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Abstract 
 

Monitoring and sampling insects provide critical data for decision making in 

integrated pest management strategies and plant breeding. Manual sampling and 

monitoring methods may be biased by interactions between the method, the cropping 

system, and the size and behavior of the target insects, as well as circadian and seasonal 

dynamics. These methods may also be limited by the quantity of time and labor required 

for collection and processing. Novel autonomous insect sensors resolve some of these 

limitations but may present new challenges. Understanding the limitations and biases of 

established and novel methods will improve the quality of available data. This study 

examines the biases of circadian flight activity and seasonal dynamics on water trap, 

vacuum, and autonomous sensor data with a focus on the crop pest, the Western Tarnished 

Plant Bug, Lygus hesperus (Hemiptera: Miridae Knight) in fields of Lima beans, Phaseolus 

lunatus. The study also includes sensor measurements of L. hesperus in a controlled 

laboratory environment. A strong multimodal circadian effect was observed in sensed and 

vacuumed L. hesperus. The laboratory results also revealed a similar pattern of daytime and 

crepuscular activity but lacked a midday activity peak observed in the field. Correlations 

were strong between total sensed insects and water trap data from over the course of the 

entire season, indicating that the novel autonomous insect sensor could be a good 

substitute for conventional monitoring methods. More research will be needed to 

determine the thresholds of sensed insect data that correspond with established measures 

for integrated pest management and breeding. Consideration of these biases will result in 

higher quality data that will be useful for advancing the development of insect resistant 

crop varieties and improving pest management. 
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1. Introduction 
 

Insect data drives decision making for a wide range of agricultural tasks including 

integrated pest management (Binns and Nyrop 1992), pesticide development, plant disease 

vector monitoring, and phenotyping for plant breeding. Primary sources of insect data are 

generated from sampling (Kuno 1991) and monitoring (Montgomery et al. 2021) with 

manual and automated methods (Rydhmer et al. 2021). 

Sampling for insects results in discrete temporal counts of insects, while monitoring 

collects accumulated temporal insect data. Common manual sampling methods include 

sweep netting, plant taping, and vacuuming (McCravy 2018; Hillhouse and Pitre 1974). 

Manual monitoring methods include water traps, funnel traps, and sticky cards. Automated 

monitoring is an emerging field that encompasses a variety of sensors including audio 

recordings, camera traps, and reflected light-based sensors. Each of these methods 

presents limitations and biases. 

Interactions between sampling or monitoring methods, the size and behavior of 

target insects, and the cropping system can result in biased samples and other adverse 

effects (Binns and Nyrop 1992). As a consequence, pests may be over-represented while 

natural enemies are under-represented or vice versa by a given collection method in a 

certain crop (Bannerman et al. 2015). Additionally, sweep netting can damage crop 

canopies and over-represent large insects (McEwen and Hervey 1960; Osborne and Allen 

1999). Conversely, vacuuming and flower cluster taping may result in samples with an 

over-representation of small insects and nymphal stages (Rancourt, Vincent, and de 

Oliveira 2000; Doxon, Davis, and Fuhlendorf 2011). Traps, used for monitoring, have wide-
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ranging efficacy. The placement, color, shape, and bait may over- or under-represent the 

prevalence of pests and beneficial insects in the field (Ikemoto et al. 2021; Lewis 1959). In 

all cases, manual sampling and monitoring take significant time and expertise to count and 

identify the collected insects. 

Novel unsupervised near-infrared sensor technology may save significant time but 

is not immune to sampling interactions and biases (Rydhmer et al. 2021). These sensors 

measure insects flying above the crop canopy and therefore fail to capture economically 

important immature stages. Such sensors may also over-represent some species and will be 

biased toward measuring larger insects. While these issues may be outweighed by the 

accuracy and time-saving features of autonomous sensors, it is important that they be 

understood and accounted for. 

Legumes are a globally important family of crops that have many pests (Sharma and 

et al 2005) but there are few established pest management protocols in grain legumes and 

successful insect-resistance breeding programs (Clement et al. 2000). Given their 

adaptation to a wide range of environments, ability to fix nitrogen, and the richness of their 

grains in proteins and micronutrients, legumes will likely play an important role in the 

effort to feed a growing human population and adapt to climate change (Mabhaudhi et al. 

