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Abstract
We have an amazing ability to categorize objects in the world around us. Nevertheless, how cortical regions in human
ventral temporal cortex (VTC), which is critical for categorization, support this behavioral ability, is largely unknown. Here,
we examined the relationship between neural responses and behavioral performance during the categorization of morphed
silhouettes of faces and hands, which are animate categories processed in cortically adjacent regions in VTC. Our results
reveal that the combination of neural responses from VTC face- and body-selective regions more accurately explains
behavioral categorization than neural responses from either region alone. Furthermore, we built a model that predicts a
person’s behavioral performance using estimated parameters of brain–behavior relationships from a different group of
people. Moreover, we show that this brain–behavior model generalizes to adjacent face- and body-selective regions in
lateral occipitotemporal cortex. Thus, while face- and body-selective regions are located within functionally distinct
domain-specific networks, cortically adjacent regions from both networks likely integrate neural responses to resolve
competing and perceptually ambiguous information from both categories.
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Introduction

We categorize objects within our visual world countless times
each day and within a split second (Thorpe et al. 1996; Grill-Spec-
tor and Kanwisher 2005). Despite this frequent occurrence and
undisputable relevance to everyday life, it is presently unknown
how regions and networks within the human brain support effi-
cient and accurate visual categorization, especially for ambigu-
ous stimuli (Hasson et al. 2001; Andrews et al. 2002; Moutoussis
and Zeki 2002). Prior research has shown that human ventral
temporal cortex (VTC) is critical for visual categorization (Haxby
et al. 2000; Grill-Spector and Weiner 2014) and that shape is a key

feature for neural categorization (Davidenko et al. 2012; Bracci
and Op de Beeck 2016; Proklova et al. 2016). In addition, there are
several segregated functional networks in human VTC that are
specialized for processing different types of ecologically relevant
categories—such as faces and bodies (Haxby et al. 2000; Peelen
2007; Op de Beeck, Dicarlo, et al. 2008; Tsao and Livingstone
2008; Kanwisher 2010; Wandell et al. 2012; Grill-Spector et al.
2018). Indeed, previous findings in both humans and nonhuman
primates have revealed causal relationships between neural
responses in face-selective regions and the perception of faces
(Afraz et al. 2006; Jonas et al. 2012; Parvizi et al. 2012; Rangara-
jan et al. 2014; Moeller et al. 2017), as well as between neural

https://academic.oup.com/


Combined Neural Tuning in Human Ventral Temporal Cortex Rosenke et al. 4883

responses in body-selective regions and the perception of bodies
(Downing and Peelen 2016). While these series of studies exam-
ined the relationship between neural responses and perception
separately for each domain, it is presently unknown whether or
how brain regions from these distinct cortical networks work
together to achieve a behavioral goal such as perceptual cate-
gorization.

This gap in knowledge persists because previous research
has largely focused on understanding how either 1) neural
responses from one functional region contribute to perception
(Hasson et al. 2001; Andrews et al. 2002; Moutoussis and
Zeki 2002; Grill-Spector et al. 2004) or 2) neural responses are
computationally transformed from regions that are positioned
in early cortical stages of a network compared to later stages
(Serre et al. 2007; Yamins et al. 2014). Building on this empirical
foundation, a recent trend in neuroimaging studies has begun
to unveil how information regarding different categories is
combined. For example, several studies have shown that
separate information about faces and bodies can be integrated
within a functional region in VTC to generate new information
that represents a whole person (Bernstein et al. 2014; Kaiser et al.
2014). While this approach sheds light on how information from
these separate stimuli and both categories may be integrated
in one functional region, it still remains untested 1) how
regions selective for faces and bodies process stimuli that
consist of visual features from both categories (Fig. 1A) and 2)
if the combination of neural signals between regions explains
behavioral categorization better than neural signals from either
region by itself.

A rigorous way to begin to fill this gap in knowledge is with
images that are generated on a known continuum of shape
space in which 1) the ends of the continuum represent shapes
from two different categories and 2) there is a clear categori-
cal transition such that the center shape of the continuum is
composed of equal parts of both categories (Fig. 1). Such a space
enables a clear quantification of how neural and behavioral
responses change when exposed to stimuli that cross category
boundaries. Here, we generated such a shape space containing
a morphed continuum between faces and hands using the sil-
houette methodology (Davidenko 2007; Davidenko et al. 2012)
and tested if behavioral categorization of these stimuli is best
predicted by either 1) separate or 2) combined neural responses
from face- or body-selective regions in VTC. We reasoned that
if the former model best predicts behavior, it would support
the idea that behavioral categorization of ambiguous stimuli is
based on responses from a single region similar to prior results
using natural, unambiguous stimuli (Hasson et al. 2001; Andrews
et al. 2002; Moutoussis and Zeki 2002; Grill-Spector et al. 2004),
whereas if the latter model best predicts behavior, it would sug-
gest that behavioral categorization depends on relative neural
responses across multiple regions despite the fact that these
neural responses are from functionally distinct domain-specific
networks.

Materials and Methods
Generating and Calibrating Carefully Controlled
Face–Hand Morphs

We generated a novel set of parameterized silhouette stimuli
that spanned a continuous morph space between faces and
hands while controlling for many low-level image properties,
including brightness, contrast, and total silhouette area. We

generated 60 silhouette stimuli at each of 5 morph levels (rang-
ing from fully face-like [level 1], ambiguously face- or hand-like
[level 3], to fully hand-like [level 5]), which resulted in 300 stimuli.
These stimuli were created by parameterizing the contours of a
large set of photographs of profile faces and open hands using
the same number of key points for images from both categories
(Fig. 1A). Profile face photographs were obtained from the FERET
database (Phillips et al. 1998, 1999) and were parameterized as
outlined in Davidenko (2007), except that 36 rather than 18 key
points were used to define each face contour. The increased
number of key points compared to our prior work enabled a
one-to-one mapping between the profile face photographs with
the more detailed hand contours. Open hand photographs were
obtained from 12 volunteers who each provided between 10 and
20 open hand poses, for a total of 148 unique hand images.
As with the face images, 36 key points were defined along
the contours of each hand, such that points of maximum and
minimum curvature matched between faces and hands (e.g.,
point 7 corresponds to the tip of the brow in faces and the tip
of the thumb in hands; see Fig. 1A).

Stimulus Calibration
The silhouette stimuli were calibrated in an iterative process by
1) obtaining perceptual ratings from Mechanical Turk (mTurk)
workers (https://www.mturk.com/), 2) adjusting the parame-
terized stimuli, and 3) repeating the process. This calibration
procedure had two goals: first, to obtain intermediate (level 3)
stimuli that appeared equally face- and hand-like and second,
to generate multiple exemplars at each morph level that were
matched for perceptual variability across the five morph levels.
To accomplish the first goal, mTurk workers rated between 1 and
10 stimuli randomly selected from among the 300 exemplars
(60 at each morph level) on either how face-like (1–5 scale) or
how hand-like (1 to 5 scale) they appeared, until each exemplar
had been rated by at least 5 workers. Following this first round,
intermediate stimuli were found to be too hand-like, so these
were adjusted in the face–hand morphing trajectory toward
faces. The second round produced improved results, and the
third round produced stimuli that were well balanced across the
5 morph levels (see Fig. 1B). To control for perceptual variability,
a similar iteration of mTurk studies was conducted in which
workers rated between 1 and 10 pairs of stimuli from within each
of the 5 morph levels, according to a 7-point dissimilarity metric
(1 = identical and 7 = maximally dissimilar). After the first round,
level 1 (face) stimuli were found to be more perceptually variable
than the other 4 levels, and so their variability was reduced for
the second round by morphing each face stimulus 40% toward
the average face. The second round of mTurk ratings produced
well-matched perceptual variability across the 5 morph levels
(Fig. 1C).

