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ABSTRACT OF THE THESIS

Sample Efficient Constrained Reinforcement Learning

by

Lijing Kuang

Master of Science in Computer Science

University of California San Diego, 2020

Professor Sicun Gao, Chair

The general assumption in reinforcement learning(RL) that agents are free to explore for

searching optimal policies limits its applicability in real-world domains where safe exploration is

desired. In this paper, we study the problem of constrained RL in episodic MDPs to investigate

efficient exploration in safe RL. We formally describe two different constraint schemes frequently

considered in empirical studies — namely, soft constrained RL that focuses on the overall safety

satisfaction, and hard constrained RL that aims to provide guarantees throughout learning. While

violations may occur in the former scheme, the latter enforces safety by extending the challenging

knapsack problem in multi-armed bandits. Accordingly, we propose two novel sample efficient

constrained Q-learning algorithms. By balancing exploration and exploitation based on UCB, our

vi



methods reduce the notoriously high sample complexity in constrained model-free settings while

achieving asymptotically optimal solutions. Our theoretical analyses establish promising regret

bounds for both algorithms.

vii



Chapter 1

Introduction

Reinforcement learning (RL) is be widely adopted for addressing the problem of sequential

decision making. Since the successful deployment of deep learning (DL) architectures with RL

algorithms [Mnih et al., 2013], deep RL methods provide promising solutions to physical control

problems with continuous spaces, by resorting to high-capacity function approximators and

stochastic optimization techniques. In standard RL frameworks, we are concerned with the task

of how an intelligent agent takes optimal actions when interacting with the unknown environment

through a trial-and-error learning process, with the goal of maximizing the long-term rewards

[Sutton and Barto, 2018]. Under such settings, agents are often assumed to have complete

freedom for exploration so as to lead to performance improvement. This assumption however,

may not hold in complex problem domains where multi-objectives are involved [Roijers et al.,

2013].

In cyber-physical systems where safe exploration is of vital concern, a set of constraints

need to be considered for safe-critical tasks such as collision-free navigation for autonomous cars

[Lötjens et al., 2019], and prevention of catastrophic behaviors for robotics[Amodei et al., 2016].

In systems where collecting real-world experience data samples is expensive, it is desirable

to quickly converge to optimal solutions with least finite samples and time steps. As such,

1



scalar reward itself fails to capture the objectives appropriately, imposing the need for Multi-

Objective RL (MORL) [Mossalam et al., 2016, Roijers et al., 2013] to generate safe policies

while optimizing the long-term performance. Depending on the level of desired safety, different

types of constraint incorporation are considered in empirical studies [Achiam et al., 2017, Roijers

et al., 2013, Tessler et al., 2018, Wen and Topcu, 2018, Wu et al., 2018]. Nonetheless, it is an

open question how these forms relate theoretically and whether one outperforms others.

To help understand the above issues, in this work, we study constrained RL with stochastic

rewards and costs in episodic Markov Decision Processes (MDPs), where a budget constraint

is imposed for both exploration and exploitation. Instead of learning actions with the highest

expected rewards, our goal is to discover state-action pairs that not only yield favorable rewards but

also incur insignificant costs. Specifically, we formally introduce two constrained RL schemes that

categorize the general settings both in practice and in empirical works, namely, soft constrained RL

and hard constrained RL. Hard constrained RL that enforces safety to provide any-time guarantee

is critical for areas such as medical treatment and autonomous driving, whereas soft constrained

RL adopts auxiliary costs as regularization to achieve preferable behaviors by minimizing cost

violations in applications like sponsored search and recommendation.

Accordingly, to achieve efficient exploration in safe RL, we present two novel constrained

RL algorithms based on Q-learning, with provable sample efficiency by adopting upper confidence

bound (UCB)[Auer, 2002, Auer et al., 2002]. By balancing exploitation of current knowledge

to maximize rewards, and exploration of optimism under uncertainty, our proposed methods,

UCB-SCQ and UCB-HCQ, are able to guide the safe policies towards rapid convergence. To

the best of our knowledge, this is the first work to bring these elements together in model-free

settings that guarantees sample efficiency in both constraint schemes with rigorous analyses.

We establish theoretical regret bounds to quantitatively measure the sample complexity

of both methods, distinguishing them from existing ones. This is a challenging task for several

reasons. Due to the time-varying nature, we need to solve a stochastic constrained optimization
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problem [Achiam et al., 2017, Chow et al., 2019, Tessler et al., 2018] for asymptotically optimal

solutions. Meanwhile, hard constrained RL extends multi-armed bandit (MAB) with knapsacks,

which are NP-hard [Badanidiyuru et al., 2018, Tran-Thanh et al., 2010]. In addition, the stopping

time involved cannot be easily determined because of stochastic costs. Our theoretical analyses

conclude promising regret bounds for both algorithms, revealing a trade-off between performance

and safety guarantees: UCB-HCQ ensures safety of policies all throughout training at the price of

extra regret compared to UCB-SCQ where constraint satisfaction is relaxed and thus lower regret

is attainable.

1.1 Related Work

The most widely-adopted formulation of RL with a set of constraints is constrained

Markov Decision Processes (CMDPs) [Altman, 1999, Yu et al., 2019]. To encode the concept

of safety, it augments standard MDP framework with constraints over expectations of auxiliary

costs. When models are known in discrete tabular settings, a CMDP is solvable using linear

programming (LP) [Altman, 1999]. However, results are limited for model-free scenarios where

model dynamics are unknown, and for large-scale or even continuous state action spaces [Achiam

et al., 2017, Chow et al., 2018, Yu et al., 2019]. More importantly, both objective and constraint

in high-dimentional CMDP settings, where high-capacity function approximators are adopted,

are non-convex. Recent methods in solving CMDPs in continuous spaces can be divided into

two categories, in terms of ways to incorporate constraints. In soft constrained RL, it is a

common practice to apply Lagrangian method with learnable Lagrangian multipliers and solve

the converted unconstrained saddle-point optimization problem using policy-based methods

[Bohez et al., 2019, Chow et al., 2017, Tessler et al., 2018]. Such Lagrangian methods achieve

overall safety when policies converge asymptotically, nevertheless allowing possible violations

during training. On the contrary, hard-constrained RL aims to learn safe policies throughout
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training. Representative works include Constrained Policy Optimization (CPO) based on trust

region [Achiam et al., 2017], surrogate algorithms with stepwise [Dalal et al., 2018] and super-

martingale [Mossalam et al., 2016] surrogate constraints, as well as Lyapunov-based approaches

[Chow et al., 2018, Chow et al., 2019]. Still, there is no studies that provide unified formulations

of both problems nor theoretical results are available to quantify their relationship in performance.

Meanwhile, with the booming demand of adopting RL in practical applications, provably

efficient RL algorithms gain increasing attention in the community. Compared to model-based

RL (MBRL)[Feinberg et al., 2018, Levine and Abbeel, 2014], Model-free RL gains greater

popularity with simplicity in implementation, better computational and space complexities [Jin

et al., 2018, Song and Sun, 2019]. Although asymptotic performance is achieved without

requiring system dynamics, they suffer from notoriously high sample complexity [Feinberg et al.,

2018, Gu et al., 2016, Levy and Ermon, 2018]. Encouragingly, recent advances have established

finite sample-guarantees for model-free RL by managing the trade-off between exploration

and exploitation [Abbasi-Yadkori et al., 2019, Azar et al., 2017, Jin et al., 2018, Jin et al.,

2019, Lykouris et al., 2019, Russo, 2019, Song and Sun, 2019, Wainwright, 2019], which can be

further improved with additional assumptions on system dynamics [Du et al., 2019], or using low-

dimensional representation by parameterizing with features [Yang and Wang, 2019a, Yang and

Wang, 2019b]. However, current results are limited in the context of standard RL formulations.

Building upon these achievements, we derive regret bounds for constrained RL to develop

provable sample efficient RL algorithms in model-free settings with budget constraint.
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Chapter 2

Preliminaries

In this section, we describe the settings of standard and extended Markov Decision Process

(MDP) in need to formulate the problem setup.

2.1 Unconstrained Markov Decision Process

An episodic MDP can be represented as a five-element tuple (S ,A ,H,P,r), such that

there are H steps in each of the K episodes during a complete learning process. The state space

S and the action space A are finite discrete spaces with cardinality of S and A respectively.

At each step h ∈ [H], given the observation of a state-action pair (s,a), the transition kernel

Ph(sh+1|sh = s,ah = a) provides the distribution of the next state sh+1, and the reward function

rh : S ×A → [0,1] emits a bounded reward signal between 0 and 1.

2.2 Constrained Markov Decision Process

A constrained MDP (CMDP) [Yu et al., 2019] is an extended MDP framework with

budget constraint that reduces the size of policy space by eliminating infeasible policies. In

CMDP framework, akin to reward rh(s,a), each state-action pair (s,a) is associated with a scalar
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cost value ch(s,a) that measures how expensive it is to take that specific action at a particular

state.

Here, we introduce an episodic CMDP framework, which is a six-element tuple (S ,A ,H,P

,r,c), bounded by a predefined total cost budget B, where K episodes are rolled out for learning

and H steps are involved in each of the k ∈ [K] episodes. Unlike the standard episodic MDP

problem, at each step h ∈ [H], apart from a reward signal rh realized from an underlying reward

distribution with mean 0≤ µr,h(sh,ah)≤ 1, a stochastic cost signal ch : S×A→ [0,1] is also taken

into account, which can be seen as an immediate cost sampling from its underlying unknown cost

distribution with mean 0≤ cmin ≤ µc,h(sh,ah)≤ 1. Assume the empirical realizations of costs ch

and rewards rh are independently and identically distributed, and bounded between 0 and 1.

Throughout the learning process, the expected cumulative costs must not exceed an

allocated budget. It is expected that high costs are received as penalty for risky actions which

may lead to dangerous situations, whereas conservative actions are mapped to lower costs. By

considering expected cumulative costs and rewards, the ultimate goal becomes forming policies

with actions that satisfy the long-term safety while optimizing the long-term performance.
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Chapter 3

Problem Setup: Episodic MDP with

Constraints

We focus on episodic MDPs with finite spaces, finite time horizon, and an a-priori budget

constraint. Instead of studying fixed and deterministic costs in earlier MAB studies [Tran-Thanh

et al., 2012], we consider the more realistic and complex RL settings with stochastic rewards

and time-varying costs, which are examined in recent empirical works of safe RL [Achiam et al.,

2017, Tessler et al., 2018, Wen and Topcu, 2018].