2019; Cheng et al. 2019; Semba et al. 2021). The historic and ongoing deficiencies in 

research on plant-insect interactions in legumes, especially in underutilized legume crops 

like Lima bean, preclude researchers from adequately accounting for sampling biases and 

sample method interaction with environments (Edwards and Singh 2006; Rubiales et al. 

2015). Ensuring that producers and researchers of legumes have the best data with which 
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to manage, study, and develop new varieties of legumes will help ensure the sustainable 

future of global food security. 

The Western Tarnished Plant Bug, Lygus hesperus Knight (Hemiptera: Miridae), is a 

major agricultural pest of multiple crops in the Western United States (Metcalf and Flint 

1951). Lygus can cause up to 82% yield loss, as measured between sprayed and unsprayed 

plots of sensitive legumes like Lima beans, Phaseolus lunatus (Bushing, Burton, and Tucker 

1974). Sweep netting has been the standard sampling method for economically important 

IPM and plant breeding decisions for the system of Lygus hesperus in Lima beans despite its 

limitations, including the limited time and special representation (McEwen and Hervey 

1960; Bushing, Burton, and Tucker 1974; Gavloski 2018; Hagel 1978). Understanding the 

circadian and seasonal flight activity of L. hesperus in Lima beans will inform research on 

this system with all sampling methods and improve future research.  

To elucidate some of the biases of insect sampling in legumes, we studied circadian 

flight activity and seasonal dynamics using sensors, water traps, and vacuuming in Lima 

beans. Specifically, we tested circadian flight activity of Lygus hesperus in a laboratory with 

a near-infrared sensor and in lima bean fields with near-infrared sensors, water taps, and a 

vacuum. We also tested the seasonal dynamics of L. hesperus in a Lima bean field with near-

infrared sensors and water traps. 

2. Materials and methods 

2.1 Vacuum time of day sampling 
Lima beans (commercial variety: UC Haskell) were planted at the Plant Sciences 

Field Facility (PSFF) of the University of California Davis on June 7, 2017, and June 9, 2019 

at 38°32'16.9"N 121°47'19.2"W and 38°32'03.3"N 121°46'44.9"W, respectively. The 
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planting consisted of a 70 m long and 4 row wide strip planted with 5-cm between plants. 

The strip was on the edge of a larger planting of Lima beans, which were drip irrigated and 

conventionally managed. No insecticides were applied to the strip or the adjacent field.  

On July 23, 2017, July 24, 2017, September 9, 2017, and July 30, 2019, eight to 12 

samples from randomly selected 6.1-meter-long plots in the strip were obtained using a 

portable aspirator built from a Stihl SH 86 C-E leaf Shredder vacuum (Stihl Incorporated, 

Virginia Beach, VA.), operated for one minute per sample. Samples were between four time-

windows (6 am – 8 am, 10 am to 12 pm, 2 pm – 4 pm, and 6 pm – 8 pm) for each sampling 

date. The collected adult L. hesperus insects were bagged, frozen, and then counted. Plots 

were not resampled.  

2.2 Circadian flight activity 

2.2.1 Laboratory evaluation 
Collection of data occurred at the University of California, Davis in the spring of 

2021. To evaluate circadian flight activity in a controlled environment, a L. hesperus colony 

founded by individuals collected from Lima bean and alfalfa fields in the fall of 2019 and 

2020 was used. The colony insects were maintained at 20°C and a 12 h photoperiod. Adults 

were held in 30.5cm cube collapsible cage (BioQuip Products, Rancho Dominguez, CA) with 

a water-soaked organic cotton round (Swisspers®, Parkdale Inc., Gastonia, NC), hulled 

sunflower seeds, and fresh organic green beans supplied three times a week. Beans with L. 

hesperus eggs were moved to rearing tubs where L. hesperus nymphs emerged in 

approximately 7-10 days. Nymphs were supplied with green beans three times per week 

and moved to adult cages when they reached the adult stage. 
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An autonomous near-infrared insect sensor (described in Rydhmer et al. 2022, 

FunaPhotonics ApS., Copenhagen SV, Denmark) with a 17.5 L measurement volume 

monitored one week old male and female L. hesperus from the colony and field-collected 

from alfalfa (38°31'28.2"N 121°46'18.4"W).  Lygus flights were recorded in a label cage (a 

black neoprene walled cage with floor strip LED lighting on a timer and an attached sensor 

as described in Bick, Edwards and Licht, 2021) with the top of the cage replaced by mesh. 

