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Abstract

The human hand is unique in the animal kingdom for unparalleled dexterity, from complex 

prehension to fine finger individuation. How does the brain represent such a diverse repertoire of 

movements? We evaluated mesoscale neural dynamics across the human “grasp network”, using 

electrocorticography and dimensionality reduction methods, for a repertoire of hand movements. 

Strikingly, we found that the “grasp network” represented both finger and grasping movements 

alike. Specifically, the manifold characterizing the multi-areal neural covariance structure was 

preserved during all movements across this distributed network. In contrast, latent neural dynamics 

within this manifold were surprisingly specific to movement-type. Aligning latent activity to 

kinematics further uncovered distinct submanifolds despite similarities in synergistic coupling 

of joints between movements. We thus find that despite preserved neural covariance at the 

distributed network level, mesoscale dynamics are compartmentalized into movement-specific 

submanifolds; this mesoscale organization may allow flexible switching between a repertoire of 

hand movements.
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How does the human brain flexibly support a remarkably diverse repertoire of hand movements? 

Natraj et al. show that mesoscale activity, for movements ranging from grasps to finger 

individuation, lie within a common multi-area manifold spanning the “grasp-network”. However, 

latent dynamics within this manifold were movement-specific and compartmentalized into distinct 

behaviorally-relevant submanifolds.

Keywords

Human; Hand; Motor control; Grasp; Finger; ECoG; Spatiotemporal; Synergy; Manifold; 
Dimensionality Reduction

Introduction

The human hand is unique in the animal kingdom for demonstrating remarkable dexterity 

that far exceeds non-human primates (Napier, 1960). Not only can the human hand perform 

complex prehensile postures, but it is also capable of individuating fingers with precision, 

especially the opposable thumb (Young, 2003, Faisal et al., 2010). How does the human 

brain flexibly switch between such a diverse repertoire of hand movements? Classic lesion 

and inactivation studies along with electrophysiological recordings in non-human primates 

have highlighted the role of a large-scale network, otherwise called the ‘grasp network’, 

encompassing premotor, sensorimotor, and parietal regions (Schaffelhofer and Scherberger, 

2016, Davare et al., 2011, Brochier and Umiltà, 2007, Jeannerod et al., 1995, Rizzolatti 

and Luppino, 2001, Taira et al., 1990, Lemon, 1993, Fagg and Arbib, 1998). The nodes 

of the network are also believed to be compartmentalized into distinct “cortical areas” 

linked by reciprocal connections; compartmentalization in humans may be distinct even 

from non-human primates (Koch et al., 2010, Changeux et al., 2020, Grèzes et al., 2003, 

Lemon, 2008). While this suggests that flexible hand control depends on spatiotemporal 

network activity (Hattori et al., 2009, Wheaton et al., 2005, Filimon, 2010), it also raises the 

fundamental question of how such distributed activity patterns flexibly support a diverse 

repertoire of movements. To address this question, we turned to a prominent current 

hypothesis which postulates that latent activity restricted to low-dimensional subspaces 

support computations (Santhanam et al., 2009, Churchland et al., 2012, Gallego et al., 2018, 

Hall et al., 2014, Stavisky et al., 2019, Bouchard et al., 2013, Sadtler et al., 2014, Briggman 

et al., 2005, Athalye et al., 2017, Flint et al., 2020). The low-dimensional subspace is 

called a neural manifold (Fig. 1). Activity captured within this manifold, calculated by 

projecting high-dimensional data, constitute latent time-varying neural population dynamics 

(Gallego et al., 2017, Jazayeri and Afraz, 2017, Veuthey et al., 2020). Notably, whether and 

how mesoscale activity in the grasp network can be represented as a manifold is poorly 

understood; this is especially the case when examining a repertoire of movements. Our 

study aimed to determine whether and how mesoscale manifolds spanning the grasp network 

represent hand movements ranging from finger individuation to grasping, using mesoscale 

electrocorticography (ECoG, Fig. 1A) and dimensionality reduction methods.

An important first question is whether a repertoire of hand movements ranging from finger 

individuation to grasping recruits a distributed network; the “grasp network” has exclusively 
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been studied in context of grasping. It remains unclear, however, whether single finger 

movements might share a common neural manifold with grasping movements. Evidence 

for the presence of a common distributed network would permit comparisons among each 

movement’s “manifold”, a subspace in high-dimensional ECoG channel space that spans the 

network (Fig. 1B). This manifold, identified using Principal Component Analysis (PCA), 

represents covariance patterns (Gallego et al., 2018, Kobak et al., 2016, Athalye et al., 2017, 

Churchland et al., 2012, Sadtler et al., 2014, Hall et al., 2014) due to interactions in the 

grasp network during movement (Fig. 1B). Each axis of the manifold, a neural mode or 

neural PC, represent a network of covarying multi-areal activity during movement. Such 

manifolds can be individually identified for the repertoire of hand movements (Fig. 1B-C). 

Given all the movements here arise from a common kinematic basis, the hand (Todorov and 

Ghahramani, 2004, Santello et al., 2013, Häger-Ross and Schieber, 2000), it is possible that 

the manifold might be preserved across movements. The overarching hypothesis underlying 

our approach is that a common low-dimensional manifold, based on multi-areal neural 

covariance, underlies all hand movements.

We then focus on the latent neural dynamics i.e., temporal activity patterns captured in the 

common manifold; how might these compare across movements? One intriguing possibility 

is that the latent dynamics might be temporally similar across movements (Fig. 1D). This 

might especially be true for the human hand where there is significant temporal, neuronal 

and biomechanical coupling between joints during movement (Häger-Ross and Schieber, 

2000, Todorov and Ghahramani, 2004, Schieber, 1995, Indovina and Sanes, 2001, Schieber, 

1990, Sanes et al., 1995, Ejaz et al., 2015, Leo et al., 2016), suggesting that the output from 

the brain may have some degree of similarity for the different movements. This possibility 

is also suggested by studies in non-human primates performing either gross arm movements 

or a set of reach-to-grasp and wrist tasks wherein latent dynamics in primary motor areas 

were highly preserved across movements (Gallego et al., 2018, Kaufman et al., 2016, 

Churchland et al., 2012). Alternatively, another possibility is that neural dynamics might be 

temporally distinct for different movements (Fig. 1E). This would suggest that streams of 

spatiotemporal mesoscale activity are kept segregated within the grasp network. We used 

demixed Principal Component Analysis (dPCA, (Kobak et al., 2016)) to understand whether 

a significant proportion of latent dynamics were temporally common across movements or 

if temporal patterns of latent dynamics were kept segregated (Fig. 1D-E). Distinguishing 

between these two types of grasp-network representations can provide insight into how it 

compartmentalizes mesoscale dynamics by movement-type.

We then further assessed how aligning each movement’s neural dynamics to its 

joint kinematics reflects on behaviorally relevant submanifolds. Recent work suggests 

that aligning neural dynamics to movements can provide further insights into 

compartmentalization (Sani et al., 2020, Jazayeri and Afraz, 2017). If, for example, temporal 

patterns of latent neural dynamics were shared between movements, then aligning neural 

data to kinematics at behaviorally relevant time-scales would result in highly overlapping 

“kinematically-aligned submanifolds” within the larger neural subspace. In this scenario, 

the subspaces that track kinematics are largely shared between movements and might 

represent intracortical processing of action regardless of the specific hand movement 

(Fig. 1D). Alternatively, if latent neural dynamics were compartmentalized by movement-
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type, then aligning each movement’s latent dynamics to its kinematics would result in 

distinct kinematically-aligned submanifolds. Each movement’s kinematically-relevant latent 

neural trajectories would therefore be compartmentalized in distinct submanifolds within 

the common larger manifold (Fig 1E). We used Canonical Correlation Analysis (CCA 

(Ewerbring, 1990, Wang et al., 2020) to align each movement’s latent neural dynamics to its 

kinematics and identify the aligned submanifolds separately for each hand movement-type.

Strikingly, our results revealed that while there is indeed a common multi-areal manifold 

(based on PCA) across a repertoire of hand movements, there are also submanifolds 

(identified by CCA) highly specific to the kinematics of each hand movement. Such 

distinct submanifolds could not be accounted for by possible somatotopic differences 

between movements. Surprisingly, this was even the case for both finger and grasping 

movements, highlighting the notion that even apparent single finger individuation recruits 

the grasp network. Rather, our results revealed that the distinct aligned submanifolds were 

due to distinct temporal patterns of latent dynamics in the common manifold. Our results 

thus provide evidence that although the overall multiarea manifold is preserved and that 

the movements themselves arise from a common kinematic basis, there is remarkable 

compartmentalization of mesoscale dynamics into distinct submanifolds for each hand 

movement. Such compartmentalization may underlie the remarkable ability of humans to 

flexibly select and execute a specific action from a repertoire of movements that arise from 

the hand.

Results

Experimental design

To understand multi-area manifolds underlying hand movements, we recorded high-density 

ECoG signals in the grasp network from four human subjects monitored for epilepsy. We 

also measured continuous 3D position data of all the joints in the hand using LeapMotion. 

Participants in this study performed eight self-paced pantomimed movements in a block 

design: flexion/extension of each of the five individual fingers and three common grasp 

movements. The three grasps were the pinch grasp where the index and thumb come 

together (instructed to “pantomime picking up a small object”), the tripod grasp involving 

the index, middle and thumb fingers (pantomime “pick up an object like a marker”), and 

the “power” grasp (pantomime “pick up a large object that requires closing your whole 

hand”). An individual trial constituted of a complete cycle of flexion/extension (fingers) 

and opening/closing for the three grasps. Subjects had full control of their hand in space, 

with their elbow and forearm supported by a pillow. The null position of the hand between 

cycles of movements was when all fingers were fully outstretched. On average, participants 

performed 23 trials per movement [bootstrapped 95% C.I. 21 − 25 trials].

Grasp network and low frequency oscillations

ECoG signals have been characterized by multiple distinct frequencies of oscillations. For 

our study, we primarily focused on Low Frequency Oscillations or LFOs (Ramanathan et al., 

2018, Bansal et al., 2011, Rickert et al., 2005, Agashe et al., 2015), defined in this study 

to be δ band activity (0.5–4 Hz). LFOs are widely evident in mesoscale ECoG recordings 
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when decoding arm and hand kinematics (Pistohl et al., 2012, Paek et al., 2014, Ramanathan 

et al., 2018, Pistohl et al., 2008, Acharya et al., 2010) and are distributed over cortical 

motor regions (Miller et al., 2007, Kubanek et al., 2009, Ganguly et al., 2009). Indeed, we 

confirmed that the envelope of distributed LFOs (we imply envelope when mentioning LFOs 

unless we explicitly mention the oscillation profile) in the mesoscale grasp-network tracked 

cycles of flexion/extension of individual finger movements (Fig. S1).

While our main study objective was to establish a dynamic view (i.e., modeling 

spatiotemporal activity patterns), we also wondered whether a static property of LFOs (i.e. 

mean activity of all channels) encoded movement information. For example, prior fMRI 

research has shown that the distance between finger movements’ mean voxel-wise activity 

in local M1 circuits exhibit a ‘representational structure’ characterized by a unique set of 

similarity patterns between movements (Ejaz et al., 2015). However, such a representational 

structure in mean cortical activity has not been shown at the level of the mesoscale grasp 

network and in relation to both finger and grasping movements. We evaluated the pairwise 

distance between movements’ mean (time-averaged) LFO activity using the Mahalanobis 

distance, which is the static distance between the location of movements’ neural data in 

high-dimensional channel space i.e., distance between neural centroids, Fig. 2A. Formally, 

it measures the distance between multi-dimensional channel means scaled by the pooled 

multi-dimensional variance. An example of the mean LFO amplitudes across the network for 

two movements is shown in Fig. 2B. Analysis of the average pairwise Mahalanobis distance 

matrix (Fig. 2C) and the clustering of Mahalanobis distances between movements (Fig. 2D) 

revealed a representational structure was present (mean correlation of r = 0.38, p < 1 × 

10−3 between participants’ individual distance matrices). First, the three grasp movements 

clustered together. Next, the index, middle, ring and pinky fingers clustered together. 

Notably, the thumb was overall similar to grasping actions than other finger movements (Fig. 

2D). We found a similar representational structure when using a linear classifier (Support 

Vector Machine (Fan et al., 2008)) to discriminate time-points around the centroid of each 

movement’s grasp-network channel LFOs (Fig. S2A-D). Thumb movements were again 

closer to grasping (Fig. S2C, by 2.3%, mixed effects t(26) = 2.4, p = 0.024). The distance 

between movements’ mean LFO activity was significant enough to achieve high accuracies 

in SVM classification, either in a pairwise (Fig. S2E) or multi-class scheme (Fig. S2F).

Overall, our results showed that LFOs across the grasp network carry significant movement-

related information, both in terms of tracking kinematics and in their static location in high-

dimensional channel space, and therefore are a good candidate feature for characterizing 

grasp-network mesoscale manifolds.

The multi-areal neural manifold is preserved across movements

We then used PCA to identify the “manifold” i.e., the multi-area mesoscale covariance 

structure; this analysis was performed individually for each movement within each subject. 

Note that in all subsequent manifold analysis that involves dimensionality reduction based 

on a covariance structure, the mean activity of each channel was removed as it does not 

inform on covariations. Results revealed that the majority of variance could be captured by a 

low-dimensional 45D mesoscale manifold (~75% of the overall neural variance, S.D range: 
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71.4% to 80.52% across movements, subjects) achieving a >5-fold dimensionality reduction 

(Fig. 3A). Hereafter, the term “manifold” refers to the general low-dimensional subspace 

captured using PCA; in contrast, ‘submanifolds’, discussed in later sections, refers to when 

we align latent dynamics to kinematics using CCA.

We evaluated whether the manifold, identified individually for each movement, was 

preserved across movements given that the movements themselves arise from a common 

kinematic appendage. To do this, we used the method of principal angles and principal 

directions to evaluate whether the 45D manifolds were oriented similarly (Fig. 3B). If 

two manifolds are oriented similar to each other in high-dimensional channel space, 

then there will always be some linear combinations of each manifolds’ individual neural 

modes that result in very small angles. These linear combinations of the neural modes are 

called the principal directions within each manifold and the resulting angles are called the 

principal angles. There are as many principal directions and principal angles as the manifold 

dimensionality. The principal angles between the thumb and the other seven movements’ 

manifolds are shown in Fig. 3B for one participant. The principal angles suggested similar 

orientation between manifolds, with the first principal angle between the thumb and other 

movement manifolds having a mean of 8.34 degrees (Fig. 3B, [95% C.I. 8.15 – 8.52 

degrees]).

