
Lawrence Berkeley National Laboratory
LBL Publications

Title

A parallel, distributed memory implementation of the adaptive sampling configuration
interaction method

Permalink

https://escholarship.org/uc/item/5278t1tf

Journal

The Journal of Chemical Physics, 158(21)

ISSN

0021-9606

Authors

Williams-Young, David B
Tubman, Norm M
Mejuto-Zaera, Carlos
et al.

Publication Date

2023-06-07

DOI

10.1063/5.0148650

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5278t1tf
https://escholarship.org/uc/item/5278t1tf#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

A Parallel, Distributed Memory Implementation of the Adaptive Sampling

Configuration Interaction Method

David B. Williams-Young,1 Norm M. Tubman,2 Carlos Mejuto-Zaera,3 and Wibe A. de

Jong1

1)Applied Mathematics and Computational Research Division,

Lawrence Berkeley National Laboratory, Berkeley, California ,

USAa)

2)NASA Ames Research Center, Moffett Field, California 94035,

USA

3)Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste TS,

Italy

(Dated: 13 March 2023)

Many-body simulations of quantum systems is an active field of research that involves

many different methods targeting various computing platforms. Many methods com-

monly employed, particularly coupled cluster methods, have been adapted to leverage

the latest advances in modern high-performance computing. Selected configuration

interaction (sCI) methods have seen extensive usage and development in recent years.

However development of sCI methods targeting massively parallel resources has been

explored only in a few research works. In this work, we present a parallel, distributed

memory implementation of the adaptive sampling configuration interaction approach

(ASCI) for sCI. In particular, we will address key concerns pertaining to the paral-

lelization of the determinant search and selection, Hamiltonian formation, and the

variational eigenvalue calculation for the ASCI method. Load balancing in the search

step is achieved through the application of memory-efficient determinant constraints

originally developed for the ASCI-PT2 method. Presented benchmarks demonstrate

parallel efficiency exceeding 95% for the variational ASCI calculation of Cr2 (24e,30o)

with 106, 107, and 3 ∗ 108 variational determinants up to 16,384 CPUs. To the best

of the authors’ knowledge, this is the largest variational ASCI calculation to date.

a)Electronic mail: dbwy@lbl.gov

1

ar
X

iv
:2

30
3.

05
68

8v
1

 [
ph

ys
ic

s.
ch

em
-p

h]
 1

0
M

ar
 2

02
3

mailto:dbwy@lbl.gov

I. INTRODUCTION

The ability of ab initio quantum chemistry to solve challenging science problems strongly

relies on its success in leveraging the latest advances in modern high-performance computing.

As such, the development of massively parallel algorithms for quantum chemistry methods

targeting large supercomputers has been of significant interest in recent years1–6. In par-

ticular, many-body methods hold among the highest potential for exploiting concurrency

on modern machines (we refer the reader to Ref. 7 and references therein for a recent com-

prehensive review). There are several competitive methods in quantum chemistry used for

many-body simulation, including density matrix renormalization group (DMRG)8,9, coupled

cluster10,11, auxillary field quantum Monte Carlo12–14 and several others15,16. It is an active

field of research to understand the pros and cons of these various methods16, and almost all

of these methods are being actively developed.

Recently, the development of selected configuration interaction (sCI) methods has seen

a renewed interest, and there has been a push to adapt the approach to modern comput-

ing architectures. This interest has been, in large part, driven by recent advances in the

core components of sCI algorithms17–19, which have in turn extensively broadened the reach

of their applications 16,20–46. In particular, some of the newer applications include simula-

tion of vibrational/nuclear degrees of freedom24,35, dynamical mean field theory26,27, time

evolution31,32,47, Hamiltonian compression 43, new algorithms for quantum computing and

benchmarking44,48,49, machine learning approaches22,33,41, and large-scale simulation of quan-

tum circuits50,51. While there has been a lot of interest in sCI, there are still a number of

technical aspects that are open research problems within the realm of high-performance com-

puting. The lack of parallel sCI implementations has been somewhat visible as in a recent

comparison of different algorithms for the application of the benzene molecule16. Several sCI

methods were considered but none of them used anywhere close to the number of CPU hours

that the most accurate methods required. Although there has been at least one simulation

of sCI using more than a billion determinants39, simulations of this scale have not been

widely performed. This leads to the obvious question of what the limits of sCI approaches

are when used in conjunction with modern high performance computing resources. In this

work, we present a parallel, distributed memory implementation of the adaptive sampling

configuration interaction (ASCI) method18 for sCI simulations.

2

The ASCI algorithm was developed with the idea of making approximations to various

aspects of sCI algorithms. The original ASCI paper18 included approximations to the search

algorithm that reduced the number of search terms while maintaining highly accurate re-

sults. Soon after the heatbath CI algorithm made further approximations to the search

algorithm while still maintaining reasonable results in many systems19. Initial results on

Cr2 suggested these sCI algorithms are competitive with the most accurate contemporary

many body methods, including DMRG. Many further developments increased the efficiency

of different parts of the algorithm, including the development of a fast perturbation step

with a deterministic constraint approach (ASCI-PT2)23. In this current work, we look to

turn the fast ASCI-PT2 algorithm into a massively parallel search step, while also develop-

ing a scaleable parallel diagonalization step. These make up the variational part of the sCI

algorithm, and thus we are hoping to advance the parallel capabilities of variational sCI.

While single core and single node approaches for sCI have been explored extensively with

a focus on making use of modern computational tools28, there has been much less focus

on massive parallelism and the development of distributed memory algorithms. Most sCI

implementations can make use of shared memory parallelism28,36,39 during the computation-

ally heavy parts of the simulation. In particular, leverage of multi-threaded28,52,53 and GPU

accelerated23,28,54 sorting techniques, which are the primary algorithmic motifs of the ASCI

method, have shown great promise on modern computing architectures. One recent study

examined a distributed memory implementation of the Heat-Bath configuration interaction

(HCI) method, particularly focusing on the details pertaining to the strong scaling of the

second-order perturbative corrections (PT2), which dominated their simulation. While this

study was able to exhibit excellent strong scaling for the PT2 step in HCI, the challenges

associated with this development are somewhat unique to HCI and are not easily extended

to other sCI algorithms. THe ASCI-PT2 algorithm, which was first posted in 201823, uses

triplet constraints to facilitate the division of parallel tasks23. Some of the new ideas in the

recent parallel HCI38 approach are used to overcome issues that are bottlenecks for only HCI

PT2 approaches39, and are not directly applicable to ASCI-PT2 with triplet constraints. An

even bigger issue that we address in this current work are the parallel bottlenecks in the

variational part of an sCI algorithm, which appears to be a major bottleneck for all the sCI

approaches we are aware of. This is evident in the parallel HCI paper as their method exhib-

ited much less favorable strong scaling for the variational component of the sCI calculation.

3

Thus the primary focus of the following developments will be on the variational component

of the ASCI algorithm, of which a fair amount can be applied to other sCI algorithms as

well.

The remainder of this work will be organized as follows. In Section II A we review the

salient features of the ASCI method relevant to the development of parallel algorithms. Sec-

tion II B presents a work partitioning and load balancing scheme relevant to the development

of scalable determinant selection on massively parallel architectures. Section II C addresses

key considerations for the development of parallel algorithms for the solution of large-scale

eigenvalue problems and the parallel construction of sparse Hamiltonian matrices within the

sCI formalism. We examine the performance and scalability of the proposed methods for a

challenging test case (Cr2) in Sec. III and discuss future research directions in Sec. IV.

II. METHODS

The notation and common abbreviations used in this work are summarized in Table I.

A. Adaptive Sampling Configuration Interaction

The details and efficacy of the ASCI algorithm are presented elsewhere. The initial

implementation can be found in Ref. 18, and many details and improvements can be found

in Ref. 28. The general schematic for the ASCI algorithm is given in Alg. 1. In general, the

ASCI algorithm, as most other sCI algorithms, consists of three major steps:

1. Hamiltonian construction and diagonalization (eigenvalue problem),

2. Determinant selection (search),

3. (optional) Perturbative (PT2) correction to the energy.

The first two steps are typically referred to as the variational steps for sCI algorithm and

will be the primary focus of this work. However, in the development of parallel algorithms

for the ASCI search step (Sec. II B), we will extend a work partitioning scheme originally

developed for the ASCI-PT2 method23. For the variational steps, sCI algorithms primar-

ily differ in their treatment of the determinant search, whereas once a set of determinants

has been selected, the Hamiltonian construction and subsequent diagonalization steps are

4

Symbol Explanation

ψk The wave function in the current

ASCI step

Ci The coefficients of the ith detemi-

nant Di of ψk

Di The ith determinant in ψk

D̃j The jth determinant not in ψk

{Dsd} The set of all single and double ex-

citations that are connected to ψk

{Dsd
i } The set of all single and double ex-

citations that are connected to the

determinant Di

Ntdets Number of determinants in the cur-

rent wave function.

Ncdets Core space size used for pruning in

ASCI

PE Processing element (independent

compute context)

TABLE I. List of symbols used in this work.

largely the same. As such, the parallel algorithms developed in this work for the latter can

straightforwardly be applied to other sCI algorithms as well. However, the details of the

search step, which must be carefully considered in the development of scalable parallel algo-

rithms, are typically unique to each sCI algorithm, and thus not straightforwardly extended

between methods.

