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Effect of Whole Smoke on Secretion of IL-13, TNF-01, TGF-B and PGE2 by
Peripheral Blood Mononuclear Cells. Mahasti Saghizadeh, D.D.S.

Alterations of the host response caused by short-term exposure to high levels of smoke during the act

of Smoking (acute smoke exposure) as well as long-term exposure to lower levels of tobacco substances in

the bloodstream of smokers (chronic smoke exposure) may play a role in the pathogenesis of periodontal

diseases in smokers. In this study, we examined the secretion of four cytokines [interleukin (IL)-13, tumor

necrosis factor (TNF)-0, transforming growth factor (TGF)-3, and prostaglandin E2 (PGE2) ) from

mononuclear blood cells from current smokers and nonsmokers exposed to in vitro tobacco smoke (which

may be comparable to in vivo acute smoke exposure) and mononuclear blood cells from current smokers

not exposed to further in vitro smoke (which may be comparable to chronic smoke exposure). Peripheral

blood mononuclear cells were isolated from eight healthy current smokers and eight healthy nonsmokers,

plated in culture wells, exposed in vitro for 1–5 minutes to cigarette smoke in a smoke box system or not

exposed (baseline controls), and then incubated without further smoke exposure for another 24 hours.

Supernatants from each well were then collected and assayed for the concentrations of the four cytokines

by enzyme-linked immunosorbent assay (ELISA). At baseline, mean IL-13 levels were higher in smokers

than in nonsmokers (mean: 10.6 vs. 5.9 pg/ml, anova: P × 0.05). In both smokers and nonsmokers,

secreted levels of IL-13 increased from 0 to 5 minutes of in vitro smoke exposure (mean: 5.9–9.9 pg/ml, t

test: P × 0.05 for nonsmokers only) with levels in smokers higher than in nonsmokers (P - 0.05). Mean

TNF-0 levels increased from 0 to 2 minutes of smoke exposure and decreased from 2 to 5 min in smokers

and nonsmokers, with higher levels in nonsmokers than smokers at all time points (P - 0.05). Mean TGF

■ ' levels were higher in smokers than in nonsmokers at all time points (mean: 180.5 vs. 132.0 pg/ml, P :

0.05 at 5 minutes only) with no significant alteration of the pattern of secretion with cigarette smoke

exposure. There was no significant difference between PGE2 in nonsmokers and smokers at baseline.
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There was an increase in PGE2 secretion from baseline to 5 minutes in both smokers and nonsmokers with

no significant difference between two groups. These observed alterations in the secretion of cytokines

from mononuclear blood cells in smokers, relative to nonsmokers, and with in vitro smoke exposure may

play a role in the pathogenesis of periodontal diseases in smokers.
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Introduction

Tobacco use in general, and cigarette smoking in particular, is a major risk factor

for periodontal diseases." Cigarette smoking is associated with increased alveolar bone

lossº, and poor response to periodontal therapy.” Cigarette smoking is known to affect

the systemic and local immune responses.” Loss of alveolar bone and connective tissue

attachment in periodontitis results from interactions between certain bacteria colonizing

tooth surfaces and the host response. It is likely that smoke influences these host-bacterial

interactions.

Alterations of the host response caused by short-term exposure to high levels of

Smoke during the act of smoking (acute smoke exposure) as well as long-term exposure

to lower levels of tobacco substances in the blood stream of smokers (chronic smoke

exposure) may play a role in the pathogenesis of periodontal diseases in smokers. In this

study, we examined the secretion of four cytokines from mononuclear blood cells from

current smokers and nonsmokers exposed to in vitro tobacco smoke and mononuclear

blood cells from current smokers not exposed to further in vitro smoke. The studied

cytokines were interleukin-13, tumor necrosis factor-0, transforming growth factor-3 and

prostaglandin E2.

An overview and some background literatures are provided for the related subjects.

Smoking

It has been demonstrated that smoking is a risk factor for periodontitis in adults. The

number of pack/years of exposure to tobacco smoke is associated with increased risk for chronic

periodontitis and increased disease severity in smokers compared to nonsmokers.’" Smoking



has also been shown to be associated with increased disease severity in aggressive periodontitis."

The pathologic mechanisms proposed for the detrimental effects of smoking on the periodontium

include alterations of the periodontal tissue vasculature, direct altering effects on the bacterial

microflora, and on various components of the host response in periodontal diseases.” One way

of understanding the host response in periodontal diseases is through the Critical Path Model.”