Under the null hypothesis, we would not expect a difference between the observed principal 

angles between movements from a null distribution of principal angles. We used the tensor 

maximum entropy method (TME, (Elsayed and Cunningham, 2017, Gallego et al., 2018), 

see Methods) to simulate surrogate tensors of neural data without a covariance structure 

(Rchannel×time×mvmt − type) 1000 times, thereby allowing us to compute null distributions 

of principal angles from the surrogate data. For example, the threshold for significance of 

the principal angles is shown as a black dotted line in Fig. 3B (α = 0.05). It can be seen 

that the principal angles between the thumb and other seven movements were much lower 

than what could be expected by chance (Fig. 3B). There are 28 total pairwise comparisons 

between movements per subject given the eight movements in our study. For each such 

pairwise comparison, we can evaluate the number of significant principal angles between 

the two 45D manifolds. Results revealed that a minimum of 44 of the 45 principal angles 

were significantly smaller than would be expected by chance (Fig. 3C, α = 0.05, False 

Discovery Rate (FDR) corrected (Benjamini and Hochberg, 1995)). The manifold was 

therefore oriented in high-dimensional channel space similarly across movements.

The similar orientations between movement manifolds suggested that the multi-area neural 

covariance structure was shared across movements. To verify this, we computed the ratio 

of across-movement VAF to within-movement VAF (Gallego et al., 2018). The within-

movement VAF is the amount of variance captured by each movement’s own 45D manifold. 

The across-movement VAF is the neural variance captured by projecting a movement’s 

data onto the 45D PCA manifold of another movement. If all movements shared variance 

in a common low dimensional manifold based on a similar neural covariance structure, 

then the ratio of the across-movement VAF to within-movement VAF would be close to 

one. Indeed, the average ratio of the VAF was 0.79 across subjects and movements [95% 

bootstrapped C.I. 0.775–0.8]. The distribution of these ratios was significantly different 
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from control neural VAF ratios (0.294, [0.268 − 0.316]) wherein the across-movement VAF 

was obtained by projecting data onto random 45D manifolds (Fig. 3D, p ≤ 0.01, 2-sided 

Kolmogorov-Smirnov, KS test between distribution of ratios in the real data versus control). 

We then examined the spatial extent of the common multi-areal manifold. Each axis of the 

45D manifold, the PCA neural mode, is a vector in high-dimensional channel space whose 

weights identify multi-areal channels with covarying neural activity. The weight magnitudes 

of the first neural mode during thumb movements is shown in Fig. 3E for a subject. We 

computed the average channel weight magnitude within each node of the grasp network 

for each movement’s 45D manifold. Results revealed that the modes of the 45D manifolds 

engaged all regions of the grasp-network equally (Fig. 3F).

Overall, our results showed that the manifold characterizing multi-areal covariance 

was remarkably preserved and a common grasp-network subspace represented all hand 

movements, from finger individuation to grasping.

Latent dynamics within the common subspace are distinct for the movement repertoire

Having identified a common mesoscale manifold, we examined the temporal patterns of 

latent dynamics within it using demixed Principal Component Analysis or dPCA (Kobak et 

al., 2016, Gallego et al., 2018). Here we use dPCA to examine both movement-specific 

and movement-independent latent dynamics within the common manifold. Given our 

experimental design, the objective function of dPCA finds two types of dPC neural modes: 

1) time dPC modes that capture time-varying activity that is common to all movements, 

i.e. movement-independent latent activity and 2) movement dPC modes that capture 

time-varying activity that is distinct to movement-type, therefore identifying movement-

dependent latent activity (Gallego et al., 2018). The two types of dPCA modes therefore 

de-mix the neural data and capture either temporally common or temporally distinct latent 

dynamics. The VAF by each type of dPC neural mode can be estimated in terms of a 

reconstruction error of the original neural data and sorted by variance (Kobak et al., 2016). 

The VAF of each dPC mode delineates what proportion of the overall variance of all eight 

movements is due to either temporally consistent neural dynamics or temporally distinct 

neural dynamics between movements. We performed dPCA on trial-averaged data to more 

reliably uncover the dPCA modes.

An example of the VAF by the first 15 time and movement-specific dPCA modes are shown 

in Fig. 4A for a participant. Interestingly, in contrast to findings using spiking data in 

local M1 circuits across a set of movements (Gallego et al., 2018, Kaufman et al., 2016), 

the movement-specific dPCA modes contributed to the majority of the variance in dPCA 

analysis, by a factor of almost ~5:1 (83.62% to 16.38% on average) in each participant over 

the time dPCA modes (Fig. 4A-B). Therefore, the majority of variance in the neural data 

was driven by the fact that each movement was characterized by its own distinct temporal 

pattern of latent dynamics in a common subspace. From a physiological perspective, this 

result implies that there are distinguishable phases or differential timing of activity within 

the nodes of the grasp-network between movements (see Fig. S3 for plot of mean LFO 

traces across the grasp network for all movements).
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We then visualized both common and movement-specific latent dynamics by projecting 

LFOs onto a few exemplar dPCA modes for one participant (Fig. 4D). The common neural 

dynamics (Fig. 4D, bottom) seemed to be qualitatively highly linked to cycles of movement 

(Fig. 4C). For instance, activity projected onto the first time dPCA mode exhibited a peak 

in LFO envelope right before full flexion or grasp closing. Similarly, activity projected onto 

the second time dPCA mode exhibited a peak just after full flexion or grasp closing. Activity 

in another exemplar time dPCA mode seemed to preserve phasic cycles of LFO power in 

both phases of flexion/extension or opening/grasping. Conversely, projecting activity onto 

the first three movement-specific dPCA modes for a participant highlights the temporal 

differences in latent neural dynamics between movements (Fig. 4D, top). The starting 

location of the neural dynamics was different for each movement, as was the time-varying 

trajectory in the latent subspace. Our main results of temporally distinct latent dynamics 

within a common multi-areal subspace persisted regardless of how we epoched our neural 

data, i.e., epoching data either around peak flexion/closing or via normalizing the entire 

length of the trial.

Manifolds and dynamics of high-gamma follow low-frequency oscillations

To what extent are our results dependent on our choice of LFOs, given that the framework 

of neural manifolds during behavior had primarily been developed with spiking activity 

in M1 ensembles (Santhanam et al., 2009, Kaufman et al., 2016, Churchland et al., 2012, 

Gallego et al., 2018, Athalye et al., 2017)? It should be noted that prior studies in animals 

have identified LFO field potentials as a correlate of coordinated population-level spiking 

activity (Hall et al., 2014, Ramanathan et al., 2018). Although mesoscale ECoG recordings 

are fundamentally different signatures of neural activity compared to spiking activity, a 

putative correlate of underlying population spiking activity at an ECoG recording channel is 

best represented by high-gamma envelopes (γℎ, broadband activity ≥ 70 Hz (Chang, 2015)). 

We therefore first investigated the relationship between LFOs and γℎ envelopes at individual 

channels across the grasp network during movement (Canolty et al., 2006).

To investigate the relationship between LFOs and γℎ, we followed the following phase-based 

analyses. Specifically, raw ECoG signal was first filtered into two frequency bands: LFO 

oscillations (0.5–4Hz δ band filtered activity, Fig. 5A) and high-gamma oscillation between 

70–150Hz (Fig. 5A). We then extracted the envelope of the 70–150Hz oscillation using 

the Hilbert transform to generate γℎ envelopes (hereafter, the envelope is implied when 

mentioning γℎ). The γℎ signal was further filtered within the low-frequency δ band of 

0.5–4Hz, thereby extracting the low-frequency component of γℎ (hereafter called γℎ
LFO, 

Fig. 5A, orange). If mesoscale γℎ were to exhibit a relationship with LFOs, then there 

should be coupling between the phase of LFO oscillations and the phase of γℎ
LFO. We thus 

extracted the respective phases of LFO oscillations and γℎ
LFO using the Hilbert transform 

and evaluated the preferred phase difference (Fig. 5A). The circular mean of the preferred 

phase differences between the two signals is the Phase Locking Value (PLV) (Canolty et 

al., 2011). The PLV is a complex number; its magnitude represents the trial-to-trial phasic 

consistency, and its angle represents the preferred phase relationship. Analyses of the PLV 
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magnitudes showed that a significant phasic relationship existed (assessed by circularly 

shuffling the phase of LFOs); a single M1 channel shown in Fig. 5A (polar histogram). 

On average, ~70% of channels across our subjects exhibited such a significant relationship 

(Fig. 5B, α = 0.05, FDR corrected; see a single subject example of significant channels 

in Fig. S4). A summary figure of the preferred phase-angle between LFOs and γℎ
LFO is 

shown in Fig. 5C. The time-course of LFOs across the network were thus closely related to 

low-frequency γℎ.

Having established the relationship between LFOs and γℎ
LFO we then sought to analyze 

the manifolds and latent dynamics of γℎ
LFO. To this end, we first identified a 45D γℎ

LFO

manifold for each movement using PCA. Across movements and subjects, the 45D γℎ
LFO

manifold captured a median of 58.02% of the neural VAF [S.D. range 51% to 65.1%]. We 

then contrasted the identified 45D γℎ
LFO manifolds between movements pairwise to verify if 

they were similarly oriented to each other in high-dimensional channel space, in a manner 

similar to earlier analyses with LFOs. Results revealed that the 45D γℎ
LFO manifold was 

indeed preserved across movements; the principal angles between movements’ manifolds 

were significantly smaller than chance (single subject example in Fig. 5D) with a median 

of 43 out of 45 significant principal angles across all pairwise comparisons (28 pairwise 

comparisons in each subject for a total of 112 comparisons, Fig 5E). To verify that variance 

in this multi-areal γℎ
LFO neural manifold was shared across movements, we computed the 

ratio of across-movement neural VAF to within-movement neural VAF by projecting γℎ
LFO

data from one condition onto the γℎ
LFO manifold of another condition. Results revealed that 

this ratio was high (0.69 [95% bootstrapped C.I. 0.67–0.705]) and significantly greater than 

would be expected by projecting data on random manifolds (0.38 on average for random 

manifolds, p ≤ 0.01 on 2-sided KS test between distributions of ratios for real and control 

data, Fig. 5F). Thus, a common γℎ
LFO manifold represented all hand movements.

We then used dPCA to evaluate similarities in latent neural dynamics between movements in 

the common 45D manifold (on trial-averaged γℎ
LFO data) (Fig. 5G). Like earlier results with 

LFOs, there was little temporal commonality in latent γℎ
LFO dynamics in the grasp-network 

subspace. The majority of neural variance in γℎ
LFO, by a ratio of ~7:1 (87.65%:12.35% on 

average), was due to the movement-specific modes. A single example of the neural VAF 

due to either movement-specific or time modes is shown in Fig. 5H; the overall VAF due to 

these two modes for four subjects is shown in Fig. 5I. Therefore, like LFOs, each movement 

was primarily characterized by its own temporally distinct latent γℎ
LFO dynamics rather than 

temporally shared latent activity patterns.

Given the similar manifold and latent dynamics properties of both grasp-network LFOs 

and γℎ
LFO for the hand-movement repertoire and their significant phasic relationship, we 

then wondered how similar the two respective subspaces were. We thus compared the 

two signals’ manifolds. Specifically, we evaluated the proportion of neural variance in one 
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manifold that was captured by the other (Fig. 5J). If both signals largely share a common 

subspace, then the proportion of shared variance would be significantly greater than chance 

(Degenhart et al., 2020). Indeed, results revealed that for each subject, the percentage of 

shared variance between the two signals’ dPCA manifolds (average 31.1%) was significantly 

greater (p ≤ 0.01, FDR corrected) than with random manifolds (on average 20.01% [18.5 

− 21.23 bootstrapped C.I.], Fig. 5J). Similarly, we found that the PCA manifolds of both 

signals shared significant variance with each other (42.7% [38.4 − 45.2 bootstrapped C.I.], 

Fig. S5) as compared to sharing variance with random manifolds (21.1% [19.5 − 22.41 

bootstrapped C.I.], p ≤ 0.01 on 2-sided KS test between distributions). The 45D multi-areal 

subspaces and low-dimensional covariance structure of both signals were therefore more 

similar to each other than expected by chance.

Kinematic recordings of the hand-movement repertoire

Our model of compartmentalized grasp-network activity (Fig. 1E) also makes the prediction 

that aligning the temporally distinct latent dynamics to kinematics (separately for each 

movement) will also result in distinct kinematically-aligned submanifolds. We first sought 

to quantify the kinematics across the repertoire. We used the LeapMotion system to 

measure continuous 3D kinematic position data from all joints in each of the five fingers 

(3D position of wrist, MCP, PIP, DIP, end-point bone in each finger), resulting in 75 

kinematic dimensions that were referenced to the palm center (see Methods and see 

Fig. S6A-C for processed whole-hand kinematics). We also validated the LeapMotion 

system using a separate magnetic tracker system (Fig. S6D). Given the biomechanical and 

neuronal coupling in the hand, there is significant temporal covariation between joints. 

Such temporal covariation patterns amongst joints can be represented by elemental whole-

hand control postures, called kinematic “synergies” (Santello et al., 1998, Ingram et al., 

2008, Todorov and Ghahramani, 2004); these appear to be preferentially encoded in the 

brain over individual joints or muscles (Leo et al., 2016, Ejaz et al., 2015). Here, we 

used PCA individually on each movement’s and participant’s trial-concatenated kinematic 

dataset to identify synergies and their temporal activation functions (Methods, (Todorov and 

Ghahramani, 2004, Ingram et al., 2008, Flint et al., 2016, Leo et al., 2016)). The top three 

such synergies and their trial-averaged activations are shown in Fig. 6A-B for the tripod 

grasp and thumb movements respectively (see Fig. S6E for activity in synergy space).

How might the synergies of finger individuation compare to grasping? If finger movements 

did not involve a whole-hand control strategy, then there should be a lower number of 

significant synergies compared to grasping; these finger synergies should also be restricted 

only to joints of the individuated digit. However, while the first synergy was indeed specific 

to the dominant digit (Fig. 6B), subsequent synergies exhibited multi-jointed covariation 

(Fig. 6D-E). Could these secondary synergies be a significant source of variation in the 

kinematic data? While examining the variance accounted for by PCs can determine the 

number of important synergies, we instead opted for a statistical method based on random 

matrix theory (the Marchenko-Pastur (MP) bound (Marchenko and Pastur, 1967)) to identify 

the number of ‘statistically significant’ synergies (Fig. S6A). Interestingly, there were no 

differences in the number of significant synergies between individual finger and grasping 

movements (Fig. 6F, mixed effect model, t(30) = 1.07, p = 0.29). Across movements and 

Natraj et al. Page 10

Neuron. Author manuscript; available in PMC 2023 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



subjects, the median number of significant synergies was three; they were sufficient to 

capture ~95% of the variation. We found that a similar number of significant synergies 

was required to capture ~95% VAF when we analyzed kinematic data in the joint angle 

space (Fig. S6F-G). To further quantify whether the finger synergies involved multi-jointed 

covariation across the entire hand or only along the segments of the individuated finger, 

we examined the representation of the non-dominant fingers weights (Fig. 6G). For 

example, the non-dominant fingers during thumb would consist of the index, middle, ring 

and pinky fingers. While the first synergy had lower representation of the non-dominant 

fingers (43.1%, [95% C. I. 36.3% − 49.67%]), the second synergy had significantly higher 

representation of the non-dominant fingers (78.83% [75.11% − 82.31%], mixed effect 
models, t(38) = −10, p = 3.4 × 10−12). A similar result was obtained when comparing the 

representation of the non-dominant fingers in the third synergy (68.23% [62.7% − 73.4%], 

mixed effect models, t(38) = −5.88, p = 8.16 × 10−7, Fig. 6G).