With the possible exception of a few approaches such as the machine learning sCI meth-

ods22,33,34,41, the vast majority of sCI algorithms use the following formula for generating a

ranking value of a determinant not currently considered in the trial wave function, ψk,

Si =
∑
j

S
(j)
i , S

(j)
i =

HijCj

Hii − Ek

, Ek = 〈ψk|Hψk〉. (1)

Here, H is the many-body molecular Hamiltonian, Hij is a matrix element of H between

5

1: Input: Start with a Hartree-Fock simulation

2: Output: Ground state energy of the system

3: Create a starting wave function which can be a Hartree-Fock determinant

4: ASCI-search (find important contributions not current in the wave function)

5: Sort and select the top determinants from ASCI-search

6: Diagonalize the Hamiltonian in the selected determinant space

7: Return to step 3, but now use the ground state result of the diagonalization process as the

starting wave function. Repeat until stopping criteria is reached

8: Run a final ASCI-PT2 step (to improve the energy further)

Algorithm 1. ASCI algorithm

Slater determinants, Cj is the coefficient for Dj ∈ ψk, and Ek is the variational energy asso-

ciated with ψk. Si is the metric (“score”) by which we will determine which determinants to

add to the sCI subspace, and S
(j)
i is the j-th partial-score which describes the contribution

of Dj to Si. The contracted index, j, runs over Dj ∈ ψk whereas the free index, i, runs over

D̃i 6∈ ψk. In principle, i runs over the entire Hilbert space in the complement of the determi-

nants in ψk. However, the elements of Hij are sparse, and the maximally two-body nature of

H for molecular Hamiltonians imposes D̃i ∈ {Dsd}, where {Dsd} is the set of determinants

which are singly or doubly connected to a determinant in ψk. In practice, even consideration

of all determinants in {Dsd} is not needed, as there exists considerable numerical sparsity

beyond that which is solely imposed by connections in the Hamiltonian. Thus, while calcu-

lating these equations is straightforward in principle, in practice it is important to identify

the non-zero terms a priori because the large majority of terms are zero. Additionally, it is

important to only use and store the non-zero terms when needed, as memory requirements

for storing all the terms in these sums are extremely large when pushing to a large sCI cal-

culation. Previous papers have reported examples pertaining to the number of connections

of different examples. In a previous ASCI study, the number of such terms considered for

a Cr2 example had over 282 billion connection terms which were all generated on a single

core23 and in the recent parallel HCI paper, the authors were able to simulate over 89.5

billion connection terms. If all of these terms had to be stored in memory simultaneously,

the memory requirements would make these approaches unfeasible.

6

Due to the immense cost of calculating Hij and Si, small differences in data structures

and algorithmic design choices can yield large impacts on overall performance. Since its in-

ception, the design approach of the ASCI algorithm has centered around the use of modern

computing architectures. In particular, the ASCI method has adopted sorting as its pri-

mary algorithmic motif due to the favorable scaling and performance of sorting algorithms

on contemporary CPU and GPU hardware28. However, current developments of the ASCI

algorithm have focused on shared memory compute environments. Almost all ASCI simu-

lations that we are aware of have been performed on a single node with the exception of a

small scale MPI test with parallel ASCI-PT223. In the following subsections, we examine

the extension of the ASCI sorting motif to distributed memory compute environments and

emergent challenges with load balancing on massively parallel architectures.

B. Parallel Determinant Search

The general procedure for the ASCI determinant search is given in Alg. 2. The search

proceeds by considering single and double connections from a set of dominant configurations

in the trial wave function28. We will refer to these determinants as the “core” determinants

in the following. The number of core determinants to consider is a tunable parameter in the

ASCI algorithm and is typically achieved by selecting the Ncdets determinants in ψk with

the largest coefficient magnitudes. In a naive approach, one determines a priori the {Dsd}

associated with the core determinants, which we will refer to as the target determinants

in the following, and subsequently calculates the contribution of each core determinant to

each target configuration via Eq. (1). In many practical simulations, it is better to generate

the possible target determinants as singles and doubles from each core configuration, rather

than loop over all possible target configurations and then check for connections with the core

determinants. The latter procedure generally performs excessive work as the majority of

the core determinants only contribute to a few target determinants. In the shared memory

ASCI algorithm, a single pass is taken over the core determinants, and the associated {Dsd
j }

and S
(j)
i for D̃i ∈ {Dsd

j } are generated on the fly. If |S(j)
i | > εsearch, where εsearch is a

tunable threshold, it is appended to an array as a pair (D̃i, S
(j)
i), which we will refer to

as an ASCI pair in the following. For the purposes of molecular calculations, bit-strings

are typically the data structure of choice for the representation and manipulation of many-

7

1: Input: Trial wave function determinants, ψk and coefficients C; Search configuration cutoff

Ncdets; Max wave function size Ntdets; ASCI pair threshold, εsearch

2: Output: New ASCI determinants ψk+1

3: ψc ← Obtain Ncdets subset of ψk with largest coefficients

4: P ← [] . ASCI Pairs

5: for Dj ∈ ψc do

6: {Dsd
j } ← Single and double connections from Dj

7: for D̃i ∈ {Dsd
j } do

8: S
(j)
i ← Eq. (1)

9: if |S(j)
i | > εthresh then

10: P ← [P, (D̃i, S
(j)
i)]

11: end if

12: end for

13: end for

14: P ← Sort P on D̃i.

15: P ←
∑

j S
(j)
i for each unique i . Each unique p ∈ P now contains a complete Si

16: P ← Sort P on Si

17: return ψk+1 ← top-Ntdets determinants in P

Algorithm 2. The ASCI Search Algorithm

body determinants as it allows for fast bit operations in e.g. calculating matrix elements

on modern computing architectures17,28,36,38,55. As such, the ASCI pairs can be stored in a

simple data structure consisting of the bitsring representing D̃i and the partial score S
(j)
i .

Once all pairs have been generated after passing over each core configuration, the array is

sorted on the determinant bitstring which in turn brings all partial scores associated with a

particular target determinant contiguously in memory. With this new ordering, scores for

individual target determinants can be straightforwardly assembled via Eq. (1). We refer to

this procedure as “sort-and-accumulate” in the following.

Even for relatively aggressive εsearch cutoffs, this approach can constitute a large memory

footprint for larger Ncdets. In the original ASCI method, a threshold for the maximum num-

ber of ASCI pairs to store in memory was set, and the pair list would be occasionally pruned

8

to ensure memory compactness. This pruning procedure has been demonstrated to provide

approximate scores of sufficient accuracy to successfully rank determinants for the sCI wave

function28. A similar approach could be taken for the calculation of the PT2 energy, EPT2,

which is closely related to the scores of Eq. (1)20,23,39. However, for accurate calculations

of EPT2, one cannot employ the aggressive cutoffs and pruning schemes employed to ensure

memory compactness in the ASCI search. In the development of the ASCI-PT2 method23, a

solution was developed which allows for memory compactness while still leveraging the pow-

erful nature of sorting algorithms on modern computing architectures. In this procedure,

the set of target configurations is partitioned according to a constraint identified by their

largest occupied orbitals. In the ASCI-PT2 study, target determinants were classified by

triplet constraints, i.e., by their three highest-occupied orbitals. These constraints generate

non-overlapping subsets of determinants such that every possible determinant belongs to

exactly one constraint class.

At first glance, this approach appears similar to the naive approach for ASCI score

calculation as it might imply that one would need to know the entire {Dsd} associated with

the core determinants to be able to partition the target determinants a priori. However,

the major realization of ASCI-PT2 was to determining which target determinants arising

from excitations of a particular core configuration belong to a particular constraint class.

As such, in a similar manner to the original ASCI search algorithm, one can make multiple

passes over the core configurations for each constraint and generate its associated target

configurations on the fly. The power of this procedure is that the sort-and-accumulate steps

can now be done at the constraint level, i.e., ASCI pairs can be generated and aggregated

for each constraint and, due to the non-overlapping partition generated by the individual

constraints, all partial scores associated with the target determinant belonging to that class

are guaranteed to be generated by the end of each pass over core configurations. As the

number of unique determinant scores is much less than partial score contributions, this

procedure exhibits much lower memory usage than the original ASCI search algorithm.

To proceed with development of a parallel ASCI search algorithm we consider a similar

approach to ASCI-PT2, where the work associated with the generation of pairs for individual

constraints is assigned to different processing elements (PE) in the distributed memory en-

vironment. To ensure scalability of the pair generation and subsequent sort-and-accumulate

steps, we have developed a static load balancing procedure presented in Alg. 3. Prior to

9

1: Input (global): Dominant core configurations, ψc , max constraint level L

2: Output (local): Local constraints Cloc

3: W ← an array of size of the execution context (# PEs) . Initialize to zero

4: p← index of PE in

5: Cloc ← []

6: Ct ← all unique triplet constraints

7: for C ∈ Ct do

8: h← 0

9: for Dj ∈ ψc do

10: s← singly connected determinants to Dj satisfying C.

11: d← doubly connected determinants to Dj satisfying C.

12: h← h+ |s|+ |d|

13: end for

14: if h > 0 then

15: q ← arg miniWi

16: if p = q then

17: Cloc ← [Cloc, C]

18: end if

19: end if

20: end for

21: return Cloc

Algorithm 3. Load Balancing for Parallel Constraint ASCI Search

any pairs being generated for the ASCI search, the number of determinants associated with

individual constraints is precomputed on the fly to generate the rough amount of work for

each constraint. The number of contributions is then used as a heuristic to assign work to

individual PEs. It’s important to note that the number of contributions is not an exact mea-

sure of the work associated with a particular constraint due to the fact that contributions

are screened out according to εsearch. However, for the purposes of the ASCI search, this

procedure has been demonstrated to generate sufficiently balanced work (see Sec. II B). The

primary challenge of this work distribution scheme stems from the large variance of work

10

associated with any particular constraint, i.e. it is often the case that a few constraints

yield a disproportionate of target determinants. As such, at a particular level of constraint

(e.g. triplets, etc), there always exists an amount of indivisible work that the load balancing

procedure cannot distribute over PEs. The work associated with a particular constraint

can be further divided by considering addition constraints of higher order, e.g. triplets can

be broken up into quadruplets, quadruplets into quintuplets, etc. However, the number

of constraints at a particular level grows polynomially with the number of single particle

orbitals, e.g. O(n3
orb) for triplets, O(n4

orb) for quadruplets, etc. Due to the fact that for

each constraint there is an inner loop over Ncdets core configurations, it is highly desirable to

limit the number of considered constraints. As such, it would be highly inefficient to simply

consider all higher-level constraints if the work associated with a particular constraint level

is deemed to exhibit excessive load imbalance. Instead, it is advantageous to only divide the

constraints which are expected to exhibit excessive work into higher constraint levels rather

than dividing all constraints. We will demonstrate the efficacy of this partitioning scheme

in Sec. II B.