In this model, the host first attempts to neutralize the periodontal pathogens in the pocket through

various defense mechanisms such as complement, antibodies, and subsequent neutrophil

clearance. After these defenses are exhausted, the bacteria and bacterial products may penetrate

through the sulcular and junctional epithelium into the underlying periodontal connective tissue.

There, monocytes and lymphocytes along with other cells of the periodontium may elicit an

inflammatory response through several inflammatory cytokines and chemokines such as

interleukin-13 (IL-13), Tumor Necrosis Factor (TNF-0), and prostaglandins such as PGE2 *

These substances have multiple and overlapping effects on the periodontium such as increased

phagocytic activity and osteoclastic bone resorption, release of proteolytic enzymes, and

recruitment and activation of other components of the host response. While some of these effects

may be beneficial in neutralizing periodontal bacteria, the overall effect of this inflammatory

response is periodontal destruction. In the absence of bacterial components and products,

monocytes, lymphocytes, and other cells may secrete a second class of mediators that may

facilitate maintenance, repair, and regeneration of lost periodontal support. "These mediators, or

“reparative cytokines”, include a variety of growth factors such as Transforming Growth Factor

(TGF-3).

Cigarette smoking affects the immune and inflammatory system in many different ways.

4,15-17It reduces antibody production, “inhibits several peripheral blood neutrophil functions, and



chemotactic and phagocytotic activities. “” It has been shown that exposure to tobacco smoke is

associated with a decreased percent and activity of NK cells in humans and animals. ** This

could result in decreased defense against pathogens. Miller et al. (1982) showed that the percent

of total T lymphocyte as well as the CD8 subset were increased, whereas the percent of CD4

cells decreased in heavy smokers.” Quinn et al. (1996) showed that smoking could suppress the

production of IgG2 in generalized aggressive periodontitis.” Since IgG2 is mainly regulated by

macrophages” and smoking has been shown to have effects on macrophages” and on T

lymphocyte subsets ratios,” smoking may compromise antibody production through modulating

macrophage and T-helper cell functions.

Serum IgE levels have been shown to be increased in adults” and experimental animals”

exposed to tobacco smoke. This possibly could lead to more tissue destruction in the presence of

pathogens. Byrd et al. (1994) found that phytohaemagglutinin (PHA)-induced IL-4 production by

peripheral blood mononuclear cells of smokers is significantly higher than that of non-smokers;

and heavy smokers produce more IL-4 than light smokers.” It was suggested that an imbalance

in cytokine production might be partly responsible for the increase in serum IgE.

Acute and chronic exposure to tobacco smoke has additional local effects on tissue.

Alveolar macrophages from smokers exhibit decreased antibody-dependent cell-mediated

cytotoxicity.” Induced sputum from smokers was found to have a higher percent of

macrophages and a lower proportion of neutrophils. The percent of macrophages expressing

surface molecules associated with antigen-presenting functions (e.g., HLA-DR, CD54) was also

found to be significantly lower in smokers than in nonsmokers.”

It has been shown that smoking causes a reduction in the gingival blood flow with a

decreased number of circulating cells and less oxygen reaching the gingiva, thus weakening its

|
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defense and reparative ability. The mechanism by which smoking can cause vasoconstriction is

not completely understood but it is most likely mediated through the nervous system. It has also

been shown that smoking reduces the functional activity of leukocytes and macrophages in saliva

and crevicular fluid, as well as decreasing the chemotaxis and phagocytosis of blood and tissue

polymorphonuclear neutrophils (PMNs).”

Other studies have shown that tobacco smoking is associated with a reduction in the

short-term oxidation-reduction potentials in dental plaque and oxygen levels, thereby resulting in

an increased proportion of anaerobic bacteria” and decreased PMN mobility " thus contributing

to increased susceptibility to bacterial infection.

The negative immunological effects of nicotine are believed to involve several possible

mechanisms: 1. Hypersecretion of glucocorticoid hormones” ; 2. Direct effect on lymphocytes

through activation of nicotinic cholinergic receptors"; 3. Stimulation of a wide array of pituitary

hormones and /or sympathetic nervous system, including the release of peripheral

catecholamines”, which will cause disturbances in immune responsiveness; 4. Serving as a

hapten "; 5. Possible activation of central nicotinic-cholinergic receptors.”