Our results therefore revealed that the synergies of even ‘simple’ individuated human finger 

movements were characterized by whole-hand covariation patterns – see also (Kirsch et al., 

2014, Schieber, 1995) for a similar finding in nonhuman primates (Fig. S6H-I). This might 

also explain why the neural manifold is preserved for grasping actions as well as apparent 

single finger movements.

Kinematically-aligned submanifolds

To identify movement-aligned submanifolds, we used Canonical Correlation Analysis (CCA 

(Uurtio et al., 2017, Ewerbring, 1990)) to align each movement’s latent LFO dynamics 

within the common 45D PCA manifold to its top three multi-jointed kinematic synergies 

(Fig. 7A). CCA discovers three pairs of neural and kinematic modes such that the time-

dependent activation of any pair of neural and kinematic CCA modes, i.e., the neural and 

kinematic trajectories, are maximally correlated while being orthogonal to other CCA mode-

pairs. As we built the CCA individually for each movement, this orthogonality constraint 

applies only to CCA mode-pairs within a movement and not across movements. The CCA 

neural modes constitute the 3D aligned submanifold within the larger PCA neural manifold. 

Hereafter, “submanifolds” refers to the CCA kinematically aligned subspace. Moreover, 

when we mention neural trajectories, we refer to the behaviorally-relevant neural trajectories 

as a result of the CCA alignment. Cross-validation analyses showed that the CCA modes 

were significantly predictive for held out neural and kinematic data (Fig. 7B, p ≤ 0.05, FDR 

corrected). The mean cross validated correlation between the dominant CCA neural and 

kinematic trajectories across participant and movements was 0.54 (95% C. I [0.49 − 0.583]) 

and the value across all the second and third pairs of CCA neural and kinematic trajectories 

across participants and movements was 0.41 (95% C. I [0.39 − 0.433]). Notably, CCA 

kinematic trajectories were more strongly correlated with mixtures of 489 synergies for 

finger movements, whereas they were more correlated with individual synergy 490 activity 

during grasping movements (Fig. S7).

To understand whether the aligned CCA neural submanifolds were distinct for movement-

type (Fig. 7C), we used the method of principal angles. The principal angles between the 

thumb CCA submanifold and the other movements’ CCA submanifolds is shown in Fig. 
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7C. It can be seen that the principal angles between the submanifolds was quite large, with 

the first principal angle between submanifolds having a mean of 67.6 degrees [95% C.I. 

66.5 – 68.8] across all pairwise comparisons between movements. It should be noted that 

although these angles are large, there are not completely orthogonal due to some degree of 

overlap given the statistics of the neural data. However, these principal angles between CCA 

submanifolds in the real-data were not significantly smaller than the null distribution (at the 

α = 0.05 level, Fig. 7D, using TME), quantifying that CCA aligned submanifolds were not 

more similar than expected by chance. We found a similar result with the submanifolds of 

γℎ
LFO (Fig. S8A-B).

To illustrate that aligned CCA submanifolds compartmentalize each movement’s 

behaviorally relevant neural dynamics, we cross-projected each movement’s latent dynamics 

within the larger common manifold onto the CCA aligned submanifolds of other 

movements. As shown in Fig. 7E, LFO latent dynamics of the middle finger was projected 

onto its own CCA aligned submanifold (preserved CCA neural modes); this is compared 

to the projection of latent dynamics of another movement (pinch grasp) onto the middle 

finger CCA submanifold (swap CCA neural modes). As illustrated, cross-projection of 

the other seven movement’s latent dynamics in the 45D manifold onto the middle 

submanifold degraded the temporal structure of the movements’ kinematically relevant 

neural trajectories. Given that the objective function of CCA is to find temporally correlated 

neural and kinematic trajectories for each movement, we evaluated the effect of neural 

submanifold swapping on the correlation between neural and kinematic trajectories. We 

found that projecting any movement’s dynamics onto another movement’s 3D CCA aligned 

submanifold resulted in lower correlation with its three CCA kinematic trajectories as 

compared to projecting neural data onto its own submanifold (Fig 8F, 2-sided KS test 

between distributions of correlations from original neural modes vs. swapped neural 

modes, p ≤ 0.05, FDR corrected). To ensure the robustness of the results concerning 

the distinctiveness of submanifolds, we also implemented a robust version of CCA and 

projected the submanifolds onto the column spaces of each other rather than just swap them 

(see Methods); our main findings remained unchanged.

To verify that the distinctiveness of CCA submanifolds were not an artifact of their 

dimensionality, we aligned latent neural dynamics to just the first synergy, at which point 

CCA reduces to multiple-regression. The time-course of the first synergy activation was also 

highly correlated across movements as it captures the dominant cycle of flexion/extension 

in the case of fingers or opening/closing in the case of grasping (mean correlation between 

movements for the 1st synergy was r = 0.83 [95% C. I 0.81 − 0.84] in trial concatenated 

data). However, even in this highly constrained scenario where a common kinematic 

output was being regressed onto neural data, the 1D submanifold was highly specific to 

movement-type (Fig. 7G-H). Swapping the 1D submanifold between movements caused a 

significant loss in kinematic correlation with the first synergy (example for middle finger 

movement shown in Fig. 7G and summary statistics across all movements and subjects 

shown in Fig. 7H, 2-sided KS test, p ≤ 0.01). Overall, our CCA results confirmed that 

kinematically relevant neural trajectories were compartmentalized by movement-type into 

distinct submanifolds within the common multi-areal mesoscale manifold.
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The aligned submanifolds span the grasp network equally

The finding that distinct CCA aligned submanifolds lie within a common multi-areal 

subspace is suggestive of a distributed representation for hand motor control across the grasp 

network. Could such a distributed architecture of the aligned CCA submanifolds persist 

if we were to align high-dimensional LFOs to synergies directly without the intermediate 

PCA step? Such a finding would confirm that computations in submanifolds spanning a 

distributed cortical network represent the kinematics of the movement repertoire. We thus 

applied CCA to align high-dimensional channel level LFOs to the top three synergies 

directly without the pre-processing step of first projecting channel LFOs onto the common 

neural manifold. Each of the three resultant CCA neural modes are now weighted linear 

combination of channel LFOs, rather than weighted linear combinations of the neural modes 

(PCs).

To identify a cortical network of ‘significant’ channels, we first established the importance 

of each channel’s weight magnitude within each CCA neural mode; results revealed that 

dropping channels with the highest weights in a CCA neural mode caused greater loss in 

correlation than dropping channels with the lowest weights (Fig. 8A-B, Fig. S9). To generate 

a surrogate distribution of channel weights within each CCA neural mode, we simulated 

each channel’s LFOs 2000 times prior to running CCA. We then identified significant 

channels within each CCA neural mode if a channel’s weight magnitude exceeded the null 

distribution at the α = 0.01 level (FDR corrected for multiple comparisons). Significant 

channels identified within each CCA neural mode were isolated and then pooled together 

to identify a binary cortical map of each movement’s aligned submanifold. On average, 

30.8% (95% C. I [28% − 34.13%]) of channels were significant at the α = 0.01 level (FDR 

corrected). An example of such a cortical network of channels during thumb movement is 

shown for one participant in Fig. 8C. The distributed nature of the network of channels 

appeared to be consistent across the various hand movements (Fig. S10). To statistically 

evaluate the similarity between each movement’s cortical network, we first projected the 

significant channels onto the 3D cortical surface (Hamilton et al., 2017) using a Gaussian 

function with a cortical spread of 1cm, creating LFO cortical channel density maps (Fig. 

8D). We then evaluated the similarities between movements’ LFO cortical channel density 

maps using the pairwise cosine distance metric. The average pairwise similarity matrix, 

depicted in Fig. 8E, suggested that there was no separation between movements’ density 

maps, and that the cortical maps were not distinct (hierarchical clustering, Fig. 8F, p = 

0.963).

Our results suggested that the spatial extent of each kinematically aligned manifolds 

spanned a distributed network, even when directly aligning high-dimensional channel LFOs 

to synergies. To visualize this network, we projected all significant channels from all 

participants onto an average brain template (Hamilton et al., 2017), separately for grasping 

and finger movements (Fig. 8G). The network for both finger and grasping movements 

spanned the grasp network equally, even though one might have expected the kinematics of 

finger movements to be driven more by primary sensorimotor areas (Indovina and Sanes, 

2001, Sanes et al., 1995). Indeed, there were no statistical differences between finger 

and grasping movements (Fig. 8H, mixed effect models, 0.05 level, multiple comparison 
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corrected, S1: t(30) = −1.04, p = 0.30, M1: t(30) = −1.75, p = 0.09, parietal cortex: t(30) = 

−1.61, p = 0.11, supramarginal gyrus: t(30) = −1.16, p = 0.25, ventral premotor cortex: t(30) 

= −2.5, p = 0.018 and dorsal premotor cortex: t(30) = −1.43, p = 0.163). Importantly, we 

also found that the distributed cortical structure of the aligned manifold persisted even when 

finger movements were executed in a non- rhythmic, cue-based manner (Fig. S11).

Discussion

Our study aimed to understand how multi-areal manifolds and latent dynamics in the 

“grasp network” represent a repertoire of hand movements. Our results showed that 

although the manifold based on mesoscale covariance is preserved across a repertoire 

of hand movements, latent dynamics within this common multi-areal subspace are 

compartmentalized into distinct submanifolds spanning the entre grasp network instead 

of relying on shared low-dimensional patterns. Notably, these manifold results held true 

for both LFOs and the low-frequency patterns of γH, with unique phasic relationships 

between the two signals. Such distinct compartmentalized dynamics within a common 

multi-areal subspace could correspond to the visuomotor transformations necessary to 

plan, select and execute the appropriate synergistic gestures for hand movements sharing 

a common kinematic basis (Schaffelhofer and Scherberger, 2016, Michaels et al., 2020). 

This mesoscale level finding stands in contrast to population spiking activity in local M1 

circuits (Kaufman et al., 2016, Gallego et al., 2018). In addition to grasp-network dynamics, 

analyses of the static property of the grasp network revealed a representational structure 

characterized by a unique set of similarity patterns in the mean activity.

A common low-dimensional mesoscale manifold for grasping and finger movements

Understanding the neural control of the hand has been of exceeding interest in motor control 

research, from classical stimulation and electrophysiology work in non-human primates 

(Muir and Lemon, 1983, Buys et al., 1986, Lemon et al., 1987, Lemon, 1988, Schieber 

and Hibbard, 1993) to neuroimaging in humans (Sanes et al., 1995, Indovina and Sanes, 

2001, Colebatch et al., 1991). However, the neural computations of how latent multi-area 

dynamics in the grasp network, represent a repertoire of hand movements was unclear. 

Dimensionality reduction methods and multivariate methods in general provide excellent 

means of studying latent dynamics and neural manifolds of a neuronal population and have 

been widely used in neuroscience (Humphrey et al., 1970, Briggman et al., 2005, Gallego 

et al., 2017, Jazayeri and Afraz, 2017). Moreover, multivariate brain-behavior correlational 

methods such as CCA might better uncover behaviorally relevant dynamics rather than 

characterizing the neural manifold alone (Sani et al., 2020, Jazayeri and Afraz, 2017). CCA 

specifically uncovers simultaneous neural and kinematic transformations when identifying 

maximally correlated neural and kinematic trajectories; these appear to be significantly more 

revealing than one-to-one or many-to-one regression-based methods.

An interesting finding in our study was the fact that the neural manifolds of both finger 

and grasping spanned the “grasp network”. In contrast, past work had dichotomized the 

neural control of individual fingers as local to primary motor cortex (Beisteiner et al., 2001, 

Indovina and Sanes, 2001, Sanes et al., 1995, Schieber and Hibbard, 1993), while viewing 
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grasping actions to be controlled by a distributed network. A potential reason for this view 

is the general belief that unlike “single finger movements”, grasping actions involve multi-

jointed whole hand postures (Schaffelhofer and Scherberger, 2016, Leo et al., 2016, Borra 

et al., 2017). However, early biomechanical data hinted that even single finger movements 

do in fact require as many multi-jointed synergies as prehension postures (Todorov and 

Ghahramani, 2004, Schieber, 1995, Häger-Ross and Schieber, 2000). Indeed, our kinematic 

data here revealed that single finger movements involved active covarying control of the 

entire hand and required as many significant synergies as grasping, see also (Kirsch et al., 

2014). It is therefore likely that complex hand control, whether it be finger individuation 

or grasping, may necessitate activity in the entire grasp network.. While parietofrontal 

and sensorimotor nodes of the grasp network have been well defined for hand control, of 

particular interest is the role of supramarginal gyrus. From a functional neuroanatomical 

point of view, the supramarginal gyrus is close to the angular gyrus in the inferior parietal 

cortex and is thought to encode self-awareness of the hand. For example, disruption of 

activity in the supramarginal gryus using cortical stimulation resulted in finger agnosia 

(Roux et al., 2003) and prior fMRI research has shown consistent activity in the SMG during 

the execution of intransitive finger movements (Jonas et al., 2007). Interestingly, activity 

in the supramarginal gyrus has also been shown to encode the control of kinematic hand 

synergies in humans (Leo et al., 2016) and the inferior parietal area has been well defined 

in both human and non-human primates during grasping ((Castiello, 2005, Buxbaum et al., 

2006)). Our data thus provide novel evidence that the SMG encodes the kinematic synergies 

of simple finger movements in a manner like grasping. It should be noted however, that 

participants in our study performed free-moving hand movements; further work is necessary 

to understand whether there is a difference in grasp network recruitment for prone hand 

movements vs. hand movements in space where accessory muscles might be recruited for 

stabilization during individuation. We note however, that our rather stringent criteria for 

synergy detection uncovered multiple kinematic synergies during finger individuation in 

both joint position and angle space.

Our results here also highlight how an entire repertoire of complex hand movements, 

including finger individuation, can be represented without a rigid somatotopy by a common 

distributed network spanning multiple cortical areas, specifically outside of the “hand knob” 

in primary motor cortex (Ejaz et al., 2015, Sanes et al., 1995, Schieber and Hibbard, 1993). 