Testing Categorization of Face–Hand Morphs Within
and Outside the Scanner

Participants
Fourteen participants (8 females, ages 22–44) were scanned
at the Center for Neurobiological Imaging (CNI) at Stanford
University using a 3T GE Discovery MR750 scanner. Each subject
underwent 1) an anatomical scan, 2) a functional localizer
experiment, 3) a face/hand morphing experiment within the
scanner (Fig. 1D), and afterwards, 4) a behavioral experiment
outside the scanner that measured their categorization of face/
hand morphs as either face or hands (Fig. 1E). All participants

https://www.mturk.com/
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Figure 1. Stimulus calibration and experimental setup. (A) Construction of face–hand silhouettes. Top: The contours of a profile face and open hand photograph are

parameterized with 36 points in which points of maximum and minimum curvature are matched between faces and hands. Bottom: Five morph levels between faces
and hands are created by interpolating the key point coordinates of parameterized faces and hands. The silhouettes are rendered by applying bi-cubic splines to the
key points and shading the resulting figure in black. (B) Morphed stimuli were calibrated on Mechanical Turk (MTurk) to produce intermediate stimuli (level 3) that
were as face-like as they were hand-like (see Materials and Methods). X-axis: Morph levels ranging from face (level 1, left) to hand (level 5, right). Y-axis: Face-likeness

ratings (black) and hand-likeness ratings (gray) averaged across MTurk participants. Error bars: SE across the 60 exemplars at each morph level. (C) Matching perceptual
variability. Each morph level consisted of multiple (12) exemplars. For each level, we calibrated the perceptual variability across those exemplars based on pairwise
dissimilarity ratings to ensure equal variability of stimuli across all morph levels. X-axis: Morph level; Y-axis: dissimilarity scores (higher scores indicate greater
perceptual variability across the exemplars) averaged across MTurk participants. Error bars: SE across 12 pairs of exemplars at each morph level. (D) Each participant

underwent a block-design fMRI experiment during which they viewed blocks containing images of carefully controlled silhouettes. Twelve silhouettes from the same
morph level were shown within each block. Subjects pressed a button when the same image appeared twice in a row (1-back task). (E) Following the fMRI blocked
experiment, each subject underwent a separate behavioral categorization experiment outside the scanner. Participants viewed silhouettes (N = 60) and performed
a forced-choice task to categorize each silhouette as a face or a hand. Presentation order was randomized across morph levels and participants. (F) To control for

attention during the fMRI block experiment, participants performed a 1-back task. For each level, we calculated the percentage of hits for each subject and averaged
them for each morph level. Circles represent mean hit rate across N = 14 participants, while error bars represent SE across subjects.

gave their written informed consent. Procedures were approved
by the Stanford Internal Review Board on human participant
research.

Anatomical Imaging and Cortical Surface Reconstruction
Data Acquisition. A standard high-resolution anatomical
volume of the whole brain was acquired using a T1-weighted

BRAVO pulse sequence (time repetition [TR] = 450 ms, flip
angle = 12◦, 1 NEX, field of view [FOV] = 240 mm, resolution:
1.0 mm isotropic).

Cortical Surface Reconstruction. All anatomical volumes were
aligned to the AC-PC plane. Using automated (FreeSurfer: http://
surfer.nmr.mgh.harvard.edu) and manual segmentation tools
(ITK-SNAP: http://www.itksnap.org/pmwiki/pmwiki.php), each

http://surfer.nmr.mgh.harvard.edu
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anatomical volume was segmented to separate gray from white
matter, and the resulting boundary was used to reconstruct the
cortical surface for each subject (Wandell et al. 2000).

Functional Imaging
Data Acquisition. Using a custom-built phase-array, 32-channel
head coil, we acquired 34 oblique coronal slices covering
occipitotemporal cortex (resolution: 2.4 mm × 2.4 mm × 2.4 mm;
one-shot T2∗-sensitive gradient echo acquisition sequence:
FOV = 192 mm, time echo = 30 ms, TR = 2000 ms, flip angle = 77◦).

Localizer Experiment. All subjects participated in 2 runs of a
functional magnetic resonance imaging (fMRI) functional local-
izer experiment (150 volumes each). Each run consisted of 12 s
blocks, which contained different images from the same cate-
gory presented at a rate of 1 Hz. Images within each block were
from 1 of 7 different categories: faces (frontal/profile view), body
parts (hands/lower limbs), objects (cars/tools), and scrambled
versions of these images. Across the two experimental runs,
there were 8 repetitions of each block type. Participants main-
tained fixation and responded by button press when an image
repeated (1-back task).

Morphing experiment. Using the carefully calibrated face and
hand morph stimuli, all subjects participated in 4 runs of a block
design experiment during which subjects viewed silhouettes
alternating with a gray screen. A fixation cross was on the screen
at all times (Fig. 1D). Each run consisted of 10, 12-s blocks and
each consisted of 12 silhouettes displayed at a frequency of 1 Hz.
Blocks of silhouettes 1) always contained images from the same
morphing level and 2) appeared in a pseudo-random order, in
which there was a difference of two morphing levels (on average)
between consecutive blocks (e.g., level 3 followed by level 1 or
level 2 followed by level 4). In order to assure that any measurable
effects in high-level visual regions were not driven by consistent
placement of silhouette edges in a particular location in the
visual field (Davidenko et al. 2012), 1) images were placed cen-
trally in one of 8 randomly chosen locations around the fixation
point (max visual degree: 3) and 2) silhouettes faced either left
or right. During the silhouette blocks, participants maintained
fixation and responded by button press when an image repeated
(1-back task), which happened 0–2 times per stimulus block.
In order to avoid fMRI adaptation effects, the same silhouette
was never repeated other than for a 1-back task trial. To keep
task and cognitive processes as similar as possible between
stimulus and rest blocks, fixation crosses also changed with a
1 Hz frequency displaying different lengths of lines during the
rest blocks, and participants performed the 1-back task when
the same fixation cross appeared twice in a row. Analyses of 1-
back performance during task blocks revealed that participants’
performance was similar across blocks from all morph levels
(Fig. 1F). For each subject and each morph level, we computed
the hit rate by dividing the total number of hits by the total num-
ber of 1-back occurrences for a given morph level. False alarm
rates were 2% or lower for each morph level and were therefore
not taken into account. A nonparametric repeated measures
analysis of variance (Friedman’s test) of correct 1-back responses
revealed marginally significant differences across morph levels
(Chi-square (4,52) = 8.96, P = 0.06).

Behavioral Experiment of Face/Hand Morph Categorization
To ensure that subjects were blind to the behavioral task during
the fMRI experiment, each of the 14 subjects also participated in
a behavioral testing experiment outside the scanner a few weeks

after the fMRI experiment. The experiment was self-paced and
consisted of 60 trials using the same silhouettes used during the
fMRI experiment (12 images from each of the 5 morph levels,
presented in random order). In each trial, a silhouette appeared
at the center of the screen (Fig. 1D). Subjects then performed a
forced-choice task, deciding whether the silhouette was a face
(rating: 1) or a hand (rating: 0). The stimulus remained on the
screen until the subject chose one of the two options and no
additional instructions were given. For each of the subjects, we
recorded the mean response for each morphing level, resulting
in 5 values between 0 (all hand) and 1 (all face) for each subject.

Brain-Behavior Data Analyses

fMRI data were analyzed using mrVista (http://github.com/
vistalab) and custom software written in and implemented by
MATLAB (www.mathworks.com). Within-subject analyses were
performed for each of the 14 subjects.