Flight data consisted of a one-dimensional matrix of the intensity of backscattered light 

resulting from an insect flight. A nearby window provided additional light with a 

photoperiod ranging from 14h : 24m to 14h : 52m, and LED light strips placed along the 

cage floor were illuminated 24 hours a day. Measurements for a total of 1415 flights were 

collected and analyzed. During the measurement period, fresh organic green beans, hulled 

sunflower seeds, and a water-soaked cotton round were available to the insects in the cage. 

2.2.2 Machine learning species classification 
Machine learning algorithms can classify insects to species (Kirkeby et al. 2021). 

Light backscattered by an insect flight is recorded as a 1-dimensional time series of light 

intensity (Rydhmer et al. 2021; Bick, Edwards, and de Fine Licht n.d.), termed ‘events.’ A 

machine learning algorithm was trained, validated, and tested on sensor-recorded flights 

from 14 insect groups. Specifically, we trained the model to compare L. hesperus Knight 

(Hemiptera: Miridae) to the insects listed in Table 1, and non-insect noise signals. 

Ten thousand random events per group were fed into an 8-layer Convolutional 

Neural Network (CNN) (80% training, 10% validation, and 10% test sets) implemented in 

Python 3.7 using Keras, set up as specified in (Bick, Edwards, and Licht 2021). A t-SNE (t-

distributed stochastic neighbor embedding), implemented in Python 3.7 using the sklearn 
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package, was used on the trained features of the test set to visualize the separation 

between the statistical representations of insects within each group (Fig. 1). The algorithm 

was then applied to field data to extract events classified as L. hesperus.  

  
Figure 1. t-SNE plot showing the separation of insect flight events in the test set in the learned feature space. Different insect 
groups are represented by different colors to aid interpretation.  
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Table 1: List of insect species whose sensor recorded flights were used for model training 
 

Scientific Name Common Name Order 
Acleris comariana Strawberry Tortrix moth Lepidoptera 
Adalia bipunctata two spotted ladybird Coleoptera 
Adoxophyes orana summer fruit tortrix Lepidoptera 
Aedes aegypti  yellow fever mosquito Diptera 
Agelastica alni alder leaf beetle Coleoptera 
Aleochara bilineata   Coleoptera 
Aleyrodes proletella cabbage whitefly Hemiptera 
Andrena vaga grey-backed mining bee Hymenoptera  
Aphelinus abdominalis    Hymenoptera  
Aphidius colemani   Hymenoptera  
Aphidius matricariae   Hymenoptera  
Aphidius ervi   Hymenoptera  
Aphidoletes aphidimyza gal midge Diptera 
Aphis fabae black bean aphid Hemiptera 
Aphis gossypii cotton aphid Hemiptera 
Apis mellifera European honey bee Hymenoptera  
Aulacorthum solani foxglove aphid Hemiptera 
Bombus impatiens common eastern bumble bee Hymenoptera  
Bombus pascuorum common carder bee Hymenoptera  
Bombus terrestris buff-tailed bumblebee Hymenoptera  
Brassicogethes aenus pollen beetles Coleoptera 
Brevicoryne brassicae cabbage aphid Hemiptera 
Ceutorhynchus obstrictus   Coleoptera 
Ceutorhynchus pallidactylus   Coleoptera 
Cladius pectinicornis   Hymenoptera  
Cryptolaemus montrouzieri   Diptera 
Cydia pomonella codling moth Lepidoptera 
Dacnusa sibirica   Hymenoptera  
Dalotia coriaria greenhouse rove beetles Coleoptera 
Dasineura brassica brassica pod midge Diptera 
Delia antiqua onion fly Diptera 
Diplolepis rosae   Hymenoptera  
Drosophila melanogaster fruit fly Diptera 
Drosophila suzukii spotted wing drosophila Diptera 
Encarsia formosa   Hymenoptera  
Episyrphus balteatus marmalade hoverfly Diptera 
Eretmocerus eremicus   Hymenoptera  
Eupedes corrolae   Diptera 
Feltiella acarisuga   Diptera 
Graphosoma italicum European striped shield bug Hemiptera 
Helicoverapa armigera cotton bollworm Lepidoptera 
Hydrotaea aenescens black dump fly Diptera 
Hypera meles clover head weevil Coleoptera 
Ischnura elegans blue-tailed damselfly Odonata 
Leptomastix dactylopii   Hymenoptera  
Lucilia sericata common green bottle fly Diptera 
Lygorcoris pabulinus common green capsid Hemiptera 
Musca domestica house fly Diptera 
Myzus persicae Peach potato aphid Hemiptera 
Orius laevigatus   Hemiptera 
Orius majusculus   Hemiptera 
Osmia rufa   Hymenoptera  
Plodia interpunctella Indianmeal moth Lepidoptera 
Plutella xylostella diamondback moth Lepidoptera 
Popillia japonica Japanese beetle Coleoptera 
Rhagonycha fulva common red soldier beetle Coleoptera 
Scaphoideus titanus American grapevine leafhopper Hemiptera 
Scaptomyza flava turnip leafminer Diptera 
Spalangia cameroni   Hymenoptera  
Sphaerophoria rueppellii   Diptera 
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2.2.3 Sensor field evaluation 
On May 15, 2021, the commercial variety of Lima bean, UC Haskell, was planted at 