Of particular interest is the distributed neural control of the human thumb. The use of an 

opposable thumb is thought to be a defining property of dexterous hand actions, not just 

in humans (Napier, 1955, Napier, 1960, Young, 2003) but also in other primates species, 

notably in the capuchin monkey (Mayer et al., 2019, Truppa et al., 2016). The human thumb 

has a tendinous and musculoskeletal structure distinct from the other four fingers, and allows 

greater simultaneous rotation and flexion/extension (Napier, 1955). Not only did thumb 

movements recruit activity over the entire distributed grasp network, but our representational 

analyses also revealed that the centroid of the thumb movement’s LFO distribution was 

the most discriminative compared to all other movements. It was also closer to grasping 

than the other four fingers, highlighting the importance of the opposable thumb in complex 

prehensile movements.
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Low frequency oscillations

In this study, we used LFOs as a correlate of neural activity; LFOs in ECoG are widespread 

over varied motor cortical regions (Kubanek et al., 2009, Miller et al., 2007), have been 

shown to be highly involved during motor control (Ramanathan et al., 2018, Bansal et 

al., 2011, Rickert et al., 2005, Pistohl et al., 2008, Paek et al., 2014) and can be used 

to decode hand synergies (Acharya et al., 2010)); similar low-frequency components in 

MEG (magnetoencephalography) have also been shown to be coherent with hand movement 

profiles (Jerbi et al., 2007). Given the fact that the repertoire of hand movements utilized 

a common whole-hand control scheme, especially given the temporal and biomechanical 

coupling between joints, it wouldn’t have been surprising if the dynamics of grasp-network 

LFOs were stable and preserved for the movement repertoire. Yet, although the multi-areal 

neural covariance structure was preserved across movements, latent neural dynamics were 

compartmentalized by movement-type with distinct behaviorally relevant submanifolds 

for each hand movement. Our results thus show that multi-area mesoscale dynamics 

during a movement repertoire, even in low frequency oscillations, best represent the 

discrete hand action being performed than a readout of motor output traces. These results 

have applications with respect to ECoG in human brain machine interface (BCIs) trials 

(Silversmith et al., 2020, Benabid et al., 2019). Specifically, a hybrid decoding approach, 

such as decoding both the neural dynamics corresponding to the user’s discrete cognitive 

motor state in conjunction with the readout of real-time kinematic motor output, can 

potentially improve BCI decoding performance. Our results likely have clinical relevance 

for stroke given that LFOs reorganize in perilesional cortex (Ramanathan et al., 2018) and 

are correlated with abnormal flexor muscle synergies after stroke (Godlove et al., 2016). 

Understanding how neural manifolds of LFOs represent multiple normal and abnormal hand 

synergies post-stroke can aid in designing rehabilitation schemes such as low-frequency 

cortical stimulation to preferentially modulate hand control (Khanna et al., 2021) or 

understanding the effects of peripheral nerve stimulation on cortical LFO manifolds (Tu-

Chan et al., 2017).

Differences between single-area cortical spiking and distributed mesoscale dynamics

While distributed mesoscale ECoG signals are fundamentally different signatures of neural 

activity than single and multiunit spiking activity in primary motor cortex, it is quite possible 

that there are sufficient similarities to warrant a comparison. Notably, a single mesoscale 

ECoG channel likely reflects the heterogenous activity of around 105 neurons (Chang, 

2015). While it is difficult to relate ECoG LFOs to single neurons, it is possible to suggest 

population level similarities. More specifically, it is possible that there is an analogy between 

LFOs measured using local field potential (LFP) recordings with microwire arrays (electrode 

tips are high impedance) and those measured using lower impedance ECoG electrodes. For 

example, prior studies in animals have shown that LFOs in LFP to correspond to population 

level spiking activity (Ramanathan et al., 2018, Hall et al., 2014). In these studies, the 

local single unit firing activity was closely related to ensemble population dynamics, e.g., 

the spike population perievent time histogram (PETH) or simply the sum of all recorded 

spiking activity. Because in both studies the LFOs could be recorded across the array (albeit 

with spatiotemporal phase offsets), it is quite likely that the ECoG LFO is an aggregate 

and related mesoscale measure of similar phenomenon. Moreover, our data suggests that 
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mesoscale LFOs have a phase relationship with the low-frequency component of γH, a 

putative correlate of population spiking activity at the recording channel. While further work 

is required to fully understand precisely how neural spiking over a relatively large cortical 

regions (e.g., 2–4 mm in size) is associated with ECoG LFOs and γH, we suggest the 

possibility that population level spiking activity and LFPs recorded using high impedance 

electrodes are related to our ECoG mesoscale LFO signals.

Our key finding of distinct latent dynamics for the hand-movement repertoire is quite 

different from what is evident for movement related spiking activity in primary motor 

cortex (M1); where temporal patterns of latent neural dynamics are highly preserved 

across varied movements (Gallego et al., 2018, Kaufman et al., 2016, Churchland et al., 

2012). One possibility for this difference is that the shared low-frequency population 

level neural dynamics in M1 spiking activity might function as a more general means of 

transmitting information to subcortical circuitry irrespective of the actual movement-type 

(Kaufman et al., 2016, Russo et al., 2018). Perhaps consistent with this possibility is a 

recent study in rodents that found that movement triggered low-frequency spiking and 

LFP activity in M1 were tightly phase locked with similar activity in the striatum, which 

is a single synapse downstream of M1 (Lemke et al., 2019). Also consistent with this 

model is the recent finding that injection of LFO frequency electrical currents after stroke 

in perilesional premotor cortex can increase neural cofiring and improve finger control 

(Khanna et al., 2021); computational modelling in this paper suggested that this allowed 

enhanced propagation of activity patterns to presumed cortical and subcortical targets.

How then can we compare our findings using ECoG to those based on local M1 spiking? 

In contrast to population level activity in local circuits, distributed ECoG LFOs do not 

demonstrate temporally-preserved, movement-triggered single-trial modulations in power 

at the population level as robustly as spiking activity for the repertoire of actions. 

Instead, grasp-network dynamics are distinct with distinguishable phases or inter-areal 

timing differences in mesoscale activity for the repertoire. Rather than serve primarily to 

transmit downstream information to subcortical regions, ECoG LFOs might correspond to 

cross-area population coupling within a distributed network. Recent work suggests that 

such cortico-cortical coupling represents a distinct communication subspace which can 

be separated from movement potent signals (Veuthey et al., 2020, Semedo et al., 2019). 

Interestingly, inactivation of an upstream area showed that the movement subspace is 

distinguishable from the communication subspace (Veuthey et al., 2020). Thus, it is quite 

possible that low-frequency ECoG mesoscale cortical dynamics are generally weighted 

towards communication subspaces across the grasp network necessary to discretely select 

and plan the appropriate synergistic gestures for each hand movement. This further suggests 

that there are separable and consistent “pathways” for the propagation of information across 

the distributed grasp network for each movement type. This might allow rapid and precise 

feedforward communication for each movement type; it might also permit a straightforward 

means to incorporate sensory feedback.

It should also be noted that notwithstanding the differences between local population spiking 

activity and multi-areal mesoscale recordings, it might also be the case that the complexity 
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of hand movements might elicit mesoscale dynamics that are fundamentally different from 

M1 population spiking data during well-learned and stereotyped upper arm movements. 

For instance, recent studies have shown that the latent dynamics of even local population 

activity in M1 tends to be highly variable from movement to movement during grasping 

actions (Suresh et al., 2020, Rouse and Schieber, 2018). Although participants in our study 

performed pantomime movements, it may be that multi-area neural dynamics might differ if 

the hand were to actually interact with objects during both grasping and finger movements 

(e.g., using the index finger to flip a switch). Interaction with an object can further alter 

the compartmentalization of neural dynamics in the grasp network (Michaels et al., 2020, 

Russo et al., 2020) and the resultant extrinsic inputs can result in more tangling of the latent 

mesoscale neural dynamics (Russo et al., 2018). This further suggests that perhaps greater 

training and practice with objects during dexterous hand control, especially after stroke, 

might result in more temporally common rather than distinct dynamics.

Summary

In conclusion, we present here a neural framework highlighting how distinct manifolds 

of mesoscale ECoG dynamics within the grasp network represent a repertoire of human 

hand movements; this might be a mechanism through which humans can rapidly switch 

among a repertoire of complex hand movements that are kinematically similar. Extending 

our framework to clinical populations and to naturalistic hand interactions with daily objects 

can aid in further understanding the function of large-scale neural manifolds for dexterous 

human hand control.

STAR Methods

Resource availability

Lead contact—Further information and requests for resources should be addressed to 

and will be fulfilled by the lead contact of the study, Karunesh Ganguly, M.D, PhD, 

Karunesh.ganguly@ucsf.edu

Materials Availability—This study did not generate new unique reagents.

Data and code availability

• All data reported in this paper will be shared by the lead contact upon reasonable 

request.

• The dPCA algorithm is publicly available (https://github.com/machenslab/dPCA) 

and the tensor maximum entropy algorithm (TME) is publicly available (https://

github.com/gamaleldin/TME). Cortical visualization of ECoG activity was done 

using a publicly available package (https://github.com/libertyh/img_pipe/tree/

matlab). Interfacing of LeapMotion to Matlab for real-time synchronized data 

acquisition of kinematic and neural data was done using publicly available 

packages (https://github.com/jeffsp/matleap) and via the LeapMotion SDK 

(https://developer.leapmotion.com/). All analyses were conducted in Matlab 

using previously published methods and hand visualization analyses was done 
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using proprietary software (Poser, Bondware, https://www.posersoftware.com/). 

For modifications of publicly available code packages as pertaining to this study, 

for real-time data acquisition code synchronizing LeapMotion, Matlab and the 

ECoG TDT systems, for ECoG neural signal processing, for representational-

structure based static analyses of grasp network activity, for neural manifold 

based analyses, for phase coupling analyses and for synergy based kinematic 

analyses, all enquiries will be fulfilled upon request to the lead contact of this 

study.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

Experimental model and subject details

Participants—We recruited in total five patients (two male, three female, mean age 31.2 

years) undergoing clinical monitoring for epilepsy at UCSF’s Department for Neurological 

Surgery. Each patient was implanted with high-density electrocorticographic surface grids 

(256 channels, 4mm pitch) and electrode strips covering the motor, sensory, frontal and 

parietal cortical regions. The placement of the electrodes was for the purposes of identifying 

foci of seizures. The coverage of the grids was left hemispheric for three of the five 

participants. Four of the five participants performed all self-paced grasping and individual 

finger movements; these four subjects form the main study dataset to address our hypothesis 

of grasp-network neural activity. Two of these four participants also performed cue-based 

thumb movements and the final 5th subject was able to perform only cue-based thumb 

movements due to clinical time restraints. All hand movements were contralateral to the 

recording ECoG grid. All patients gave their informed consent to participate in the study 

protocol as approved by the UCSF Committee on Human Research and all procedures were 

approved by the UCSF Institutional Review Board (IRB).

Method details

Experimental design and data acquisition—The task required participants to perform 

the following eight self-paced movements: flexion/extension of each finger and pantomime 

of three types of grasping movement (pinch, tripod and power grasp). For the pinch grasp, 

participants were instructed to imagine picking up a small object using their thumb and 

index finger. For the tripod grasp, participants were instructed to imagine picking up a larger 

object such as a pen/marker with their thumb, index and middle fingers. For the power 

grasp, participants were instructed to imagine picking up/grabbing a larger object using all 

their fingers. The evolution of these three specific types of grasp movements are thought to 

be essential for human prehension, and are thought to underlie all human hand grasping 

actions in general (Young, 2003, Napier, 1960). Participants performed the self-paced 

movements sequentially and not randomly. For example, participants performed cycles of 

self-paced thumb movements continuously, rested for a few minutes, then performed index 

movements and so on, finishing with the grasping movements. Two of the four participants 

also performed cue-based thumb movements and the final fifth participant was able to 

perform only cue-based thumb movements due to clinical time constraints. In the cue-based 

movements, participants were instructed to perform the movement when they viewed a ‘Go’ 
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cue and they were given 3s to perform the movement. Prior to the Go cue, a ‘Ready’ cue was 

presented for a variable length between 1.5–2s to alert them of the Go cue. Following the 

completion of 3s after the Go cue, a ‘Rest’ cue was presented for 3s. This cue-based design 

was repeated for about 25 trials on average per participant. Participants performed free 

unconstrained hand movements in space, although their forearm and elbow was supported 

by a pillow.

Continuous neural data was sampled at 3052Hz with a PZ2 amplifier connected to a RZ2 

Tucker-Davis recording systems (TDT) and was hard-referenced to a separate reference 

electrode outside of the recording grid. Concurrent kinematic data was simultaneously 

recorded using the LeapMotion system at a sampling rate of approximately 100Hz. Custom 

code in Matlab was written to use the Arduino board to generate synchronized time-markers 

online in the kinematic and neural data streams. All analysis and processing of data were 

performed in Matlab (Mathworks Inc.)

Sample size estimation—We did not perform a priori sample size estimation, especially 

given the rarity in obtaining invasive brain data of this nature. We relied on previously 

published reports in the literature for similar work that utilized a comparable sample size. 

The majority of our analyses were performed on single subjects and replicated across 

subjects. Our analyses did not require randomization or blinding, and subjects were recruited 

based on ECoG grid coverage that was implanted purely for the purposes of clinical 

monitoring for epilepsy and subjects were excluded if there were any clinical constraints 

or if their grid coverage did not encompass cortical areas specific to our study.

ECoG signal processing—Collected neural data were first down sampled to 508Hz, 

and notch filters were used to remove line noise at 60Hz and its relevant harmonics. 

Data were then visually inspected to identify bad channels that did not record any 

meaningful, noise-free neural activity and were removed from further analyses. We also 

visually examined data for artifactual epochs; these time-periods were marker for further 

removal after synchronization with kinematic data. We then applied a common median 

reference to the raw ECoG signals. Low frequency oscillations (LFOs) were defined in 

this study to be ECoG activity within the δ frequency band of 0.5–4Hz. To extract LFOs, 

we applied a 4th order IIR band-pass filter to ECoG data within the frequency range of 

0.5 and 4Hz. To extract the envelope of the LFO, we applied the Hilbert transform and 

extracted the analytic amplitude at each channel. An additional processing step involved 

z-scoring channel data that is very commonly used in ECoG-based analyses (Silversmith 

et al., 2020). For representational similarity analyses, channel data were z-scored across 

movements to preserved differences in mean activity between movements. For manifold 

based analyses (such as PCA or CCA) that depends on covariance, channel data were 

z-scored (thereby mean-centered) within each dataset individually, as the mean does not 

inform on covariations. Note that z-scoring has the additional step of re-scaling each 

channel’s data by the standard deviation around its mean; however we found that re-scaling 

did not have any effect on either our representational or manifold based analyses as all 

channels’ raw or filtered activity exhibited very similar variation around its mean in all 

hand movement datasets. With regard to high-gamma analyses (Chang, 2015), we applied 
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a bandpass filter to the raw ECoG data with limits of 70–150Hz. The Hilbert transform 

was then applied to bandpass-filtered data and high-gamma amplitudes, γH, was given by 

the analytical amplitude of the Hilbert transform. For analyzing the relationship between 

LFOs and γH, the sampling rate of the data was maintained at 508Hz. To extract the 

low-frequency component of γH, i.e., γH
LFO, a second filtering step was applied wherein high 

gamma amplitudes were band pass filtered within the 0.5–4Hz range using the 4th order 

IIR band-pass filter. Here on out, when we mention LFOs we imply the envelope of the δ 
band oscillation and when we specifically mention LFO oscillations we refer to the δ band 

oscillation alone without the envelope. Similarly when we mention γH
LFO we refer to the 

low-frequency component of high gamma amplitudes.