Time Series Preprocessing
Functional data were motion corrected using an affine trans-
formation (Nestares and Heeger 2000). Time series data were
processed with a temporal high-pass filter (1/20 Hz cutoff) and
then converted to percentage signal change by dividing the time
series of each voxel by its mean intensity. We estimated the
blood oxygen level dependent (BOLD) response amplitudes for
each condition using a general linear model (GLM) applied to the
time series of each voxel. Predictors of the GLM were the exper-
imental conditions convolved with the hemodynamic impulse
response function used in SPM (http://www.fil.ion.ucl.ac.
uk/spm/). Data were not spatially smoothed.

Functional Regions of Interest
Our analyses focused on functional regions of interest (ROIs)
that are selective for faces and limbs within VTC as VTC is crit-
ical for categorization (Grill-Spector and Weiner 2014) and par-
ticipants performed a categorization task during the behavioral
experiment.

Face-Selective ROIs. Face-selective voxels were identified as
those voxels in VTC that illustrated higher BOLD responses
to grayscale photographs of faces (frontal and profile view)
compared to body parts (hands and lower limbs) and objects
(cars and tools) in the functional localizer experiment (Fig. 2A).
Profile views of faces were originally included in the localizer
to test if different functional regions resulted from different
statistical contrasts: 1) profile face images > objects and bodies
and 2) frontal faces images > objects and bodies. Results
showed that both contrasts produced the three typical face-
selective regions in VTC (IOG-faces, pFus-faces, mFus-faces).
Thus, blocks of profile and frontal face images were combined
in the statistical contrast used for localization. As in our prior
publications, two VTC ROIs were defined within each subject’s
native brain anatomy using a common threshold (t > 3, voxel-
level) and were positioned lateral to the mid-fusiform sulcus
(MFS; Weiner et al. 2014). mFus-faces is adjacent to the anterior
tip of the MFS, while pFus-faces is located 1–1.5 cm more
posteriorly on the lateral fusiform gyrus (FG) extending into
the posterior occipitotemporal sulcus (OTS). In some studies,
mFus-faces is also referred to as FFA-2, while pFus-faces is also
referred to as FFA-1, in which the FFA stands for fusiform face
area (Kanwisher et al. 1997). We list which face-selective regions
in VTC were identifiable in each subject in Supplementary

http://github.com/vistalab
www.mathworks.com
http://www.fil.ion.ucl.ac.uk/spm/
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Table 1, as well as the stereotaxic coordinates (from Weiner
and Grill-Spector 2013) of each region in Supplementary Table 2.

Body-Selective ROI. Body-selective voxels were identified as
those voxels in VTC that illustrated higher BOLD responses
to grayscale photographs of limbs (hands and lower limbs)
compared to faces (frontal and profile view) and objects (cars
and tools) in the functional localizer experiment. As in our prior
publications, one ROI was defined within each subject’s native
brain anatomy using a common threshold (t > 3, voxel-level)
and was located within the OTS, positioned between mFus-
faces and pFus-faces. We refer to this region as OTS-bodies, but
it is also referred to as the fusiform body area (Schwarzlose et al.
2005; Peelen and Downing 2006). We list which body-selective
regions were identifiable in each subject in Supplementary
Table 1, as well as the stereotaxic coordinates (from Weiner
and Grill-Spector 2013) of each region in Supplementary Table 2.

Mean Tuning Analyses
Neural Tuning. Within each individual subject, a GLM was con-
ducted on the mean fMRI time series of each ROI (mFus-faces,
pFus-faces, OTS-bodies), separately for the left hemisphere (LH)
and right hemisphere (RH). Response amplitudes (betas) and
residual variance of each ROI were estimated from the GLM,
which yielded 5 beta values per ROI (one for each morphing
level; Fig. 2). Beta values were z-scored (mean: 0, SD: 1) to allow
for comparison across subjects and ROIs. For each ROI, main
effects of morph level were separately evaluated using a 1-way
repeated measures analysis of variance (ANOVA) with morph
level as a factor. The interaction between morph level, ROI,
and hemisphere was also evaluated using a repeated measures
ANOVA using morph level, ROI, and hemisphere as factors. We
refer to the relationship among these five beta values as neural
tuning to these face–hand stimuli.

Behavioral Tuning. For each subject, we measured the average
categorization responses of each morph level across the 12 trials
of that level during a behavioral experiment outside the scanner.
This results in 1 behavioral response for each of the 5 morph
levels, indicating the proportion of face responses for the given
morphing level. We refer to this function as behavioral tuning to
these face–hand stimuli (Fig. 3).

Relating Neural Tuning to Behavioral Tuning
In order to quantify the relationship between neural tuning
and behavioral tuning, we used a linear regression model that
relates each subject’s behavioral tuning to their neural tuning.
Each ROI’s tuning (z-scored beta values) to the 5 morph lev-
els was used as a predictor for a linear regression model (the
independent variable) relating it to the behavioral data (the
dependent variable, Fig. 4A). This analysis was performed on
a subject-by-subject basis and separately for neural data from
each hemisphere. Goodness-of-fit of the model was evaluated
by computing the explained variance (R2). R2 was calculated as
the square of the correlation between the model’s estimation
(1 × 5 vector) and the behavioral data (1 × 5 vector). Finally,
simulations of such a 5-point by 5-point model provide a null
distribution that guided the evaluation of our modeling results
(Supplementary Fig. 1). We used paired permutation testing
(10 000 iterations) to assess whether the explained variances (R2)
differed significantly between model pairs, for example compar-
ing the OTS-bodies model and mFus-faces models. Specifically,
for each iteration and each subject, we randomly permuted the
two model labels. Then, the null distribution is defined as the

distribution of R2 differences (between the two models) using
these permuted labels. This allows us to assess what differ-
ences in R2 values we could expect by chance. Consequently,
we are able to compare our measured R2 differences across
models to this null distribution. Permutation tests were used
because we did not want to make any assumptions about the
distribution of R2 difference values. Results were corrected for
multiple comparisons using the Bonferroni method (dividing
the P-value by the number of comparisons minus 1). For each
permutation test, we only used those subjects that had the ROIs
included in both models (Supplementary Table 1). Permutation
tests for all analyses in this article are performed with the same
methodology.

Linear Regression Model for Individual ROI Data (1-ROI Model). We
implemented 6, 1-ROI linear regression models predicting the
behavioral tuning curve from each of the ROIs (mFus-faces,
pFus-faces, OTS-bodies; separately for LH and RH, Fig. 4B).

Linear Regression Model Using Data from Multiple ROIs (Multi-ROI
Model). We ran one stepwise linear regression model using
all subjects and the three ROIs (mFus-faces, pFus-faces, OTS-
bodies; separately for each hemisphere and concatenated across
subjects) to establish which of the ROIs, or which combina-
tion of ROIs, best explained behavioral tuning. After identifying
which regions were significant predictors, we applied a linear
regression model that used data from pFus-faces and OTS-
bodies as separate predictors for behavioral tuning as these were
the ROIs that were identified as significant predictors during
the stepwise linear regression (Fig. 4B). As in the 1-ROI model,
this was done individually for each subject. We note that we
could identify both pFus-faces and OTS-bodies in 10/14 subjects.
Thus, further analyses with RH pFus-faces and OTS-bodies were
performed using these 10 subjects.

To test the improvement by the multi-ROI model (MRM) com-
pared to the 1-ROI model, we used the model selection criterion
Akaike’s Information Criterion (AIC) to compare model perfor-
mances, in which lower values indicate a better model fit. In
addition, we used paired permutation testing (10 000 iterations)
to examine whether the MRM outperformed the 1-ROI models.
Finally, we compared if there were any hemispheric differences
in model performance using paired permutation testing (using
multiple comparison correction as described above).