the PSFF (38°32'18.8"N 121°47'19.9"W). The planting consisted of a 42 meter long and 4 

row wide strip planted with 5 cm spacing. The strip was on the edge of a larger planting of 

lima beans that were drip irrigated and conventionally managed. No insecticides were 

applied to the strip or the adjacent field.  

The sensor was placed on the edge of the planting, 28 meters in from the end of the 

strip. The sensor's field of view was trained just above canopy height over the four rows of 

the planting (Fig. 2). The height of the sensor was adjusted as needed on a weekly basis to 

maintain consistent height above the canopy. The sensors measured insect flights in this 

location continuously from the 17th of June 2021 to the 1st of September 2021. Flowering 

started on the 7th of July 2021.  

 

Figure 2: Autonomous near-infrared insect sensors (FaunaPhotonics ApS., Copenhagen SV, Denmark) installed over Lima 
Beans at the PSFF in June 2021. Data from the one sensor observing insects above the variety UC Haskell were used for this 
study. 
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2.3 Seasonal dynamics  
Seasonal dynamics of L. hesperus were evaluated with both water traps and the 

sensor. From July 2, 2021, to August 28, 2021, two green water traps made from 37oz 

green plastic cereal bowls (Room Essentials ™, Target Corporation, Minneapolis, MN.) 

mounted with black zip ties on bamboo stakes were positioned in the strip planting of UC 

Haskell lima beans described above. The water traps containing water and a drop of dish 

soap to reduce surface tension were positioned at the level of the crop canopy and 

repositioned as needed on a weekly basis to retain this relative height. Every three days, 

the water traps were emptied and strained through a mesh sieve. The collected insects 

were then transferred to vials of ethanol, identified, and counted. 

2.4 Analysis 
Data visualizations were conducted in Python 3.7 using the matplotlib package. To 

quantify correlations between laboratory and field circadian flight activity, and between 

predicted L. hesperus and general insect activity in the sensor, the Kolmogorov-Smirnov 

test was run using the SciPy stats package (Virtanen et al. 2020).  

3. Results 

3.1 Vacuum time of day sampling 
The L. hesperus densities approximated a normal distribution with the greatest 

proportion occurring between 12:00 to 14:00 in Pacific Daylight Time. There was a 2.8-fold 

difference seen between the highest and lowest temporal blocks (12:00 to 14:00 and 6:00 

to 8:00, respectively) (Fig. 3).  
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3.2 Circadian flight activity 

3.2.1 Laboratory evaluation 
In the laboratory evaluation, the sensor recorded a total of 404 L. hesperus flights 

over 17 days of monitoring. Flights were distributed in two large and two small peaks. The 

large peaks occurred first between 04:00 and 05:00 with 44 flights and the second between 

21:00 and 22:00 with 51 flights. The small peaks occurred between 11:00 and 12:00 with 

19 flights and between 16:00 and 17:00 with 15 flights (Fig. 4).   
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Figure 3. Overlapping histograms of Lygus hesperus (1) sensed and (2) vacuumed. Insect data is averaged per hour and 
presented graphically in two-hour blocks 

 

Figure 4. Overlapping histograms of sensed Lygus hesperus from the field (1) and sensed Lygus hesperus from the lab (2). 
Insect data is averaged per hour and presented graphically in one-hour blocks. 