At each episode k ∈ [K], a policy π is a deterministic function {π : S × [H]→ A} that

maps states into actions for each step. At step h ∈ [H], the on-policy value function V π

h (s) gives

the expected long term return by following policy π, starting from sh = s, and the corresponding

action-value function Qπ

h(s,a) gives the same measure by also considering taking action ah = a

when starting at sh = s. Similarly, we introduce an episodic cost function Cπ

h (s) that describes

the expected cost and its corresponding action-cost function Pπ

h (s,a). The above functions are

formally denoted as:
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V π

h (s) = Eπ

[ H

∑
i=h

ri(si,π(si, i))|sh = s
]
= Qπ

h(s,π(s,h)) ,

Qπ

h(s,a) = Eπ

[ H

∑
i=h

ri(si,π(si, i))|sh = s,ah = a
]
= rh(s,a)+∑

s′
Ph(s′|s,a)V π

h+1(s
′) ,

Cπ

h (s) = Eπ

[ H

∑
i=h

ci(si,π(si, i))|sh = s
]
= Pπ

h (s,π(s,h)) ,

Pπ

h (s,a) = Eπ

[ H

∑
i=h

ci(si,π(si, i))|sh = s,ah = a
]
= ch(s,a)+∑

s′
Ph(s′|s,a)Cπ

h+1(s
′).

For any function Y ∈ {Q}∪{P}, define the linear operator Ph as: [PhY π

h+1](s,a), ∑s′ Ph(s′|s,a)

Y π

h+1(s
′) = Es′∼P(·|s,a)Y π

h+1(s
′), and its empirical counterpart in episode k as: [P̂k

hY π

h+1](s,a) :=

Y π

h+1(s
k
h+1), where sk

h+1 is realized from transition kernel Ph(·|sk
h = s,ak

h = a). With Bellman

optimality equation, the corresponding optimal functions can be specified as:

V ∗h (s) = sup
π

V π

h (s) = max
a∈A

Q∗h(s,a), Q∗h(s,a) = rh(s,a)+ [PhV ∗h+1](s,a).

C∗h(s) = inf
π

Cπ

h (s) = min
a∈A

P∗h (s,a), P∗h (s,a) = ch(s,a)+ [PhC∗h+1](s,a).

Definition 1. Consider two performance metrics. The reward regret Gr(K) evaluates the

expected sum of deviations from V ∗ across all episodes when following a chosen policy πk in each

episode k ∈ [K]. The cost regret Gc(K) measures the expected deviations of empirical cost from

the optimal cost C∗. Both metrics are greater than or equal to 0:

Gr(K) = E
[

∑
K
k=1
(
V π∗

1 (sk
1)−V πk

1 (sk
1)
)]
, Gc(K) = E

[
∑

K
k=1
(
Cπk

1 (sk
1)−Cπ∗

1 (sk
1)
)]
.

In practice of safe RL, recent studies employ constraints in distinct ways, which lead to

diversified solutions and performance. In order to study how efficient exploration can be achieved

when different types of constraint integration are being used, and to quantitatively measure the
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difference of sample complexity, we formally define two types of constrained RL problems.

3.1 Hard Constrained RL

In this setting, the learning process terminates whenever constraint violation occurs. Like

MAB with knapsacks, optimal solutions need to be achieved for the reward-related objective

function constrained by cost-related metrics. Suppose there exists an optimal policy π∗ that gives

the optimal value V ∗h (s) = supπV π

h (s) for all s ∈ S starting from any step h ∈ [H]. Denote the

policy space that consists of all stationary policies for the learning task as Π. In a learning process

with K episodes, an agent chooses a policy πk at the beginning of each episode k to complete a

single roll-out.

Definition 2. (Hard Constrained RL). Consider an episodic CMDP with budget constraint

B. The goal in hard constrained RL is to find a set of valid policies {πk|k ∈ [K]} in the policy

space Π, so as to minimize the reward regret over all episodes while ensuring the sum of expected

cost does not exceed budget constraint B. Denote the shrunken policy space that consists of

all valid policies as: ΠB = {π ∈ Π : ∑
K
k=1Cπk

1 (sk
1) ≤ B}. The problem and its solution can be

formally described as:

min
πk∈ΠB,k∈[K]

Gr(K) , s.t.
K

∑
k=1

Cπk
1 (sk

1)≤ B .

∀s ∈ S , π
∗
k = argmin

π∈ΠB

Gr(K).

3.2 Soft Constrained RL

In soft constrained RL, constraint satisfaction is relaxed to allow possible violations. We

introduce a new constrained reward function zh based on Lagrangian methods, then formulate

the soft constrained RL problems with a new composite objective function that concerns both
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rewards and costs.

Definition 3. The constrained reward function wh in episodic CMDP is defined as a

weighted average of the immediate reward and immediate cost with a Lagrange multiplier λ:

wh(λ,s,a) = rh(s,a)−λch(s,a) , where λ ∈ [0,1].

Let [PhW π

h+1](λ,s,a), Es′∼P(·|s,a)W π

h+1(s
′). The corresponding episodic on-policy constrained

value function and constrained action-value function at step h can be denoted as:

W π

h (λ,s) = Eπ
[ H

∑
i=h

ri(si,π(si, i))−λci(si,π(si, i))|sh = s
]
=V π

h (s)−λCπ

h (s),

Fπ

h (λ,s,a) = wh(λ,s,a)+ [PhW π

h+1](λ,s,a) = Qπ

h(s,a)−λPπ

h (s,a).

Definition 4. (Soft Constrained RL). The goal in soft constrained RL is to find a set of

valid policies {πk|k ∈ [K]} in the policy space Π, so as to minimize a weighted average of reward

regret Gr(K) and cost regret Gr(K) over all episodes. Intuitively, the optimal policies here are the

ones that yield optimal combinations of high long-term return with small constraint violations:

min
πk∈Π,k∈[K]

Gr(K)+λGc(K) , where λ ∈ [0,1], Gr(K)≥ 0, Gc(K)≥ 0.

∀s ∈ S , π
∗
k =argmin

π∈Π

Gr(K)+λGc(K).

10



Chapter 4

Constrained Q-learning with UCB

Exploration

In this chapter, we address the problem of efficient exploration in safe RL. To reduce

sample complexity, one crucial factor is to strike the balance between exploration and exploitation.

It is known that the lower regret bound achievable in any learning algorithm in terms of the total

time steps T is logarithmic in T [Auer et al., 2002, Lai and Robbins, 1985]. While greedy and

ε-greedy algorithms are commonly used for exploration due to simplicity, they lead to sub-optimal

regrets that grow linearly in time. Recent studies have revealed and established that minimax

regret bounds in tabular MDPs with finite-horizon for model-free RL can be bounded at the scale

of
√

T [Jin et al., 2018, Simchowitz and Jamieson, 2019].

11



Algorithm 1: Constrained Q-learning for Soft Constrained RL (UCB-SCQ)
Input: number of episodes K, number of steps in each episode H, state space S ,

action space A , weighted coeffcient λ.
1 Initialization: t = 0,∀(s,a,h) ∈ S ×A× [H],Fh(λ,s,a) = H,Nh(s,a) = 0,Ĉ = 0
2 for episode k = 1, . . . ,K do
3 Generate initial state s1
4 for step h = 1, . . . ,H do
5 Choose action ah = argmaxa∈A Fh(λ,sh,a)
6 Observe reward rh(sh,ah) and cost ch(sh,ah)

7 Update observed total cost Ĉ = Ĉ+ ch(sh,ah)
8 Calculate constrained-reward wh(λ,sh,ah) = rh(sh,ah)−λch(sh,ah)
9 Generate the next state sh+1 ∼ Ph(·|sh,ah)

10 Update visiting counter Nh(sh,ah) = Nh(sh,ah)+1, t = Nh(sh,ah)
11 Set learning rate as αt = 2H/(2H−1+ t)
12 Set UCB exploration bonus as U1t = 4

√
H3 ln(2SAT/δ)/t

13 Fh(λ,sh,ah)←
(1−αt)Fh(λ,sh,ah)+αt [wh(λ,sh,ah)+Wh+1(λ,sh+1)+U1t ]

14 Wh(λ,sh) = min{H, maxa∈A Fh(λ,sh,a)}
15 end
16 end

Based on these findings, we present Algorithm 1(UCB-SCQ) and Algorithm 2(UCB-HCQ)

to solve the above two constrained RL schemes respectively. By adopting UCB for proactive

exploration, our methods will be shown to have nice learning properties with provable sample

efficiency. Both algorithms maintain their own action-value function, Fh or Qh, action-cost

function Ph, as well as visiting counter of state-action pairs Nh for all (s,a,h) ∈ S ×A× [H].

To encourage exploration for the less visited state-action pairs for potential performance

improvement, UCB bonuses are incorporated into the update rules in such a way that bonus terms

U1t (line 13), U2t (line 15) are added into the estimates of action-value functions to increase

selection probability. Here, t := Nh(s,a) so that the bonus decreases as we become more confident.

It should point out that conversely, for action-cost function P (line 16), the bonus term U3t is

subtracted from the new estimate. It is so, as lower cost is preferred and actions with greater

uncertainty should be kept in feasible action set (line 5) for further consideration.

Our algorithms upper bound action-value functions, F (line 14) and Q (line 17), by H,

12



lower bound action-cost function P (line 18) by 0, to restrict the optimism effect of UCB bonus

under uncertainty not to perturb future updates and thus, reasonably control error propagation.

In addition, the bounded reward signal rh ∈ [0,1] and cost ch ∈ [0,1] ensures that Q values are

lower bounded by 0, so do V and C. However, it may be possible that F and W are negative in

unfavorable circumstances, where costs are much more expensive than rewards received.