Linear Regression Multi-ROI Control Models. We considered two
multi-ROI control models. First, to test if any 2-ROI model could
predict behavioral tuning to face/hand morphs, we ran a control
model using 2 ROIs that are cortically proximal to face- and limb-
selective regions, but are not selective for either faces or limbs.
These ROIs were a retinotopically defined visual area (VO-2 from
Wang et al. 2014) and a place-selective region (CoS-places from
Weiner et al. 2018). Both regions were from published atlases
and were projected to individual subject space using FreeSurfer’s
cortex-based alignment as in our previous work (Rosenke et al.
2018; Weiner et al. 2018). Analyses were performed in the same
fashion as the MRM described above.

Second, to test if the 2-ROI model was specific to neighboring
face- and body-selective regions in VTC or generalized to lat-
eral occipitotemporal cortex (LOTC), in which face- and body-
selective regions also neighbor one another (Orlov et al. 2010;
Weiner and Grill-Spector 2011, 2013), we defined face- and body-
selective ROIs in LOTC. We defined a face-selective region on the
inferior occipital gyrus (IOG-faces), which is also known as the
occipital face area. We also defined three body-selective regions

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa081#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa081#supplementary-data
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Figure 2. Face- and body-selective regions in VTC display differential neural tuning to face–hand morphs. (A) Zoomed image showing the inflated cortical surface in
ventral view of an example participant illustrating three ROIs. From posterior to anterior: pFus-faces (red), OTS-bodies (green), and mFus-faces (dark red). Dark gray:
Sulci. Light gray: Gyri. Inset: Ventral view of the inflated cortical surface showing the location of the zoomed region. (B–D) The mean neural tuning across participants
for each fROI of the RH. Normalized responses were derived by first computing the beta coefficients to each one of the 5 morph levels of face–hand silhouettes and

then transforming the beta coefficients into z-scores. X-axis: Face–hand silhouette morph level. Y-axis: Z-scored beta values. Error bars: SE across participants. See
Supplementary Table 1 for the number of participants per ROI (N = 11–14). See Supplementary Fig. 2 for LH data.

on the middle temporal gyrus (MTG-bodies), the inferotempo-
ral gyrus (ITG-bodies), and the lateral occipital sulcus (LOS-
bodies), which are often described as one extrastriate body area
(Downing et al. 2001), but are anatomically and functionally dis-
tinct (Weiner and Grill-Spector, 2011, 2013). To mirror our analy-
ses for VTC category-selective regions, we ran a stepwise linear
regression using data from face- and body-selective regions in
LOTC (Supplementary Table 1 for the frequency of face-selective
and body-selective regions identifiable in each subject within
LOTC). Further analyses and comparisons to the VTC MRM are
done as described in the previous sections.

Cross-Validated MRM across Participants
We tested if a model built from the neural responses in one
group of participants could predict behavioral tuning in a new,
independent participant. For these analyses, we used neural
tuning from pFus-faces and OTS-bodies because our previous
linear regression analyses indicated that neural tuning from
these regions were the best predictors of behavioral tuning.

We first estimated regression weights using linear regression
analyses based on data from N-1 subjects and then predicted
responses of the left-out subjects (Breiman and Spector 1990;
Arlot and Celisse 2010). This analysis was done using 10 subjects
in which we could define both of the ROIs (see Supplementary
Table 1). To perform the analysis, we concatenated the z-scored
neural responses to the 5 morph levels in each ROI across
subjects, which resulted in a 1×45 (e.g., 9 subjects × 5 morph
levels) vector per ROI. Likewise for behavioral responses, we
concatenated the behavioral responses to the 5 morph levels
across subjects (1×45 vector). The two neural vectors served as
the predictors for the behavioral vector. The regression analysis
derived the weights (model coefficients) for each of the two
neural predictors. To predict responses of the left-out subjects,
we multiplied the model coefficients by the measured neu-
ral responses of the left-out subject to generate the predicted
behavioral tuning for the left-out subject. We then calculated
the goodness-of-fit between the predicted and actual behavioral
tuning of the left-out subject using R2 as described previously.

This procedure was cross-validated using all 10 subjects, result-
ing in a 10-fold cross-validation. This cross-validated MRM was
compared to the two cross-validated control models, which used
1) neural data from VO-2 and CoS-places as predictors and 2)
neural data from IOG-faces and ITG-bodies, which were selected
using the MRM stepwise linear regression model implemented
with LOTC ROIs. The models were compared using paired per-
mutation testing as well as multiple comparison correction as
described in the previous sections.

Results
We first generated 60 face–hand morphs using the silhouette
methodology (Davidenko 2007). Compared to natural images,
the silhouette methodology holds the advantage of generating a
stimulus space that 1) is controlled for low-level visual features,
2) changes only one visual attribute of the stimulus (shape),
and 3) drives neural responses in category-selective regions in
VTC (Davidenko et al. 2012). This approach generated a large set
of carefully controlled images consisting of continuous morphs
between faces and hands (Fig. 1A; Materials and Methods).

We calibrated the stimuli on Mechanical Turk (www.mturk.
com). Calibration results indicated that 1) the morph continuum
was centered, which means that the middle morph level was
ambiguous and equally likely to be perceived as either a face
or a hand by individual observers (Fig. 1B) and 2) the percep-
tual variability across exemplars within each morph level was
similar (e.g., level 1 exemplars were perceived as being as vari-
able as level 4 exemplars, Fig. 1C). The latter is important as the
lack of variability of stimuli within a morph level may generate
fMRI-adaptation (Grill-Spector and Malach 2001; Davidenko et al.
2012). Thus, our calibration ensured that the variability of stimuli
is matched across morph levels.

Using these stimuli, we conducted two types of experiments
in 14 independent adults (8 females, ages 22–44): 1) An fMRI
block-design experiment (using a 1-back task as an attentional
control) in which we measured mean neural responses to face–
hand morphs along the morphing continuum in face- and
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body-selective regions in VTC (Fig. 1D). We refer to neural
responses across morph levels as neural tuning. (2) A behavioral
categorization experiment outside the scanner during which we
measured the proportion of face–hand morphs in each level that
are perceived as faces or hands, which we refer to as behavioral
tuning (Fig. 1D).

Face- and Body-Selective Regions in VTC Are Tuned
to a Continuum of Face- and Hand-Like Silhouettes

We first asked how functional ROIs identified in VTC with
natural images respond to ambiguous face-like and hand-like
silhouettes, respectively. To do so, we identified face- and body-
selective regions within VTC: 1) pFus-faces/FFA-1, which is a
face-selective region located in the posterior-lateral portion
of the FG (Kanwisher et al. 1997; Weiner and Grill-Spector
2010; Weiner et al. 2014), 2) OTS-bodies/FBA, which is a body-
selective region located within the OTS (Peelen and Downing
2005; Schwarzlose et al. 2005; Weiner and Grill-Spector 2010),
and 3) mFus-faces/FFA-2, which is a face-selective region located
within the FG extending laterally from the anterior tip of the MFS
(Kanwisher et al. 1997; Weiner and Grill-Spector 2010; Weiner
et al. 2014; Fig. 2). From these ROIs, we then extracted neural
responses (z-scored beta values from GLM fits; Materials and
Methods) to the morphed silhouettes that were acquired during
a second, independent experiment (Fig. 1D).