Monocytes

The mononuclear phagocytes (monocytes/macrophages) are major producers of

inflammatory mediators. Monocytes form 2-3% of total white blood cells. They produce a wide

variety of inflammatory mediators.

Factors that affect Secretion capacity of monocytes include: genetic, pathogens, and

behavioral and environmental factors such as dietary fat intake, stress and tobacco. A

hyperinflammatory phenotype is seen in some conditions such as type 1 diabetes” and aggressive



periodontitis.” A variety of components of pathogens are shown to affect the secretion abilities

of monocytes, but the focus of most studies is endotoxin (lipopolysaccharide, LPS).” It has

been shown that fat intake may enhance monocyte secretion of inflammatory cytokines.”

There are two principal immunological responses to stress one leads to neutrophil impairment

and the other leads to monocytic upregulation.”

Two outcomes of hypersensitive monocytes are periodontitis and coronary heart disease.

It has been speculated in recent years that periodontitis may contribute to the development of

coronary heart disease, which is a multifactorial disease.” Periodontitis and atherosclerosis have

many potential pathogenic mechanisms in common. Both diseases have genetic and gender

predisposition, and potentially share many risk factors, the most significant of which may be

smoking status. * Independent risk factors for atherosclerosis and its consequences include age,

male gender, smoking, hypercholesterolemia, systemic hypertension, plasma fibrinogen, white

53.54cell count, hematocrit and diabetes mellitus”; all of which are also associated with periodontal

disease, with the exception of hypercholesterolemia and systemic hypertension.”

Studies have demonstrated hyper-responsiveness of monocytes from aggressive

periodontitis patients with respect to their production of PGE, in response to LPS** , and in

refractory periodontitis patients.” This hyper-responsive phenotype could lead to increased

connective tissue or bone loss due to inappropriately excessive production of these catabolic

factors.

There is increasing evidence that tissue destruction in periodontitis lesions is mostly a

result of mobilization of the host defenses via activation of monocytes, lymphocytes, fibroblasts,

and other host cells. Bacterial factors, in particular bacterial LPS, are thought to stimulate

production of cytokines and inflammatory mediators including arachidonic acid metabolites such



as prostaglandin E2 (PGE2). Such cytokines and inflammatory mediators in turn promote the

release of tissue-derived enzymes, the matrix metalloproteinases, which are destructive to the

extracellular matrix and bone.” Even though monocytes/macrophages represent only 3.5% of

total cell counts in progressing periodontitis sites, these cells are capable of producing large

amounts of PGE2 and interleukin-13.”

Cytokines

Cytokines are molecules released by host cells into the local environment; provide

molecular signals to other cells thereby affecting their function. Among the cytokines and

inflammatory mediators found to be associated with periodontitis are: interleukin-13,

prostaglandin E2, tumor necrosis factor-O, and transforming growth factor-3.

Interleukin 1-6eta (IL-16)

IL-13 is a significant proinflammatory cytokine. Human IL-13 is synthesized as a 269

amino acid, 31-kDa-precursor protein (prepro-IL-13) that is cleaved by IL-13-converting enzyme

(ICE) to the 153 amino acid, 17 kDa mature IL-13 plus a prosegment.” A combination of the

mature form, the prosegment and prepro-IL-13 is released from the cell.

IL-13 is produced primarily by monocytes and macrophages” but also by astrocytes,

oligodendroglia, adrenal cortical cells, natural killer (NK cells), endothelial cells, keratinocytes,

platelets, neutrophils, osteoblasts, T cells, fibroblasts.” The most extensively studied function

of IL-13 is initiation of inflammation. Bacterial endotoxin or a variety of non-microbial

inflammatory substances induce production of IL-1, which is released into the local environment.



It has been shown that during experimental gingivitis, IL-13 increases in gingival crevicular fluid

during plaque formation.” IL-13 has been implicated in progressive periodontitis and

stimulation of bone resorption.” Studies suggest a genetic influence on levels of interleukin-13

in gingival fluids.” Some studies have found that polymorphisms in genes of the IL-1 family

73-75 76,77are associated with a higher severity of periodontitis , while others found no association.

It is hypothesized that IL-13 is likely a contributing factor to the more advanced periodontitis

seen in users of tobacco products. It has also been shown that there is a gene–environment

interaction between smoking and the IL-1 genetic polymorphism. Smokers bearing the genotype

positive IL-1 allele combination have an increased risk of periodontitis.”