Furthermore, choosing appropriate learning rates for update rules is critical to reducing

sample complexity. It is expected to learn from the most recent data for accurate estimates,

whilst gradually forgetting earlier experience. They shall enable proactive exploration at the early

stage of the learning process, then gradually reducing exploration to encourage more exploitation

from accumulated knowledge along with time. Hence, desired learning rates should decay

monotonically and emphasize on the most recent value estimates. Details are discussed in chapter

4.2.

4.1 Non-recursive Update Rules

To design learning rates and to upper bound regrets in a systematic way, we need to

understand how errors propagate through episodes for reward-related functions Qh, Vh, cost-

related functions Ph Ch, and composite constraint functions Wh and Fh. Here, we derive the

non-recursive update rules from their iterative expressions in UCB-SCQ (line 13) and UCB-HCQ

(line 15, 16).
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Algorithm 2: Constrained Q-learning for Hard Constrained RL (UCB-HCQ)
Input: number of episodes K, number of steps in each episode H, state space S ,

action space A , episodic budget proportion γ.
1 Initialization:

t = 0,∀(s,a,h) ∈ S ×A× [H],Qh(s,a) = H,Ph(s,a) = 0,Nh(s,a) = 0,Ĉ = 0
2 for episode k = 1, . . . ,K do
3 Generate initial state s1
4 for step h = 1, . . . ,H do
5 Generate feasible action set Ah = {a|Ph(sh,a)≤ γB} ⊆ A
6 Choose action ah = argmaxa∈Ah

Qh(sh,a)
7 Observe reward rh(sh,ah) and cost ch(sh,ah)

8 Update observed total cost Ĉ = Ĉ+ ch(sh,ah)

9 if Ĉ ≤ B then
10 Generate the next state sh+1 ∼ Ph(·|sh,ah)
11 Update visiting counter Nh(sh,ah) = Nh(sh,ah)+1, t = Nh(sh,ah)
12 Set learning rate for function Q and P as αt = νt = 2H/(2H−1+ t)
13 Set UCB exploration bonus for Q function as

U2t = 2
√

H3 ln(2SAT/δ)/t
14 Set UCB exploration bonus for P function as

U3t = 2
√

γ2B2H ln(2SAT/δ)/t
15 Qh(sh,ah)← (1−αt)Qh(sh,ah)+αt [rh(sh,ah)+Vh+1(sh+1)+U2t ]
16 Ph(sh,ah)← (1−νt)Ph(sh,ah)+νt [ch(sh,ah)+Ch+1(sh+1)−U3t ]
17 Vh(sh) = min{H, maxa∈Ah Qh(sh,a)} // upper bounded by H
18 Ch(sh) = max{0, mina∈Ah Ph(sh,a)} // lower bounded by 0
19 else
20 Terminate the learning process
21 end
22 end
23 end

Let (sk
h,a

k
h) = (s,a) be the observed state-action pair at step h in episode k, and Qk

h, V k
h ,

Pk
h , Ck

h, Fk
h , W k

h be the corresponding Qh,Vh,Ph,Ch,Fh,Wh functions at the beginning of episode k.

Lemma 4.1. (Non-recursive Update Rules). Consider t = Nk
h(s,a) at the beginning of

episode k and (sk
h,a

k
h) = (s,a), where (s,a) has been traversed at step h in some of the previous

episodes k1, ...,kt < k. The non-recursive update rules for action-value functions Fh(λ,s,a),

14



Qh(s,a) and action-cost function Ph(s,a) in UCB-SCQ and UCB-HCQ can be expressed as:

Fk
h (λ,s,a) = α

0
t H +

t

∑
i=1

[
α

i
t
(
wh(λ,s,a)+W ki

h+1(λ,s
ki
h+1)+U1i

)]
, (4.1)

Qk
h(s,a) = α

0
t H +

t

∑
i=1

[
α

i
t
(
rh(s,a)+V ki

h+1(s
ki
h+1)+U2i

)]
, (4.2)

Pk
h(s,a) =

t

∑
i=1

[
ν

i
t
(
ch(s,a)+Ck

h+1(s
ki
h+1)−U3i

)]
, (4.3)

where α
0
t =

t

∏
j=1

(1−α j), α
i
t = αi

t

∏
j=i+1

(1−α j), ν
i
t = νi

t

∏
j=i+1

(1−ν j), i≥ 1. (4.4)

Proof of Lemma 4.1 is provided in Appendix A.

4.2 Selection of Learning Rate Schedules

To degenerate exploration in the later phase, learning rates αt ,νt are expected to decay,

ideally exponentially, within domain [0,1], throughout the learning process. Oppositely, with

Lemma 4.1, the update weights, αi
t and νi

t where i = 0,1, ..., t, defined in (4.4) need to increase,

ideally exponentially, along with time to stress on recent experience. Besides, for initialization

purpose, αi
t and νi

t should be zero when t = 0. To find out appropriate ones that satisfy all

these requirements, we compare several different learning rate schedules in Fig. 1, and illustrate

changes of the corresponding update weights in Fig. 2. Though all learning rate families being

examined decay monotonically, some of them weight samples uniformly, others concentrate on

data collected in different time frames. Based on our findings, we consider two suitable learning

rate schedules for αt and νt :

αt(νt) =


H+1
H+tω , if t ≥ 1

0, if t = 0
(4.5) or


1

1−β+βtω , if t ≥ 1

0, if t = 0
(4.6), ω ∈ [

1
2
,1], β ∈ (0,

1
2
).
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Fig. 1. (Left) Learning Rate Schedule Comparison (H = 10). We illustrate several learning rate
schedules that give decaying learning rates. Hyperparameters are chosen for illustartion purpose.
Fig. 2. (Right) Update Weights Comparison (H = 10). The changes of αi

t for the corresponding
learning rates are depicted.

Learning rates in the above forms have been shown to converge in polynomial time [Even-Dar

and Mansour, 2003, Ge et al., 2019]. From Fig. 1 and Fig. 2, it is also notable that the power of

time step t affects the decaying speed of the resulting learning rates, which in turn decides the

proportion of data that are with non-zero update weights. Depending on practical scenarios, it

may be desirable to tune ω delicately. Essentially, if (4.5) and (4.6) share the same power of t, the

resulting learning rate in (4.5) can be recovered from (4.6) by calibrating hyperparameter β. In

particular, the specially-designed learning rate αt =
H+1
H+t adopted by [Jin et al., 2018] in form

(4.5) can be recovered by setting ω = 1, β = 1/(H +1) in (4.6). Thus, we deem the learning rate

schedule defined in (4.6) as a general form of interest.

In this work, we set hyperparameter ω = 1 to smoothly replace data in use. One may

select smaller value of ω for more aggressive evolution. In the later analyses, we wish to establish

performance bounds in terms of T and H, therefore, β is defined as a function of H. Later we

will show for ω = 1, any β(H) ∈ (0, 1
2) validates the provided sample efficiency. Without loss

of generality, we consider a simple form of β and define the following learning rate for our

algorithms:

β(H) =
1

2H
, αt =

2H
2H−1+ t

, H ≥ 1, t ≥ 0. (4.7)
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Chapter 5

Regret Analysis

In this chapter, we demonstrate our theoretical results for UCB-SCQ and UCB-HCQ.

5.1 Bounded Optimism with Confidence

As we will see, estimation errors in standard Q-learning that lead to the upward bias

[Hessel et al., 2018, Van Hasselt et al., 2016] also exist in constrained Q-learning. To establish

theoretical guarantees for constrained RL, we first measure the estimation error of constrained

action value (cost) functions, then derive confidence bounds following principle of optimism in

the face of uncertainty. To do so, one key step is to decompose optimal values (costs) in form of

empirical estimates obtained by update rules in Lemma 4.1.

Lemma 5.1. (Estimation Error of Constrained Q-learning). Consider t = Nk
h(s,a) at the

beginning of episode k and (sk
h,a

k
h) = (s,a), where (s,a) is a valid state-action pair that has been

traversed at step h in some of the previous episodes k1, ...,kt < k. Here, t is the number of times

(s,a) being visited at step h at the beginning of episode k. The estimation error of action-value
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and action-cost functions in UCB-SCQ and UCB-HCQ can be denoted as:

(Fk
h −F∗h )(λ,s,a) = α

0
t (H−F∗h (λ,s,a))

+
t

∑
i=1

α
i
t
(
[(P̂ki

h −Ph)W ∗h+1](λ,s,a)+(W ki
h+1−W ∗h+1)(λ,s

ki
h+1)+U1i

)
.

(Qk
h−Q∗h)(s,a) = α

0
t (H−Q∗h(s,a))

+
t

∑
i=1

α
i
t
(
[(P̂ki

h −Ph)V ∗h+1](s,a)+(V ki
h+1−V ∗h+1)(s

ki
h+1)+U2i

)
.

(Pk
h −P∗h )(s,a) =−ν

0
t P∗h (s,a)

+
t

∑
i=1

ν
i
t
(
[(P̂ki

h −Ph)C∗h+1](s,a)+(Cki
h+1−C∗h+1)(s

ki
h+1)−U3i

)
.

Lemma 5.1 allows us to naturally apply Azuma-Hoeffding concentration inequality and construct

confidence bonus used in UCB-SCQ and UCB-HCQ.

Lemma 5.2. (Concentrated Bonus). Let bonus be:

U1t =

√
8H2 ln(2SAT/δ)

βt
,U2t =

√
2H2 ln(2SAT/δ)

βt
,andU3t =

√
2γ2B2 ln(2SAT/δ)

βt
,

where β is a function of horizon H. For constrained value function W, there exists a martingale

difference sequence such that with probability at least 1−δ:

∣∣∣∣ t

∑
i=1

α
i
t · [(P̂

ki
h −Ph)W ∗h+1](λ,s,a)

∣∣∣∣≤U1t ,

where t = Nk
h(s,a) and k1, . . . ,kt ≤ k are the episodes where (s,a) was traversed at step h. The

same statement holds for Q and P in UCB-HCQ, with upper bound U2t and U3t respectively.