Qualitatively, both pFus- and mFus-faces showed differential
responses, or neural tuning, to face–hand morphs. pFus- and
mFus-faces showed the highest neural responses to face-like
silhouettes and the lowest responses to hand-like silhouettes.
Interestingly, responses were 1) similar across the two morph
levels that were more face-like and 2) only declined past
the center morph level. Comparatively, OTS-bodies showed a
different tuning profile in which the highest neural responses
were to hand-like silhouettes and the lowest responses were
to face-like silhouettes. Additionally, responses in OTS-bodies
were 1) similar across morph levels that were more hand-like, as
well as the center morph level, and 2) only declined in response
for the two morph levels that were more face-like (Fig. 2B,D and
Supplementary Fig. 2A,C). These observations were statistically
supported by a 3-way repeated measures ANOVA with ROI,
morph level, and hemisphere as factors (morph level × ROI
interaction, F(8,305) = 16.45, P < 0.001; no significant difference
between hemispheres, F(1,168) = 5.6458e−29, P = 1.0). Follow-
up 1-way ANOVAs within each ROI (Bonferroni corrected)
further supported an effect of morph-level (mFus-faces:
F(4,120) = 5.08, P < 0.005; pFus-faces: F(4,110) = 4.52, P < 0.01; OTS-
bodies: F(4,80) = 5.93, P < 0.001). Together, these analyses reveal
that 1) face- and body-selective regions in VTC display neural
tuning to ambiguous face–hand silhouettes and 2) this tuning is
not linear with the morphing continuum.

Categorization Behavior of Face–Hand Morphs Is Best
Explained by Neural Tuning from Multiple
Category-Specific Regions from Different Domains

Since face- and body-selective regions in VTC display selective
tuning to face–hand silhouettes, we asked: What is the best
neural predictor for perceptual categorization of these ambigu-
ous face-hand stimuli? To answer this question, we first used
the same face–hand silhouettes that participants previously
viewed inside the scanner to measure how our participants
perceptually categorized the same stimuli outside the scanner.

Figure 3. Behaviorally, participants effectively categorize the face–hand morphs.
Behavioral tuning for each subject (colored lines) as well as the mean tuning

across subjects (black line). Behavioral responses at each morph level indi-
cate the participant’s average performance across 12 trials. Proportion “face”
responses decline with morph level showing a categorical transition. The highest
variability in behavioral responses across participants occurred for the cen-

ter morph level. X-axis: Morph level of silhouette (1 = face, 5 = hand). Y-axis:

Proportion face response. Error bars: SD across the 14 participants.

In the behavioral experiment, participants viewed 60 silhouettes
randomly drawn from the 5 morph levels (12 exemplars from
each morphing level) and were instructed to classify each image
as either a face or a hand, in a self-paced manner (Fig. 1E).
We refer to behavioral responses relating these forced-choice
behavioral responses to the morph levels as behavioral tuning
(seeMaterials and Methods).

Behavioral results showed that participants perceptually
differentiated face from hand silhouettes. That is, participants
classified the two more face-like morph-levels as faces
in the majority of trials (Fig. 3, proportion face responses
(mean ± standard deviation [SD]: 0.97 ± 0.05 and 0.99 ± 0.02,
respectively), while they classified the two more hand-like
morph levels as hands (proportion face response: 0.06 ± 0.08 and
0.01 ± 0.03, respectively). Categorization of the middle morph
level was more variable across participants. On average, images
in the middle, or intermediate, morph level 3 were classified
slightly more as faces (proportion face response: 0.64 ± 0.26).

We next tested if and how behavioral judgments are linked
to neural responses in face- and body-selective regions. To do
so, we conducted a linear regression analysis relating the behav-
ioral categorization data to neural responses in face- and body-
selective ROIs. In this analysis, the behavioral tuning of each
subject is the dependent variable and the neural tuning of that
subject is the independent variable (Fig. 4A). We considered two
models: 1) a linear regression model relating behavioral catego-
rization to neural responses from a single face- or body-selective
region (Fig. 4B, 1-ROI model) and 2) a linear regression model
relating behavioral categorization to neural responses from mul-
tiple regions (Fig. 4B, MRM). For the latter, we implemented one
version of the model that contained neural responses from
two regions selected by a stepwise linear regression model.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa081#supplementary-data


Combined Neural Tuning in Human Ventral Temporal Cortex Rosenke et al. 4889

Figure 4. A stepwise linear regression model reveals that behavioral tuning to face–hand morphs can be predicted by a linear combination of the neural tuning from
pFus-faces and OTS-bodies. (A) Top: A linear regression model was used to relate behavioral and neural turning. α = model intercept, β = beta coefficient for predictor,
x = neural predictor, y = behavioral tuning. Left: Behavioral tuning. Right: Neural tuning. (B) We tested two different types of linear models: 1) a 1-ROI model, which used
neural tuning from one ROI as a predictor for behavioral tuning, and 2) an MRM, which used neural tuning from multiple ROIs as separate predictors based on results

from a stepwise linear regression. (C) Explained variance (R2) from the 1-ROI model in the RH. Neural tuning from each ROI was a significant predictor of behavioral
tuning. X-axis: ROIs used as predictors for the linear regression model. Y-axis: Explained variance of the behavioral data by three 1-ROI models. Bars indicate the mean
across participants, and each dot represents data from one participant. The color of each participant is matched across models and data in Fig. 3. (D) Explained variance
of the behavioral data by the MRM based on neural tuning from right pFus-faces and right OTS-bodies. Conventions same as (C). (E) Improvement in explained variance

by the MRM compared to the 1-ROI model. Each line is a participant. Line colors correspond to (C). Asterisk: Significant improvement, P < 0.05, permutation testing.

In addition, we implemented two control models using neural
responses from 1) two regions that were neither face- nor body-
selective and 2) two regions that were selective for faces and
bodies not located in VTC, and instead, in LOTC.

Results of the 1-ROI model showed that on average, behav-
ioral categorization performance from individual participants
was linearly related to neural responses from either face-
or body-selective regions. That is, neural responses from
either face (pFus-faces, mFus-faces) or body (OTS-bodies) ROIs
explained, on average, a substantial amount of the variance
of behavioral responses (R2 ± standard error [SE] across subjects,
LH and RH, respectively: mFus-faces = 0.43 ± 0.10 and 0.54 ± 0.09;

pFus-faces = 47 ± 0.09 and 0.51 ± 0.09; OTS-bodies = 0.41 ± 0.06
and 0.35 ± 0.07; RH: Fig. 4C; LH: Supplementary Fig. 3A). However,
there was extensive variability in model fits across participants
whereby in some participants the variance explained was close
to 1, but in others, it was close to 0 (R2 min–max: 0–.99; Fig. 4C).
This between-subject variability in model fits suggests that
the 1-ROI model is not a parsimonious model of behavioral
categorization.

We next implemented a multiple ROI model in which we first
used a stepwise linear regression model to test which combi-
nation of ROIs best explains behavioral tuning. The stepwise
regression was applied to data from all subjects and neural
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responses from all three ROIs (Fig. 4B). Interestingly, this model
revealed that neural tuning from two ROIs: pFus-faces (LH and
RH, Ps < 0.001) and OTS-bodies (LH and RH, Ps < 0.001) signifi-
cantly explained behavioral categorization. Adding mFus-faces
to the model did not significantly explain additional variance
(LH and RH: Ps = 0.18). Consequently, the remaining analyses
only consider a model of behavioral categorization using pFus-
faces and OTS-bodies as predictors, which we refer to as the
MRM. As only 10 out of 14 subjects had both pFus-faces and
OTS-bodies across hemispheres, subsequent analyses are con-
strained to those 10 subjects (Supplementary Table 1).