For exploring the relationship between the manifolds of neural activity (either LFOs or 

γH
LFO) and kinematics, data for both were down sampled to 25Hz in time-synchrony with 

each other followed by Savitzky-Golay smoothing (2nd order filter with a span of 400ms, 

(Pistohl et al., 2008)). After synchronization with kinematic data, whenever artifactual 

epochs or time-periods were removed in either neural or kinematic data streams, the 

corresponding epoch was removed from the other data stream. Using the kinematic data, we 

created neural epochs or trials based on a full cycle of flexion/extension in the case of self-

paced finger movements or a full cycle of opening/closing in the case of self-paced grasping 

movements. In the self-paced experiments, there was variability in the exact amount of time 

it took to start and execute a full self-paced cycle as there was no experimental cue for 

each trial. For this reason, we normalized the length of each trial to 3s and accordingly 

interpolated each epoch of neural data to have 75 samples at 25Hz (0s to 2.96s with 

a Δt = 40ms). We then were able to average across trials with a consistent time-scale 

or alternatively concatenated data across trials based on the analysis. For the cue-based 

movements, we extracted epochs of data from 500ms before the Go cue to 3s after the Go 

cue; each epoch was therefore consistently 3.5s of length. Note that our results were robust 

to how we epoched our neural data i.e., our main findings remained unchanged even when 

we epoched data around peak flexion/closing without trial length normalization.

Movement related information in grasp-network LFO amplitudes

Representational structure in grasp-network LFO amplitudes: To establish the 

relationship between LFOs and movement, we evaluated whether there was a 

representational structure in mean grasp-network LFO activity i.e., the static property of the 

grasp network corresponding to the location of each movement in high-dimensional channel 

space. Specifically, we wondered whether the movements’ mean LFO activity exhibited a 

unique set of similarity patterns similar to prior fMRI work in local M1 regions (Ejaz et 

al., 2015), that had shown for instance, that mean voxel-wise activity for pinky and ring 

movements were more similar than to thumb movements. Notably, Ejaz et. al. had shown 

that such neural similarity patterns follow the kinematical coupling pattern between fingers, 

where the thumb is individuated distinctly while the pinky and ring fingers are usually 

co-active. However, such a representational structure in mean cortical activity has not been 

shown at the level of the mesoscale grasp network and in relation to both finger and grasping 

movements simultaneously. To ascertain the representational structure in grasp-network 
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LFOs, we evaluated the pairwise statistical distance Dij between the centroids of any two 

movements’ channel LFO distributions (assumed to be multivariate Gaussian) within a 

participant using the Mahalanobis distance metric:

Dij = μi − μj
Σi + Σj

2
−1

μi − μj
⊤

Here, μi ∈ Rcℎ × 1 and μj × Rcℎ × 1 are vectors denoting the multidimensional mean LFO 

amplitudes across channels, averaged over time for movements i and j, and Σi ∈ Rcℎ × cℎ and 

Σj ∈ Rcℎ × cℎ are the corresponding multidimensional variance-covariance matrices between 

channels’ time-varying LFO amplitudes. The Mahalanobis measure therefore is the pairwise 

distance between any two movements’ multidimensional channel means scaled by the 

pooled multidimensional variance. For accurate comparisons and as detailed earlier, we 

utilized a common baseline to z-score channel LFO amplitudes (z-scoring channel data 

across all movements) to preserve between-movement differences in mean LFOs. The above 

procedure resulted in the construction of a symmetrical distance matrix for each participant 

D ∈ R8×8 whose entries contained all the pairwise distances between movements. We then 

assessed the similarity between participants’ distance matrices. Specifically, upper-diagonal 

entries of each participant’s distance matrix (note that the distance matrix is symmetric) 

were collapsed into one vector and correlated with similar vectors from other participants 

(Ejaz et al., 2015). The mean correlation value formed the statistic of similarity in 

participants’ representational content. Significance was assessed by a permutation procedure 

wherein the movement labels were swapped within each participant when computing the 

distance matrix and subsequently the mean correlation value. This procedure was performed 

1000 times to generate a null distribution of mean correlation values under the null 

hypothesis that there is no representational structure in LFO distributions across participants. 

To parcellate the similarity patterns between movements’ LFO distributions, we performed 

hierarchical clustering on the average Mahalanobis distance matrix using Ward’s criterion 

(Theodoridis and Koutroumbas, 2003) and depicted the result by a scaled dendrogram.

Apart from the Mahalanobis distance analyses, we also utilized a more traditional 

classification approach to evaluate the representational structure in LFOs. We used a 

linear Support Vector Machine (SVM (Fan et al., 2008)) with channels as features and 

instantaneous LFO amplitudes as observations. Here, the instantaneous LFO amplitudes are 

fluctuations around mean δ band envelope for each channel, and the SVM linear classifier 

evaluated the separability between movements in terms of the channels’ fluctuations around 

the mean activity. A pairwise SVM is a linear hyperplane that maximizes the margins 

between the observations of two datasets and aims to discriminate time-periods when 

a participant was performing a particular type of hand movement from time-periods 

corresponding to the second movement. The linear classifier is essentially a vector WSVM 

that weights each channel’s LFO amplitudes XLFO(t) at any time t; a two-class SVM 

discriminates the two movements (with class labels 1 and −1) based on the sign of the inner 

product between channels LFO activity and WSVM, i.e.,
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classA: W SV M
⊤ XLFO(t) > 0

classB: W SV M
⊤ XLFO(t) < 0

We contrasted each movement against all other movements individually in a pairwise 

manner (e.g. thumb vs. index, thumb vs. middle etc.), within each participant. Within 

each contrast, we averaged results from four-fold cross validation wherein within each fold 

70% of the data was randomly selected to train the SVM and the remaining 30% formed 

the testing set. The SVM’s slack parameter was computed from the 70% training data. 

Importantly, although each movement had a distinct number of sample points, the training 

dataset was balanced with an equal proportion of both movements’ time-periods. However, 

since the testing dataset was imbalanced, we evaluated the classifier performance via the 

term balanced accuracy which is the average of the sensitivity and specificity of the SMV 

model’s performance on held out data. The SVM model’s sensitivity is given by the ratio of 

and its specificity is given by the ratio of

sensitivity = True Postives
True Positives + False Negatives

and its specificity is given by

specificity = True Negatives
True Negatives + False Positives

both computed from the held out test data samples. Balanced accuracy is then the average 

of these two numbers. To obtain confidence intervals and test the statistical significance of 

the SVM model, we used Bayesian statistics. Specifically, we modeled both sensitivity and 

specificity as Binomial distributions for which the beta distribution is the conjugate prior 

(Bishop, 2006). For example, the beta distribution for sensitivity is proportional to:

p(μ) ∝ μa − 1(1 − μ)b − 1

where μ is the random variable describing the distribution of values around true sensitivity. 

The mean or expected value of this variable is given by

E(μ) = a
a + b

which as it can be seen shares a close relationship with the actual formula for sensitivity i.e., 

a = No. of True Positives and b = No. of False Negatives. Thus p(μ) defines a distribution 

around the estimated value of sensitivity; the width of this distribution depends on the 

number of held-out test samples. The parameters a and b are thus hyperparameters and are 

initially chosen to be both equal to 1 which results in the beta distribution being a flat 
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or uniform prior i.e., p(μ) is a constant for all possible values of μ. Given the number of 

samples from the held out data, the parameters a and b are then updated or added with the 

number of true positives and false negatives. In this manner, we can update the sensitivity 

of the model i.e., E(μ) and the pdf p(μ) around the mean sensitivity from the held out test 

samples. Similarly, we can generate another pdf P(α) for the specificity of the model along 

with E(α) from the held out test samples where α is a random variable for the possible 

values of specificity. Note that these pdfs need to be appropriately normalized so that they 

sum to one (see chapter two of (Bishop, 2006) for full details). The balanced accuracy can 

then be computed as the average of the random variables μ and α defining sensitivity and 

specificity respectively. The average (or sum) of two random variables is a linear operation 

which results in the convolution of the pdfs of the two random variables. The pdf for 

balanced accuracy is thus given by:

p(η) = p(μ) ∗ p(α)

where η is the random variable describing the possible values of balanced accuracy, E(η) is 

the mean of this distribution and ∗ is the convolution operator. As before, this pdf should 

be normalized so that it sums to one. In this manner we can generate pdfs of sensitivity, 

specificity and balanced accuracy of the SVM model from its performance on testing data. 

The significance of the SVM model and p value can then be easily obtained by evaluating 

the integral of the pdf (η) to the left of 0.5 or 50%. This procedure of computing the 

balanced accuracy of a pairwise SVM model and its associated p value was performed for all 

pairwise comparisons across all subjects.

The obtained pairwise balanced accuracies were then used to build a symmetric matrix D 
∈ R8×8 where any entry Dij is the balanced accuracy of the model when discriminating 

movements i and j. We built such matrices for each subject and averaged across subjects 

to obtain the average classification distance between all movements. We then examined 

the averaged matrix for a representational structure i.e., if the activity around mean 

grasp-network LFOs of some movements were closer to others and more likely to be 

misclassified between them. For instance we can examine if pinky finger movements 

tended to be misclassified more as ring finger movements. To this end, we performed 

hierarchical clustering on the average pairwise matrix using Ward’s criterion and statistically 

evaluated the misclassifications using mixed effect models. We also used the individual 

pairwise classifiers in a multi-classification framework using a max-vote strategy wherein 

the movement that won the maximum number of classifications from each pairwise classifier 

was assigned to the testing data-point.

Phase-coupling of ECoG LFOs to kinematics: To further establish the relationship 

between LFOs and movement, we first evaluated whether the amplitude of LFOs peaked 

at preferred phases of movement. For finger movements, the main phases of movement 

corresponded to flexion and extension, and for grasping movements they corresponded to 

opening and closing of the hand. A phase of π was considered as full flexion (fingers) or 

full closing (grasps) and a phase of 0 or 2π was considered full extension (fingers) or full 

opening (grasps), phases in between 0 and π constituted the flexion/closing cycle and phases 
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in between π and 2π constituted the extension/opening cycle. Within each trial and for each 

channel, we then identified the preferred phase of movement when LFO amplitude peaked. 

We identified similar such preferred movement phases when LFO amplitudes peaked for 

all trials. Under the null hypothesis, one would expect a circularly uniform density of 

preferred phases, suggestive of no relationship between LFOs and kinematics. We tested this 

hypothesis at each channel using the Rayleigh test in the circular statistics toolbox (Berens, 

2009). In this manner, we were able to identify channels whose LFO envelopes peaked 

at preferred phases of movement. A nominal significance threshold of α = 0.05 was used 

to identify the cortical network of channels whose LFOs were significantly phase-locked 

to movement. We performed this analysis for each movement and subject individually. 

Channels that exhibited significant phasic relationships were assigned a value of 1 and non-

significant channels were assigned a value of 0. Such a binary mask of significant channels 

was identified for each movement and subsequently aggregated across movements. Channels 

that consistently exhibited significant phase relationships across movements would have 

higher aggregated values and therefore deemed to have relatively higher locking to LFOs to 

kinematics than channels that were significant in only a few of the eight movements.

Neural manifold analyses—To understand the neural manifold based on the multi-area 

neural covariance structure, PCA was applied to trial-concatenated, mean-centered data 

individually for each participant and movement. Let Xa ∈ Rt × cℎ denote an individual 

z-scored neural dataset for a particular movement a, where t denotes the time-samples 

across trial concatenated data, with the number of channels given by ch. PCA uncovers an 

orthonormal basis D ∈ Rcℎ × cℎ that captures directions of maximal variance wherein each 

column of D is a neural mode or principal component identifying multi-areal channels with 

covarying neural activity. The variance accounted for by k PCs for the movement a can be 

estimated using the reconstruction formula:

R(a)k
2 =

Xa 2 − Xa − XaDkDk
⊤ 2

Xa 2

Here, the norm of the matrix terms in the above equation is the sum of the squared values 

of the elements of the matrix. Results revealed that on average across movements 45 

PCs captured at least 75% of the neural VAF in trial concatenated data, resulting in a 

low-dimensional neural manifold given by the first 45PCs i.e., Da
45 ∈ Rcℎ × 45 for movement 

a. Note that the neural modes can be visualized on the cortical network as it assigns a weight 

for each channel, allowing us to compute the average weight within each node of the grasp 

network. Specifically, we defined rough Brodmann Area-based regions of interest (ROI) 

identifying primary motor cortex (M1), sensory cortex (S1), ventral and dorsal premotor 

cortices (PMv, PMd), parietal cortex (PPC) and supramarginal gyrus (SMG) and quantified 

the average channel weight within each ROI across all 45 neural modes.

Having identified the manifold for each movement, we then computed whether the 45D 

manifolds were oriented similarly in high-dimensional channel space using the method 

of principal angles (Björck and Golub, 1973, Gallego et al., 2018, Meyer, 2000). In the 
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cases of two lines, this trivially reduces to the angle between the lines. In the case of 

subspaces or higher-dimensional manifolds, the angles are not so trivial as there are infinite 

combinations of lower dimensional flats between the manifolds. However, one can find 

principal directions within the manifold (which are linear combinations of the basis of the 

manifold) such that they produce the smallest possible angles between the two manifolds. 

In our data here, the neural modes form an orthonormal basis for the manifold as a 

consequence of the PCA step. We then computed the singular value decomposition (SVD) 

of the dot product matrix between the two manifolds for any two movements a and b by the 

formula

PaSPb = SV D Da45⊤
Db

45

where S is a diagonal matrix whose entries are the cosine of the 45 ordered principal angles 

(smallest to largest) i.e.,

S = diag cos θ1 , cos θ2 …cos θ45

Pa and Pb of size R45×45 are the ordered principal directions i.e., directions within the 

manifolds of movements a and b that have the associated principal angles between the two 

manifolds. As it can be seen, there are as many principal angles as the dimensionality of 

the manifold. Using the SVD, we computed the principal angles between all pairs of neural 

manifolds across all four participants. Given the 8 movements in the study, there are 28 

such pairwise comparisons per participant. Under the null hypothesis that the manifolds 

would not be more similar to each other than what would be expected b chance, we would 

not expect a difference between the observed principal angles from a null distribution 

of principal angles. To construct the null distribution of principal angles, we turned to 

the tensor maximum entropy method (TME, (Elsayed and Cunningham, 2017)) that was 

developed and applied in the context of simulating smoothed spiking waveforms in M1 

when a monkey performed varied tasks (Gallego et al., 2018, Elsayed and Cunningham, 

2017). Full details on the method and associated code can be found in the original paper 

by Elsayed and Cunningham, here we detail the main approach. Briefly, each participant’s 

neural data can be considered as a 3D tensor of dimensions Rch×t×mvmt. The first two 

dimensions are channels and time samples and the third dimension represents the 8 hand 

movements in the study. We used the TME method to simulate null tensors of data while 

respecting the first and second order moments (i.e., mean and covariance) along the second 

and third tensor but not along the channel tensor. By not simulating the channel covariance 

structure in the real data, we were able to simulate data without a channel covariance 

structure but respecting all other 1st and 2nd order statistics of the data. After simulating a 

tensor of data, we applied PCA to identify the manifolds in the simulated data and evaluated 

the principal angles between the simulated manifolds. By iterating through this procedure 

1000 times, we were able to generate a null distribution of principal angles and test the 

hypothesis of a preserved neural manifold in the real data. Given that the exact number of 

trials and hence the time-samples of trial-concatenated data were not similar movement to 

movement, we periodically subsampled trials when computing principal angles and running 
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the TME code to ensure that the 3D tensor was consistent. If two manifolds were similar to 

each other, then their principal angles would be smaller than the null distribution of principal 

angles, assessed at the α = 0.01 level.