Proof detail is provided in Appendix C. In the following theorem, we show that estima-

tion in constrained Q-learning is always optimistic in the sense that for value (cost) functions,

estimates are always greater (smaller) than its optimal. With concentrated bonus, such optimism
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is reasonably bounded to control error propagation, and thus help establish upper regret bounds.

Theorem 1. (Bounded Optimism under Uncertainty). Estimation in UCB-SCQ and

UCB-HCQ is always optimistic. By setting bonus U1t ,U2t ,U3t suggested in Lemma 5.2, then for

any small δ > 0, with probability at least 1−δ, such optimism is bounded almost surely:

0≤ (Fk
h −F∗h )(λ,s,a)≤ 2α

0
t H +

t

∑
i=1

α
i
t
[
(W ki

h+1−W ∗h+1)(λ,s
ki
h+1)

]
+3U1t .

0≤ (Qk
h−Q∗h)(s,a)≤ α

0
t H +

t

∑
i=1

α
i
t
[
(V ki

h+1−V ∗h+1)(s
ki
h+1)

]
+3U2t .

−ν
0
t γB+

t

∑
i=1

ν
i
t
[
(Cki

h+1−C∗h+1)(s
ki
h+1)

]
−3U3t ≤ (Pk

h −P∗h )(s,a)≤ 0.

5.2 Regret Bounds

Definition 5. (Stability of Constrained Q-learning). Two feasible action sets Ah,A′h are

equivalent if and only if they contain exactly the same actions, i.e., Ah ≡ A′h iff ∀a ∈ A , a ∈

Ah ⇐⇒ a ∈ A′h. In constrained Q-learning, a feasible action set Ak
h at step h in episode k

is deemed to be stable if for any small ε ∈ [0,1] : Ak
h ≡ Ak−1

h and ∀a ∈ Ak
h,s ∈ S ,

∣∣Pk
h(s,a)−

Pk−1
h (s,a)

∣∣≤ ε. When a feasible action set becomes stable, constrained Q-learning is said to be

stable, and the step is denoted as ha. Define τha,π as the stable time of constrained Q-learning,

which is a random variable depending on the above stability condition and can be formally

defined as:

τha,π = inf{t ≥ 0 : ∃ha ∈ H,ka = d t
H e ∈ [K], such that Aka

ha
≡ Aka−1

ha
and

∀a ∈ Aka
h ,s ∈ S ,

∣∣Pka
ha
(s,a)−Pka−1

ha
(s,a)

∣∣≤ ε, under policy π}.

Assumption 1. There exists an integer Ta ≤ T < ∞ such that E
[
τha,π

]
≤ Ta, where the

expectation is taken over the randomness of MDP and policy π.
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Theorem 2 (Regret in Constrained RL). Consider the setting where Assumption 1 holds,

γ ≤ 1
K , β = 1

2H , and B ≤ T such that budget constraint is effective for learning. With bonus

chosen in Lemma 5.2, for any δ ∈ (0,1), with probability at least 1−δ, Algorithm 1 (UCB-SCQ)

with bonus term U1t achieves regret at most O
(√

H4SAT ln(SAT/δ)
)
; and regret for Algorithm 2

(UCB-HCQ) with bonus U2t ,U3t is at most O
(
H2SA+

√
H4SATa ln(SAT/δ)+(T −Ta)(H + ε)

)
.

Proof Sketch. Regret for UCB-SCQ can be easily shown to recover the result in [Jin et al., 2018].

For UCB-HCQ, result is established based on the worst case scenario where optimal action is

costly.

Step 1: decompose reward regret. Based on stable time, decompose regret into two parts.

Before stability, exploration dominates for estimates to converge, which switchs to exploitation

afterwards:

Gr(K)≤
ka−1

∑
k=1

δ
k
1 +
(
K− ka

)[ H

∑
h=1

(
max
a∈A

Q∗h(s
ka
1 ,a)−Qπka

h (ska
h ,aka

h )
)
+ ε
]
,

where δk
1 := (V k

1 −V πk
1 )(sk

1) is the approximate surrogate regret for each episode.

Step 2: bound localized surrogate regret. Let φk
h := (V k

h −V ∗h )(s) be estimation error,

ξk
h+1 :=

[
(Ph− P̂k

h)(V
∗
h+1−V πk

h+1)
]
(sk

h,a
k
h) be a martingale difference sequence. Bound δk

h at each

step:

ka−1

∑
k=1

δ
k
h ≤

ka−1

∑
k=1

[
α

0
t H +

t

∑
i=1

α
i
tφ

ki
h+1 +3U2t−φ

k
h+1 +δ

k
h+1 +ξ

k
h+1
]

≤ SAH +(1+
1

2H−1
)

ka−1

∑
k=1

δ
k
h+1 +

ka−1

∑
k=1

(
3U2Nk

h
+ξ

k
h+1
)

Step 3: recurse surrogate regret. With the above recursive expression, obtain complexity for δk
1:

ka−1

∑
k=1

δ
k
1 ≤ O

(
H2SA+

H

∑
h=1

ka−1

∑
k=1

(
3U2Nk

h
+ξ

k
h+1
))
.
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Using UCB and Azuma-Hoeffding concentration bounds, we have:

ka−1

∑
k=1

H

∑
h=1

3U2Nk
h
= O(

√
H4SATa ln(SAT/δ)),

∣∣ H

∑
h=1

ka−1

∑
k=1

ξ
k
h+1
∣∣≤ H

√
2Ta ln(2SAT/δ).

Step 4: bound regret after stability. When UCB-HCQ becomes stable in episode ka, optimal

action becomes infeasible. Since estimates converge according to Definition 5, linear regret

accumulates based on maxa∈A Q∗h(s
ka
1 ,a)−Qπka

h (ska
h ,aka

h ) for the rest of time.

Putting everything together completes the proof.

Theorem 2 suggests a trade-off between performance and safety guarantee. At each step

in hard constrained RL, a feasible action set is being generated to exclude actions with high

costs. In the case where optimal action is cost-consuming, only sub-optimal actions are valid for

consideration to guarantee safety, leading to extra regret compared to soft-constrained RL.
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Chapter 6

Summary and Conclusions

In this thesis, we propose two constrained RL algorithms with provable sample efficiency

in model-free settings under budget constraint. In autonomous systems, hard constraints are

considered preferably where violations of constraints may lead to serious consequences. In some

cases, however, overconstraints may result in infeasible solution set, and instead of imposing

strict conditions, soft constraints should be used to establish desired properties and to model the

agent behaviors. Our work takes one step forward to theoretically understand the relation between

these two types of constraint incorporation. In future work, it is of interest to relax the assumption

of action set stability for general study and connect regret bounds with budget constraint.
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Appendix A

Proof of Non-recursive Update Rule

Proof of Lemma 4.1. The recursive update rule for constrained action-value function Fh at

step h in Algorithm 1 (UCB-SCQ) is:

Fk+1
h (λ,s,a)← (1−αt)Fk

h (λ,s,a)+αt [wh(λ,s,a)+W k
h+1(λ,s

k
h+1)+U1t ]. (A.1)

Correspondingly, update rules for action-value function Qh, and action-cost function Ph in

Algorithm 2 (UCB-HCQ) are:

Qk+1
h (s,a)← (1−αt)Qk

h(s,a)+αt [rh(s,a)+V k
h+1(s

k
h+1)+U2t ], (2)

Pk+1
h (s,a)← (1−νt)Pk

h(s,a)+νt [ch(s,a)+Ck
h+1(s

k
h+1)−U3t ], (3)

where t := Nh(s,a) counts the number of times state-action pair (s,a) being visited at step h, and

U1t ,U2t ,U3t are the upper confidence bounds that encourage exploration.

In the remaining of the proof, we demonstrate how to derive the non-recursive update rule

for Fh, and results for Qh and Ph follow naturally. With equation (1) and Fki
h as the constrained
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action-value function at the beginning of episode ki, starting with k1, recursively we have:

Fk1
h (λ,s,a) = H,

Fk2
h (λ,s,a) = (1−α1)F

k1
h (λ,s,a)+α1[wh(λ,s,a)+W k1

h+1(λ,s
k1
h+1)+U11]

= (1−α1)H +α1[wh(λ,s,a)+W k1
h+1(λ,s

k1
h+1)+U11],

Fk3
h (λ,s,a) = (1−α2)F

k2
h (λ,s,a)+α2[wh(λ,s,a)+W k2

h+1(λ,s
k2
h+1)+U12]

= (1−α2)(1−α1)H +(1−α2)α1[wh(λ,s,a)+W k1
h+1(λ,s

k1
h+1)+U11]

+α2[wh(λ,s,a)+W k2
h+1(λ,s

k2
h+1)+U12],

Fk4
h (λ,s,a) = (1−α3)F

k3
h (λ,s,a)+α3[wh(λ,s,a)+W k3

h+1(λ,s
k3
h+1)+U13]

= (1−α3)(1−α2)(1−α1)H

+(1−α3)(1−α2)α1[wh(λ,s,a)+W k1
h+1(λ,s

k1
h+1)+U11]

+ (1−α3)α2[wh(λ,s,a)+W k2
h+1(λ,s

k2
h+1)+U12]

+α3[wh(λ,s,a)+W k3
h+1(λ,s

k3
h+1)+U13]

=
3

∏
j=1

(1−α j)H +
3

∑
i=1

[
αi

3

∏
j=i+1

(1−α j)
[
wh(λ,s,a)+W ki

h+1(λ,s
ki
h+1)+U1i

]]
,

...

Fk
h (λ,s,a) =

t

∏
j=1

(1−α j)H +
t

∑
i=1

[
αi

t

∏
j=i+1

(1−α j)
[
wh(λ,s,a)+W ki

h+1(λ,s
ki
h+1)+U1i

]]
.
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Appendix B

Learning Rate Properties

In this chapter, we introduce the properties of selected learning rate that are auxiliary in

the theoretical analyses of the presented algorithms.

B.1 Proof of Properties for Update Weight Coefficients

The following lemma regarding to the update weights would be used for decomposing

optimal values for regret analysis.

Lemma B.1. When learning rates are specified with the form in (4.5) or (4.6), the

following properties hold for the update weights defined in (4.4) with any valid β and ω:

1. α0
t = 1 and ∑

t
i=1 αi

t = 0 f or t = 0.