 



 12 

3.2.2 Machine learning species classification 
The machine learning algorithm was evaluated using an unseen test set consisting of 

229 L. hesperus events and 3535 events from other insects, including 194 European Lygus 

spp. events (meaning Lygus that were not L. hesperus). When applied to the test set, the 

algorithm correctly identified 90.0% (206) of L. hesperus events (Fig. 10). The test 

observed one Type 1 error, also known as false negative, in which 0.03% L. hesperus events 

classified as another species. The test observed 23 Type II errors, also known as false 

negative, in which 10.0% of L. hesperus events identified as other species, of which 13 were 

classified as European Lygus spp. The t-SNE analysis of the feature space (Fig. 10) shows 

that L. hesperus events are fully separated from other insects, further indicating that 

training was successful in regard to the target group. However, more work is needed to 

ensure that insect events classified as ‘L. hesperus’ are indeed those insects. 

3.2.3 Sensor field evaluation 
In the field, the sensor recorded 119,664 insect flights of which 87 were classified at 

a greater than 0.75 likelihood as L. hesperus. All insect flights were distributed between one 

large, one broad, and one small peak (Fig. 14). The large peak was narrow-shaped and 

occurred between 20:00 and 21:00 with 18,673 insect flights. The broad peak occurred 

between 14:00 and 15:00 with 11,302 flights. The small peak occurred between 02:00 and 

03:00 with 3,728 flights.  

L. hesperus-classified flights were distributed in three large and one small peaks. 

The large peaks occurred between 09:00 and 10:00 with eight flights, 13:00 and 14:00 with 

nine flights, and between 20:00 and 21:00 with 11 flights. The small peak was uniformly 

distributed between 01:00 and 04:00 am with four flights per hour.   
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A distribution analysis using a Kolmogorov-Smirnov test indicated that insects 

captured using the vacuum method did not exhibit a significantly different distribution to 

flying L. hesperus identified by the sensor, D(7) = 0.57, p=0.21), indicating that field results 

were consistent across years and methods. 

  

Figure 5. Overlapping histograms of sensed Lygus hesperus (1) and all sensed insects (2). Insect data is averaged per day and 
presented graphically in one-day blocks. 
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3.3 Seasonal dynamics  
The total number of recorded insect flights increased consistently, albeit with 

fluctuations, over the season, with a low of 479 insect events recorded over the 21st/22nd 

of June 2021, and a high of 6,240 insect events recorded over the 26th/27th of August 2021 

(Fig. 5). 

Insect events classified as L. hesperus also showed an increase in activity over the 

season, generally exhibiting very low (<5 per two-day period) activity, with a peak of 4 L. 

hesperus flights on the 15th/16th July 2021, until the end of August 2021, where an 

exponential-like increase was observed concluding with the highest peak of 28 flights on 

the 28th/29th August. 

A comparison of the flight activity distribution of insects detected by the sensor 

between 25th June 2021, and the 27th August, 2021, determined using the Kolmogorov-

Smirnov test that the distribution of L. hesperus activity and the general insect population 

over the season differ significantly, D(38) = 0.63, p = 1.99e-07. 

Water traps identified a total of 1610 insects, of which 77 were L. hesperus (Fig. 6.). 

The general insect population showed three peaks within this time, one early in the season 

with 130 insects collected between the 3rd to the 5th of July 2021, a narrow second peak of 

134 insects between the 26th and the 28th July, 2021, and a final peak of 136 insects 

between the 13th and the 15th of August, 2021. 

A Kolmogorov-Smirnov test comparing the distribution of L. hesperus and the 

general insect population in water traps did not find a significant difference, D(18) = 0.39, p 

= 0.13.  
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In comparing water traps and sensor data, using a Kolmogorov-Smirnov test, no 

significant difference in distribution was found in the general insect population, D(18)  

=0.11, p = 1.0; however, a significant difference was observed in the distribution of L. 

hesperus caught in water traps compared to those observed in the sensor, D(18) = 0.5, p = 

0.02. 

 

  

Figure 6. Overlapping histograms of the total number of insects and the L. hesperus collected using water traps. 
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4. Discussion 
A clear circadian rhythm is observed in both the vacuum samples and sensed flights 

classified as L. hesperus; hereafter termed ‘sensed Lygus’. This indicates that circadian 

rhythm synchronizes both the activity on plants and in the air, resulting in a correlation 

between vacuum and sensor measurements over time (3.2.3). As the vacuum sampling has 

greater access to insects on the outer canopy and the sensor only measures insects in flight, 

this synchronization seems to be a result of the insect behavior that leads to both 

movement to the outer canopy and flight. This movement could be driven by access to a 

more optimal microclimate, need for food, or mate seeking. A previous study examining L. 