To evaluate the whether the manifolds across movements shared variance with each other 

in a common multi-areal subspace, we computed the ratio of the across-movement VAF to 

within-movement VAF (Gallego et al., 2018). The within-movement VAF is nothing but the 

variance captured when projecting each movement’s data onto its own 45D manifold. The 

across-movement VAF is the variance captured by projecting data from movement a onto the 

45D manifold of movement b. The equation for computing the across-task VAF is given by:

R2(a, b) =
Xa 2 − Xa − XaDbPb DbPb

⊤ 2

Xa 2

The ratio of across-movement to within-movement VAF, R2(a, b)
R2(a)

 was then computed for all 

pairwise comparisons. To obtain a surrogate distribution of the maximal across-movement 

to within movement ratios, we first generated random 45D manifolds and used the QR 

decomposition to obtain an orthonormal basis for the random 45D manifold. Data from 

each movement were then projected onto the orthonormal basis of this random manifold to 

compute the across-movement variance. We iterated this procedure 1000 times and within 

each iteration computed the maximal ratio of the null across-movement to within-movement 

VAF. We carried the above manifold analyses steps for both LFOs and γH
LFO in the grasp 

network.

demixed Principal Component Analysis to evaluate latent dynamics—Given 

that our results showed that all movements shared a common neural manifold, we then 

sought to understand whether latent neural dynamics within the common multi-areal neural 

subspace were temporally shared by the different hand movements using demixed Principal 

Component Analysis or dPCA (Kobak et al., 2016). Full details on the method can be 

found in the paper by Kobak et. al., here we focused on the main details of the method 

as it pertains to our data. By design, the objective function of dPCA is to build a common 

neural subspace or all movements and find dPC neural modes that correspond to two 

forms of neural activity: 1) time-varying activity that is common to all movements and is 

independent of the movement-type i.e., via time dPCA modes and 2) time-varying activity 

that is specific to the type of movement being performed outside of the common activity i.e., 

via movement-specific modes. The two types of dPCA modes therefore de-mix the neural 

data and projecting LFOs onto these modes capture latent neural dynamics that are either 

common to, or dependent on, the type of movement. dPCA was performed on trial-averaged 

data to better uncover latent modes. Note that the use of dPCA is justified and meaningful 

given our finding that a common multi-areal manifold represented all hand movements. We 

fit a dPCA manifold of the same dimensionality as the PCA manifold for consistency in 

analyses (which was 45D).
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For each participant, the neural data for all movements was arranged in a 3D tensor 

X ∈ Rcℎ × 8 × t, where ch is the number of neural channels and t is the 75 time samples 

corresponding to 3s of data (trial averaged) at 25Hz. The data matrix X was then 

marginalized into the following terms: Xt that represents the time-varying average neural 

activity across all 8 hand movements, Xm that represents the multivariate centroid of each 

movement and Xtm that represents the movement specific neural activity. The size of the 

Xt, Xm, Xtm are all the same as X by replicating values. Pertinent to analysis here, Xt 

represents the movement-independent time-varying common neural activity in a trial, and 

Xm, Xtm represent movement-specific neural activity above and beyond the common time-

varying activity. Our primary interest here was to understand Xt and Xtm the common time 

and movement-specific time-varying neural dynamics. Prior representational analyses have 

already emphasized the properties of, each movement’s centroid of channel distributions. 

We thus z-scored each channel’s LFO activity for each movement, thereby placing the 

centroid of each movement at the origin (Xm = 0). As detailed earlier in the ECoG signal 

processing section, re-scaling via the z-scoring step did not influence dPCA results as all 

channels exhibited similar variations around its mean across all hand movement datasets. 

The core dPCA function was then used to approximate the original data matrix and the 

overall covariance of the tensor via the marginals i.e.,

X = Xt + Xtm + Xnoise

C = Ct + Ctm + Cnoise

where C is the total covariance matrix, and Ct, Ctm are the covariance matrices for the 

marginals. The loss function of dPCA is then given by:

Lt = Xt − FtDtX 2

Ltm = Xtm − FtmDtmX 2

where Dt, Dtm are the time and movement-specific dPCA modes respectively. Projection of 

neural data onto these modes i.e.,

Nt = DtX,

Ntm = DtmX

are the latent movement-independent neural dynamics and latent movement-specific neural 

dynamics respectively. Ft, Ftm are encoders transforming low-dimensional neural dynamics 

back into full channel space. The dPCA solvers for estimating Dt, Dtm, Ft, Ft uses the 
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reduced rank regression algorithm and the user has to specify the number of dPCA modes to 

be identified by reduced rank regression. We used 45 modes to keep our analyses consistent 

with results from the neural manifold analyses. To estimate the variance accounted for by 

the two types of dPCA modes, we used the same formula as in the dPCA paper, where the 

subscript ϕ ∈ (t, tm) and ‖ denotes the sum of the squares of all the entries in a matrix:

Rϕ
2 =

X 2 − X − FϕDϕX 2

∥ X ∥2

We carried out the dPCA analyses on both LFOs and γH
LFO in the grasp network. If the 

latent 1408 neural dynamics were distinct for the hand movement repertoire, then one would 

expect the variance due to the movement-specific modes to be higher than the variance due 

to the time dPC modes.

Relationship between LFOs and γH

Phase-coupling of ECoG LFO oscillations to the low frequency component of γH: To 

evaluate the relationship between LFOs and γH at individual channels across the ECoG grid, 

we utilized the phase-locking value metric (Canolty et al., 2012, Canolty et al., 2006) to 

investigate the coupling between LFO oscillatory phase and the low frequency phase of high 

gamma amplitudes i.e., γH
LFO. As detailed earlier in the ECoG signal processing section, 

γH
LFO is generated by performing two filtering steps on the raw ECoG data i.e., δ band pass 

filtering the amplitude of high gamma oscillations (70–150Hz). We performed an additional 

Hilbert transform and extracted the phase time series of γH
LFO from the angle of the Hilbert 

transform, thereby generating the time series of the low-frequency phase of high gamma 

amplitudes, ϕγH
LFO(t). At the same time, raw ECoG data were band-pass filtered in the LFO 

range of 0.5–4Hz alone to create the δ(t) signal i.e., LFO oscillations. The phase time-series 

was extracted from δ(t) via the Hilbert transform to obtain ϕLFO(t).

We now have two time series, ϕLFO(t) which is the phase of LFO oscillations and ϕγH
LFO(t)

which is the low-frequency phase of high gamma amplitudes. If there is a relationship 

between LFO oscillations and high gamma amplitudes, then these two phase time-series 

would be phase locked to each other consistently across trials. This phasic relationship 

between the two signals can be evaluated by the Phase Locking Value (PLV), as follows. 

First we computed the angular difference between ϕLFO
k (t) and ϕγH

LFOk
(t) averaged over 

all time-points t = 1, 2…n within a given single trial k to obtain single trial estimates of 

the preferred phase angle (a single number in radians) between the two signals. We then 

evaluated the circular mean of the preferred phase angles across all k = 1, 2…m trials to 

obtain the PLV. The PLV is thus a single complex number computed for every channel; the 

strength of the coupling between the two signals was obtained from the magnitude of PLV 

and the preferred phase difference between LFO oscillations and high gamma amplitudes 
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was obtained from the angle of PLV. If all trials have the same length, then the PLV can be 

obtained from the following formula:

PLV = 1
m ∑

k = 1

m 1
n ∑

t = 1

n
exp i ϕLFO

k (t) − ϕγH
LFOk

(t)

PACmag = PLV

PACangle = ∠PLV

If there is indeed a consistent preferred phase difference between the two signals across 

trials, then the |PLV| (PAC, phase amplitude coupling relationship between LFO phase 

and high gamma amplitudes) will be significantly greater than what could be expected by 

chance. To test for the significance in the strength of phasic coupling at each channel, 

surrogate or null distributions were constructed by randomizing the LFO phase time-series 

ϕLFO(t) prior to estimate the PLV. This randomization procedure was repeated 1000 times to 

generate a surrogate distribution of the PLV at each channel, allowing us to test the strength 

of PACmag between the two signals at individual channels (α = 0.05, FDR corrected). 

We performed the phase-based analyses at each electrode and individually within each 

movement for each subject. For each subject, we quantified the percentage of channels 

that exhibited such significant PLV in at least one of the eight movements and aggregated 

significant channels across movements. Channels that consistently exhibited significant 

phase relationships across movements would have higher aggregated values and therefore 

deemed to have relatively higher PLV between the two signals.

Shared variance between the manifolds of LFOs and γH
LFO: We evaluated the shared 

variance between the 45D multi-areal manifolds of both signals, LFOs and γH
LFO, using the 

percentage of variance metric (Degenhart et al., 2020), which computes the percentage of 

variance in one signal’s manifold that can be captured by the second signal’s manifold. If 

the manifolds of both signals shared significant variance with each other, this percentage 

should be significantly greater than chance. We evaluated the shared variance between both 

signals’ dPCA manifold and their manifolds from the PCA analysis. With respect to the 

dPCA manifolds, the shared variance in the dPCA manifold of γH
LFO that is also captured by 

the dPCA LFO manifold is given by the following percentage of variance captured formula:

pcapdPCA =
trace ULFOULFO

⊤ QγH
LFOQγH

LFO
⊤ ULFOULFO

⊤

trace QγH
LFOQγH

LFO
⊤
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where ULFO is an orthonormal basis of the 45D dPCA LFO manifold (obtained by the 

QR decomposition of the dPCA manifold) and QγH
LFO is the 45D dPCA manifold of γH

LFO. 

Similarly, we can also compute the shared variance in the dPCA manifold of LFO that 

is captured by the dPCA γH
LFO manifold by finding an orthonormal basis for the γH

LFO

dPCA manifold. Note that by dPCA manifold, we refer to both the encoder and decoder 

subspaces from the dPCA analyses; we therefore computed the shared variance between the 

two signal’s encoder and decoder subspaces using the pcapdPCA formula relative to each other 

and averaged the four numbers to obtain the shared variance between the two signals’ dPCA 

manifolds. The null distribution of the shared variance is computed by finding pcapdPCA of the 

dPCA manifolds of either LFOs or γH
LFO with random manifolds of the same size across 

1000 iterations. We can then assess the significance level of the shared variance between the 

two signals’ manifolds relative to the null distribution. We performed this analyses for each 

of the four subjects’ individual dPCA manifolds.

Similarly, it is also possible to find the shared variance between the two signal’s manifolds 

from the PCA analyses. Note that in this case the analyses has to be performed movement-

wise to contrast the two signals’ individual manifolds across all movements and subjects (8 

movements × 4 subjects for a total of 32 comparisons). As the neural modes from the PCA 

step already define an orthonormal basis, the shared variance between the two signals can 

be obtained by evaluating the percentage of variance in one signal’s manifold that is also 

captured by the second signal’s manifold for each individual movement’s neural data and 

with the following formula:

pcapPCA =
trace DLFODLFO

⊤ DγH
LFODγH

LFO
⊤ DLFODLFO

⊤

trace DγH
LFODγH

LFO
⊤

where DγH
LFO is the 45D manifold of γH

LFO and DLFO is the 45D manifold with LFOs. 

While the above formula gives the shared variance relative to γH
LFO, we can swap the terms 

in the numerator and denominator and obtain the shared variance relative to LFOs and 

take the average of the two numbers. Note that the encoder and decoder matrices from the 

PCA analyses are the transpose of each other and equivalent; we therefore evaluated the 

shared variance in the decoder subspace alone. The null distribution of the shared variance is 

obtained by assessing γH
LFO of either the manifold of LFOs or γH

LFO with random manifolds 

of the same size across many iterations. We can then assess the significance level of the 

shared variance between the two signals’ manifolds relative to the null distribution. We 

performed this analyses for each movement across the four subjects.

Kinematic recordings of the repertoire of human hand movements—We used 

the LeapMotion system to record instantaneous 3D position data of each joint in the human 

hand, the center of the palm and the wrist. By default, the data is referenced to the world-

coordinate system at the LeapMotion IR sensor. As a denoising step to filter out kinematic 

Natraj et al. Page 31

Neuron. Author manuscript; available in PMC 2023 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



data not pertaining to the actual movement, the data in the world coordinate system was 

projected onto the palm normal, a 3D vector pointing orthogonal to the inner surface of 

the palm, and subsequently referenced to the palm center. This preprocessing step ensures 

that irrespective of the orientation and position of the hand in 3D space, only task-specific 

joint data is collected. Data were then visually inspected for artifactual epochs that were 

then removed. The kinematic dimension of data was 75, corresponding to the 3D position 

of 5 segments: the wrist, interphalangeal joints (MCP, PIP, DIP) and the endpoint bone, for 

each of the 5 fingers of the hand. Given the anatomy of the thumb, the MCP and PIP were 

considered equivalent. Kinematic data was high-pass filtered above 0.1Hz and smoothed 

with a Savitzky-Golay filter (2nd order filter with a span of 400ms, (Pistohl et al., 2008)) to 

remove drift. Kinematic data were then down sampled to 25Hz in conjunction with neural 

data. Similar to neural data, we normalized the length of each kinematic trial to be 3s i.e. 75 

data samples at 25Hz.