2. α0
t = 0 and ∑

t
i=1 αi

t = 1 f or t ≥ 1.

In particular, the general form of learning rate schedule in (4.6) recovers (4.5) by setting

β = 1/(H +1).

Proof of Lemma B.1. Let β = 1/(H +1) in (4.6), we have:

αt =
1

1− 1
H+1 +

tω

H+1

=
H +1
H + tω

,
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which recovers the learning rate in (4.5). Without loss of generality, we take the general form of

learning rate schedule defined in (4.6) to continue the proof.

When t = 0, action value functions are initialized: Fk1
h (λ,s,a) =Qk1

h (s,a) =H. According

to the update rules in Lemma 4.1, coefficient for item H is 1, and the sum of coefficients for the

remaining items is 0 i.e.,α0
t = 1 and ∑

t
i=1 αi

t = 0.

On the other hand, when t ≥ 1, for any valid ω and β, we have:

α
0
t =

t

∏
j=1

(1−α j) = (1−α1) . . .(1−αt) =

(
1− 1

1−β+β

)
. . .

(
1− 1

1−β+βtω

)
= 0,

t

∑
i=1

α
i
t =

t

∑
i=1

[
αi

t

∏
j=i+1

(1−α j)
]
, i≥ 1

= α1(1−α2) . . .(1−αt)+α2(1−α3) . . .(1−αt)+ · · ·+αt

=
1

1−β+β
(1−α2) . . .(1−αt)+α2(1−α3) . . .(1−αt)+ · · ·+αt

= (1−α2)
[
(1−α3) . . .(1−αt)

]
+α2

[
(1−α3) . . .(1−αt)

]
+ · · ·+αt

= (1−α2 +α2)
[
(1−α3) . . .(1−αt)

]
+ · · ·+αt

. . .

= (1−αt +αt) = 1.

B.2 Computational Properties of Learning Rate

As we shall see later, Lemma B.2 helps proof bounded optimism in Theorem 1, Lemma

B.3 helps derive the upper confidence bound for exploration bonus used in UCB-SCQ and UCB-

HCQ, and Lemma B.4 helps us justify that the increase of localized regret in each step can be

upper bounded as a constant.

Lemma B.2. With the selected learning rate in (4.6), the following inequalities specified
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in [Jin et al., 2018] hold for any valid β ∈ (0, 1
2) when ω = 1:

1√
t
≤

t

∑
i=1

αi
t√
i
≤ 2√

t
f or every t ≥ 1.

Proof of Lemma B.2. Using induction on t, for the base case when t = 1, we have ∑
t
i=1

αi
t√
i
= α1

1 =

α1 = 1. For t ≥ 2, note that:

α
i
t = αi

t

∏
j=i+1

(1−α j) = (1−αt)
[
αi

t−1

∏
j=i+1

(1−α j)
]
= (1−αt)α

i
t−1, i ∈ [1, t−1],

we thus have the following recursive relationship:

t

∑
i=1

αi
t√
i
=

t−1

∑
i=1

αi
t√
i
+

αt
t√
t
= (1−αt)

t−1

∑
i=1

αi
t−1√

i
+

αt√
t
.

Using induction, assume 1√
t−1
≤∑

t−1
i=1

αi
t−1√

i
≤ 2√

t−1
holds for t−1. Substitute the inequalities and

αt =
H+1
H+t to the above equation, we have:

t

∑
i=1

αi
t√
i
= (1−αt)

t−1

∑
i=1

αi
t−1√

i
+

αt√
t

≤ 2(1−αt)√
t−1

+
αt√

t
=

2β(t−1)
[1+β(t−1)]

√
t−1

+
1

[1+β(t−1)]
√

t

≤ 2β
√

t
[1+β(t−1)]

+
1

[1+β(t−1)]
√

t

=
2βt +1√

t[1+β(t−1)]
=

2(βt−β+1)+2β−1√
t[1+β(t−1)]

=
2√
t
+

2β−1√
t[1+β(t−1)]

≤ 2√
t
,

where the final inequality holds as β ∈ (0, 1
2) and t ≥ 1.
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Following the induction, we also obtain the lower bound:

(1−αt)
t−1

∑
i=1

αi
t−1√

i
+

αt√
t
≥ 1−αt√

t−1
+

αt√
t
≥ 1−αt√

t
+

αt√
t
=

1√
t
.

Lemma B.3. With the selected learning rate in (4.6), the update weights in the non-

recursive update rule have the following properties for any valid β when ω = 1:

max
i∈[t]

α
i
t ≤

1
βt

and
t

∑
i=1

(αi
t)

2 ≤ 1
βt

f or every t ≥ 1.

Proof of Lemma B.3. With the definition of αi
t and by manipulation, we have:

α
i
t = αi

t

∏
j=i+1

(1−α j) = αi(1−αi+1)(1−αi+2) . . .(1−αt)

=
1

1−β+βi
(1− 1

1−β+β(i+1)
)(1− 1

1−β+β(i+2)
) . . .(1− 1

1−β+βt
)

=
1

1−β+βi
· βi

1−β+β(i+1)
· β(i+1)

1−β+β(i+2)
. . .

β(t−1)
1−β+βt

=
1

1−β+βt
· βi
(1−β)+βi

· β(i+1)
(1−β)+β(i+1)

. . .
β(t−1)

(1−β)+β(t−1)

≤ 1
(1−β)+βt

≤ 1
βt
.

The last inequality holds as each remaining term involved i is strictly less than 1 with β ∈ (0, 1
2).

With the fact that ∑
t
i=1(α

i
t) = 1, we also have:

t

∑
i=1

(αi
t)

2 =
t

∑
i=1

(αi
t×α

i
t)≤

t

∑
i=1

(max
i∈[t]

α
i
t×α

i
t) = max

i∈[t]
α

i
t

t

∑
i=1

(αi
t)≤

1
βt
×1 =≤ 1

βt
.

Lemma B.4. Let β = 1
2H and ω = 1 in (4.6), where H ≥ 1, the following summation result
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holds for the resulting learning rate:

∞

∑
t=i

α
i
t = 1+

1
2H−1

, f or every i≥ 1.

Proof of Lemma B.4. Starting with the definition of αi
t and αi, we have:

∞

∑
t=i

α
i
t = α

i
i +α

i
i+1 +α

i
i+2 + . . .

= αi +αi(1−αi+1)+αi(1−αi+1)(1−αi+2)+ . . .

= αi
[
1+(1−αi+1)+(1−αi+1)(1−αi+2)+ . . .

]
=

2H
2H−1+ i

[
1+(1− 2H

2H + i
)+(1− 2H

2H + i
)(1− 2H

2H + i+1
)+ . . .

]
=

2H
2H−1+ i

[
1+

i
2H + i

+
i

2H + i
· i+1

2H + i+1
+ . . .

]
=

2H
2H−1+ i

∞

∑
j=0

x j,

where, x j is defined as:

x j =


1, if j = 0;

j

∏
k=1

i+ k−1
2H−1+ i+ k

, if j ≥ 1.

Next, we will show that the sum of the infinite series ∑
∞
j=0 x j converges to 2H−1+i

2H−1 , i.e.:

∞

∑
j=0

x j→
i+H

H
.

To do so, we first prove the following relationship using induction on t:

2H−1+ i
2H−1

−
t

∑
j=0

x j =
i

2H−1

t

∏
j=1

i+ j
2H−1+ i+ j

.

As the base case, when t = 0, we have 2H−1+i
2H−1 −1 = i

2H−1 . The above relationship holds. Assume
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for t−1, the following holds:

2H−1+ i
2H−1

−
t−1

∑
j=0

x j =
i

2H−1

t−1

∏
j=1

i+ j
2H−1+ i+ j

.

Then for t, we have:

2H−1+ i
2H−1

−
t

∑
j=0

x j =
2H−1+ i

2H−1
−

t−1

∑
j=0

x j− xt

=
i

2H−1

t−1

∏
j=1

i+ j
2H−1+ i+ j

−
t

∏
j=1

i+ j−1
2H−1+ i+ j

=
i

2H−1

t−1

∏
j=1

i+ j
2H−1+ i+ j

− i+ t−1
2H−1+ i+ t

t−1

∏
j=1

i+ j
2H−1+ i+ j

=
t−1

∏
j=1

i+ j−1
2H−1+ i+ j

·
[

i
2H−1

− i
2H−1+ i+ t

]

=
t−1

∏
j=1

i+ j−1
2H−1+ i+ j

· i(i+ t)
(2H−1)(2H−1+ i+ t)

=
i

2H−1

t

∏
j=1

i+ j
2H−1+ i+ j

.

As each item involved in the product is less then 1, when t→ ∞, we have the following

limit:

lim
t→∞

[
2H−1+ i

2H−1
−

t

∑
j=0

x j

]
= lim

t→∞

[
i

2H−1

t

∏
j=1

i+ j
2H−1+ i+ j

]
= 0.

That is to say, the sum of the infinite series ∑
∞
j=0 x j converges to 2H−1+i

2H−1 . Thus, we have:

∞

∑
t=i

α
i
t =

2H
2H−1+ i

∞

∑
j=0

x j =
2H

2H−1+ i
· 2H−1+ i

2H−1
= 1+

1
2H−1

, where H ≥ 1.
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Appendix C

Proof of Constrained Functions

Decomposition

Proof of Lemma 5.1. In UCB-SCQ, from Definition 3 and the Bellman optimal equation, we

have:

F∗h (λ,s,a) = Q∗h(s,a)−λP∗h (s,a)

= rh(s,a)+Es′∼P(·|s,a)V
∗
h+1(s

′)−λ
[
ch(s,a)+Es′∼P(·|s,a)C

∗
h+1(s

′)
]

= wh(λ,s,a)+∑s′ Ph(s′|s,a)W ∗h+1(λ,s
′) = wh(λ,s,a)+PhW ∗h+1(λ,s,a).