Given the locally constructed arrays of string-score pairs generated as a result of the

constraint partitioning, the remaining aspect of the parallel ASCI search is to determine

the dominant Ntdets determinants to keep for the next iteration. In principle, this can be

achieved by performing a full sort of the pairs on the absolute value of their scores. For an

array A such that |A| = n, full sorting of A scales O(n log n), which is generally unfavorable

for the large sizes of arrays considered in this work (as would be generated by large values

of Ncdets). For distributed memory implementations, this problem would be exacerbated

due to the communication overhead of existing distributed memory sort algorithms52,56. For

the vast majority of properties involving selected-CI wave functions, such as energies and

density matrices, the order in which the determinant coefficients appear in the CI vector is

irrelevant and all computed quantities will be invariant to arbitrary permutations C ← PC.

As such, the sorting problem can be replaced with the selection problem which can be used

to determine the largest (or smallest) k ≤ n values of an array with O(n) complexity 57,58.

In addition, selection algorithms can be performed in parallel with nearly optimal speedup

without having to communicate significant segments of A59. Rather than obtaining an

absolute ordering of its input data, selection algorithms are designed to determining a pivot,

ak ∈ A, such that |Ag| = k, where Ag = {a > ak | a ∈ A}. In cases where ak appears multiple

11

times in A, this definition can be extended to indicate |Ag| < k ≤ |Ag∪Ae|, where Ae ⊂ A is

the indexed subset containing the dubplicate elements of ak. We outline a duplicate-aware,

distributed memory extension of the quickselect algorithm, with expected O(n) runtime,

in Alg. 4. For the ASCI search problem, Alg. 4 is used to determine the contribution pair with

the Ntdets-largest score, ptdets. We may then determine the contribution pairs with scores

larger-than or equal-to ptdets and subsequently gather them (collectively) to all participating

PEs (via e.g. MPI Allgather(v)). We examine the performance of this scheme, which

introduces the only source of distributed memory communication in the presented ASCI

search method, in Sec. III.

C. Parallel Eigensolver

After each search iteration of the ASCI procedure, we must obtain the ground state

eigenpair of the many-body Hamiltonian projected onto the basis of newly selected determi-

nants. The large basis dimensions (Ntdets) employed in accurate sCI applications precludes

the use of direct eigensolvers (e.g. those implemented in dense linear algebra libraries such

as (Sca)LAPACK60 and ELPA61,62) due to their O(N2) dense storage requirement and

steep O(N3) scaling with problem dimension. As such, Krylov-subspace methods, such as

Davidson63, LOBPCG64,65, and Lanczos66, are typically employed. Development of efficient

and scalable Krylov methods on distributed memory computers is challenging due to the

existence of many synchronization points arising from the serial nature of subspace con-

struction. Significant research effort has been afforded to the development of distributed

memory Krylov eigenvalue methods across many scientific computing domains67–76. In this

work, due to the diagonally dominant nature of the Hamiltonian, we consider the parallel

implementation of the Davidson method for sCI applications, although many of the same

principles can be extended to other Krylov methods such as Lanczos or LOBPCG.

Given an algorithm to produce the action of the Hamiltonian onto a trial vector (σ for-

mation), we present the general scheme for the distributed memory Davidson method in

Alg. 5. The algorithm presented is general to an arbitrary preconditoner, although we will

always adopt the shifted Jacobi (diagonal) preconditioner which has become standard in con-

figuration interaction calculations63. Unlike exact diagonalization configuration interaction

methods (e.g. full/complete active space CI), where implicit σ formation exhibits efficient

12

closed-form expressions1,55, the vast majority of sCI methods require explicit construction

of Hij to perform the necessary contractions. We refer the reader to Ref. 28 for a com-

prehensive discussion of efficient algorithms for the assembly of Hij for sCI wave functions.

Although explicit storage of the Hamiltonian can be avoided via recalculation of the Hij

at each Davidson iteration, the immense cost of matrix element construction renders this

procedure prohibitive for practical applications. Sparsity of the the Hamiltonian in the basis

of determinants allow for its explicit storage using sparse matrix storage formats. In this

work, we will use the distributed sparse matrix format depicted in Fig. 1, which has been

employed for the development of parallel Krylov algorithms in many community software

packages for sparse matrix algebra (e.g. Ref. 77). In this storage scheme, each PE owns a

contiguous (not necessarily equal) row subset of the full sparse matrix divided into diagonal

and off-diagonal blocks which are stored in standard sparse matrix formats. We will use

the compressed sparse row (CSR) format for local matrix storage78. The partitioning into

diagonal and off-diagonal blocks will ultimately determine the communication pattern of the

σ formation in the Davidson method, as will be apparent in Sec. II C. Of the several methods

for matrix element construction discussed in Ref. 28, we consider the double loop approach

in this work. In the limit that each task only has a small portion of the Hamiltonian, the

double loop approach is quick at generating all the matrix elements. There is likely time

savings to be had by optimizing this further with consideration to other approaches of gen-

erating the matrix elements like with residue arrays and dynamic bitmasking28. However,

the cost analysis must take into account inefficiencies due to load balancing. Thus a double

loop approach is quite reasonable in terms of load balancing and we consider it a reasonable

starting point for massively parallel approaches to sCI.

A naive approach for the distributed σ formation would replicate the basis vectors on

each PE such that local sparse matrix-vector (SpMV) product could be done without com-

munication. However, in the context of a Krylov method such as Davidson, this would

require gathering the locally computed elements of the SpMV to every PE at each itera-

tion. For large problem sizes, the connectivity of the full gather operation would become a

bottleneck. Due to the sparsity of H, the computation of individual elements of σ does not

require knowledge of the entire basis vector; in fact, the number of elements required for

the contraction of any row of H is (pessimistically) bounded by the number of single and

double exciations allowable from the single particle basis. As such, replication (or commu-

13

Hd Hod

HdHod

HdHod

HdHod

PE 0

PE 1

PE 2

PE 3

FIG. 1. Example distributed memory storage scheme for the Hamiltonian and Davidson trial

vectors across 4 PEs. The diagonal (Hd, darker) and off-diagonal (Hod, lighter) blocks of H are

stored separately on each PE as CSR matrices. For PEs 1 and 2, the off-diagonal blocks are stored

as a single sparse matrix with elements on both sides of the diagonal block. Vectors (textured) are

distributed according to the same row distribution as H.

nication) of the entire vector is not generally required. To minimize data communication in

the Davidson iterations, we employ the vector partitioning scheme also depicted in Fig. 1.

Using the sparsity pattern of the off-diagonal blocks of H, we can efficiently determine which

elements of remote vector elements need to be communicated between PEs as the union of

the row sparsities, i.e.

CI =
⋃

i on PE I

Ri, Ri = {j |Hod
ij 6= 0}. (2)

From this set, the owners of remote matrix elements can be looked-up using the row dis-

tribution of H. Another benefit of this precomputation is that it allows for the overlap of

communication and computation79. Via this distribution, the diagonal SpMV can be done

without communication as the vector elements for the local SpMV reside on the same PE

by construction. Using non-blocking communication primitives in the MPI library, commu-

nication can be initiated prior to starting the diagonal SpMV and finalized only once the

remote elements are required for the off-diagonal SpMV. The pseudocode for this distributed

SpMV employed in this work is given in Alg. 6.

III. RESULTS AND DISCUSSION

In this section we examine the strong scaling behaviour of the proposed algorithms for

Cr2 / def-SVP80 in an active space of (24e, 30e). This test system is one of the challenge

14

systems that has effectively been solved to chemical accuracy, but only in the last 10 years9,18.

Therefore Cr2 is a a good benchmark systems for testing and developing methods modern

method. Molecular integrals were obtained using the Molpro81,82 program and all ASCI

calculations were performed on the Haswell partition of the Cray XC40 Cori supercomputer

at the National Energy Research Scientific Computing Center (NERSC). Each Cori-Haswell

node consists of 2x Intel Xeon Processor E5-2698 v3 16-core CPUs with 128GB DDR4 RAM.

All jobs were run with 32 PEs (MPI ranks) per node. Energies for Cr2 calculations presented

in this work are given in Tab. II. All calculations were performed using εsearch = 10−10.

Although not the primary focus of this work, we note that the variational energy determined

at Ntdets = 3∗108 is only 0.3 mEh higher in energy than the most accurate variational DMRG

result for the same system in Ref. 83.

In the following, we present strong scaling results for the parallel ASCI methods proposed

in this work.

Ncdets

E0/ Eh 100k 300k

Ntdets = 106 -2086.40966 -2086.41018

Ntdets = 107 -2086.41769 -2086.41781

Ntdets = 3 ∗ 108 – -2086.42042

Reference DMRG83 -2086.42077

TABLE II. ASCI Ground State energies for Cr2 (24e,30o)

A. ASCI Search Performance

In Fig. 2, we present the component and overall strong scaling of the ASCI search for

triplet, quadruplet, quintuplet, and hextuplet determinant constraints (Sec. II B) for Cr2

with Ncdets = 300k and Ntdets = 106, 107. The calculation is dominanted by the generation

of ASCI pairs whereas the distributed determinant selection via Alg. 4 is relatively minor in

comparison (< 1s). As such, the execution time of the ASCI search is largely independent

of Ntdets. At the lowest determinant constraint level (triplets), the presented algorithm

stagnates immediately with no further performance improvement with large PE counts.

