange
the CNTs. The DEP force acts on micro and nanoparticulate in a non-uniform electric
field [19,20]. In our studies we use an externally applied alternating current (AC) electric
field [20]. Microparticles subjected to an electric field experience polarization. The resulting
dipole moment of the particle aligns with the electric field lines and, depending on the
applied frequency and physical properties of particles and media, this applied force can
either attract or repel particles from the electrodes [19,20]. The magnitude of the particle
polarization and resulting DEP force applied to an elongated particle is described in
Equation (1) [21–26].

FDEP =
πr2l

6
εmRe[ fm]∇E2

rms, (1)

where l and r are the length and radius of the particle, respectively; εm is the permittivity of
the medium; Erms is the root means square of the electric field; and Re[ fm] is the real part
of the Clausius-Mossotti (CM) factor, fm, described in Equation (2):

fm =
ε∗n − ε∗m

(ε∗n − ε∗m)AL + ε∗m
, (2)

where AL is the depolarization factor, and ε∗n and ε∗m are the complex permittivities of
particle and medium, respectively, as defined by Equation (3):

ε∗ = ε− j
σ

ω
, (3)

where ε and σ are the permittivity and conductivity, respectively, and ω is the frequency of
the applied electric field [21–26].

When the real part of the CM factor is positive, the particles are attracted to electrodes;
alternatively, when the real part of the CM factor is negative, the particles are repelled from
the electrodes [21–26].

In addition to the use of DEP force for electrokinetic assembly [21–26], this research
utilizes the step-wise CNT deposition process previously reported by Zhou et al. [18]. This
method involves iterative deposition of small droplets of CNTs suspended in isopropyl
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alcohol (IPA) and allowing the IPA to evaporate between depositions. It was hypothesized
that during the evaporation step, capillary forces of the contracting liquid meniscus bring
neighboring chains of CNTs into tighter contact, thus reducing the CNT-to-CNT contact
resistance. This novel process is critical in enabling the construction of conductive CNT
bridges across much wider electrode gaps than previously reported. The step-wise CNT
deposition was successfully used to create a conductive CNT bridge over 75 micron
long [18]. However, the electrode geometry utilized in that study (a straight microelectrode
surrounded by a horseshoe-shaped electrode) produced a non-uniform field conducive to
strong DEP forces and the question remained about the applicability of this approach to the
conventional straight electrodes with gap in between or to the creation of the conductive
CNT bridge to repair the broken electrodes. Present research conclusively demonstrates
the validity and feasibility of the step-wise DEP deposition of conductive CNT bridges to
heal the broken conventional microelectrodes.

The combination of DEP electrokinetic assembly paired with step-wise deposition
of CNTs demonstrated in this research creates a process which is self-reinforcing, i.e., as
the process progresses, the magnitude of the DEP force increases (as illustrated by the
COMSOL simulation below). Additionally, the effective resistance of the contact junctions
between successive CNT chains is evaluated for CNT bridges of various lengths.

Fabrication of long conductive CNT bridges, besides their application in micro- and
nano-electronics will find widespread application in many other fields, including biotech-
nology and tissue engineering. For example, research conducted by Hallstrom et al. has
demonstrated regenerative neural growth of axons along conductive nano-wire arrays [27].
Such technology may help treat neurological damage in patients, including spinal cord
injuries [27–29].

2. Materials and Methods
2.1. Fabrication of Carbon Electrodes

Various sets of carbon microelectrodes with electrode gaps of 20, 30, and 40 microns
were produced by initially photopatterning SU-8 resist via a standard lithographic process
and then pyrolyzing a SU-8 precursor in a reductive nitrogen environment of the furnace
that converts organic resist into glassy carbon material. Figure 1b presents the geometry of
the microelectrodes: the width of the electrode fingers is 120 µm, while the length of the
opposing electrode segments are 5 mm each. These microelectrodes terminate in a square
contact pad with the sides of 2 mm wide. Additionally, a set of electrodes was produced
that did not have any gaps and after these “undamaged” electrodes were produced, we
scratched these electrodes, creating a realistic break that was wider than 170 microns (see
Section 3.3 below). The details of the fabrication process of the carbon electrodes are
given below.