With Lemma B.1, we have ∑
t
i=0 αi

t = 1, and thus are able to decompose F∗h as follows:

F∗h (λ,s,a) =
[
∑

t
i=0 α

i
t

]
F∗h (λ,s,a) = α

0
t F∗h (λ,s,a)+∑

t
i=1 α

i
tF
∗
h (λ,s,a)

= α
0
t F∗h (λ,s,a)+∑

t
i=1 α

i
t
[
wh(λ,s,a)+PhW ∗h+1(λ,s,a)

]
= α

0
t F∗h (λ,s,a)+∑

t
i=1 α

i
t
[
wh(λ,s,a)+PhW ∗h+1(λ,s,a)+W ∗h+1(λ,s

ki
h+1)−W ∗h+1(λ,s

ki
h+1)

]
= α

0
t F∗h (λ,s,a)+∑

t
i=1 α

i
t
[
wh(λ,s,a)+(Ph− P̂ki

h )W
∗
h+1(λ,s,a)+W ∗h+1(λ,s

ki
h+1)

]
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The third equality holds because of the empirical definition of constrained value function

W ∗: P̂ki
h W ∗h+1(λ,s,a) := W ∗h+1(λ,s

ki
h+1). Similarly, for action-value function Q, and action-cost

function P in UCB-HCQ, we have:

Q∗h(s,a) = α
0
t Q∗h(x,a)+∑

t
i=1 α

i
t
[
rh(s,a)+(Ph− P̂ki

h )V
∗
h+1(s,a)+V ∗h+1(s

ki
h+1)

]
P∗h (s,a) = ν

0
t P∗h (s,a)+∑

t
i=1 ν

i
t
[
ch(s,a)+(Ph− P̂ki

h )C
∗
h+1(s,a)+C∗h+1(s

ki
h+1)

]
Expression in Lemma 5.1 can then be acquired by subtracting (4.1), (4.2), (4.3) from the above

equations respectively.

32



Appendix D

Proofs of Optimism Under Uncertainty

D.1 Proof of Lemma 5.2 (Concentrated bonus)

Proof of Lemma 5.2. In this proof, we derive the concentrated bonus U1t used in UCB-SCQ, and

results of U2t and U3t in UCB-HCQ follow exactly the same derivation. To obtain nice learning

properties for UCB-SCQ and UCB-HCQ, we resort to concentration inequalities, in which the

deviation probability decay exponentially in the distance from the expected value.

The key here is to upper bound the probability that the empirical optimal action-value

W ∗h+1(λ,s
ki
h+1), a.k.a. P̂ki

h W ∗h+1(λ,s,a), at each episode ki deviates from its expected value

E
s′∼P(·|ski

h =s,aki
h =a)

W ∗h+1(λ,s′), a.k.a. PhW ∗h+1(λ,s,a) by more than a predefined threshold.

Here we consider only the valid episodes where ki ∈ [K] for all i = 1, . . . , t. Construct

a martingale difference sequence {Xi}i∈Z+ = {[(P̂ki
h −Ph)W ∗h+1](λ,s,a)}ti=1, with respect to the

filtration {Fi}i∈Z+ such that:

1. {Fi}i∈Z+ is a nondecreasing collection of σ-fields: F0⊆F1 · · · ⊆Fn, where Fi =σ(X1, . . . ,Xi)

captures the information that is known at step i.

2. Xi is Fi-measurable, for all i≥ 0.
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3. E[Xi|Fi−1] = 0, for every i≥ 0.

Then we have martingale Zi = ∑
i
j=1 X j. Note that |Xi| ≤ 2H almost surely for all i = 1, . . . , t.

Because of linearity of expectation, {αi
t ·Xi}i∈Z+ is also a martingale difference sequence. By

Azuma-Hoeffding inequality, for all ε > 0:

P
[∣∣∣∣ t

∑
i=1

α
i
t ·Xi

∣∣∣∣≥ ε

]
≤ 2exp

(
− ε2

2∑
t
i=1(α

i
t ·2H)2

)
.

Taking probability as δ/(SAKH), and applying the union bound over episodes K, then with

probability at least 1−δ/(SAH), we have:

∀t ∈ [K] :
∣∣∣∣ t

∑
i=1

α
i
t ·Xi

∣∣∣∣≤ 2H

√
t

∑
i=1

(αi
t)

2 ·2ln(2SAT/δ)≤ H

√
8ln(2SAT/δ)

βt
.

The last inequality follows the fact that ∑
t
i=1(α

i
t)

2≤ 1
βt (see Lemma B.3 in Appendix B). Applying

union bound for all (s,a,h) ∈ S ×A× [H] over all episodes, with probability at least 1−δ:

∣∣∣∣ t

∑
i=1

α
i
t · [(P̂

ki
h −Ph)W ∗h+1](λ,s,a)

∣∣∣∣≤
√

8H2 ln(2SAT/δ)

βt
, where t = Nk

h(s,a)≤ K.

Similarly, we have:

U2t =

√
2H2 ln(2SAT/δ)

βt
, U3t =

√
2γ2B2 ln(2SAT/δ)

βt
.
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D.2 Proof of Theorem 1

Proof of Theorem 1. According to Lemma 5.1 and Lemma 5.2, we have:

(Fk
h −F∗h )(λ,s,a)

≤ α
0
t (H−F∗h (λ,s,a))+∑

t
i=1 α

i
t
[
(W ki

h+1−W ∗h+1)(λ,s
ki
h+1)

]
+U1t +∑

t
i=1 α

i
tU1i

≤ 2α
0
t H +∑

t
i=1 α

i
t
[
(V ki

h+1−V ∗h+1)(x
ki
h+1)]+U1t +∑

t
i=1 α

i
tU1i.

The last inequality holds as F∗h (λ,s,a) ∈ [−H,H]. With the selected concentrated bonus:

U1t ≤
t

∑
i=1

α
i
tU1i =

t

∑
i=1

α
i
t

√
8H2 ln(2SAT/δ)

βi
=

√
8H2 ln(2SAT/δ)

β

t

∑
i=1

αi
t√
i
≤ 2U1t ,

Here, we use the fact that 1√
t ≤ ∑

t
i=1

αi
t√
i
≤ 2√

t (see Lemma B.2 in Appendix B). We thus have:

(Fk
h −F∗h )(λ,s,a)≤ 2α

0
t H +∑

t
i=1 α

i
t
[
(W ki

h+1−W ∗h+1)(λ,s
ki
h+1)]+3U1t .

Similarly, we also have:

(Qk
h−Q∗h)(s,a)≤ α

0
t H +∑

t
i=1 α

i
t
[
(V ki

h+1−V ∗h+1)(s
ki
h+1)

]
+3U2t .

(Pk
h −P∗h )(s,a)≥−ν

0
t γB+∑

t
i=1 ν

i
t
[
(Cki

h+1−C∗h+1)(s
ki
h+1)

]
−3U3t .

On the other hand, in terms of optimism, it is required that Fk
H(λ,s,a)≥F∗H(λ,s,a), Qk

H(s,

a)≥ Q∗H(s,a),P
h
k (s,a)≤ P∗h (s,a), as less cost and higher value are desirable. Next, we will show

that optimism under uncertainty is always guaranteed for estimations of both value function and

cost function in constrained Q-learning, which can be verified with Lemma 5.2 and by induction
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on h = H,H−1, . . . ,1. In episodic MDP, an episode ends at step H. We thus have:

W ∗H+1(λ,s) =W k
H+1(λ,s) =Ck

H+1(s) =C∗H+1(s) = 0, ∀k ∈ [K],(s,a) ∈ S ×A ,

F∗H(λ,s,a) = wH(λ,s,a)+ [PHV ∗H+1](λ,s,a) = wH(λ,s,a), ∀(s,a) ∈ S ×A ,

P∗H(s,a) = cH(s,a)+ [PhC∗H+1](s,a) = cH(s,a), ∀(s,a) ∈ S ×A .

With Lemma 5.2, bounded constrained reward wH(λ,s,a) ∈ [−1,1] and bounded cost cH(s,a) ∈

[−1,1], the base cases hold:

(Fk
H−F∗H)(λ,s,a) = α

0
t (H−F∗H(λ,s,a))+∑

t
i=1 α

i
tU1i

= α
0
t (H−wH(λ,s,a))+

t

∑
i=1

α
i
tU1i ≥ α

0
t (H−wH(λ,s,a))+U1t ≥ 0.

(Pk
H−P∗H)(s,a) =−α

0
t P∗H(s,a)−∑

t
i=1 α

i
tU3i ≤−α

0
t cH(s,a)−U3t ≤ 0.

Next, assume (Fk
h+1−F∗h+1)(λ,s,a) ≥ 0,(Pk

h+1−P∗h+1)(s,a) ≤ 0 hold at step h+1, ∀(s,a,k) ∈

S ×A × [K]. Specifically, both hold for ki ∈ [K]. With Lemma E.1 (see Appendix E), it also

implies (W k
h+1−W ∗h+1)(λ,s)≥ 0,(Ck

h+1−C∗h+1)(s)≤ 0.

With Lemma 5.3, with probability of at least 1−δ:

∑
t
i=1 α

i
t · [(P̂

ki
h −Ph)W ∗h+1](λ,s,a)≥−U1t , ∑

t
i=1 α

i
t · [(P̂

ki
h −Ph)C∗h+1](s,a)≤U3t .

Plug in the above results back to Lemma 5.2, then at step h, with probability of at least 1−δ:

(Fk
h −F∗h )(λ,s,a)

≥ α
0
t (H−F∗h (λ,s,a))+∑

t
i=1 α

i
t ·0+∑

t
i=1 α

i
t · [(P̂

ki
h −Ph)W ∗h+1](λ,s,a)+∑

t
i=1 α

i
tU1i

≥ α
0
t (H−F∗h (λ,s,a))−U1t +∑

t
i=1 α

i
tU1i ≥ 0;

(Pk
h −P∗h )(s,a)
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≤−α
0
t P∗h (s,a)+∑

t
i=1 α

i
t ·0+∑

t
i=1 α

i
t · [(P̂

ki
h −Ph)C∗h+1](s,a)−∑

t
i=1 α

i
tU3i

≤−α
0
t P∗h (s,a)+U3t−∑

t
i=1 α

i
tU3i ≤ 0.