Tumor Necrosis Factor Alpha (TNF-a)

TNF-O is a significant proinflammatory cytokine. TNF-0, is produced by monocytes,

neutrophils, activated T and B-lymphocytes, NK cells, astrocytes, endothelial cells, smooth

muscle cells, and some transformed cells.” Mature human TNF-0, is a polypeptide of 157

amino acids residues.” The biologically active native form of TNF-0, is a trimer.”

TNF-O is initially synthesized as a larger protein with the mature 17-kDa factors

comprising the C-terminal portion of this precursor. The N-terminal sequence of the precursor

contains both hydrophilic and hydrophobic domains and its presence results in the occurrence of

TNF-0, as a membrane-bound form from which the mature factor is released by proteolytic

cleavage.” Evidence suggests that the membrane-anchored form of TNF-0 on the surface of

macrophages and/or monocytes, in addition to serving as a reservoir for release of soluble TNF-0.

has lytic activity and may also have an important role in intercellular communication.”



TNF-O is secreted predominantly by monocytes/macrophages during inflammation. It

induces IL-1 release by macrophages in experimental animals.”

IL-1/3 and TNF-o:

IL-1 and TNF are important mediators of inflammatory responses and appear to play a

central role in the pathogenesis of many chronic inflammatory diseases.” It is now well

documented that their biological activities in vivo is sufficient to reproduce local inflammation

and matrix catabolism” by attracting and activating white blood cells to tissues and stimulating

their secretion of other lymphocytotropic cytokines and catabolic enzymes. Higher production of

these cytokines has also been associated with response to infection, where local production of IL

1 and TNF-0 facilitates the elimination of the microbial invasion. Classic studies, however, also

report that in some infectious conditions, very high levels of monocytic cytokines are produced,

which spark a cascade of concomitant events such as tissue catabolism, vascular reactivity, and

hypercoagulation with damaging effects on the host.” Anti-cytokine therapy (treatment to

prevent cytokine production or activity) is currently being tested not only in major chronic

inflammatory diseases including rheumatoid arthritis and ulcerative colitis, but also in critical

infectious diseases such as septic shock and cerebral malaria.

IL-13 and TNF-0, have similarities in function and may work synergistically. They both

stimulate PGE2 and collagenase production by fibroblasts.” They both stimulate bone and

cartilage resorption.”



Prostaglandin E2

The cyclooxygenase is a major synthetic pathway relevant to human disease. The initial

Synthetic step involves the cleavage of arachidonic acid. Arachidonic acid is stored esterified in

phospholipids of cell membranes. It is released from the cell membrane upon demand via

phospholipase A2.” Prostaglandins are one of the end products of the cyclooxygenase pathway.

Prostaglandin E2 is a prominent inflammatory mediator. It is formed in a variety of cells from

prostaglandin H2, which is synthesized from arachidonic acid by the enzymes cyclooxygenase or

prostaglandin synthetase.” PGE2 has been shown to have a number of biological actions,

00including vasodilation, * both anti- and proinflammatory activities,” modulation of

102sleep/wake cycles," elevation of cAMP levels," and thermoregulatory effects. It has also been

shown that PGE2 stimulates osteoclastic bone resorption"." and collagenase production by

activated macrophages." PGE2 can induce inflammatory changes in the periodontuim due to its

ability to cause vasodilation and increased vascular permeability. It is hypothesized that PGE2 is

a likely contributing factor to the more advanced periodontitis seen in users of tobacco products.

It has been implicated in progressive periodontitis."

Transforming Growth Factor Beta (TGF-A)

TGF-B is a stable, multifunctional polypeptide growth factor. It is a disulfide-linked, non

glycocylated dimer of two identical chains of 112 amino acids. It is stimulatory for cells of

mesenchymal origin and inhibitory for cells of epithelial or neuroectodermal origin. TGF-3 is an

important modulator of the growth, differentiation, and activity of a number of different types of

cells. It is produced by many cells including monocytes, but in higher concentrations in platelets

and mammalian bone.



TGF-3 is an important anti-inflammatory agent." It is produced locally at the site of

resorption of bone and has been shown to initiate a new phase of bone formation." In vitro,

TGF-3 has been shown to stimulate osteoblasts and to inhibit osteoclasts and thus may play a

role in coordinating bone remodeling." It has been shown that TGF-3 can inhibit a range of

IL-1 induced responses" and functions by reducing the constitutive or induced level of IL-1

receptors."