A 4” silicon wafer covered with a 1 µm oxide layer (University Wafer, Boston, MA,
USA) was spin-coated with SU-8 2015 photoresist (Kayaku Inc., Westborough, MA, USA)
using a Laurell photoresist spinner (Laurell Technologies, North Wales, PA, USA) at an
initial speed of 500 rpm for 10 s, followed by 4000 rpm spin for 30 s. A hot plate was
used for soft-baking at 95 ◦C for 2 min. The subsequent exposure step was performed
using a photomask (CadArt, Bandon, OR, USA) and ultraviolet (UV) light at an energy
intensity of 10 mW/cm2 for 10 s in a Karl Suss MA56 Mask Aligner (Karl Suss, Garching,
Germany). The wafer was then post-baked on the same hot plate at 95 ◦C for 4 min. The
undeveloped resist was removed with SU-8 developer (Kayaku Inc., Westborough, MA,
USA). The remaining developed resist layer underwent hot-baking at 150 ◦C for 20 min.
After hot-baking, the resist layer was carbonized inside a pyrolysis furnace (Thermo Fisher
Scientific, Waltham, MA, USA), within a nitrogen-rich environment. The pyrolysis process
was initiated at 25 ◦C for two hours, followed by a 69 min ramp to 300 ◦C, where the
temperature was maintained for one hour before a subsequent 90 min ramp to 900 ◦C,
where the temperature was maintained again for one hour before being allowed to naturally
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cool to room temperature overnight. Finally, 34-gauge buss wire (Guasti Wire and Cable,
Ontario, Canada) was soldered onto the contact pads of the electrode using Indium solder.

1 
 

 
Figure 1. (a) Carbon nanotube (CNT) electrokinetic assembly experimental setup design. (b) Dimen-
sions of the carbon electrodes.

2.2. Preparation of Carbon Nanotube Suspension

The CNT suspension was prepared by adding 0.005 g of multi-wall CNT (MWCNT)
powder (Sigma-Aldrich, St. Louis, MO, USA) into 15-mL of isopropyl alcohol (IPA).
The solution underwent centrifugation in an Eppendorf 5702 Centrifuge (Eppendorf AG,
Hamburg, Germany) at 3000 rpm for 4 h. The large agglomerates of CNTs had precipitated
and the supernatant containing low concentration of suspended CNTs was pipetted out.

2.3. Experimental Setup and Deposition of Carbon Nanotube Suspension

The chip containing the carbon electrode array was placed under an optical microscope
(Nixon Eclipse, Minato, Japan) which was connected to a cMOS video camera (SPOT
Imaging, Sterling Heights, MI, USA). The buss wires soldered onto the carbon electrode
were connected to a function generator (Stanford Research Systems, Sunnyvale, CA, USA)
which was set up to apply AC bias at a frequency of 100 kHz and the constant peak-to-peak
voltage (Vpp) of 4 V. The experimental setup is depicted in the diagram in Figure 1a.

A 0.5 µL of the CNT suspension was pipetted (Labnet, Edison, NJ, USA) on top of the
electrode gap. The droplet of CNT suspension was allowed to fully evaporate, which could
be visually confirmed under the optical microscope. Once fully evaporated, the next droplet
of CNT suspension was deposited. This step-wise deposition continued until the CNT
bridge could be seen spanning the entirety of the gap. Once the conductive CNT bridge
was completed, the wires were disconnected from the function generator and a resistance
measurement across the electrode was taken using a multimeter (Wavetek, San Diego, CA,
USA). In order to assess the efficacy of the healing process, resistance across a reference
electrode containing no gap was also measured. Finally, high magnification images of the
CNT bridges were taken using a Magellan 400 XHR scanning electron microscope (FEI,
Hillsboro, OR, USA).
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2.4. Preperation of Pyrrole Solution

A 0.1M pyrrole monomers (Sigma-Aldrich, St. Louis, MO, USA) and 0.1 M NaDBS
(sodium dodecylbenzenesulfonate) (Sigma-Aldrich, St. Louis, MO, USA) were mixed with
100 mL of deionized water and stirred for 20 min at room temperature.

2.5. Polypyrrole Deposition

In order to permanently affix the CNT bridge to the electrodes and the substrate, the
layer of electroactive polymer polypyrrole (PPy) was electrodeposited atop of the CNT
bridge. The pyrrole solution was pipetted (Labnet, Edison, NJ, USA) over the deposited
CNT bridge while a 0.9 V direct current (DC) bias was applied by the function generator
(Stanford Research Systems, Sunnyvale, CA, USA). Two different methods were evaluated
for the deposition of PPy. In one approach, the DC bias was applied between the working
electrode (one of the microelectrodes) and the counter-electrode (the microelectrode across
the gap) and the deposition proceeded from one microelectrode and across the CNT bridge
until the PPy layer reached the other microelectrode on the other side of the gap. In the
alternative deposition technique, the initial deposition started as previously described,
but once the PPy layer reached the approximate position of half-way through the CNT
bridge, the electrodes for DC bias were switched and the PPy deposition will start from
the opposite side of the bridge and the deposition will be finished when the PPy layers
will merge. The differences between these two PPy deposition methods are evaluated in
Section 3.4 below.