Hand movements are known to exhibit significant temporal and biomechanical coupling 

between joints and are thus of much lower dimension that the original joint data. These 

covariation patterns are called synergies in the kinematic literature; it is thought that the 

brain preferentially represents synergies rather than individual muscles or joints (Ejaz et 

al., 2015, Leo et al., 2016), thereby greatly reducing the complexity of control given the 

large number of degrees of freedom in the hand. To identify kinematic synergies, we applied 

PCA to the trial-concatenated kinematic data matrix D ∈ Rt × 75, where t is the number 

of time samples across the 75 kinematic dimensions (Ingram et al., 2008, Santello et al., 

1998, Todorov and Ghahramani, 2004, Mason et al., 2001, Leo et al., 2016). We performed 

the kinematic PCA analysis individually for each subject and movement. The resulting 

kinematic PCs or synergies represent multi-jointed whole hand covariation patterns. Each 

coefficient in a kinematic PC assigns a weight to an individual joint in one of the 3D 

spaces. Apart from quantifying the number of PCs it required to account for 95% of the 

kinematic variance, we also sought to understand the number of PCs statistically different 

from noise. To identify the number of statistically significant synergies from a dataset, we 

used the Marchenko-Pastur (Marchenko and Pastur, 1967) criteria on the eigenvalues from 

the PCA step. Specifically, based on random matrix theory, the bound for significance on the 

eigenvalues of the kinematic data matrix is given by

λtℎresℎ = σ2 1 + 1
q

2

Here, σ2 is the variance of the overall kinematic dataset and q is a ratio between the number 

of observations/time-samples to the kinematic dimensions (which was 75 in this study). 

Any eigenvector or PC that had an eigenvalue λ > λtℎresℎ was identified as representing 

a significant kinematic covariation pattern or synergy in the dataset. Having identified the 

k number of significant synergies Si ∈ R75 × 1, i = 1, 2…k, the temporal activation of each 

synergy Ai was computed by projecting the kinematic data through the corresponding 

eigenvector, i.e. Ai = DSi, i = 1, 2, …k. We averaged the temporal activation across trials to 

obtain the mean time course of synergy activity and used the bootstrap method to obtain 
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confidence intervals of the mean (trials were randomly sampled with replacement multiple 

times before computing the average in a bootstrap iteration, with 1000 total iterations). For 

visualization of the hand and synergy postures, we used Poser (Bondware Inc.) to animate 

the hand. We also identified synergies in joint angle data apart from joint position data. 

To do this we used inverse kinematics to map joint position data to joint angle data using 

non-linear least squares; the dimension of the joint angle data was 25 corresponding to 

angular displacements along each of the five segments for all five fingers. PCA on the matrix 

of joint angle data uncovered the joint angle synergies.

Having identified each movement’s significant synergies, we then evaluated whether the 

kinematic subspace spanned by the significant synergies involved whole-hand covariation 

for all hand movements, even for finger individuation. Note that we can also examine 

the PC weights of the joints within each significant synergy; this allowed understanding 

whether finger synergies involved covariation only along the segments of the finger being 

individuated or whether it involved multi-jointed covariation across the hand. In addition, 

we used the methods of principal angles similar to our earlier procedure with the neural 

manifolds. Specifically, we computed the SVD of the dot product between the k dimensional 

synergy subspaces of any two movements a and b as:

PaV Pb
⊤ = SV D Sak

⊤
Sb

k

where S is a diagonal matrix whose entries are the cosine of the k ordered principal angles 

(smallest to largest) i.e.,

S = diag cos θ1 , cos θ2 …cos θk

Pa and Pb of size Rk × k are the ordered principal directions i.e., directions within the k 
dimensional synergy subspace of movements a and b that have the associated principal 

angles between them. Using the SVD, we computed the principal angles pairwise between 

the synergy subspaces of all movements. To construct the null distribution of principal 

angles, we turned to the tensor maximum entropy method (TME, (Elsayed and Cunningham, 

2017)) to simulate null tensors of kinematic data without joint position covariance while 

respecting all other 1st and 2nd order statistics of the data. After simulating a tensor of 

data, we applied PCA to identify the k dimensional synergy subspace in the simulated data 

and evaluated the principal angles between the simulated synergy subspaces. By iterating 

through this procedure 1000 times, we were able to generate a null distribution of principal 

angles and test the hypothesis of a common multi-jointed kinematic subspace. Given that 

the exact number of trials and hence the time-samples of trial-concatenated data were not 

similar movement to movement, we periodically subsampled trials when running the TME 

code to ensure that the 3D tensor was consistent.

Kinematically aligned submanifold analyses

Canonical correlation analysis (CCA): To understand kinematically aligned submanifolds, 

we used canonical correlation analyses (CCA) that is part of a family of low-rank linear 
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regression methods, such as reduced rank regression, partial least squares etc. CCA was 

performed for each movement individually wherein time-varying latent neural dynamics 

within the movement’s 45D manifold (Xa ∈ Rt × 45) was aligned to its top k kinematic 

synergies (Xb ∈ Rt × k, where k = 3 as used three synergies in this study). The main objective 

of CCA is to uncover pairs of neural (wa ∈ R45 × k) and kinematic CCA modes (wb ∈ Rk × k) 

such that the time-dependent activation of the modes generates maximally correlated pairs of 

low-dimensional neural and kinematic trajectories

za = Xawa,

zb = Xbwb

The CCA neural modes therefore parcellate the larger neural subspace into a submanifold 

that captures kinematically-relevant neural dynamics. Note that while the pairwise 

correlation between the neural and kinematic trajectories is maximized, the trajectories of 

any given pair are orthogonal to other trajectory pairs:

za⊤za = I ∈ Rk × k

zb
⊤zb = I ∈ Rk × k

thereby uncovering distinct aspects of control. The pairs of CCA modes are arranged in 

decreasing order of correlation between their projections. The dimensionality of the CCA 

modes is equal to the dataset with the lower dimensionality which in our case was always 

the synergy data.

The solution for CCA, i.e., wa and wb, can be obtained in a number of ways and details on 

the proofs can be found elsewhere (Uurtio et al., 2017); here we utilized a solver based on 

the singular value decomposition (Ewerbring, 1990) that allows for an implementation with 

robust statistics, as follows.

• First, the sample auto and cross covariance matrices are computed: 

Caa = 1
n − 1Xa

⊤Xa, Cbb = 1
n − 1Xb

⊤Xb and Cab = 1
n − 1Xa

⊤Xb.

• Maronna’s M-estimators can be used to determine robust versions of the above 

covariance matrices, especially Cab to correct for homoscedasticity and outliers 

automatically, thereby producing a robust version of CCA (Maronna, 1976, 

Maronna and Zamar, 2002).
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•
Next, the square root or Cholesky factors of Caa and Cbb are computed, Caa

1
2  and 

Cbb

1
2  respectively.

•
Define a new matrix A = Caa

− T
2 CabCbb

− 1
2

• Decompose A = USV ⊤ using the SVD algorithm

•
The modes are then given as wa = Caa

−1
2 U and by wb = Cbb

−1
2 V

• Correlations between pairwise of projections of Xa and Xb Xawar, Xbwb
r , 

∀r = 1, 2, …min(k, cℎ), is given by the singular values sr from the rtℎ diagonal 

entry of S.

To assess the predictive power of CCA, we used 10-fold cross validation, wherein within 

each fold 70% of the dataset was partitioned for training and the remaining 30% was 

partitioned for testing. The weight matrices watrain, wb
train obtained from training the 

CCA model on the training data Xa
train, Xb

train were applied to the testing data to create 

cross validated trajectories Za
test = Xa

testwatrain and zb
test = Xb

testwb
train. The cross validated 

correlation was computed as diag zatest⊤zb
test  to obtain cross-validated ri values for each 

CCA trajectory i = 1, 2…k. To assess the significance of the correlation values, we used a 

permutation procedure commonly used in regression-based analyses. Specifically, we broke 

the temporal relationship between Xa
test and Xb

test by randomly permuting the time-course of 

each synergy activation in Xb
test. These permutation procedures were done 1000 times prior 

to computing the correlation between zatest and zb
test to get a null distribution of ri values. 

Significance was assessed by counting the proportion of null samples that exceeded the 

true value of ri2, with multiple comparison correction via the False Discovery Rate (FDR) 

procedure (Benjamini and Hochberg, 1995).

Distinctiveness of aligned submanifolds: To understand the distinctiveness of the aligned 

submanifolds, we used the method of principal angles to contrast movements’ submanifolds 

in a pairwise manner. The first step involves finding an orthonormal basis for the column 

space of the submanifold by applying the QR decomposition; unlike PCA the CCA 

neural modes are not constrained to be orthonormal even though the CCA trajectories are 

orthogonal. We then computed the dot product matrix between the orthonormal bases of any 

two movements and applied the SVD to obtain principal angles. Specifically,

PaSPb = SV D Qa⊤Qb
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where Qa is the basis of the submanifold for movement a, Qa is the basis of the submanifold 

for movement b and S is a diagonal matrix whose entries are the cosine of the k ordered 

principal angles (smallest to largest) i.e.,

S = diag cos θ1 , cos θ2 …cos θk

where Pa and Pb of size Rk × k are linear combinations of the k orthonormal basis vectors 

of each movement’s submanifold respectively. The resultant combinations of the basis 

vectors constitute the principal directions within each manifold. We computed the principal 

angles between all pairs of aligned neural submanifolds across participants. Given the 8 

movements in the study, there are 28 such pairwise comparisons per participant. Under the 

null hypothesis, we would not expect a difference between the observed principal angles 

between movements from a null distribution of principal angles. To construct the null 

distribution of principal angles, we turned to the tensor maximum entropy method (TME, 

(Elsayed and Cunningham, 2017)). Each participant’s neural data can be considered as a 

3D tensor of dimensions Rcℎ × t × mvmt. The first two dimensions are channels and time 

samples and the third dimension represents the 8 hand movements in the study. We used 

the TME method to simulate null tensors of data while respecting the first and second order 

moments (i.e., mean and covariance) along every tensor. Given that the exact number of 

trials and hence the time-samples of trial-concatenated data were not similar movement to 

movement, we periodically subsampled trials when running the TME code to ensure that 

the 3D tensor was consistent. We then used CCA to align the simulated neural data to the 

synergy activations and thereby identified the null distribution of principal angles between 

the simulated CCA aligned neural manifolds. If two aligned manifolds were not similar to 

each other, then their principal angles would not be distinct from the null distribution of 

principal angles, assessed at the α = 0.01 level. We carried the above analyses to understand 

the distinctiveness of the aligned submanifold analyses for both LFOs and γH
LFO in the grasp 

network.

Compartmentalization of behaviorally-relevant neural dynamics by the 
submanifolds: To understand whether the kinematically relevant neural dynamics were 

compartmentalized by the submanifolds for different movements, we projected data from 

one movement onto the submanifold of another movement as follows. Let Xa
(1) and Xb

(1)

be the neural and synergy activation data for movement 1, and Xa
(2) and Xb

(2) be the 

neural and synergy activation data for movement 2. The corresponding CCA neural and 

kinematic modes for both movements are wa(1), wb
(1) and wa(2), wb

(2) respectively. By swapping 

CCA neural modes, we generate new low-dimensional neural trajectories za(1)swap = Xa
(1)wa(2)

while the preserved neural trajectories remain to be za(1) = Xa
(1)wa(1). As the objective function 

of CCA is to align low-dimensional neural dynamics with synergy admixtures, we evaluated 

the result of swapping CCA neural modes on kinematic correlation < za(1)swap, zb
(1) >, where 

zb
(1) = Xb

(1)wb
(1). We performed such pairwise mode swapping between all movements and 
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within each subject. We compared the kinematic correlation for swapped and preserved 

modes to evaluate the generalizability of the CCA neural modes. To ensure the robustness of 

our results, we also projected data onto the column space of the submanifold rather than just 

swapping CCA neural modes. In this scenario, za(1)swap = Xa
(1)wa(2) wa(2)⊤wa(2) −1

wa(2)⊤wa(1), 

explicitly testing how the range of the twomanifolds are related to each other.

Multiplexing of synergies: In our CCA formulation, there are some interesting properties 

of the CCA kinematic mode or kinematic mixing matrix wb. First, note that if the synergy 

data are z-scored in the CCA model (making the variance of all synergies to be equal to 

one), then the covariance of Xb is essentially the identity matrix I ∈ Rk × k as the synergies 

by definition are orthogonal to each other as a consequence of the PCA step. Given that the 

columns of zb are also orthogonal to each other, this leads to the kinematic mixing matrix 

wb to be a square orthogonal rotation matrix of dimension Rk × k. To see this, substitute 

zb = Xbwb in the CCA constraint Zb
⊤Zb = I, leading to

wb
⊤Xb

⊤Xbwb = I,

resulting in wb
⊤wb = I .

Moreover, the coefficients of wb wb(l, m) in the lth row and mth column) are nothing but the 

pairwise correlations between the synergy activations Xb
l  and CCA kinematic trajectories zb

m, 

∀l, m = 1, 2, …k. More specifically,

Xb
⊤zb = Xb

⊤Xbwb = wb

Hence the coefficients of each column of wb correspond to the admixture of synergies that 

generates a single CCA kinematic trajectory. Therefore, the more that wb resembles the 

identity matrix, the lesser the admixture of synergies, as each CCA trajectory is better 

correlated to the activation of an individual synergy. Alternatively, higher off-diagonal 

magnitudes indicate that a CCA trajectory is correlated to the activations of multiple 

synergies. We can thus evaluate the squared correlation terms in the diagonal and off-

diagonal elements of wb to understand how the admixture of each movement’s synergies is 

cortically encoded by LFOs.

Spatial map of the CCA neural modes: As we had aligned latent neural dynamics to 

synergies, the CCA neural modes correspond to a linear combination of the axes of the 

manifold i.e., Xawa in the input side of the CCA model can be rewritten as DaPCawa
wherein Da is the original data matrix in high dimensional channel space, PCa are the PCs of 

Da that defined the 45D neural manifold and wa are the CCA neural modes. We had earlier 

shown the PCs to span a common multi-areal neural subspace; the submanifolds defined by 
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linear combinations of these PCs will thus also span the same distributed network. Could 

such a distributed network persist if we were to align high-dimensional neural data directly 

to synergies without the intermediate step of projecting onto the neural manifold? Such 

a finding would suggest that the aligned manifold that covaries with kinematic synergies 

spans a common distributed network. To this end, we re-ran the CCA analyses where high-

dimensional channel data were directly mapped to k most significant synergies. To identify 

the cortical network of channels associated with each kinematically aligned manifold, we 

focused on the channel weight within each CCA neural mode and sought to identify the 

most significant channels within each CCA neural mode based on the weight magnitude.

To verify that the weights assigned to the LFO channels in the CCA neural modes are 

meaningful, we measured the drop in cross-validated CCA ri2 values between each neural 

and kinematic trajectory when either the channels with the smallest weights were dropped 

first (ascending order of weight magnitude) or when channels with the largest weights 

were dropped first (descending order of weight magnitude). To assess the weight of a LFO 

channel in the neural mode of a given hand movement, and considering the fact that both 

the neural and synergy datasets consist of quasi-periodic oscillations, we modeled each 

channel’s LFO oscillation (0.5–4Hz filtered activity) as an pth order auto-regressive (AR) 

process (Hayes, 1996), given by

LFOtcℎ = β0 + ∑i = 1
p βiLFOt − icℎ + ϵt

Here, each channel’s LFO time-course is modeled as the output of filtering zero-mean unit 

variance gaussian white-noise ϵt ∈ N(0, 1) through an all-pole filter. The β terms are the 

coefficients of the AR process and given that data were mean-centered, the β0 term was 

zero. We estimated the coefficients of the AR process using the forward-backward least 

squares approach. To determine the appropriate model order, we computed the Bayesian 

Information Criterion (BIC) for model orders ranging from 1 to 100 and chose the order 

that gave the lowest BIC. We were then able to simulate LFOs at any given channel, 

for any hand movement and participant by simply filtering generated white noise through 

the AR filter. A run-off time was included to overcome the lag effect from the model 

order. In this manner, we were able to simulate artificial, randomly generated LFOs and 

their envelopes that had the same spectral and energy characteristics as measured LFOs. 