The last inequality holds because F∗h (λ,s,a) ∈ [−H,H], ∑
t
i=1 αi

tU1i ≥U1t , and P∗h (s,a) ∈ [0,γB],

∑
t
i=1 αi

tU3i ≥U3t . Therefore, in constrained Q-learning, the estimation of value functions and

cost functions are always bounded optimistic.

The proof of Qh(s,a) follows exactly the same procedure and thus is omitted.
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Appendix E

Auxiliary Proofs for Regret Analysis

Lemma E.1. In constrained RL, when optimism under uncertainty holds for action-value

functions (action-cost function), it also holds for value functions (cost function):

(Fk
h −F∗h )(λ,s,a)≥ 0 ⇒ (W k

h −W ∗h )(λ,s)≥ 0,

(Qk
h−Q∗h)(s,a)≥ 0 ⇒ (V k

h −V ∗h )(s)≥ 0,

(Pk
h −P∗h )(s,a)≤ 0 ⇒ (Ck

h−C∗h)(s)≤ 0.

Proof of Lemma E.1. Recall that W k
h (λ,s)←min{H,maxa∈AFk

h (λ,s,a)}, V k
h (s

k
h)←min{H, max

a∈AhQk
h(s,a)}, and Ck

h(s)←max{0, mina∈Ah Pk
h(s,a)}:

∀s ∈ S , (W k
h −W ∗h )(λ,s) =


maxa∈A(Fk

h −F∗h )(λ,s,a), ifmaxa∈A Fk
h (λ,s,a)< H

H−maxa∈A F∗h (λ,s,a), ifmaxa∈A Fk
h (λ,s,a)≥ H

;

∀s ∈ S , (V k
h −V ∗h )(s) =


maxa∈Ah(Q

k
h−Q∗h)(s,a), ifmaxa∈Ah Qk

h(s,a)< H

H−maxa∈Ah Qk
h(s,a), ifmaxa∈Ah Qk

h(s,a)≥ H
;
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∀s ∈ S , (Ck
h−C∗h)(s) =


0−mina∈Ah P∗h (s,a), ifmina∈Ah Pk

h(s,a)< 0

mina∈Ah(P
k
h(s,a)−P∗h+1(s,a)), ifmina∈Ah Pk

h(s,a)≥ 0
.

Thus, when (Fk
h −F∗h )(λ,s,a)≥ 0,(Qk

h−Q∗h)(s)≥ 0,(Pk
h−P∗h )(s,a)≤ 0 hold at step h, ∀(s,a,k)∈

S ×A× [K], with the facts that F and Q are upper bounded by H, P is lower bounded by 0, it

also implies (W k
h −W ∗h )(λ,s)≥ 0,(V k

h −V ∗h )(s)≥ 0,(Ck
h−C∗h)(s)≤ 0:

Lemma E.2. In constrained Q-learning, for any (k,h) ∈ [K]× [H] and sk
h being the state

visited, we have (V k
h −V πk

h )(sk
h) ≤ (Qk

h−Qπk
h )(sk

h,a
k
h) and (Cπk

h −Ck
h)(s

k
h) ≤ (Pπk

h −Pk
h)(s

k
h,a

k
h),

where ak
h ∈ Ah is the optimal feasible action.

Proof of Lemma E.2. Recall that V k
h (s

k
h) = min{H, maxa∈Ah Qk

h(s
k
h,a)}:

V k
h (s

k
h) =


H, if H ≤maxa∈Ah Qk

h(s
k
h,a)

maxa∈Ah Qk
h(s

k
h,a), if H > maxa∈Ah Qk

h(s
k
h,a)

,

we thus have V k
h (s

k
h) ≤ maxa∈Ah Qk

h(s
k
h,a) = Qk

h(s
k
h,a

k
h). Note that for a given state sk

h at step h

in episode k, V πk
h (sk

h) = Qπk
h (sk

h,πk(sk
h)) = Qπk

h (sk
h,a

k
h). Therefore, (V k

h −V πk
h )(sk

h)≤ Qk
h(s

k
h,a

k
h)−

V πk
h (sk

h) = (Qk
h−Qπk

h )(sk
h,a

k
h).

For cost function, recall that Ck
h(s

k
h) = max{0, mina∈Ah Pk

h(s
k
h,a)}:

Ck
h(s

k
h) =


mina∈Ah Pk

h(s
k
h,a), if 0≤mina∈Ah Pk

h(s
k
h,a)

0, if 0 > mina∈Ah Pk
h(s

k
h,a)

,

i.e., Ck
h(s

k
h) ≥ mina∈Ah Ph(sk

h,a). Meanwhile, Cπk
h (sk

h) = Pπk
h (sk

h,πk(sk
h)) = Pπk

h (sk
h,a

k
h). Hence,

(Cπk
h −Ck

h)(s
k
h)≤Cπk

h (sk
h)−Pk

h(s
k
h,πk(sk

h)) = (Pπk
h −Pk

h)(s
k
h,a

k
h).

39



Lemma E.3. (Decomposition of Surrogate Regret). For any fixed (k,h) ∈ [K]× [H], let

t = Nk
h(s

k
h,a

k
h), and suppose (sk

h,a
k
h) was previously taken at step h of episodes k1, . . . ,kt < k. The

following upper bound holds for localized surrogate regret δk
h := (V k

h −V πk
h )(sk

h):

δ
k
h ≤ α

0
t H +∑

t
i=1 α

i
tφ

ki
h+1 +3U2t−φ

k
h+1 +δ

k
h+1 +ξ

k
h+1,

where φk
h+1 := (V k

h+1−V ∗h+1)(s
k
h+1)≥ 0, and ξk

h+1 :=
[
(Ph− P̂k

h)(V
∗
h+1−V πk

h+1)
]
(sk

h,a
k
h) is a mar-

tingale difference sequence w.r.t. the regret.

Proof of Lemma E.3. With Lemma E.2, Bellman equations, and Theorem 1, δk
h can be decomposed

as follows:

δ
k
h = (V k

h −V πk
h )(sk

h)

≤ (Qk
h−Qπk

h )(sk
h,a

k
h)

= (Qk
h−Q∗h)(s

k
h,a

k
h)+(Q∗h−Qπk

h )(sk
h,a

k
h)

= (Qk
h−Q∗h)(s

k
h,a

k
h)+ [rh(sk

h,a
k
h)+PhV ∗h+1(s

k
h,a

k
h)]− [rh(sk

h,a
k
h)+PhV πk

h+1(s
k
h,a

k
h)]

= (Qk
h−Q∗h)(s

k
h,a

k
h)+ [Ph(V ∗h+1−V πk

h+1)](s
k
h,a

k
h)

≤ α
0
t H +∑

t
i=1 α

i
t
[
(V ki

h+1−V ∗h+1)(s
ki
h+1)

]
+3U2t +[Ph(V ∗h+1−V πk

h+1)](s
k
h,a

k
h)

= α
0
t H +∑

t
i=1 α

i
t
[
(V ki

h+1−V ∗h+1)(s
ki
h+1)

]
+3U2t +

[
P̂k

h(V
∗
h+1−V πk

h+1)
]
(sk

h,a
k
h)

+
[
(Ph− P̂k

h)(V
∗
h+1−V πk

h+1)
]
(sk

h,a
k
h)

= α
0
t H +∑

t
i=1 α

i
t
[
(V ki

h+1−V ∗h+1)(s
ki
h+1)

]
+3U2t +(V ∗h+1−V πk

h+1)(s
k
h+1)

+
[
(Ph− P̂k

h)(V
∗
h+1−V πk

h+1)
]
(sk

h,a
k
h)

= α
0
t H +∑

t
i=1 α

i
t
[
(V ki

h+1−V ∗h+1)(s
ki
h+1)

]
+3U2t +

[
(V ∗h+1−V k

h+1 +V k
h+1−V πk

h+1

]
(sk

h+1)

+
[
(Ph− P̂k

h)(V
∗
h+1−V πk

h+1)
]
(sk

h,a
k
h)

= α
0
t H +∑

t
i=1 α

i
tφ

ki
h+1 +3U2t−φ

k
h+1 +δ

k
h+1 +ξ

k
h+1,
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where φk
h+1 :=(V k

h+1−V ∗h+1)(s
k
h+1)≥ 0 (Lemma E.1), and ξk

h+1 :=
[
(Ph−P̂k

h)(V
∗
h+1−V πk

h+1)
]
(sk

h,a
k
h)

is a martingale difference sequence. The eighth equality holds as [P̂k
hV πk

h+1](s
k
h,a

k
h) =V πk

h+1(s
k
h+1)

and [P̂k
hV ∗h+1](s

k
h,a

k
h) =V ∗h+1(s

k
h+1).
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Appendix F

Proof of Theorem 2

Proof of Theorem 2. Intuitively, UCB-SCQ subsumes costs into rewards by expanding the original

range, and thus has the same order of complexity as proposed in [Jin et al., 2018]. Proof idea

of UCB-SCQ can be referred to [Jin et al., 2018]. In this proof, we focus on UCB-HCQ for

hard-contained RL. Specifically, we analyze the regret bound for the worst case scenario where

optimal action is costly and become infeasible upon convergence.

Assume assumption 1 holds, and let ka = d t
H e be the episode in which UCB-HCQ becomes

stable. We then divide the total regret based on ka. For time steps before stability, exploration

dominates and gradually switch to exploitation when estimates become precise and stable. We

will show that with Theorem 1, the first part of the regret is guaranteed to be upper bounded

by the approximated regret because of bounded optimism. This makes sense, as in model-free

settings without oracles, the optimal values are unknown and it is essential to use the estimated

constrained values as surrogate functions.