2.6. Stress-Testing of Carbon Nanotube (CNT) Bridges

Once fabricated, samples with the CNT bridges across 30 µm gaps, with and without
PPy coat, were tested to determine how resilient they were to several types of environmental
stress, including the forceful blasts of compressed nitrogen gas, placing the samples under
the running water stream, and exposing the sample to thermal cycling.

Each sample was subjected to 10 rounds of thermal cycling during which they were
brought to 200 ◦C using a hot plate and then cooled to 3 ◦C using an ice pack. There was
no resident time at the top or bottom temperature—once the temperature was reached, the
sample was immediately moved to the other temperature extreme. Next, each sample were
placed under a stream DI water running with a volumetric flow rate of 0.06 L per minute
(LPM) for a total of 30 s. Finally, each sample was blown with nitrogen gas at 88 pounds
of force per square inch (psi) for 30 s. After each test, the resistance of the electrode
was measured.

2.7. Finite Element Analysis of Electric Field Magnitude

A simulation was conducted in the Comsol Multiphysics Software package (v. 5.2)
(Comsol, Burlington, MA, USA) to analyze the strength of the electric field strength re-
sulting from applied AC bias across electrode gaps of various lengths. The square of the
electric field strength was also analysed. The fine geometry-controlled triangular mesh
containing more than 18,000 elements was implemented. The model used a glassy carbon
electrode material and the surrounding IPA medium with permittivities of 108·ε0 and
18.23·ε0, respectively. A built-in linear solver was utilized to calculate the solution of the
governing (Laplace) system of equations. The boundary conditions were set to be 0 for one
electrode and 4V for another electrode.

3. Results and Discussion
3.1. CNT Bridges across 20, 30 and 40 µm Electrode Gaps
3.1.1. Assembly of CNT Bridges

Using the procedure outlined in Section 2.3 above, CNT bridges were successfully
assembled across the 20, 30, and 40 µm electrode gaps. Three samples were manufactured
and tested for each type of electrode. Images were taken throughout the CNT deposition
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process using the optical microscope equipped with the cMOS camera and are presented in
Figure 2, Figure 3, and Figure 4 below.

Figure 2. Electrodes with 20 µm gap (a) before CNT deposition; (b) after 2 µL of CNT suspension; (c) after 4 µL of CNT
suspension; (d) after 5 µL of CNT suspension.

Figure 3. Electrodes with 30 µm gap (a) before CNT deposition; (b) after 3 µL of CNT suspension; (c) after 7 µL of CNT
suspension; (d) after 10 µL of CNT suspension.

Figure 4. Electrodes with 40 µm gap (a) before CNT deposition; (b) after 5 µL of CNT suspension; (c) after 7 µL of CNT
suspension; (d) after 10 µL of CNT suspension.

Table 1 below summarizes the resistance across the electrode with 30 µm gap after
every deposition of every two 0.5 µL drops of CNT suspension.

Table 1. Resistance measured across the electrode with 30 µm gap after deposition and drying of
every two 0.5 µL droplets of CNT suspension.

Total Amount of CNT
Suspension (µL) Resistance (kΩ) Total Amount of CNT

Suspension (µL) Resistance (kΩ)

1 open circuit 6 open circuit

2 open circuit 7 open circuit

3 open circuit 8 360

4 open circuit 9 147

5 open circuit 10 28.7
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As expected, the amount of CNT suspension required to form a complete conductive
bridge increased as the electrode gaps become wider. The resistance across the electrode
decreased exponentially with the increased number of the deposited CNT suspension
droplets. Scanning Electron Microscopy (SEM) images in Figure 5 illustrate the morphology
of the CNT bridges.

Figure 5. Scanning electron microscope (SEM) pictures of the CNT bridges formed across (a) 20 µm electrode gap (b) 30 µm
electrode gap (c) 40 µm electrode gap.

3.1.2. Resistance of CNT Bridges

Resistance measurements taken across the healed electrodes are summarized in Table 2
below. Additionally, these resistance measurements are plotted as a function of CNT bridge
length in Figure 6.

Table 2. Resistance of microelectrode before and after fracture and resistances of healed 20, 30, and
40 µm gap electrodes.