15

32 64 128 256 512
10−1

100

101

102

(a)

PEs

T
im

e
/
s

32 64 128 256 512

100

101

102

(b)

PEs

T
im

e
/
s

Alg. 2

Alg. 4

64 128 256 512

0

0.5

1

(c)

PEs

P
a
ra

ll
el

E
ffi

ci
en

cy

3 4 5 6

FIG. 2. Strong scaling of ASCI search components with different determinant constraints (triplet, 3;

quadruplet, 4; qunituplet, 5; hextuplet, 6) for Ncdets = 300k and (a) Ntdets = 106 (b) Ntdets = 107.

Dominant components exhibit improved scaling with the addition of larger determinant constraints

while lesser components are largely unaffected. (c) Illustrates the parallel efficiency of the overall

ASCI search algorithm with different constraints.

Strong scaling is improved significantly by using larger determinant constraints. Overall,

we see a 5-5.5x performance improvement in the strong scaling limit by moving from triplet

to hextuple determinant constraints. The reason for this improvement (or conversely why

the triplet case exhibits no strong scaling at all) can be seen in Fig. 3 where we present a

plot showing the effect of constraint size on the number of ASCI pairs generated per-PE.

At the triplet level, there is a single triplet which yields a disproportinate number of pair

contributions. As the work can only be distributed at the level of the highest determinant

constraint, this single triplet is represents indivisible work. By breaking up the offending

triplet into higher constraints, the work is able to be distributed. However, at each constraint

level, there always reaches a point where there is a disproportionate amount of work for a few

particular constraints. As such, we expect there always to be a strong scaling stagnation for

this procedure, but the inclusion of higher constraints (heptuples, octuples, etc) will continue

to improve the strong scaling behaviour at larger PE counts. However, due to the relatively

low cost of the search relative to the Hamiltonian formation and Davidson iterations (see

Sec. III B), we believe this level of optimization to be unnecessary at this time.

16

32 64 128 256 512

105

106

107

(a)

PEs

P
a
ir

C
o
u
n
t

32 64 128 256 512

106

107

108

(b)

PEs

P
a
ir

C
o
u
n
t

Min Max

Triplet Quad

Quint Hex

FIG. 3. Constraint pair count statistics for Cr2 with Ntdets = 107 and (a) Ncdets = 100k (b)

Ncdets = 300k. Triplet (3, red shading), quadruplet (4, green shading), quintuplet (5, blue shading),

and hextuplets (6, orange scaling) constraints are considered. A smaller shaded volume indicates

better strong scaling of the constraint-partitioned ASCI search.

64 256 1024 4096 16384

102

104

(a)

PEs

T
im

e
/
s

64 256 1024 4096 16384

0

0.5

1

(b)

PEs

P
a
ra

ll
el

E
ffi

ci
en

cy

106 H

107 D

3 ∗ 108 T

64 256 1024 4096 16384

5

10

15

20

(c)

PEs

T
im

e
/
s

FIG. 4. Strong scaling of Ntdets = 106, 107, and 3 ∗ 108 ASCI. (a) Illustrates the strong scaling

of the Hamiltonian generation, Davidson iterations and overall application performance for each

system while (b) illustrates the corresponding parallel efficiency. (c) Plots the ratio the the largest

to the smallest number of non-zero matrix elements over the PEs, which explains the imbalance in

the Davidson iterations.

B. Hamiltonian and Eigensolver Performance

Figure 4 illustrates the strong scaling of the sCI Hamiltonian generation and subsequent

Davidson iterations for Cr2 with Ncdets = 300k and Ntdets = 106, 107 and 3 ∗ 108. It is

clear that the cost of Hamiltonian formation dominates the variational ASCI calculation at

17

all Ntdets considered, and is O(10x) the cost of the Davidson iterations and O(100x) the

cost of the ASCI search discussed in the previous subsection. The Hamiltonian formation

exhibits near linear strong scaling (> 98% parallel efficiency), whereas the Davidson iter-

ations exhibit between 50%-80% parallel efficiency. The scaling of the former is expected,

as each PE performs nearly the same number of determinant distance checks in the double

loop method (Sec. II C) and there is no communication between PEs. The scaling of the

Davidson iterations can be understood in terms of Fig. 4(c) where the source of the load

imbalance can be attributed to the variance of non-zero matrix elements among PE. This

is due to the fact that the ordering of the determinants in the ASCI wave function, as pro-

duced by the parallel ASCI search, is more or less random, and thus unable to guarantee

regular distributions of non-zero matrix elements. This problem is well known in the field

of distributed memory sparse linear algebra56, as both the local work and overall commu-

nication volume of the parallel SpMV (6) are affected by irregular distributions of non-zero

matrix elements. Improving the communication characteristics of the sCI SpMV will be the

subject of future work by the authors. Figure 4 also shows the overall parallel efficiency of

the ASCI application for the different problem sizes. As the calculation is dominated by

the Hamiltonian construction, we see similar parallel efficiencies for the total application,

particularly for the larger problems. Overall, the ASCI calculation maintains >85% parallel

efficiency for the smallest problem (106) which maintaining >95% parallel efficiency for the

largest problem at 3 ∗ 108 variational determinants out to 16,384 PEs. To the best of the

authors’ knowledge, this is the largest variational ASCI calculation to date.

IV. CONCLUSIONS

In this work, we have proposed and demonstrated a parallel, distributed memory exten-

sion for the variational ASCI method. We addressed key concerns for the dominant steps of

the ASCI algorithm, including the development of a parallel algorithm for the determinant

selection, a parallel algorithm and sparse storage scheme for the sCI Hamiltonian, and a

parallel algorithm for the variational eigenvalue calculation via the Davidson method. The

parallel search algorithm was enabled by previous work in the context of ASCI-PT2, where

the introduction of determinant constraints offered a conventient and robust mechanism to

distribute work across PEs. This method was extended to include higher order determi-

18

nant constraints than were considered for the ASCI-PT2 method and coupled with a load

balancer to ensure scaling on large compute resources. We have demonstrated the efficacy

and performance of the proposed algorithms on a challenging test system (Cr2) on up to

16,384 cores. The use of higher-order determinant constraints yielded a 5-5.5x performance

improvement in the ASCI search (triplet constraints) in the strong scaling limit. The overall

ASCI calculation was demonstrated to maintain 85% - 95% parallel efficiency. In addition we

have demonstrated stability and continued convergence of the ASCI method into the regime

of hundred-of-millions of determinants, which to the best of the authors’ knowledge, is the

largest variational ASCI calculation to date. Although the developments for the parallel

search algorithm are ASCI specific, the developments pertaining to distributed Hamiltonian

construction and Davidson diagonalization are directly applicable to other sCI methods as

well. These developments indicate a promising future for massively parallel sCI applications

in the years to come.

While these results are promising, there remain open areas for exploration which will

be addressed by the authors in future work. In this work, the Hamiltonian construction

dominates the overall ASCI application by at least an order of magnitude. Application of

more advanced Hamiltonian matrix element techniques28 for the local sparse matrix con-

struction offer high-potential for acheiving further improvements in the future although it

is unclear whether such developed will introduct load imbalance. The interplay between

efficient Hamiltonian construction and load imbalance warrants further exploration. In ad-

dition, the strong scaling stagnation of the Davidson iterations can be attributed primarily

to massive load imbalance in the non-zero element distribution across PEs. In our experi-

ence, the existing technologies84,85 for reordering sparse matrices to minimize communication

volume are insufficient for producing balanced partitions for molecular CI calculations. De-

velopment of scalable graph reordering techniques for the CI problem would be a particular

fruitful area of exploration given massively parallel implementations of sCI. Lastly, the lever-

age of bit operations both in the search and Hamiltonian construction steps of the ASCI

algorithm will be particularly advantageous on current and future GPU architectures and

possibly other hardware accelerators to come. As such, the authors will build upon initial

results28 for GPU applications to the ASCI method and develop GPU accelerated extensions

of the parallel algorithms proposed in this work.

19

V. ACKNOWLEDGMENT

DWY and WAdJ were supported from the Center for Scalable Predictive methods for

Excitations and Correlated phenomena (SPEC), which is funded by the U.S. Department of

Energy (DoE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sci-

ences, Geosciences and Biosciences as part of the Computational Chemical Sciences (CCS)

program at Lawrence Berkeley National Laboratory under FWP 12553. NMT is grateful

for support from NASA Ames Research Center. CMZ acknowledges financial support from

the European Research Council (ERC), under the European Union’s Horizon 2020 research

and innovation programme, Grant agreement No. 692670 ”FIRSTORM”. This research

used resources of the National Energy Research Scientific Computing Center (NERSC), a

U.S. Department of Energy Office of Science User Facility located at Lawrence Berkeley

National Laboratory, operated under Contract No. DE-AC02-05CH11231 using NERSC

award BES-ERCAP-M3196. NMT acknowledges funding from the NASA ARMD Transfor-

mational Tools and Technology (TTT) Project. Some calculations were performed as part

of the XSEDE computational Project No. TG-MCA93S030 on Bridges-2 at the Pittsburgh

supercomputer center.

REFERENCES

1K. D. Vogiatzis, D. Ma, J. Olsen, L. Gagliardi, and W. A. de Jong, “Pushing configuration-

interaction to the limit: Towards massively parallel mcscf calculations,” J. Chem. Phys.

147, 184111 (2017).

2C. L. Janssen and I. M. Nielsen, Parallel Computing in Quantum Chemistry (2008).

3W. A. De Jong, E. Bylaska, N. Govind, C. L. Janssen, K. Kowalski, T. Müller, I. M.

Nielsen, H. J. van Dam, V. Veryazov, and R. Lindh, “Utilizing high performance com-

puting for chemistry: parallel computational chemistry,” Physical Chemistry Chemical

Physics 12, 6896–6920 (2010).

4M. S. Gordon and T. L. Windus, “Editorial: Modern architectures and their impact on

electronic structure theory,” Chemical Reviews 120, 9015–9020 (2020).

5D. Kothe, S. Lee, and I. Qualters, “Exascale computing in the united states,” Computing

in Science & Engineering 21, 17–29 (2019).