Before stability, with probability at least 1−δ, we have Qk
h(s,a)≥ Q∗h(s,a), which holds

for all valid state-action pair. Let φk
h := (V k

h −V ∗h )(s), which measures the upward bias in

estimation and is always greater than or equal to zero (Lemma E.1). Define δk
h := (V k

h −V πk
h )(sk

h),

42



which represents the approximate surrogate regret at each step h. We thus have:

Gr(K) = E
[ K

∑
k=1

(
V π∗

1 (sk
1)−V πk

1 (sk
1)
)]

=
K

∑
k=1

(
E[V ∗1 (sk

1)]−E[V πk
1 (sk

1)]
)

=
K

∑
k=1

(
V ∗1 (s

k
1)−V πk

1 (sk
1)
)
=

ka−1

∑
k=1

(
V ∗1 (s

k
1)−V πk

1 (sk
1)
)
+

K

∑
k=ka

(
V ∗1 (s

k
1)−V πk

1 (sk
1)
)

≤
ka−1

∑
k=1

δ
k
1 +

K

∑
k=ka

(
V ∗1 (s

k
1)−V πk

1 (sk
1)
)

≤
ka−1

∑
k=1

δ
k
1 +
(
K− ka

)[
V ∗1 (s

ka
1 )−V πka

1 (ska
1 )+ ε

]
=

ka−1

∑
k=1

δ
k
1 +
(
K− ka

)[ H

∑
h=1

(
max
a∈A

Q∗h(s
ka
1 ,a)−Qπka

h (ska
h ,aka

h )

)
+ ε

]
.

The key then becomes to upper bound the surrogate regret ∑
ka−1
k=1 δk

1 before stability. To do so, we

decompose it in a recursive manner for each step h, so as to localize errors, and to upper bound

each term in the resulting regret decomposition.

According to Lemma E.3. (see Appendix E), at fixed step h ∈ [H] over all episodes, the

sum of localized surrogate regret across episodes can be upper bounded as follows:

ka−1

∑
k=1

δ
k
h ≤

ka−1

∑
k=1

[
α

0
t H +

t

∑
i=1

α
i
tφ

ki
h+1 +3U2t−φ

k
h+1 +δ

k
h+1 +ξ

k
h+1

]
(*)

≤ SAH +
ka−1

∑
k=1

t

∑
i=1

[
α

i
tφ

ki
h+1 +3U2t−φ

k
h+1 +δ

k
h+1 +ξ

k
h+1

]
≤ SAH +(1+

1
2H−1

)
ka−1

∑
k=1

φ
k
h+1 +

ka−1

∑
k=1

(
3U2Nk

h
−φ

k
h+1 +δ

k
h+1 +ξ

k
h+1
)

= SAH +
1

2H−1

ka−1

∑
k=1

φ
k
h+1 +

ka−1

∑
k=1

δ
k
h+1 +

ka−1

∑
k=1

(
3U2Nk

h
+ξ

k
h+1
)

≤ SAH +(1+
1

2H−1
)

ka−1

∑
k=1

δ
k
h+1 +

ka−1

∑
k=1

(
3U2Nk

h
+ξ

k
h+1
)
, (**)

where ξk
h+1 :=

[
(Ph− P̂k

h)(V
∗
h+1−V πk

h+1)
]
(sk

h,a
k
h) is a martingale difference sequence related to

regret. The first inequality is obtained by directly applying Lemma E.3.
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For the second inequality, recall that t = Nk
h(s

k
h,a

k
h) is the number of times that (sk

h,a
k
h) has

been visited at step h at the beginning of k, α0
t = 0 when t ≥ 1, and α0

t = 1 when t = 0. Hence,

the first term in (*) measures the greatest possible regret accumulated due to initialization when

state-action pairs are visited for the first time. It is maximized if each time a new state-action pair

is selected until all state-action pairs have been traversed at least once, which can be rigorously

denoted with indicator function:

ka−1

∑
k=1

I[t = 0]≤


ka, if ka ≤ S ×A

SA, if ka > S ×A
,

i.e., ∑
ka−1
k=1 I[t = 0]≤ SA. Thus, we have:

∑
ka−1
k=1 α

0
t H = ∑

ka−1
k=1 I[t = 0] ·H ≤ SAH,

which gives the second inequality. The second term in (*) then measures the cumulative estimation

deviations over episodes, which decay along with time. Recall that ki(sk
h,a

k
h) is the episode that

(sk
h,a

k
h) was traversed at step h for the i-th time. Note that for every k′ ∈ [K], φk′

h+1 appears in the

later episodes with k > k′ if and only if (sk
h,a

k
h) = (sk′

h ,a
k′
h ). For the i-th time it appears, we have

t = Nk′
h (sk′

h ,a
k′
h )+ i. Reorganizing the summation with the fact that ∑

∞
t=i αi

t = 1+ 1
2H−1 for every

i≥ 1 (Lemma B.4), we have:

ka−1

∑
k=1

t

∑
i=1

α
i
tφ

ki
h+1 ≤

ka−1

∑
k′=1

φ
k′
h+1

∞

∑
t=Nk′

h +1

α
Nk′

h
t ≤ (1+

1
2H−1

)
ka−1

∑
k=1

φ
k
h+1,

which gives the third inequality. The last inequality holds as V ∗h+1(s
k
h) ≥ V πk

h+1(s
k
h) and thus

δk
h+1 ≥ φk

h+1. With the above recursive form of surrogate regret ∑
ka−1
k=1 δk

h, we can now easily
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obtain its complexity. In episodic MDP, for k ∈ [K],h = H +1, we have:

δ
k
H+1 =V k

H+1(s
k
H+1)−V πk

H+1(s
k
H+1) =V k

H+1(s
k
H+1) = min{H,max

a∈A
Qk

H+1(s
k
H+1,a)} ≡ 0.

By writing (**) recursively for h = 1,2, . . . ,H, and let P = 1+ 1
2H−1 , we have:

ka−1

∑
k=1

δ
k
1 ≤ SAH +P

ka−1

∑
k=1

δ
k
2 +

ka−1

∑
k=1

(
3U2Nk

1
+ξ

k
2
)

≤ SAH +P
[

SAH +P
ka−1

∑
k=1

δ
k
3 +

ka−1

∑
k=1

(
3U2Nk

2
+ξ

k
3
)]

+
ka−1

∑
k=1

(
3U2Nk

1
+ξ

k
2
)

= (1+P )SAH +P
ka−1

∑
k=1

(
3U2Nk

2
+ξ

k
3
)
+

ka−1

∑
k=1

(
3U2Nk

1
+ξ

k
2
)
+P 2

ka−1

∑
k=1

δ
k
3

≤
3

∑
h=1

P h−1SAH +
3

∑
h=1

P h−1
ka−1

∑
k=1

(
3U2Nk

h
+ξ

k
h+1
)
+P 3

ka−1

∑
k=1

δ
k
4

. . .

≤ O(H +o(
1

2H−1
))SAH +

H

∑
h=1

O(1)
ka−1

∑
k=1

(
3U2Nk

h
+ξ

k
h+1
)

= O
(

H2SA+
H

∑
h=1

ka−1

∑
k=1

(
3U2Nk

h
+ξ

k
h+1
))

.

Note that for any h ∈ [H]:

ka−1

∑
k=1

H

∑
h=1

3U2Nk
h
≤ 3

ka−1

∑
k=1

H

∑
h=1

√
4H3 ln(2SAT/δ)

Nk
h(s

k
h,a

k
h)

= O(1)
ka−1

∑
k=1

H

∑
h=1

√
H3 ln(SAT/δ)

Nk
h(s

k
h,a

k
h)

= O(1)∑
s,a

Nka−1
h (s,a)

∑
n=1

H

√
H3 ln(SAT/δ)

n

≤ O(1)∑
s,a

√
Nka−1

h (s,a)H5 ln(SAT/δ)

≤ O(
√

H5SAka ln(SAT/δ)) = O(
√

H4SATa ln(SAT/δ)).

The third equality holds as each time when a state-action pair (s,a) is visited in an episode k ∈ [K],
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Nk
h(s,a) is increased by one, and Nka−1

h (s,a) therefore denotes the total number of times that

(s,a) has been traversed over (ka−1) episodes. Hence summing all visiting times over episodes

is equivalent to summing over all entries in Nka−1
h at terminal episode ka−1, and increasing a

counter for each entry beginning from one to Nka−1
h (s,a). This is true for all steps h, and it also

implies for any fixed h ∈ [H], we have ∑s,a Nka−1
h (s,a) = ka−1 in the final table Nka−1

h . The forth

inequality holds as ∑
Nka−1

h (s,a)
n=1

√
1
n =

√
1
1 +
√

1
2 + ·+

√
1

Nka−1
h
≤ 1 ·Nka−1

h , which is maximized

by Nka−1
h (s,a) = (ka−1)/SA for all state-action pairs.

On the other hand, since ξk
h+1 is a martingale difference sequence, by Azuma-Hoeffding

inequality, with probability at least 1−δ, we have:

∣∣∣∣ H

∑
h=1

ka−1

∑
k=1

ξ
k
h+1

∣∣∣∣= ∣∣∣∣ H

∑
h=1

ka−1

∑
k=1

ξ
k
h+1
[
(Ph− P̂k

h)(V
∗
h+1−V πk

h+1)
]
(sk

h,a
k
h)

∣∣∣∣≤ H
√

2Ta ln(2SAT/δ).

Thus, we have:

ka−1

∑
k=1

δ
k
1 ≤ O

(
H2SA+

√
H4SATa ln(SAT/δ)+

√
2H2Ta ln(2SAT/δ)

)
= O

(
H2SA+

√
H4SATa ln(SAT/δ)

)
≤ O

(√
H4SATa ln(SAT/δ)

)
.

The last inequality holds since when Ta ≥
√

H4SATa ln(SAT/δ), we have
√

Ta ≥
√

H4SA, and

thus
√

H4SATa ln(SAT/δ) ≥ H4SA ≥ H2SA. On the other hand, if Ta ≤
√

H4SATa ln(SAT/δ),

we have ∑
ka−1
k=1 δk

1 ≤ H · ka ≤ Ta ≤
√

H4SATa ln(SAT/δ). Thus, H2SAT can be subsumed in the

Big-O notation.

When UCB-HCQ converges, bonus brought by exploration is negligible and it switches

to exploitation gradually during evolution. As optimal action at each time step is costly, it

becomes infeasible in the remaining time steps, accumulating much more regret compared to

UCB-SCQ. Since estimates converge according to Definition 5, linear regret accumulates based

on maxa∈A Q∗h(s
ka
1 ,a)−Qπka

h (ska
h ,aka

h ) for the rest of time.
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Putting everything together completes the proof.
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