Electrode Gap Length (µm) Avg. Resistance Measurement (Std.
Dev.) (kΩ)

Microelectrode prior to fracture 5.80 (±0.61)

Microelectrode after fracture (>170 µm gap) Open circuit

20 15.61 (±1.85)

30 19.11 (±1.88)

40 31.88 (±6.98)

Figure 6. Plot of the measured resistance of the healed electrodes as function of CNT bridge length.
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The graph in Figure 6 demonstrates that the resistance across the healed electrode in-
creases with CNT bridge length. Previous research has concluded the primary contribution
to the resistance across a CNT bridge is the resistance arising at the CNT-to-CNT contact
junctions [30,31]. The results presented here suggest that the contact resistance grows as
the length of the CNT bridge increases, since the increase in resistance is non-linear.

Based on the comparison of the resistance of undamaged (reference) electrodes and
the healed electrodes (see Table 1) we can conclude that the electrokinetically assembled
CNT bridges restored conductivity to the electrodes, but we could see a significant decrease
in the repaired electrodes’ conductivity. The healed electrodes had resistance that was
169%, 229%, and 449% higher than the original resistance for the 20, 30, and 40 µm gap
electrodes, respectively.

3.2. Electric Field Strength Simulation

A simulation of electric field strength across varying electrode gap lengths was con-
ducted using the multiphysics Comsol framework. As shown in Figure 7 below, the
strength of the electric field is inversely proportional to the distance across which it is
applied. This is an expected result according to Coulomb’s law describing the magnitude
of on electric field [32].

Figure 7. Simulation across electrode gap lengths of (a) the electric field strength (b) the gradient of
the square of the electric field strength.

This result indicates that as a conductive bridge is assembled and the distance between
the opposing ends of the growing bridge spans become smaller, the applied electric field
increases with the attendant increase in the DEP force (see Equation (1)) instrumental
for the CNT bridge assembly. This self-reinforcing process is important for offset higher
contact resistance of the CNT-to-CNT network away from the electrodes.

3.3. CNT Bridge across the Fractured Electrode

The same process used to assemble the CNT bridge across pre-manufactured electrode
gaps was successfully applied to an electrode that was mechanically fractured using a
sharp glass tip. The gap resulting from the fracture was expectedly non-uniform. At its
smallest, the gap was over 170 µm wide and the largest gap was over 310 µm wide. Once
broken, it was confirmed using a multimeter that the electrode had infinite resistance. After
application of 23 µL of CNT suspension (in increments of 0.5 µL) per the method detailed
in Section 2.3, a complete CNT bridge was formed across the gap as shown in Figure 8.
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Figure 8. Fractured electrode (a) before CNT deposition; (b) after deposition of 7 µL of CNT suspension; (c) after 15.5 µL of
CNT suspension; (d) after 19 µL of CNT suspension; and (e) after 23 µL of CNT suspension.

The resistance across the healed electrode was measured to be 239.6 kΩ representing
a 4031% increase in resistance across the electrode. While the magnitude of this increase
is large, these results serve as a successful proof of concept that the CNT bridge can be
assembled across large (over 150 µm wide) gaps and restore electrical conductivity to an
electrode using the electrokinetic assembly process described above.

3.4. Deposition of Polypyrrole

Using 0.9 V DC bias, PPy was successfully deposited across the CNT bridge to perma-
nently affix it to the electrodes. Both methods for PPy deposition, as detailed in Section 2.5
were capable of covering the CNT bridge to secure it to the substrate.

In the first PPy deposition approach the DC bias was used without changing the
polarity during the deposition process (see Section 2.5 above). The results of this PPy
deposition methodology are depicted in Figure 9. One notable feature of this PPy deposition
method is the lateral growth of PPy from the side walls on the positive side of the electrode.
As PPy grew towards the opposite electrode, it also grew laterally to each side of the
electrode.

Figure 9. Results of polymer polypyrrole (PPy) deposition over the CNT bridge spanning 20 µm
electrode gap without switching the polarity of 0.9 Vpp DC bias captured at approximately (a) 25%
completion (b) 50% completion (c) 100% completion.

In the second PPy deposition methodology where the polarity of the DC bias was
switched once the PPy coat reached halfway through the electrode gap, there was smaller
lateral growth of PPy compared to the first PPy deposition technique (Figure 10). Therefore,
depending on the intended application and desire to have larger or smaller lateral PPy
coverage, either the first or second PPy deposition technique can be utilized. PPy was
also deposited onto the repaired electrode that had an initial fracture as demonstrated
in Figure 11.



Micromachines 2021, 12, 405 10 of 13

Figure 10. Results of PPy deposition over the CNT bridge spanning 20 µm electrode gap (a) prior to
PPy application; (b) after the PPy deposition from the side of the top electrode reached roughly half-
way through the CNT bridge and the polarity of the 0.9 Vpp DC bias was switched; (c) completion of
PPy deposition over the CNT bridge.