By using CCA to align simulated LFO data to synergy activations, a null distribution of 

weight magnitudes were generated. The significance of channel weights within each CCA 

neural mode j = 1, 2…k was measured by comparing the weight magnitude in waj to the 

null distribution of weight magnitudes from 2000 AR simulations. The FDR procedure was 

used for multiple comparison correction given that a statistical test was performed at each 

channel. Significant channels from each neural mode were pooled together to create a final 

binary mask of significant channels over the ECoG grid. This procedure was carried for each 

participant and movement to identify each aligned manifold’s cortical network of channels.

The mask of significant channels from each participant and movement was projected 

onto the cortical surface using 3D gaussian functions centered around each electrode, 
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with a spreading parameter of 1cm (Hamilton et al., 2017), resulting in LFO cortical 

channel density maps. The cosine distance metric was used measure the similarity between 

movements’ pairwise cortical density maps, resulting in a similarity matrix per participant. 

The similarity matrices were then averaged, and hierarchical clustering was performed on 

the average similarity matrix using Ward’s criterion. If there was a true similarity between 

movements’ cortical density maps i.e., a significant cluster, then the lowest level that any 

two movements merge would be much smaller than the final aggregate cluster distance. We 

evaluated this hypothesis by comparing the ratio of the highest to lowest cluster distance 

to a null distribution of similar ratios obtained by shuffling movement labels within each 

participant for 1000 iterations prior to averaging and clustering.

We also defined rough Brodmann Area-based regions of interest (ROI) identifying primary 

motor cortex (M1), sensory cortex (S1), ventral and dorsal premotor cortices (PMv, PMd), 

parietal cortex (PPC) and supramarginal gyrus (SMG) and quantified the proportion of 

significant channels within each ROI. Each participant’s MRI was also warped to the MNI 

average template brain (Hamilton et al., 2017); this aided in projecting significant individual 

participant electrodes onto the average brain template as a density map by convolving each 

significant electrode with a 3D Gaussian function (spreading parameter of 1cm). The MRI of 

right hemispheric patients was mirrored so that the left hemisphere was always the common 

hemisphere.

Quantification and Statistical Analysis

Wherever appropriate, we employed parametric tests of difference of means using mixed 

effect models and non-parametric tests of significance using permutation tests. Confidence 

intervals were computed using the bootstrapping procedure. All the statistical tests utilized 

in this study are detailed in the text of the Results section in the main paper and expanded 

upon in the STAR ’methods details’ section for each type of analysis. Central measures 

(mean or median) as well measures of data spread (S.D., C.I.) are reported in the Results 

section and Method details for the relevant analysis and figures. Non-parametric tests of 

significance make no assumptions on the distribution of data; for parametric models, we 

did not perform tests to evaluate whether the data fit the assumptions of the statistical 

model. However, we confirmed the findings of parametric statistical models via equivalent 

permutation or shuffling tests. All statistical analyses were performed in Matlab (Mathworks 

Inc.).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

We evaluated how the human brain supports a repertoire of finger and grasping actions

A common mesoscale “grasp-network” manifold represented all hand movements

However, latent neural dynamics within the manifold were specific to movement-type

Kinematically-relevant dynamics were compartmentalized into distinct submanifolds
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Fig. 1. Latent dynamics and neural manifolds for hand movement repertoire
A) Multi-area ECoG grid coverage in grasp network colored by anatomical region (MFGc – 

caudal medial frontal gryus along the dorsal premotor cortex, Pars Operc. – pars opercularis 

along the ventral premotor cortex, Post. Central – post central gyrus or primary S1, Pre 

Central – pre central gyrus or primary M1, Sup. Parietal – superior parietal gyrus along 

the posterior parietal cortex, STG – superior temporal gyrus along temporal cortex, SMG – 

supramarginal gyrus along inferior parietal lobe), along with a visualization of 3D kinematic 
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positions (wrist joint, MCP – metacarpal segment, PIP – proximal interphalangeal joint, DIP 

– distal interphalangeal joint, End pt. – end point segment).

B) Time-varying neural activity (blue solid line) in a high-dimensional space defined by 

activity of individual channels. Due to neural covariance between channels over distributed 

regions, we can identify multi-areal low-dimensional manifolds for a repertoire of hand 

movements (post-cards) using PCA. Manifold axes are neural PCs (“neural modes”, red), 

representing channels with covarying neural activity. High-dimensional channel activity 

projected onto manifold (black dotted line) constitute latent dynamics.

C) Snapshots of the hand during each of the eight movements in the study.

D) First possibility on manifolds and latent dynamics (via dPCA) postulates that temporal 

pattens of latent dynamics within a common manifold are shared across movements. 

Aligning each movement’s latent activity to kinematics using CCA leads to highly 

overlapping submanifolds given that all movements arise from a common appendage, the 

hand.

E) The second possibility postulates that latent dynamics are distinct and 

compartmentalized. Specifically, temporally distinct movement-specific patterns of latent 

dynamics constitute a higher proportion of the overall neural variance. Aligning each 

movement’s latent activity to kinematics leads to compartmentalized submanifolds.
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Fig. 2. Representational structure in mean, static activity across the grasp network
A) We evaluated the Mahalanobis distance between the static locations of movements’ 

neural data in high-dimensional channel space. The mean activity, by averaging LFOs over 

time (left), defines the static location or centroid of channel LFOs (solid circles in the 

plot on right); the multi-dimensional variance determines the spread around the centroid 

(ellipsoid dotted lines).

B) Mean channel LFO amplitudes across the ECoG grid overlaid on the brain for a subject 

(EC169). Increasing electrode radii denoting higher mean LFO amplitude values, color 

denotes anatomical location.

C) The average pairwise Mahalanobis distance matrix between movements’ centroids.

D) Hierarchical clustering of the average distance matrix in C) revealed a representational 

structure.
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Fig. 3. Common multi-areal manifold represents the movement repertoire
A) PCA was used identify a manifold for each movement from LFOs. Average neural 

variance accounted for (VAF) by the PCs or neural modes is shown in the figure.

B) (Left) Similarity in the orientation between movements’ 45D manifolds was evaluated 

in pairwise manner using the method of principal angles; smaller angles imply highly 

overlapping manifolds. (Right) Principal angles between thumb manifold and the other 

seven movements in the repertoire is shown for an example subject. The black dotted line 

represents the lower bound of the null distribution of principal angles (2.5th percentile for 

α= 0.05) and the average first principal angle is highlighted (8.34 degrees).

C) Average normalized histogram of number of significant principal angles between 

movements’ 45D manifolds (angles computed pairwise), where each circle represents a 

single subject.
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D) Ratios of across-movement VAF to within-movement VAF in real (orange) and control 

data (light blue).

E) Cortical channel representation of an exemplar neural mode (1st neural PC weights, 

EC189-thumb). Increasing sizes of electrode represent increasing spatial covariance.

F) Boxplots of the average channel weight magnitudes within each node of the grasp-

network for all 45 neural modes (across movements and subjects). Edge of blue box 

correspond to 25th and 75th percentile of data; red horizontal line corresponds to the median 

and the whiskers extend to the entire data spread not considered outliers.
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Fig. 4. Latent dynamics within the common manifold are distinct for the repertoire
A) Example of neural VAF from the dPCA analyses for a subject.

B) Comparison of the neural VAF due to the two types of dPC modes across all four subjects 

(each filled circle represents an individual subject).

C) Highlighting the phases of either finger movements (flexion and extension, top) or 

grasping (opening and closing, bottom)

D) (Top) Projection of high-dimensional channel data onto the top three movement-specific 

modes uncovers temporally distinct latent dynamics within the common neural dPC 

subspace. (Bottom) Projection of high-dimensional channel data onto the top three time 

modes (modes common to all movements) uncovers temporally common latent dynamics 

shared across the eight movements within the common neural dPC subspace.
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Fig. 5. LFO oscillations are phase-locked to high-gamma (γH) and share a common subspace 

with the low-frequency component of high gamma (γH
LFO)

A) Example of phase-locking value (PLV) between LFO oscillations and the low-frequency 

component of γH (γH
LFO) at example M1 channel.

B) The percentage of channels with significant PLV aggregated across all eight movements 

shown for each individual subject (open circle).
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C) Summary plot across all subjects showing the circular distribution of preferred phase 

angles between LFO oscillations and γH
LFO (the angle of PLV) across channels within each 

node of the grasp network.

D) Example of the principal angles between the thumb’s 45D γH
LFO neural manifold and the 

45D γH
LFO manifolds of the other seven movements in the repertoire is shown for an example 

subject.

The black dotted line represents the lower bound of the null distribution of principal angles 

(2.5th percentile for α = 0.05).

E) Average normalized histogram of the number of significant principal angles between 

movements’ 45D γH
LFO manifolds (angles computed pairwise). Given the eight movements 

in the study across the four subjects, there were a total of 112 unique pairwise comparisons.

F) Ratios of the across-movement VAF to within-movement VAF for γH
LFO manifolds 

(orange) compared to control data (light blue).

G) We used dPCA to fit a common γH
LFO neural manifold for all eight movements and 

identify time and movement-specific dPCs.

H) Example of the neural VAF from the dPCA analyses on γH
LFO

I) Comparison of the neural VAF due to the two types of dPC modes across all four subjects 

(each filled circle represents an individual subject).

J) (Left) Shared variance between the two signals’ dPCA manifolds was computed as the 

proportion of variance in a signal’s dPCA manifold that is also captured by the other signal’s 

dPCA manifold. (Right) Shared variance between LFO and γH
LFO dPCA manifolds shown 

for each subject, compared to a surrogate distribution of shared variance between either of 

the two signals’ dPCA manifolds with random manifolds.
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Fig. 6. Kinematic recordings of the hand movement repertoire
A) First three postural kinematic synergies and temporal activations, shown for tripod grasp.

B) First three postural kinematic synergies and temporal activation, shown for thumb 

movement.

C) The PC weights for each of the 75 dimensions (3D position of each the 5 joints of each of 

the 5 fingers) of the first thumb synergy.

D) The PC weights for each of the 75 dimensions of the second thumb synergy.

E) The PC weights for each of the 75 dimensions of the third thumb synergy.
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F) Number of significant synergies for each eight movement, calculated per subject (open 

circle), using the Marchenko-Pastur bound on the eigenvalues of kinematic covariance 

matrix.

G) Contribution of non-dominant fingers towards weights of first three finger movement 

synergies (e.g., proportion of weights for index, middle, ring and pinky during thumb 

movements). Star sign represents significance at the 0.05 level.
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Fig. 7. Behaviorally-relevant dynamics are compartmentalized into distinct kinematically aligned 
submanifolds
A) Example of CCA where latent dynamics within the 45D manifold for the tripod grasp 

are aligned to its top three synergy activations. CCA neural modes correspond to linear 

combinations of activity along each of the 45 dimensions manifold and thus constitute 

submanifolds within the larger neural manifold. The CCA kinematic modes correspond to 

linear combinations of the synergies. Projecting data onto CCA modes produce neural and 

kinematic trajectories maximally correlated to each other.
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B) Boxplot representation of cross-validated CCA R values for first three CCA trajectories. 

Pie-charts show the proportion of the datasets that reached significance.

C) Principal angles between 3D kinematically aligned CCA submanifold for the thumb 

compared to 3D aligned submanifolds of all other hand movements. The black dotted lines 

correspond to the 95% bound of the null distribution of principal angles.

D) Principal angles between the 3D aligned submanifolds of all movements, computed 

pairwise within each subject.

E) Illustration of CCA neural trajectories when neural dynamics of one movement (within 

the 45D manifold) was projected onto the aligned submanifold of another movement. The 

plot on the right is the middle finger submanifold, and each of the traces represent neural 

activity from each of the eight movements projected onto the middle finger submanifold, 

color coded by movement-type.

F) Correlation of the three CCA neural trajectories with their corresponding kinematic 

counterpart when CCA neural modes were either preserved or swapped across movements.

G-H) Example of preserving/swapping the 1D submanifold (1 CCA neural mode) when 

neural dynamics within the 45D preserved manifold was aligned with only the first synergy 

activation.
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Fig. 8. Kinematically aligned submanifolds span the grasp network equally for both finger 
movements and grasping
A) Dropping LFO channels with highest weights within first CCA neural mode significantly 

decreases correlation with synergies. Scale of y-axis is normalized to the maximum squared 

correlation when using all channels.

B) The mean effect of dropping LFO channels based on their weight magnitude in the first 

neural mode for all subjects and movements (with 95% bootstrapped C.I. shading).

C) Example of significant channels across all CCA neural modes for thumb movements.

D) Projection of significant channels onto the cortical surface created LFO cortical channel 

density maps shown for two movements. Color scale represents the smoothed density of 

channels on the cortical surface.

E) The average pairwise cosine distance between movements’ LFO cortical channel density 

maps.
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F) Hierarchical clustering of average distance matrix revealed no significant separation 

between cortical channel density maps.

G) Projection of significant channels across subjects onto an average MNI brain template 

separately for all finger and grasp movements. Boundaries of Brodmann anatomical regions 

are color coded.

H) Pairwise comparison of the proportion of significant channels within each anatomical 

region across subjects revealed no differences between finger and grasping movements.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Bacterial and virus strains

Biological samples

Chemicals, peptides, and recombinant proteins

Critical commercial assays

Deposited data

ECoG Recordings This paper N/A

Kinematic Recordings This paper N/A

Experimental models: Cell lines

Experimental models: Organisms/strains

Oligonucleotides

Recombinant DNA

Software and algorithms

MATLAB 2020b MathWorks https://www.mathworks.com/
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REAGENT or RESOURCE SOURCE IDENTIFIER

Poser 11 Bondware https://www.posersoftware.com/

demixed Principal Component Analysis (Kobak et al., 2016) https://github.com/machenslab/dPCA

Tensor Maximum Entropy (Elsayed and Cunningham, 2017) https://github.com/gamaleldin/TME

ECoG Cortical Visualization (Hamilton et al., 2017) https://github.com/libertyh/img_pipe/tree/matlab

LeapMotion SDK LeapMotion https://developer.leapmotion.com/

LeapMotion to Matlab Interface LeapMotion https://github.com/jeffsp/matleap

Other

RZ2 BioAmp Processor Tucker-Davis Technologies http://www.tdt.com/

PZ5M-512 Neurological Amplifier Tucker-Davis Technologies http://www.tdt.com/
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