20

http://dx.doi.org/10.1021/acs.chemrev.0c00700
http://dx.doi.org/10.1109/MCSE.2018.2875366
http://dx.doi.org/10.1109/MCSE.2018.2875366

6F. Alexander, A. Almgren, J. Bell, A. Bhattacharjee, J. Chen, P. Colella, D. Daniel,

J. DeSlippe, L. Diachin, E. Draeger, A. Dubey, T. Dunning, T. Evans, I. Foster, M. Fran-

cois, T. Germann, M. Gordon, S. Habib, M. Halappanavar, S. Hamilton, W. Hart,

Z. (Henry) Huang, A. Hungerford, D. Kasen, P. R. C. Kent, T. Kolev, D. B. Kothe, A. Kro-

nfeld, Y. Luo, P. Mackenzie, D. McCallen, B. Messer, S. Mniszewski, C. Oehmen, A. Per-

azzo, D. Perez, D. Richards, W. J. Rider, R. Rieben, K. Roche, A. Siegel, M. Sprague,

C. Steefel, R. Stevens, M. Syamlal, M. Taylor, J. Turner, J.-L. Vay, A. F. Voter, T. L.

Windus, and K. Yelick, “Exascale applications: skin in the game,” Philosophical Trans-

actions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378,

20190056 (2020).

7J. A. Calvin, C. Peng, V. Rishi, A. Kumar, and E. F. Valeev, “Many-body quantum

chemistry on massively parallel computers,” Chemical Reviews 121, 1203–1231 (2021).

8U. Schollwöck, “The density-matrix renormalization group,” Rev. Mod. Phys. 77, 259–315

(2005).

9R. Olivares-Amaya, W. Hu, N. Nakatani, S. Sharma, J. Yang, and G. K.-L. Chan, “The

ab-initio density matrix renormalization group in practice,” J. Chem. Phys. 142, 034102

(2015).

10R. J. Bartlett and M. Musia l, “Coupled-cluster theory in quantum chemistry,” Rev. Mod.

Phys. 79, 291–352 (2007).

11E. Solomonik, D. Matthews, J. R. Hammond, J. F. Stanton, and J. Demmel, “A mas-

sively parallel tensor contraction framework for coupled-cluster computations,” Journal

of Parallel and Distributed Computing 74, 3176–3190 (2014), domain-Specific Languages

and High-Level Frameworks for High-Performance Computing.

12G. H. Booth, A. J. W. Thom, and A. Alavi, “Fermion monte carlo without fixed nodes:

A game of life, death, and annihilation in slater determinant space,” J. Chem. Phys. 131,

054106 (2009).

13C.-C. Chang, B. M. Rubenstein, and M. A. Morales, “Auxiliary-field-based trial wave

functions in quantum monte carlo calculations,” Phys. Rev. B 94, 235144 (2016).

14M. Motta and S. Zhang, “Ab initio computations of molecular systems by the auxiliary-

field quantum monte carlo method.” WIREs Comput Mol Sci , 1–29 (2018).

15A. Szabo and N. Ostlund, Modern Quantum Chemistry (Dover, 1982).

21

http://dx.doi.org/10.1098/rsta.2019.0056
http://dx.doi.org/10.1098/rsta.2019.0056
http://dx.doi.org/10.1098/rsta.2019.0056
http://dx.doi.org/10.1021/acs.chemrev.0c00006
http://dx.doi.org/ 10.1103/RevModPhys.77.259
http://dx.doi.org/ 10.1103/RevModPhys.77.259
http://scitation.aip.org/content/aip/journal/jcp/142/3/10.1063/1.4905329
http://scitation.aip.org/content/aip/journal/jcp/142/3/10.1063/1.4905329
http://dx.doi.org/ 10.1103/RevModPhys.79.291
http://dx.doi.org/ 10.1103/RevModPhys.79.291
http://dx.doi.org/ https://doi.org/10.1016/j.jpdc.2014.06.002
http://dx.doi.org/ https://doi.org/10.1016/j.jpdc.2014.06.002
http://dx.doi.org/10.1103/PhysRevB.94.235144
http://dx.doi.org/10.1002/wcms.1364

16J. J. Eriksen, T. A. Anderson, J. E. Deustua, K. Ghanem, D. Hait, M. R. Hoffmann,

S. Lee, D. S. Levine, I. Magoulas, J. Shen, N. M. Tubman, K. B. Whaley, E. Xu, Y. Yao,

N. Zhang, A. Alavi, G. K.-L. Chan, M. Head-Gordon, W. Liu, P. Piecuch, S. Sharma,

S. L. Ten-no, C. J. Umrigar, and J. Gauss, “The ground state electronic energy of ben-

zene,” The Journal of Physical Chemistry Letters 11, 8922–8929 (2020), pMID: 33022176,

https://doi.org/10.1021/acs.jpclett.0c02621.

17F. A. Evangelista, “Adaptive multiconfigurational wave functions,” J. Chem. Phys. 140,

124114 (2014).

18N. M. Tubman, J. Lee, T. Y. Takeshita, M. Head-Gordon, and K. B. Whaley, “A deter-

ministic alternative to the full configuration interaction quantum monte carlo method,”

The Journal of Chemical Physics 145, 044112 (2016), https://doi.org/10.1063/1.4955109.

19A. A. Holmes, N. M. Tubman, and C. J. Umrigar, “Heat-bath configu-

ration interaction: An efficient selected configuration interaction algorithm in-

spired by heat-bath sampling,” J. Chem. Theory Comput. 12, 3674–3680 (2016),

http://dx.doi.org/10.1021/acs.jctc.6b00407.

20Y. Garniron, A. Scemama, P.-F. Loos, and M. Caffarel, “Hybrid stochastic-deterministic

calculation of the second-order perturbative contribution of multireference perturbation

theory,” J. Chem. Phys. 147, 034101 (2017), https://doi.org/10.1063/1.4992127.

21P. M. Zimmerman, “Incremental full configuration interaction,” The Journal of Chemical

Physics 146, 104102 (2017), https://doi.org/10.1063/1.4977727.

22J. P. Coe, “Machine learning configuration interaction,” Journal of Chem-

ical Theory and Computation 14, 5739–5749 (2018), pMID: 30285426,

https://doi.org/10.1021/acs.jctc.8b00849.

23N. M. Tubman, D. S. Levine, D. Hait, M. Head-Gordon, and K. B. Whaley, “An efficient

deterministic perturbation theory for selected configuration interaction methods,” arXiv

preprint arXiv:1808.02049 (2018).

24E. Lesko, M. Ardiansyah, and K. R. Brorsen, “Vibrational adaptive sampling

configuration interaction,” The Journal of Chemical Physics 151, 164103 (2019),

https://doi.org/10.1063/1.5126510.

25J. W. Park, “Second-order orbital optimization with large active spaces using adaptive

sampling configuration interaction (asci) and its application to molecular geometry opti-

mization,” Journal of Chemical Theory and Computation 17, 1522–1534 (2021), pMID:

22

http://dx.doi.org/10.1021/acs.jpclett.0c02621
http://arxiv.org/abs/https://doi.org/10.1021/acs.jpclett.0c02621
http://scitation.aip.org/content/aip/journal/jcp/140/12/10.1063/1.4869192
http://scitation.aip.org/content/aip/journal/jcp/140/12/10.1063/1.4869192
http://dx.doi.org/ 10.1063/1.4955109
http://arxiv.org/abs/https://doi.org/10.1063/1.4955109
http://dx.doi.org/10.1021/acs.jctc.6b00407
http://arxiv.org/abs/http://dx.doi.org/10.1021/acs.jctc.6b00407
http://dx.doi.org/10.1063/1.4992127
http://arxiv.org/abs/https://doi.org/10.1063/1.4992127
http://dx.doi.org/10.1063/1.4977727
http://dx.doi.org/10.1063/1.4977727
http://arxiv.org/abs/https://doi.org/10.1063/1.4977727
http://dx.doi.org/10.1021/acs.jctc.8b00849
http://dx.doi.org/10.1021/acs.jctc.8b00849
http://arxiv.org/abs/https://doi.org/10.1021/acs.jctc.8b00849
http://dx.doi.org/10.1063/1.5126510
http://arxiv.org/abs/https://doi.org/10.1063/1.5126510
http://dx.doi.org/10.1021/acs.jctc.0c01292

33630610, https://doi.org/10.1021/acs.jctc.0c01292.

26C. Mejuto-Zaera, N. M. Tubman, and K. B. Whaley, “Dynamical mean field theory

simulations with the adaptive sampling configuration interaction method,” Phys. Rev. B

100, 125165 (2019).

27C. Mejuto-Zaera, L. Zepeda-Núñez, M. Lindsey, N. Tubman, B. Whaley, and L. Lin, “Ef-

ficient hybridization fitting for dynamical mean-field theory via semi-definite relaxation,”

Phys. Rev. B 101, 035143 (2020).

28N. M. Tubman, C. D. Freeman, D. S. Levine, D. Hait, M. Head-Gordon, and K. B. Whaley,

“Modern approaches to exact diagonalization and selected configuration interaction with

the adaptive sampling ci method,” Journal of Chemical Theory and Computation 16,

2139–2159 (2020).

29D. S. Levine, D. Hait, N. M. Tubman, S. Lehtola, K. B. Whaley, and M. Head-Gordon,

“Casscf with extremely large active spaces using the adaptive sampling configuration in-

teraction method,” Journal of Chemical Theory and Computation 16, 2340–2354 (2020).

30D. S. Levine, D. Hait, N. M. Tubman, S. Lehtola, K. B. Whaley, and M. Head-Gordon,

“Casscf with extremely large active spaces using the adaptive sampling configuration in-

teraction method,” Journal of Chemical Theory and Computation 16, 2340–2354 (2020),

pMID: 32109055, https://doi.org/10.1021/acs.jctc.9b01255.

31V. Kremenetski, T. Hogg, S. Hadfield, S. J. Cotton, and N. M. Tubman, “Quantum

Alternating Operator Ansatz (QAOA) Phase Diagrams and Applications for Quantum

Chemistry,” arXiv e-prints , arXiv:2108.13056 (2021), arXiv:2108.13056 [quant-ph].