hesperus flight periodicity found the insects had primarily daytime and crepuscular flight 

activity (Blackmer, Naranjo, and Williams 2004). While this reported periodicity was 

observed for the sensed Lygus in the controlled environment, the field sensed Lygus also 

included increased peak flight activity from 12:00 to 13:00. As this period of increased 

circadian activity is observed in both sets of field data but obtained in different years 

(vacuum sampling and sensed Lygus), it is likely driven by field abiotic conditions. Lygus 

spp. are sensitive to both light and temperature (Blackmer, Naranjo, and Williams 2004; 

Spurgeon and Cooper 2012) with L. hesperus flights in response to light (Blackmer, 

Naranjo, and Williams 2004). The closely related species Lygus lineolaris (Hemiptera: 

Miridae) in strawberries also exhibited three periods of circadian flight activity in the field, 

matching the timeframes of field sensed Lygus (Bick 2019). This indicates findings are 

likely applicable to other agricultural ecosystems. 

Insect population estimates based on sampling and monitoring drive decisions  

(Dornelas and Daskalova 2020; Didham et al. 2020; Greenwood et al. 2005; Dangles and 
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Casas 2019). However, sampling and monitoring methods are sensitive to circadian 

rhythm, increasing variation in insect counts. There was a 2.8-fold increase in vacuumed L. 

hesperus between the lowest and highest temporal periods (3.1). The sensor was even 

more sensitive to Lygus temporal dynamics, with some time periods detecting no Lygus 

flights. These findings extend Rancourt, Vincent and de Oliveira, 2000’s recommendation 

that sampling of L. lineolaris should account for flight activity of other Lygus spp. Moreover, 

insect circadian flight patterns have been observed in many insect orders including 

Lepidoptera (Wikström, Milberg, and Bergman 2009), Diptera (Zahn and Gerry 2020), 

Coleoptera (Mauchline et al. 2017), Hemiptera (Rancourt, Vincent, and de Oliveira 2000; 

Sétamou et al. 2012), and many others. Therefore, generally sampling practices of flying 

insects should account for the target’s circadian flight activity. 

No significant difference was seen between the seasonal distribution of sensed 

insects and total insects collected in the water traps. This supports the use of sensors as a 

suitable equivalent method in measuring general insect population (Rydhmer et al. 2021). 

A significant difference in seasonal dynamics was identified between L. hesperus collected 

in water traps and sensed Lygus, which could indicate that these two monitoring methods 

are observing distinct behaviors, and thus may be more suitable as complementary 

methods. However, it is relevant to note that previous work using these sensors (Rydhmer 

et al. 2021) has indicated that there is an expected delay on the order of days between 

flights observed by the sensor and insects collected by the water traps. As the water traps 

were concluded on the same day the sensor recorded the highest peak, it is possible that 

had the water traps been continued, a later peak could have been identified. Further 
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research is needed to more explicitly determine the relationship between sensed flights 

and manual methods. 

In both the water trap and the sensor, insect observations form multi-modal peaks 

with high activity periods followed by periods with very low or no activity. The presence of 

multi-modal peaks in both water traps and the sensor could be reflective of the known 

cycles of L. hesperus population dynamics due to having multiple in-field generations, 

whereby breeding cycles result in cyclical periods of high adult populations followed by 

periods dominated by nymphal stages (Leigh 1963). This breeding cycle is known to 

conclude with an exponential rise in population (Bick 2019), which can be observed in the 

sensor but not in the water traps. 

A major limitation of this study is the uncertainty in accuracy of classifying flights 

detected by the sensor as L. hesperus. Specifically, light detection and ranging (LiDAR) 

sensors have limited capacity to validate the species classifications of machine learning 

algorithms in the field, due to their lack of trapping individuals in sync with signal events 

(with a camera or otherwise). However, the high accuracy of the algorithm to separate out 

L. hesperus from other Lygus spp. as well as the low occurrence of Type I and Type II errors 

(3.2.2) indicates the classifying algorithm has a high likelihood of success. Moreover, the 

alignment of the circadian rhythm in the vacuumed and sensed Lygus (Fig. 3, 3.2.2) 

increases the confidence in the likelihood that sensed flights are accurately classified as L. 

hesperus.  Finally, the proportion of sensed insects classified as L. hesperus is low, as would 

be expected in an environment where L. hesperus do not comprise the majority of the insect 

population and varies independently from the seasonal dynamics of all sensed insect flights 
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(Fig. 5), indicating that the algorithm is not indiscriminately classifying an arbitrary subset 

of insects as L. hesperus.  