Examining the MRM fit for each individual participant
showed that the MRM explained 0.71 ± 0.03 and 0.83 ± 0.04
(R2 ± SE) of the variance of behavioral categorization from
neural responses in the LH and RH, respectively (Fig. 4D and
Supplementary Fig. 3B). Comparing the variance explained by
the MRM to the 1-ROI model revealed higher variance explained
by the former than the latter in each participant (Fig. 4E). As a
two versus one parameter model comparison results in different
degrees of freedom, we tested the statistical significance of
these data in two ways: 1) AIC and 2) paired permutation
tests between each of the 1-ROI models and the MRM. Mean
AIC (mean across subjects ± SE for LH, RH) was as follows:
pFus-faces = 5.40 ± 1.24, 4.55 ± 1.46; OTS-bodies = 6.96 ± 0.57,
7.27 ± 0.63; pFus-faces + OTS-bodies = 5.19 ± 0.66, 0.88 ± 1.69. As
lower AIC values indicate better model fits, the data suggest
that a linear combination of neural responses of the right
pFus+OTS best explains behavioral categorization of face–hand
silhouettes. Additionally, paired permutation tests showed that
significantly more variance of behavioral categorization was
explained by the MRM (all Ps < 0.05, Bonferroni corrected, Fig. 4E)
than each of the 1-ROI models. Differences in model predictions
across hemispheres are not significant (paired permutation
tests between LH and RH models: Ps > 0.05).

While these results are clear, it may just be the case that neu-
ral signals from multiple ROIs—irrespective of their selectivity—
better explain behavioral categorization compared to responses
from a single ROI. To test this possibility, we implemented a
control MRM that related behavioral categorization to neural
tuning from two other functional regions not selective for faces
or bodies. For this model, predictors were neural responses from
ROIs that either did not illustrate a specific categorical prefer-
ence (retinotopic area, VO-2; Fan et al. 2014) or were not selec-
tive to either faces or hands (parahippocampal place area/CoS-
places; Aguirre et al. 1998; Epstein and Kanwisher 1998; Weiner
et al. 2018). This model had a significantly (permutation test,
P < 0.05) lower average explained variance (R2 ± SE: 0.52 ± 0.06
[LH] and 0.58 ± 0.08 [RH], Supplementary Fig. 3C) and a higher
AIC (7.64 ± 0.79 [LH] and 5.48 ± 1.55 [RH]) compared to the MRM.
Interestingly, this control MRM was also not significantly differ-
ent from any of the 1-ROI models (adjusted Bonferroni correc-
tion within each hemisphere, permutation testing; all P > 0.10).

We implemented an additional control model to test if the
face- and body-selective MRM was specific to neighboring face-
and body-selective regions in VTC, or generalized to LOTC,
in which face- and body-selective regions also neighbor one
another (Orlov et al. 2010; Weiner and Grill-Spector 2013).
Similar to how we established the ROI combination for the
MRM in VTC, we ran a stepwise linear regression model using
face-selective (IOG-faces) and body-selective ROIs (LOS-bodies,
MTG-bodies, and ITG-bodies) in LOTC. Interestingly, the
stepwise linear regression model showed that the results
generalized to LOTC in which a specific combination of neural

responses explained more variance than other combinations:
cortically adjacent ROIs, ITG-bodies (LH and RH: P < 0.0001) and
IOG-faces (LH: P < 0.005, RH: P < 0.0001), explained a significant
amount of variance of behavioral tuning, while other ROIs (LOS-
bodies, MTG-bodies, P’s > 0.5) did not. Interestingly, explained
variance (R2 ± SE: 0.80 ± 0.05 [LH] and 0.82 ± 0.05 [RH]) of the
LOTC MRM was comparable to, and did not significantly differ
from, the VTC MRM (permutation testing LH: P = 0.23, RH: P = 0.45,
Supplementary Fig. 3). As the MRM generalized to face- and
body-selective regions in LOTC, the LOTC MRM will be included
in further analyses.

A closer look at the VTC MRM and LOTC MRM revealed
that the model-estimated behavioral tuning closely matched
the measured behavioral tuning of a given participant (Fig. 5,
compare to 1-ROI model estimations in Supplementary Fig. 4).
Furthermore, the model consistently assigned opposing weights
to pFus-faces (LH: βpFus = 0.22 ± 0.06, RH: βpFus = 0.39 ± 0.06)
and OTS-bodies (LH: βOTS = −0.22 ± 0.05, RH: βOTS = −0.22 ± 0.07,
Fig. 5, right column), as well as IOG-faces (LH: βIOG = 0.39 ± 0.08,
RH: βIOG = 0.32 ± 0.09) and ITG-limbs (LH: βITG = −0.47 ± 0.11,
RH: βITG = −0.28 ± 0.08), which indicates that the behavioral
categorization of ambiguous face–hand morphs is related to the
differential neural responses between face- and body-selective
regions.

The MRM Built from a Group of Participants Accurately
Predicts Behavioral Tuning in a New Participant

We reasoned that if the relationship between neural and behav-
ioral tuning revealed by the MRM is a subject–general relation-
ship between brain and behavior, then a model built from neural
responses in one group of participants should be capable of
predicting behavioral tuning in a new person. However, if the
relationship between neural and behavioral tuning is subject-
specific, such a model would not predict the behavioral tuning
of a new participant very well. To investigate this possibility,
instead of building an MRM for each subject, we built 1) a VTC
MRM that relates behavioral categorization to neural responses
from pFus-faces and OTS-bodies in N-1 participants and 2)
an LOTC MRM that relates behavioral categorization to neural
responses from IOG-faces and ITG-bodies in N-1 participants.
The outputs of each model are two coefficients of the lin-
ear contribution of the face and body ROIs (VTC: pFus-faces
and OTS-bodies; LOTC: IOG-faces and ITG-bodies) to behavioral
categorization (Fig 6A). We then used the model coefficients
to predict behavioral tuning in a new subject based on the
new subject’s neural tuning from either VTC (pFus-faces and
OTS-bodies) or LOTC (IOG-faces and ITG-bodies), respectively.
This approach was repeated using a 10-fold cross-validation
procedure, using every subject once as a left-out test subject
(Fig. 6B).

Impressively, the cross-validated VTC MRM using RH data
accurately predicted behavioral tuning of the left-out subject
(mean R2 ± SE: 0.70 ± 0.05, Supplementary Fig. 5). In contrast,
predicting behavior from the VTC MRM based on LH data (mean
R2 ± SE: 0.50 ± 0.09) was significantly worse (paired permutation
testing, P < 0.01). Interestingly, the high predictability of the
RH VTC MRM generalized to the cross-validated LOTC MRM
(mean R2 ± SE: 0.66 ± 0.07), which performed equally well as
the VTC MRM (permutation testing: P = 0.31, Fig. 6). Unlike
the VTC MRM, there was no difference in performance of
the LOTC MRM between hemispheres (permutation testing,
P = 0.57). Finally, both cross-validated VTC and LOTC MRMs
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Figure 5. An MRM in VTC and LOTC successfully predicts behavioral performance. (A) Left: Each panel shows the behavioral tuning (solid) for a participant and the
MRM prediction using the neural tuning from both pFus-faces and OTS-bodies (pFus+OTS) in the RH (dashed). X-axis: Morph level; Y-axis: proportion face response.
R2: Explained variance for each respective participant, indicated at the top of each subplot. Right: Beta coefficients of the right pFus+OTS MRM. The model assigned

positive weights to pFus-faces and negative weights to OTS-bodies for most participants. X-axis: Predictors; Y-axis: beta coefficients. Bars indicate the mean coefficient,
and each dot indicates a participant. (B) Identical analysis as in A but for the LOTC MRM using IOG-faces and ITG-bodies. Colors are the same as in prior figures.
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Figure 6. A cross-validated, MRM that is trained on brain data from one group of subjects predicts behavioral tuning in new subjects. (A) Schematic illustration of
the cross-validation procedure. Left: N−1 subjects were used to estimate model parameters relating behavioral categorization to neural tuning from a face-selective
ROI and a body-selective ROI in the RH (see text for details). Right: The resulting beta coefficients were then multiplied with the fMRI data of the left-out participant

and were used to predict behavioral tuning for each morph level. (B) In separate subplots, behavioral tuning (solid) for a participant and the model’s prediction of the
RH MRMs (dashed) are shown. X-axis: Morph level; Y-axis: proportion face response. Solid blue line: Behavioral tuning from the left-out participant. Dashed blue line:
Model. R2: Explained variance for each left-out participant is indicated at the top of each subplot. Top: VTC MRM. Bottom: LOTC MRM.