32V. Kremenetski, C. Mejuto-Zaera, S. J. Cotton, and N. M. Tubman, “Simulation of

adiabatic quantum computing for molecular ground states,” The Journal of Chemical

Physics 155, 234106 (2021), https://doi.org/10.1063/5.0060124.

33S. D. Pineda Flores, “Chembot: A machine learning approach to selective configuration

interaction,” Journal of Chemical Theory and Computation 17, 4028–4038 (2021), pMID:

34125549, https://doi.org/10.1021/acs.jctc.1c00196.

34J. J. Goings, H. Hu, C. Yang, and X. Li, “Reinforcement learning configuration in-

teraction,” Journal of Chemical Theory and Computation 17, 5482–5491 (2021), pMID:

34423637, https://doi.org/10.1021/acs.jctc.1c00010.

35A. U. Bhatty and K. R. Brorsen, “An alternative formulation of vibrational

heat-bath configuration interaction,” Molecular Physics 119, e1936250 (2021),

23

http://arxiv.org/abs/https://doi.org/10.1021/acs.jctc.0c01292
http://dx.doi.org/10.1103/PhysRevB.100.125165
http://dx.doi.org/10.1103/PhysRevB.100.125165
http://dx.doi.org/ 10.1103/PhysRevB.101.035143
http://dx.doi.org/10.1021/acs.jctc.8b00536
http://dx.doi.org/10.1021/acs.jctc.8b00536
http://dx.doi.org/ 10.1021/acs.jctc.9b01255
http://dx.doi.org/ 10.1021/acs.jctc.9b01255
http://arxiv.org/abs/https://doi.org/10.1021/acs.jctc.9b01255
http://dx.doi.org/10.48550/arXiv.2108.13056
http://arxiv.org/abs/2108.13056
http://dx.doi.org/ 10.1063/5.0060124
http://dx.doi.org/ 10.1063/5.0060124
http://arxiv.org/abs/https://doi.org/10.1063/5.0060124
http://dx.doi.org/10.1021/acs.jctc.1c00196
http://arxiv.org/abs/https://doi.org/10.1021/acs.jctc.1c00196
http://dx.doi.org/10.1021/acs.jctc.1c00010
http://arxiv.org/abs/https://doi.org/10.1021/acs.jctc.1c00010
http://dx.doi.org/10.1080/00268976.2021.1936250

https://doi.org/10.1080/00268976.2021.1936250.

36E. Epifanovsky, A. T. B. Gilbert, X. Feng, J. Lee, Y. Mao, N. Mardirossian, P. Pokhilko,

A. F. White, M. P. Coons, A. L. Dempwolff, Z. Gan, D. Hait, P. R. Horn, L. D. Jacobson,

I. Kaliman, J. Kussmann, A. W. Lange, K. U. Lao, D. S. Levine, J. Liu, S. C. McKenzie,

A. F. Morrison, K. D. Nanda, F. Plasser, D. R. Rehn, M. L. Vidal, Z.-Q. You, Y. Zhu,

B. Alam, B. J. Albrecht, A. Aldossary, E. Alguire, J. H. Andersen, V. Athavale, D. Barton,

K. Begam, A. Behn, N. Bellonzi, Y. A. Bernard, E. J. Berquist, H. G. A. Burton, A. Car-

reras, K. Carter-Fenk, R. Chakraborty, A. D. Chien, K. D. Closser, V. Cofer-Shabica,

S. Dasgupta, M. de Wergifosse, J. Deng, M. Diedenhofen, H. Do, S. Ehlert, P.-T. Fang,

S. Fatehi, Q. Feng, T. Friedhoff, J. Gayvert, Q. Ge, G. Gidofalvi, M. Goldey, J. Gomes,

C. E. González-Espinoza, S. Gulania, A. O. Gunina, M. W. D. Hanson-Heine, P. H. P.

Harbach, A. Hauser, M. F. Herbst, M. Hernandez Vera, M. Hodecker, Z. C. Holden,

S. Houck, X. Huang, K. Hui, B. C. Huynh, M. Ivanov, A. Jasz, H. Ji, H. Jiang, B. Kaduk,

S. Kähler, K. Khistyaev, J. Kim, G. Kis, P. Klunzinger, Z. Koczor-Benda, J. H. Koh,

D. Kosenkov, L. Koulias, T. Kowalczyk, C. M. Krauter, K. Kue, A. Kunitsa, T. Kus,

I. Ladjanszki, A. Landau, K. V. Lawler, D. Lefrancois, S. Lehtola, R. R. Li, Y.-P. Li,

J. Liang, M. Liebenthal, H.-H. Lin, Y.-S. Lin, F. Liu, K.-Y. Liu, M. Loipersberger, A. Lu-

enser, A. Manjanath, P. Manohar, E. Mansoor, S. F. Manzer, S.-P. Mao, A. V. Marenich,

T. Markovich, S. Mason, S. A. Maurer, P. F. McLaughlin, M. F. S. J. Menger, J.-M. Mewes,

S. A. Mewes, P. Morgante, J. W. Mullinax, K. J. Oosterbaan, G. Paran, A. C. Paul, S. K.

Paul, F. Pavosevic, Z. Pei, S. Prager, E. I. Proynov, A. Rak, E. Ramos-Cordoba, B. Rana,

A. E. Rask, A. Rettig, R. M. Richard, F. Rob, E. Rossomme, T. Scheele, M. Scheurer,

M. Schneider, N. Sergueev, S. M. Sharada, W. Skomorowski, D. W. Small, C. J. Stein,

Y.-C. Su, E. J. Sundstrom, Z. Tao, J. Thirman, G. J. Tornai, T. Tsuchimochi, N. M.

Tubman, S. P. Veccham, O. Vydrov, J. Wenzel, J. Witte, A. Yamada, K. Yao, S. Yeganeh,

S. R. Yost, A. Zech, I. Y. Zhang, X. Zhang, Y. Zhang, D. Zuev, A. Aspuru-Guzik, A. T.

Bell, N. A. Besley, K. B. Bravaya, B. R. Brooks, D. Casanova, J.-D. Chai, S. Coriani,

C. J. Cramer, G. Cserey, A. E. DePrince, R. A. DiStasio, A. Dreuw, B. D. Dunietz, T. R.

Furlani, W. A. Goddard, S. Hammes-Schiffer, T. Head-Gordon, W. J. Hehre, C.-P. Hsu,

T.-C. Jagau, Y. Jung, A. Klamt, J. Kong, D. S. Lambrecht, W. Liang, N. J. Mayhall,

C. W. McCurdy, J. B. Neaton, C. Ochsenfeld, J. A. Parkhill, R. Peverati, V. A. Ras-

solov, Y. Shao, L. V. Slipchenko, T. Stauch, R. P. Steele, J. E. Subotnik, A. J. W. Thom,

24

http://arxiv.org/abs/https://doi.org/10.1080/00268976.2021.1936250

A. Tkatchenko, D. G. Truhlar, T. Van Voorhis, T. A. Wesolowski, K. B. Whaley, H. L.

Woodcock, P. M. Zimmerman, S. Faraji, P. M. W. Gill, M. Head-Gordon, J. M. Herbert,

and A. I. Krylov, “Software for the frontiers of quantum chemistry: An overview of devel-

opments in the q-chem 5 package,” The Journal of Chemical Physics 155, 084801 (2021),

https://doi.org/10.1063/5.0055522.

37J. W. Park, “Near-exact casscf-level geometry optimization with a large active space using

adaptive sampling configuration interaction self-consistent field corrected with second-

order perturbation theory (asci-scf-pt2),” Journal of Chemical Theory and Computation

17, 4092–4104 (2021), pMID: 34096306, https://doi.org/10.1021/acs.jctc.1c00272.

38D.-K. Dang, J. A. Kammeraad, and P. M. Zimmerman, “Advances in parallel heat bath

configuration interaction,” The Journal of Physical Chemistry A 127, 400–411 (2023),

pMID: 36580361, https://doi.org/10.1021/acs.jpca.2c07949.

39J. Li, M. Otten, A. A. Holmes, S. Sharma, and C. J. Umrigar, “Fast semistochastic heat-

bath configuration interaction,” The Journal of Chemical Physics 149, 214110 (2018),

https://doi.org/10.1063/1.5055390.

40C. Mejuto-Zaera, G. Weng, M. Romanova, S. J. Cotton, K. B. Whaley, N. M. Tubman,

and V. Vlček, “Are multi-quasiparticle interactions important in molecular ionization?”

The Journal of Chemical Physics 154, 121101 (2021), https://doi.org/10.1063/5.0044060.

41B. Herzog, B. Casier, S. Lebègue, and D. Rocca, “Solving the Schrödinger Equation in the

Configuration Space with Generative Machine Learning,” arXiv e-prints , arXiv:2208.06708

(2022), arXiv:2208.06708 [physics.chem-ph].

42J. E. T. Smith, J. Lee, and S. Sharma, “Near-exact nuclear gradients of complete

active space self-consistent field wave functions,” J. Chem. Phys. 157, 094104 (2022),

arXiv:2201.06514 [physics.chem-ph].

43D. B. Chamaki, S. Hadfield, K. Klymko, B. O’Gorman, and N. M. Tubman,

“Self-consistent Quantum Iteratively Sparsified Hamiltonian method (SQuISH): A new

algorithm for efficient Hamiltonian simulation and compression,” arXiv e-prints ,

arXiv:2211.16522 (2022), arXiv:2211.16522 [quant-ph].

44D. Yoffe, A. Natan, and A. Makmal, “A Qubit-Efficient Variational Se-

lected Configuration-Interaction Method,” arXiv e-prints , arXiv:2302.06691 (2023),

arXiv:2302.06691 [quant-ph].