Another study limitation is the low number of L. hesperus flights. This phenomenon 

occurred in the both the controlled environment and the field (3.2.1, 3.2.3). This data aligns 

with a flight mill study where 60-86% of L. hesperus were classified as nonflying and 60 - 

97% of the flying individuals made only ‘trivial flights’(Blackmer, Naranjo, and Williams 

2004). As the sensor is only capable of detecting insects in flight, the low numbers of flight 

events highlight the difficulty of an optical sensor’s application to reluctantly flying insects. 

The results obtained thus help to explore the limits of the sensor when applied to diverse 

species and behavioral patterns.   

There are many potential applications of optical sensors to entomological problems. 

As circadian rhythm can be used to differentiate insects within a species by sex (houseflies 

and L. lineolaris), sensor data may be able to do so as well. Mosquitoes’ sex can be identified 

by their wing beat frequency. A machine learning algorithm might be able to identify 

insects within species by sex with less obvious differentiation. 

This study focused primarily on a single species, L. hesperus, contrasted with the 

general undifferentiated insect population. However, as indicated by the t-SNE plot (Fig. 1), 

using sensor data it is possible to distinguish multiple groups, and potentially to quantify 

group separation. This raises opportunities for using the sensor to measure biodiversity or 

to identify functional groups. 

While this study only utilized a single sensor in the field, a network of sensors 

placed across a field, or a landscape, may be able to counter some of the limitations 
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presented when monitoring low-flight insects. A network of sensors may also be able to 

provide more detailed information about the spatial and temporal dynamics of insects. 

The sensor is automated and standardized, which could make it a good tool for long-

term commercial agricultural monitoring. Although the sensor’s insect counts appear to 

correlate well with manual methods, it uses a unique metric (number of observed flights), 

which is not associated with an economic threshold. Further work is therefore required to 

develop a useful threshold from observed flights. Regardless of method, researchers should 

be consistent in the timing of sample collection or should use time of day to normalize 

counts since insect counts are often highly variable at different times of the day and season. 

For manual sampling methods, in which personnel are required to be present in the field, 

sampling during the midday peak may result in a higher insect count and thereby more 

easily meet the requirement for insecticide treatment or scoring as insect-infested in a 

breeding program. The threshold for insecticide application in Lima beans is quite low at 

1.0-2.0 L. hesperus per sweep (Long et al. 2020). For automated methods, understanding 

the circadian flight activity could assist with the timing of non-continuous monitoring 

schemes for power saving. For example, if power supply limited sensor operation to a few 

hours a day, the optimal times to operate the sensor would be during the early morning, 

late evening, and midday peaks.  

5. Conclusion 
The understanding that circadian flight activity results in biased manual and 

automated sampling and monitoring will inform the use and collection of insect data. 

Additionally, confirming the utility of automated monitoring and beginning to explore its 

use in a variety of fields will greatly increase the effectiveness and efficiency of data 
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collection. Here are many applications for this technology including as an early warning 

system for invasive species, a source of disease detection, and in IPM.  

One of many potential uses for this technology best explored in this study is its use 

for research and specifically the development of insect tolerant crop varieties of legumes. 

To date, few breeding programs have successfully implemented breeding for arthropod 

field pest resistance in legumes (Edwards and Singh 2006). Sensors could be applied to 

improving phenotyping of arthropod field pest resistance traits. Specifically, continuous 

monitoring allows for analysis of insect behavior that will enable breeders to understand 

the mechanisms of resistance while also increasing the throughput. Current breeding 

programs predominantly identify field insect resistance through yield trials, manual 

sampling, and visual scoring. These methods may succeed when there is a clear qualitative, 

monogenic resistance but do not provide detailed enough phenotypes to differentiate 

genotypes by their quantitative resistance and, hence, capitalize on modern breeding 

techniques for complex quantitative traits. With more precise phenotype data, breeders 

could apply advanced techniques like marker -assisted selection, genomic selection, and 

interspecific hybridization (Rubiales et al. 2015). With better insect data for phenotyping, 

more rapid advances could be made in breeding legumes that are not reliant on 

insecticides, thereby meeting growing consumer demand for organic and less 

environmentally destructive agricultural systems.  
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