outperformed a RH cross-validated MRM using neural tuning
from VO-2 + CoS (mean R2 ± SE: 0.23 ± 0.08; both VTC and LOTC
to VO-2 + CoS model comparisons P < 0.01), but only the LOTC

MRM outperformed the VO-2 + CoS control MRM in the LH
(VO-2 + CoS mean R2 ± SE: 0.26 ± 0.06; permutation testing vs.
VTC MRM: P = 0.07, vs. LOTC MRM: P < 0.05).
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Investigating the RH cross-validated VTC MRM more closely
shows that the model captures the trend of each subject’s
behavioral tuning even though the estimated beta coefficients
were generated using neural tuning from an independent group
of participants (Fig. 6B). Consistent with the within-subject
MRM, the cross-validated VTC MRM displayed opposing weights
for pFus-faces and OTS-bodies in that positive coefficients
were derived for pFus-faces (β = 0.31 ± 0.003) and negative
coefficients for OTS-bodies (β = −0.22 ± 0.004). Likewise, the
cross-validated LOTC MRM displayed opposing weights for
IOG-faces (β = 0.20 ± 0.004) and ITG-bodies (β = −0.34 ± 0.004).
While the cross-validated RH VTC MRM predicted behavior well
overall, it is worth emphasizing that behavioral tuning deviated
most from the neural predictions at the middle face–hand
morph, which is the morph-level that was associated with the
largest within-subject variability (Fig. 3). Further, participants
who showed a lower explained variance in the within-subject
MRM (Fig. 5B) also showed a lower explained variance in the
cross-validated MRM (Fig. 6B). While the LOTC MRM, on average,
explained a large amount of variance in both hemispheres,
model fits deviate from the actual behavioral data to a greater
degree compared to the VTC MRM (Supplementary Fig. 6 and
Fig. 6B).

Altogether, these analyses reveal that 1) the combination of
neural tuning from separate combinations of face- and body-
selective regions in VTC and LOTC predicts behavioral tun-
ing to face–hand morphs and 2) this relationship is subject–
general. That is, behavioral tuning in a new participant can be
predicted from a differential weighting of neural responses in
face- and body-selective ROIs derived from a separate group of
participants.

Discussion
In the present study, we measured neural tuning to face–hand
silhouettes from face- and body-selective regions in human VTC
while participants viewed carefully controlled visual stimuli in
the fMRI scanner. The visual stimuli were images that were
morphed in a continuous shape space in which one side was
a face silhouette and the other a hand silhouette. The center
shape of the continuum was perceived as being approximately
equal parts of both categories. We then conducted a behavioral
experiment in the same participants outside the fMRI scanner to
examine the relationship between neural and behavioral tuning.
Our results revealed that neural tuning from adjacent face-
and body-selective regions together better predicted behavioral
tuning compared to neural tuning from either type of region by
itself. Furthermore, our results are not specific to VTC, but also
extend to cortically adjacent face- and body-selective regions
located in LOTC. Moreover, the relationship between neural
tuning (in both VTC and LOTC) and behavioral tuning was con-
sistent such that a model trained on neural tuning from one
group of participants accurately predicted a new participant’s
behavioral tuning.

Here, we propose that cortical adjacency likely enables the
integration of neural signals between functionally distinct
regions. We then discuss how the best combination of neural
tuning that predicts behavioral categorization may depend on
the stimulus and task, as well as elaborate on the limitations of
our findings. Finally, we discuss how the model-based approach
implemented here is generalizable to future studies examining
the relationship between neural and behavioral categorization.

Cortical Adjacency Likely Enables the Integration of
Neural Signals between Distinct Functional Regions

Given that a large body of work in humans and nonhuman
primates supports the causal role of domain-specific regions
within high-level visual cortex in the perception of their pre-
ferred domain, the present findings showing that the combina-
tion of responses from pairs of face- and body-selective regions
in VTC and LOTC best predicts that the categorization of face–
hand morphs may seem surprising. However, when considering
the fact that pFus-faces and OTS-bodies in VTC and IOG-faces
and ITG-bodies in LOTC are two pairs of regions located within
larger cortical expanses specialized for processing animate cat-
egories, the present findings are more intuitive. Indeed, our
findings suggest that because face- and body-selective regions
are cortically adjacent within a larger animate representation, it
may be particularly beneficial for discriminating animate cate-
gories from one another in ambiguous situations. For example,
cortical adjacency likely enables the combination of signals
between regions through short-range connections and the com-
bination of these neural signals likely contributes to categorical
judgments.

More broadly, we propose that cortical adjacency is an imple-
mentational feature of the brain that enables the integration of
information across domains, which is consistent with a sparsely
distributed organization of high-level visual cortex (Weiner and
Grill-Spector 2010). Specifically, over the last 20 years, many
researchers who use neuroimaging techniques to study the neu-
ral bases of object recognition have debated whether modular
or distributed neural codes are more optimal for perceptual
categorization (Tarr and Gauthier 2000; Downing et al. 2001;
Baker et al. 2007; Golarai et al. 2007; Kriegeskorte et al. 2008; Op
de Beeck, Haushofer, et al. 2008; Mur et al. 2009; Charest et al.
2014; Weiner and Grill-Spector 2015; Cichy et al. 2019; Lindh et al.
2019).

Prior to the advent of fMRI, a long history of anatomy research
stressed that both modular and distributed components
together may be optimal for different types of information
processing: segregation and integration, respectively. In terms of
segregation and modularity, parallel processing could occur in
separate functional regions, which would increase the speed
and efficiency of information processing. Additionally, the
integration of distributed information between regions would
be beneficial to generate higher representational capacity as
well as flexible processing of visual inputs (Zeki and Shipp
1988; Felleman and Van Essen 1991; Grill-Spector and Weiner
2014). We recently applied these classic anatomical concepts
to explain the functional organization of human VTC in
which we characterized its organization as sparsely distributed.
Sparseness refers to the presence of a series of minimally
overlapping, highly selective clusters that are arranged in
a consistent topography relative to one another as well as
retinotopic visual areas, while distributed refers to the fact
that despite the minimal overlap between clusters, there is a
substantial amount of category information across voxels with
different functional properties. Our present data indicate that
cortical adjacency may be a fine-scale implementational feature
supporting this sparsely distributed organization. As discussed
previously (Grill-Spector and Weiner 2014), the segregation of
face- and body-selective regions into distinct domain-specific
networks allows parallel processing of category information
in nonambiguous situations and is consistent with theories
of modularity (Kanwisher 2010). Additionally, the adjacency
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of face- and body-selective regions enables cross-talk and
integration of information across the domains of faces and
bodies—for example, linking a person’s face and body or
perception under ambiguity, which are both consistent with
distributed theories of VTC (Haxby et al. 2001). Thus, cortical
adjacency likely functions to maximize computational benefits
from both sparse (localized cortical clusters in functionally
specialized networks) and distributed (the integration of neural
signals between networks) organizational features of high-level
visual cortex.