25

http://dx.doi.org/ 10.1063/5.0055522
http://arxiv.org/abs/https://doi.org/10.1063/5.0055522
http://dx.doi.org/ 10.1021/acs.jctc.1c00272
http://dx.doi.org/ 10.1021/acs.jctc.1c00272
http://arxiv.org/abs/https://doi.org/10.1021/acs.jctc.1c00272
http://dx.doi.org/10.1021/acs.jpca.2c07949
http://arxiv.org/abs/https://doi.org/10.1021/acs.jpca.2c07949
http://dx.doi.org/10.1063/1.5055390
http://arxiv.org/abs/https://doi.org/10.1063/1.5055390
http://dx.doi.org/10.1063/5.0044060
http://arxiv.org/abs/https://doi.org/10.1063/5.0044060
http://dx.doi.org/10.48550/arXiv.2208.06708
http://dx.doi.org/10.48550/arXiv.2208.06708
http://arxiv.org/abs/2208.06708
http://dx.doi.org/10.1063/5.0085515
http://arxiv.org/abs/2201.06514
http://dx.doi.org/10.48550/arXiv.2211.16522
http://dx.doi.org/10.48550/arXiv.2211.16522
http://arxiv.org/abs/2211.16522
http://dx.doi.org/ 10.48550/arXiv.2302.06691
http://arxiv.org/abs/2302.06691

45J. P. Coe, “Analytic gradients for selected configuration interaction,” Journal

of Chemical Theory and Computation 19, 874–886 (2023), pMID: 36656261,

https://doi.org/10.1021/acs.jctc.2c01062.

46X. Wang and S. Sharma, “Relativistic semistochastic heat-bath configuration interaction,”

arXiv e-prints , arXiv:2301.05794 (2023), arXiv:2301.05794 [physics.chem-ph].

47K. Klymko, C. Mejuto-Zaera, S. J. Cotton, F. Wudarski, M. Urbanek, D. Hait, M. Head-

Gordon, K. B. Whaley, J. Moussa, N. Wiebe, W. A. de Jong, and N. M. Tubman,

“Real-time evolution for ultracompact hamiltonian eigenstates on quantum hardware,”

PRX Quantum 3, 020323 (2022).

48N. M. Tubman, C. Mejuto-Zaera, J. M. Epstein, D. Hait, D. S. Levine, W. Huggins,

Z. Jiang, J. R. McClean, R. Babbush, M. Head-Gordon, and K. B. Whaley, “Postponing

the orthogonality catastrophe: efficient state preparation for electronic structure simula-

tions on quantum devices,” arXiv e-prints , arXiv:1809.05523 (2018), arXiv:1809.05523

[quant-ph].

49K. Kanno, M. Kohda, R. Imai, S. Koh, K. Mitarai, W. Mizukami, and Y. O. Nakagawa,

“Quantum-Selected Configuration Interaction: classical diagonalization of Hamiltonians

in subspaces selected by quantum computers,” arXiv e-prints , arXiv:2302.11320 (2023),

arXiv:2302.11320 [quant-ph].

50J. W. Mullinax and N. M. Tubman, “Large-scale sparse wavefunction circuit simulator for

applications with the variational quantum eigensolver,” arXiv e-prints , arXiv:2301.05726

(2023), arXiv:2301.05726 [quant-ph].

51M. R. Hirsbrunner, D. Chamaki, J. W. Mullinax, and N. M. Tubman, “Beyond MP2 ini-

tialization for unitary coupled cluster quantum circuits,” arXiv e-prints , arXiv:2301.05666

(2023), arXiv:2301.05666 [quant-ph].

52E. Solomonik and L. V. Kalé, “Highly scalable parallel sorting,” in 2010 IEEE International

Symposium on Parallel & Distributed Processing (IPDPS) (2010) pp. 1–12.

53M. Axtmann, S. Witt, D. Ferizovic, and P. Sanders, “In-place Parallel Super Scalar

Samplesort (IPS4o),” ArXiv e-prints (2017), arXiv:1705.02257 [cs.DC].

54N. Bell and J. Hoberock, “Thrust: A productivity-oriented library for cuda,” in GPU

computing gems Jade edition (Elsevier, 2011) pp. 359–371.

55J. S. Spencer, N. S. Blunt, S. Choi, J. Etrych, M.-A. Filip, W. M. C. Foulkes, R. S. T.

Franklin, W. J. Handley, F. D. Malone, V. A. Neufeld, R. Di Remigio, T. W. Rogers,

26

http://dx.doi.org/ 10.1021/acs.jctc.2c01062
http://dx.doi.org/ 10.1021/acs.jctc.2c01062
http://arxiv.org/abs/https://doi.org/10.1021/acs.jctc.2c01062
http://dx.doi.org/ 10.48550/arXiv.2301.05794
http://arxiv.org/abs/2301.05794
http://dx.doi.org/10.1103/PRXQuantum.3.020323
http://dx.doi.org/10.48550/arXiv.1809.05523
http://arxiv.org/abs/1809.05523
http://arxiv.org/abs/1809.05523
http://dx.doi.org/10.48550/arXiv.2302.11320
http://arxiv.org/abs/2302.11320
http://dx.doi.org/10.48550/arXiv.2301.05726
http://dx.doi.org/10.48550/arXiv.2301.05726
http://arxiv.org/abs/2301.05726
http://dx.doi.org/10.48550/arXiv.2301.05666
http://dx.doi.org/10.48550/arXiv.2301.05666
http://arxiv.org/abs/2301.05666
http://dx.doi.org/10.1109/IPDPS.2010.5470406
http://dx.doi.org/10.1109/IPDPS.2010.5470406
http://arxiv.org/abs/1705.02257

C. J. C. Scott, J. J. Shepherd, W. A. Vigor, J. Weston, R. Xu, and A. J. W. Thom,

“The hande-qmc project: Open-source stochastic quantum chemistry from the ground

state up,” Journal of Chemical Theory and Computation 15, 1728–1742 (2019), pMID:

30681844, https://doi.org/10.1021/acs.jctc.8b01217.

56M. Axtmann, T. Bingmann, P. Sanders, and C. Schulz, “Practical massively parallel

sorting,” in Proceedings of the 27th ACM Symposium on Parallelism in Algorithms and

Architectures , SPAA ’15 (Association for Computing Machinery, New York, NY, USA,

2015) p. 13–23.

57M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan, “Time bounds for

selection,” Journal of Computer and System Sciences 7, 448–461 (1973).

58R. W. Floyd and R. L. Rivest, “Expected time bounds for selection,” Commun. ACM 18,

165–172 (1975).

59S. G. Akl, “An optimal algorithm for parallel selection,” Information Processing Letters

19, 47–50 (1984).

60J. Choi, J. Demmel, I. S. Dhillon, J. J. Dongarra, S. Ostrouchov, A. Petitet, K. Stan-

ley, D. W. Walker, and R. C. Whaley, “Scalapack: A portable linear algebra library

for distributed memory computers - design issues and performance,” in Applied Parallel

Computing, Computations in Physics, Chemistry and Engineering Science, Second In-

ternational Workshop, PARA ’95, Lyngby, Denmark, August 21-24, 1995, Proceedings ,

Lecture Notes in Computer Science, Vol. 1041, edited by J. J. Dongarra, K. Madsen, and

J. Wasniewski (Springer, 1995) pp. 95–106.

61“Elpa,” (2023).

62P. Kus, A. Marek, S. S. Koecher, H. H. Kowalski, C. Carbogno, C. Scheurer, K. Reuter,

M. Scheffler, and H. Lederer, “Optimizations of the Eigensolvers in the ELPA Library,”

arXiv e-prints , arXiv:1811.01277 (2018), arXiv:1811.01277 [cs.MS].

63E. R. Davidson, “The iterative calculation of a few of the lowest eigenvalues and corre-

sponding eigenvectors of large real-symmetric matrices,” Journal of Computational Physics

17, 87–94 (1975).

64A. V. Knyazev, “Preconditioned eigensolvers—an oxymoron,” Electron. Trans. Numer.

Anal 7, 104–123 (1998).

65A. V. Knyazev, “Toward the optimal preconditioned eigensolver: Locally optimal block

preconditioned conjugate gradient method,” SIAM journal on scientific computing 23,

27

http://dx.doi.org/ 10.1021/acs.jctc.8b01217
http://arxiv.org/abs/https://doi.org/10.1021/acs.jctc.8b01217
http://dx.doi.org/10.1145/2755573.2755595
http://dx.doi.org/10.1145/2755573.2755595
http://dx.doi.org/ https://doi.org/10.1016/S0022-0000(73)80033-9
http://dx.doi.org/ https://doi.org/10.1016/0020-0190(84)90128-5
http://dx.doi.org/ https://doi.org/10.1016/0020-0190(84)90128-5
http://dx.doi.org/ 10.1007/3-540-60902-4_12
http://dx.doi.org/ 10.1007/3-540-60902-4_12
http://dx.doi.org/ 10.1007/3-540-60902-4_12
https://elpa.mpcdf.mpg.de/
http://dx.doi.org/10.48550/arXiv.1811.01277
http://arxiv.org/abs/1811.01277
http://dx.doi.org/ https://doi.org/10.1016/0021-9991(75)90065-0
http://dx.doi.org/ https://doi.org/10.1016/0021-9991(75)90065-0

517–541 (2001).

66R. W. JK Cullum, Lanczos algorithms for large symmetric eigenvalue computations: Vol.

I: Theory (SIAM, 2002).

67Y. Saad, “Krylov subspace methods on supercomputers,” SIAM Journal on Scientific and

Statistical Computing 10, 1200–1232 (1989).

68A. Stathopoulos and C. Fischer, “Reducing synchronization on the parallel davidson

method for the large, sparse, eigenvalue problem,” in Supercomputing ’93:Proceedings of

the 1993 ACM/IEEE Conference on Supercomputing (1993) pp. 172–180.

69L. Borges and S. Oliveira, “A parallel davidson-type algorithm for several eigenvalues,”

Journal of Computational Physics 144, 727–748 (1998).