Figure 11. Results of the PPy deposition onto the CNT bridge of the healed electrode that contained
a wide fracture (a) after the initial PPy deposition from the bottom electrode at 0.9 Vpp DC bias; (b)
after the polarity of the DC bias was reversed.

3.5. Results of the Stress Testing of the Formed CNT Bridges
3.5.1. Thermal Cycling

Resistance measurements taken before and after 10 rounds of thermal cycling between
200 ◦C and 3 ◦C are summarized in Table 3 below.

Table 3. Resistance measurements before and after thermal cycling.

Sample Resistance before Thermal
Cycling (kΩ)

Resistance after Thermal
Cycling (kΩ)

Without PPy Coating 28.7 23.2

With PPy Coating 0.93 1.09

The CNT bridge without PPy experienced a 19% decrease in resistance as a result
of thermal cycling. This is likely due to the additional evaporation that occurs as the
sample is heated and the bridge expands. This additional evaporation under the influence
of the surface tension forces of the shrinking liquid meniscus [18] pulls the CNTs closer
together, thus reducing the CNT-to-CNT contact junction resistance. A circumstantial
evidence for that suggested mechanism of the decrease in CNT-to-CNT contact resistance
is offered by the fact that when the CNT bridge is covered by the PPy layer that impedes
evaporation, the overall resistance did not decrease, but actually increased by 17% as a
result of thermal cycling.

3.5.2. Placing the Healed Microelectrodes under Running Water

Resistance measurements before and after placing the samples for 30 s under a
stream of deionised water (DI) with the volumetric flow rate of 0.06 LPM are summa-
rized in Table 4 below. We can conclude that no significant increase in resistance was
observed.
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Table 4. Resistance measurements before and after placing the healed electrodes under the deionised
water (DI) water stream.

Sample
Resistance before Running

DI Water over Healed
Electrodes (kΩ)

Resistance after Running DI
Water over Healed

Electrodes (kΩ)

Without PPy Coating 23.0 24.8

With PPy Coating 1.41 1.50

3.5.3. Exposure of the Healed Microelectrodes to Blasts of Compressed Nitrogen Gas

Resistance measurements before and after blowing nitrogen gas at 88 psi for 30 s are
summarized in Table 5 below.

Table 5. Resistance measurements before and after blowing compressed nitrogen over the samples of
healed microelectrodes.

Sample
Resistance before blowing

Nitrogen over Healed
Electrodes (kΩ)

Resistance after Blowing
Nitrogen over Healed

Electrodes (kΩ)

Without PPy Coating 23.4 23.0

With PPy Coating 1.26 1.24

There was no observed increased in resistance after blowing the compressed nitrogen
gas over the samples with the healed microelectrodes.

It can be concluded from analysing the data of the healed microelectrodes exposed
to various stress tests that PPy coverage does not offer additional protection, but it does
decrease overall resistance of the healed microelectrodes.

4. Conclusions

The results presented in this study establish a proof of concept that electrically con-
ductive CNT bridges can be assembled across large electrode gaps to heal the electrodes
using dielectrophoretic step-wise deposition of carbon nanotubes from the suspension. The
multiphysics simulation illustrated the key concept behind the introduced electrokinetic
assembly process—the self-reinforcing nature of the DEP force experienced by the CNTs as
the bridge forms across the electrode gap, decreasing the effective gap distance and increas-
ing the magnitude of the applied electric field. The relationship between the resistance
of the resulting CNT bridges and the length of the gaps they span was evaluated, which
confirms the dominant role played by the CNT-to-CNT contact resistance in overall bridge
resistance. The present study focused on the development of technology for healing of
the conventional straight microelectrodes and, if extended to healing of the closely spaced
and/or interdigitated electrodes close attention should be paid to the placement of the
CNT suspension droplets to avoid unintended short circuits.

While further study of the proposed electrokinetic assembly process is needed to fully
understand it, the ability to create long conductive CNT bridges is an exciting prospect with
many potential applications. As research into microencapsulation of self-healing agents
continues to develop [33–37], the self-reinforcing process presented in this paper offers
impressive benefits for the use of CNTs in such microencapsulation systems. Conceptually,
if CNT suspension is microencapsulated over the electrodes, then the guided process of
CNT bridge creation presented in this work can be applied for self-healing of the electrodes
by the inclusion of the regime to self-test electronic trances to locate the break and then
apply the required AC bias to case step-wise deposition to take place. Additionally, the
described dielectrophoretic step-wise fabrication of long conductive CNT bridges will find
widespread application in many fields from nanoelectronics to tissue engineering.
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