Consistent with our results and the interpretation of our
findings, recent anatomical and functional connectivity studies
in macaques also propose the combination of neural signals
between category-specific networks selective for faces and bod-
ies. Indeed, while recent research in macaques identifies dis-
tinct cortical networks that separately process face and body
information (Orban et al. 2004; Borra et al. 2008; Moeller et al.
2008; Tsao and Livingstone 2008; Pinsk et al. 2009), these stud-
ies also identify connections that are shared between these
two networks (Borra et al. 2008; Premereur et al. 2016). These
studies propose that the subset of these networks that overlap
with one another may be integral for the combination of face
and body information both anatomically (Borra et al. 2008) and
functionally (Premereur et al. 2016). Thus, future studies exam-
ining the relationship between neural tuning and behavioral
categorization while recording responses from single neurons
within adjacent face- and body-selective regions can test if this
combination occurs at the neuronal level.

The Best Combination of Neural Tuning that Predicts
Behavioral Categorization May Depend on the Stimulus
and Task

Our present findings revealed that neural tuning from certain
combinations of face- and body-selective regions more accu-
rately predicted behavior than other combinations of neural
tuning of face- and body-selective regions. For example, in VTC,
the combination of neural tuning from pFus-faces and OTS-
bodies better predicted behavioral tuning compared to the com-
bination of neural tuning from mFus-faces and OTS-bodies—
especially in the RH. We hypothesize that the improved pre-
diction of behavioral categorization from pFus-faces and OTS-
bodies rather than mFus-faces and OTS-bodies may be related
to the stimuli and the respective location of pFus-faces and
mFus-faces in the visual processing hierarchy. As mFus-faces is
situated at a higher position in the visual hierarchy compared
to pFus-faces (Grill-spector, Kay, et al. 2017; Grill-spector et al.
2018), we hypothesize that the present stimuli (simple, two-
dimensional shapes) were more suitable for pFus-faces. This
hypothesis is also consistent with our LOTC findings, as IOG-
faces is considered to be at an even earlier position in the visual
hierarchy compared to pFus-faces (Haxby et al. 2000; Rossion
2008; Grill-Spector, Weiner, et al. 2017; Grill-Spector et al. 2018).
We also propose that behavioral categorization of more complex
stimuli may be attained from the linear combination of neural
tuning from mFus-faces and OTS-bodies than the combina-
tion of either pFus-faces and OTS-bodies or IOG-faces and ITG-
bodies, which can be tested in future research. In addition, future
research should assess on a trial-by-trial basis, how neural sig-
nals predict single images in real time and with a 1:1 mapping
between behavioral categorization and neural responses.

Future studies can also examine how combinations of neural
tuning affect the lateralization effects identified in VTC. For

example, recent proposals hypothesize that the lateralization
for word processing in the LH and face processing in the RH
develops from the competition of foveal resources during devel-
opment in combination with the lateralization of the language
system in the LH (Behrmann and Plaut 2015; Dehaene et al.
2015). As face- and word-selective regions form a cortical cluster
in left posterior VTC, while face-, body-, and word-selective
regions form a cluster in left mid-VTC, future studies examining
the relationship between neural tuning and behavioral tuning
during categorization tasks that involve faces, bodies, and words
may find that combinatorial tuning from all three regions in
the left, but not the right, hemisphere would outperform other
models. Altogether, we propose that the cortical adjacency of
functional regions in VTC likely enables flexible combinations of
neural tuning that can accommodate different types of stimuli
and task demands.

Limitations

Using simplified stimuli to investigate complicated experimen-
tal questions such as those related to the perception of visual
ambiguity is beneficial because the images are generated on a
known continuum of shape space in which 1) the ends of the
continuum represent shapes from two different categories and
2) there is a clear categorical transition such that the center
shape of the continuum is composed of equal parts of both
categories. Such a space enables a clear quantification of how
neural and behavioral responses change when exposed to
stimuli that cross category boundaries.

Despite the controlled feature space of these stimuli, a
concern may be that the brain–behavior relationships modeled
in the present study may not generalize to naturalistic stimuli
(Nishimoto et al. 2011; Huth et al. 2012, 2016; Naselaris et al.
2012). We acknowledge this limitation and propose that our
present results and model form a foundation from which to
build more complex brain–behavior models (Rust and Movshon
2005) underlying the perception of visual ambiguity—especially
for animate categories as silhouettes of animate objects are
more accurately recognized than other types of silhouettes
(Lloyd-Jones and Luckhurst 2002; Tian et al. 2016). Nonetheless,
we underscore that neurally, silhouettes are sufficient to
selectively drive high-level category-selective regions within
VTC, as face- and body-selective regions respond selectively to
silhouettes of their preferred category, shown in the present
study as well as in the previous work (Tong and Nakayama
1999; Hasson et al. 2001; Andrews et al. 2002; Bracci et al. 2010;
Davidenko et al. 2012; Mendola et al. 2018). We also emphasize
that, to our knowledge, these data are the first to show that
regions from different domain-specific networks in VTC and
LOTC can work together to achieve a behavioral goal. Future
studies can extend our work and test additional categories
as well as formats in order to examine if 1) the combination
of neural responses between functional regions best predicts
behavioral responses to visually ambiguous stimuli and 2)
these brain–behavior predictions are indeed more prominent
for animate categories.

Beyond the Representation of Animate Categories
in VTC

The linear model-based approach we have implemented in the
present study is applicable to additional factors beyond the
representation of animate categories in VTC. For example, neu-
rally, previous studies have examined visual categorization in
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brain areas outside of VTC (Freedman et al. 2001; Jiang et al.
2007; Ferrera et al. 2009), as well as have considered how other
brain areas (for example, within prefrontal cortex; Baldauf and
Desimone 2014) may act as gatekeepers that guide the categori-
cal decision process within cortical regions in VTC. Additionally,
categorization is not limited to the visual domain. For instance,
empirical studies examine the categorization of 1) movements
in motor cortex (Seger and Miller 2010), 2) odors in piriform cor-
tex (Tantirigama et al. 2017), and 3) sounds in the visual cortex
of blind individuals (van den Hurk et al. 2017). The approach we
have implemented here can be applied to these examples, as
long as two requirements are fulfilled. First, there should be a
stimulus continuum between (at least) two categories. Second,
there must be a hypothesized relationship between behavioral
tuning and neural tuning from the functional ROIs. As long as
these two requirements are met, our model-based approach
can be applied to additional types of categorization, as well
as additional functional regions in future studies. Furthermore,
we also emphasize that while we establish this approach with
neural tuning that is read-out from entire functional regions,
the spatial scale of this approach is presently unknown. For
instance, distinct cortical columns in different parts of the brain
represent 1) different viewpoints of faces (Tanaka 1996), 2) dis-
tinct motion directions (Albright 1984), or 3) specific parts of
the body surface (Mountcastle 1997). Future studies can test
if the combination of neural tuning signals from multiple cor-
tical columns better predicts behavioral categorization com-
pared to neural tuning signals from single cortical columns
alone.

Conclusions
In summary, we find that neural categorization tuning from
multiple category-specific regions in human ventral temporal
and lateral occipitotemporal cortices accurately models behav-
ioral categorization tuning. Furthermore, this model trained on
the neural tuning from one group of participants nicely aligns
with behavioral tuning in new participants with a right hemi-
sphere dominance. Together, these data suggest that adjacent
cortical regions with opposed neural tuning can accommodate
efficient and flexible categorization.
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