70M. Nool and A. van der Ploeg, “A parallel jacobi–davidson-type method for solving large

generalized eigenvalue problems in magnetohydrodynamics,” SIAM Journal on Scientific

Computing 22, 95–112 (2000).

71E. Romero and J. E. Roman, “A parallel implementation of the davidson method for

generalized eigenproblems,” Advances in Parallel Computing 19, 133–140 (2010).

72E. Romero and J. E. Roman, “A parallel implementation of davidson methods for large-

scale eigenvalue problems in slepc,” 40 (2014), 10.1145/2543696.

73J. A. Duersch, M. Shao, C. Yang, and M. Gu, “A robust and efficient implementation of

lobpcg,” SIAM Journal on Scientific Computing 40, C655–C676 (2018).

74R. Van Beeumen, G. D. Kahanamoku-Meyer, N. Y. Yao, and C. Yang, “A scalable

matrix-free iterative eigensolver for studying many-body localization,” in Proceedings of

the International Conference on High Performance Computing in Asia-Pacific Region, HP-

CAsia2020 (Association for Computing Machinery, New York, NY, USA, 2020) p. 179–187.

75R. V. Beeumen, K. Z. Ibrahim, G. D. Kahanamoku–Meyer, N. Y. Yao, and C. Yang, “En-

hancing scalability of a matrix-free eigensolver for studying many-body localization,” The

International Journal of High Performance Computing Applications 36, 307–319 (2022).

76M. Hoemmen, Communication-avoiding Krylov subspace methods, Ph.D. thesis (2010).

77S. Balay, S. Abhyankar, M. F. Adams, S. Benson, J. Brown, P. Brune, K. Buschel-

man, E. Constantinescu, L. Dalcin, A. Dener, V. Eijkhout, J. Faibussowitsch, W. D.

Gropp, V. Hapla, T. Isaac, P. Jolivet, D. Karpeev, D. Kaushik, M. G. Knepley, F. Kong,

S. Kruger, D. A. May, L. C. McInnes, R. T. Mills, L. Mitchell, T. Munson, J. E. Roman,

K. Rupp, P. Sanan, J. Sarich, B. F. Smith, S. Zampini, H. Zhang, H. Zhang, and J. Zhang,

28

http://dx.doi.org/10.1137/0910073
http://dx.doi.org/10.1137/0910073
http://dx.doi.org/ https://doi.org/10.1006/jcph.1998.6003
http://dx.doi.org/ 10.1137/S106482759933290X
http://dx.doi.org/ 10.1137/S106482759933290X
http://dx.doi.org/10.1145/2543696
http://dx.doi.org/10.1137/17M1129830
http://dx.doi.org/10.1145/3368474.3368497
http://dx.doi.org/10.1145/3368474.3368497
http://dx.doi.org/10.1177/10943420211060365
http://dx.doi.org/10.1177/10943420211060365
https://www.proquest.com/dissertations-theses/communication-avoiding-krylov-subspace-methods/docview/749357839/se-2

“PETSc/TAO users manual,” Tech. Rep. ANL-21/39 - Revision 3.18 (Argonne National

Laboratory, 2022).

78M. Grossman, C. Thiele, M. Araya-Polo, F. Frank, F. O. Alpak, and V. Sarkar, “A survey

of sparse matrix-vector multiplication performance on large matrices,” arXiv e-prints ,

arXiv:1608.00636 (2016), arXiv:1608.00636 [cs.PF].

79R. H. Bisseling, “190Sparse matrix–vector multiplication,” in Parallel Scien-

tific Computation: A Structured Approach Using BSP (Oxford University Press,

2020) https://academic.oup.com/book/0/chapter/367275519/chapter-pdf/45164935/oso-

9780198788348-chapter-4.pdf.

80F. Weigend and R. Ahlrichs, “Balanced basis sets of split valence, triple zeta valence and

quadruple zeta valence quality for h to rn: Design and assessment of accuracy,” Phys.

Chem. Chem. Phys. 7, 3297 (2005).

81H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, and M. Schütz, “Molpro: a general-

purpose quantum chemistry program package,” WIREs Computational Molecular Science

2, 242–253 (2012), https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.82.

82H.-J. Werner, P. J. Knowles, F. R. Manby, J. A. Black, K. Doll, A. Heßelmann, D. Kats,

A. Köhn, T. Korona, D. A. Kreplin, Q. Ma, T. F. Miller, A. Mitrushchenkov, K. A.

Peterson, I. Polyak, G. Rauhut, and M. Sibaev, “The molpro quantum chemistry package,”

The Journal of Chemical Physics 152, 144107 (2020), https://doi.org/10.1063/5.0005081.

83R. Olivares-Amaya, W. Hu, N. Nakatani, S. Sharma, J. Yang, and G. K.-L. Chan, “The ab-

initio density matrix renormalization group in practice,” The Journal of chemical physics

142, 034102 (2015).

84G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for partitioning

irregular graphs,” SIAM Journal on Scientific Computing 20, 359–392 (1998).

85E. Cuthill and J. McKee, “Reducing the bandwidth of sparse symmetric matrices,” in

Proceedings of the 1969 24th National Conference, ACM ’69 (Association for Computing

Machinery, New York, NY, USA, 1969) p. 157–172.

29

http://dx.doi.org/10.48550/arXiv.1608.00636
http://dx.doi.org/10.48550/arXiv.1608.00636
http://arxiv.org/abs/1608.00636
http://dx.doi.org/ 10.1093/oso/9780198788348.003.0004
http://dx.doi.org/ 10.1093/oso/9780198788348.003.0004
http://arxiv.org/abs/https://academic.oup.com/book/0/chapter/367275519/chapter-pdf/45164935/oso-9780198788348-chapter-4.pdf
http://arxiv.org/abs/https://academic.oup.com/book/0/chapter/367275519/chapter-pdf/45164935/oso-9780198788348-chapter-4.pdf
http://dx.doi.org/ 10.1039/b508541a
http://dx.doi.org/ 10.1039/b508541a
http://dx.doi.org/https://doi.org/10.1002/wcms.82
http://dx.doi.org/https://doi.org/10.1002/wcms.82
http://arxiv.org/abs/https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.82
http://dx.doi.org/10.1063/5.0005081
http://arxiv.org/abs/https://doi.org/10.1063/5.0005081
http://dx.doi.org/10.1137/S1064827595287997
http://dx.doi.org/ 10.1145/800195.805928

1: Input: Local part AI of an array A with |A| = n, Element index k ∈ [1, n]

2: Output: The element ak (global) such that |{a > ak |a ∈ A}| = k

3: . All operations are local unless otherwise specified.

4: rank ← PE rank.

5: nI ← |AI |

6: N ← Allreduce(nI) . Collective

7: while N ≥ nmin do

8: p← Select a random pivot in [0, N).

9: Determine the owner of ap and broadcast to other PEs . Collective

10: Ag
I , A

e
I , A

l
I ← partition(AI , ap)

11: GI , EI , LI ← |Ag
I |, |Ae

I |, |Al
I |

12: {G,E,L} ← Allreduce({GI , EI , LI}) . Collective

13: if k ≤ G then

14: AI ← Ag
I

15: else if k ≤ G+ E then

16: ak ← ap

17: return ak

18: else

19: AI ← Al

20: k ← k −G− E

21: end if

22: nI ← |AI |

23: N ← Allreduce(nI) . Collective

24: end while

25: Arem ← Gather(AI) . Collective (PE 0)

26: if rank = 0 then

27: ak ← SerialQuickselect(Arem) . std::nth element

28: end if

29: Broadcast ak . Collective

30: return ak

Algorithm 4. Distributed Memory Quickselect

30

1: Input: Matrix-vector product operator, OP; preconditioner operator K, max Krylov dimension

k; initial guess v0; Residual norm tolerance ε.

2: Output: Eigenpair (E0, v) approximating the lowest eigenvalue of OP.

3: . All vectors are distributed among PEs

4: w ← OP(v0)

5: h← v†0w; h← Allreduce(h); v ← w − v0h . Parallel Gram-Schmidt

6: W ← w; V ← [v0 v]

7: i← 1

8: while i < k do

9: W ← [W OP(v)]

10: Hloc ←W †V . Local all PEs

11: Htot ← Reduce(Hloc) . Collective to PE 0

12: Solve HtotC̃ = C̃Ẽ . Local on PE 0

13: Broadcast (Ẽ, C) . Collective

14: R← (W − Ẽ0V)C̃0 . Local all PEs

15: rloc ← R†R . Local all PEs

16: ‖r‖ ←
√
Allgather(rloc) . Collective

17: if ‖r‖ ≤ ε then

18: return (E0, v)← (Ẽ0, V C̃0)

19: else

20: R← K(R) . Preconditioned Residual

21: h← V †R; h← Allreduce(h); v ← R− V h . Parallel Gram-Schmidt

22: V ← [V v]

23: end if

24: i← i+ 1

25: end while

Algorithm 5. Parallel Davidson Algorithm

31

1: Input: Matrix H and vector v in block distributed format (Fig. 1). (Optional) Precomputed

communication data (Eq. (2))

2: Output: w = Hv in conforming row partitioned format

3:

4: if Communication data needed then

5: Compute communication data for H per Eq. (2)

6: end if

7: Post local receives for incoming data from remote PEs . MPI Irecv

8: Pack elements of v required by remote processes . Local

9: Post local sends to satisfy remove receive requests . MPI Isend

10: w ← Hdv . Local

11: Wait for remote receives to complete

12: vrem ← Unpack remote data

13: w ← w +Hodvrem

Algorithm 6. MPI-Based Non-Blocking Parallel Sparse Matrix-Vector Product (SpMV)

32

	A Parallel, Distributed Memory Implementation of the Adaptive Sampling Configuration Interaction Method
	Abstract
	I Introduction
	II Methods
	A Adaptive Sampling Configuration Interaction
	B Parallel Determinant Search
	C Parallel Eigensolver

	III Results and Discussion
	A ASCI Search Performance
	B Hamiltonian and Eigensolver Performance

	IV Conclusions
	V Acknowledgment
	 References