Lipopolysaccharide (LPS) Challenge

A considerable array of bacterial components and products has been suggested, mainly on

the basis of in vitro studies, as being responsible for the characteristic pathology of inflammatory

conditions such as periodontal diseases." These can be broadly divided into two groups, those

that adversely affect host tissues directly (e.g., enzymes, end-products of metabolism) and those

that stimulate the release of inflammatory mediators from host cells. Earlier studies appeared to

be more concerned with bacterial products capable of directly inducing tissue destruction, "*"

while more recent studies have tended to place greater emphasis on components able to alter the

behavior of host cells.” For example, many early studies of the role of LPS and/or endotoxins

121-123in tissue destruction were primarily concerned with its cytotoxicity, whereas it is now seen

to exert its adverse effects as a consequence of its ability to stimulate cytokine release from

macrophages and other host cells.”

Hahazawa et al.” first showed that Porphyromonas gingivalis LPS (PGLPS) induced IL

1 release from macrophages over the concentration range 1–50 pg/ml. Human peripheral blood

mononuclear cells (HPBMC's) appeared to be more responsive to PGLPS with 0.1 pg/ml

inducing IL-1 secretion, a finding confirmed by Yamazaki et al.” However, this may reflect the

10



response of murine and human LPS receptors to the bovine LPS binding protein/CD14-LPS

complex, rather than to inherent differences in sensitivity to LPS itself. The ability of PGLPS to

stimulate the release of IL-1 from murine macrophages has been confirmed in several subsequent

studies.” McFarlane et al. (1990) found that HPBMCs from patients with periodontitis

released significantly more IL-13 and TNF than those from periodontitis-free controls when

stimulated with PGLPS (5 pi■ ml).” In a study demonstrating the sensitivity of HPBMCs to

PGLPS, Shapira et al. (1994) reported that TNF-0, was released in a dose-related manner over the

concentration range of 0.1 to 100 pg/ml with statistically significant release at 0.1 pg/ml.” The

dose response was, in fact, very similar to that obtained using LPS from Escherichia coli. The

reason for the increased potency of this LPS preparation compared with that found in other

studies is not known.

McFarlane et al. (1990) showed that the LPS from Actinobacillus actinomycetemcomitans

(Aa)stimulated peripheral blood monocytes from periodontitis patients to release significantly

more IL-13 than control subjects.” Shapira et al. (1994) found that LPS stimulation resulted in

the dose-dependent secretion of higher levels of PGE2 and TNF-0 by monocytes from localized

aggressive periodontitis (LAP) patients compared to patients with severe chronic periodontitis.”

Periodontal infection modulation of systemic health

There is an association between periodontal disease and some systemic conditions such as

cardiovascular disease,” and preterm delivery leading to low birth weight in pregnant

women.” There might be a common underlying aspect of the host response that causes

susceptibility of individuals to periodontal disease and these systemic complications. A

macrophage/monocyte phenotype might be one such example. It is also possible that the presence



of periodontal infection serves as a reservoir of biological response modifiers such as LPS, PGE2.

TNF-0, and IL-1, which have systemic effects.

Smokeless Tobacco (ST)

Smokeless tobacco (ST) usage is associated with gingival recession and attachment

loss.” The way by which ST exerts these effects is unknown; the chemical and/or

mechanical irritating properties of ST are presumably responsible. ST contains numerous

compounds such as nicotine and nitrosamines, which are local irritants.” In theory, irritation

from ST components may stimulate the production of inflammatory mediators whereby leading

to the observed tissue alterations in ST users. Arachidonic acid metabolites and various

cytokines, such as IL-1B might be possible etiology of ST-induced lesions.

ST extract contains numerous chemicals. Although ST products vary considerably in their

compositions, nicotine is the common element in all of these products. In a study by Bernzweig

et al. (1998) on the effect of nicotine and ST on peripheral blood mononuclear cells (PBMC), it

was shown that 1% ST alone induced a 3.5-fold increase in PGE2 compared to control

conditions."

ST and LPS

Both ST and LPS are capable of stimulating monocyte secretion of PGE2 and IL-1B. In a

study by Payne et al. (1994), it was shown that ST modulates the LPS-mediated monocyte

response, potentiating PGE2 release and resulting in either an increase or decrease in IL-13

release depending on the magnitude of the LPS response." It was also shown that smokeless

12



tobacco was a more potent stimulator of PGE2 than LPS from P. gingivalis and had an effect

similar to LPS from E. coli.

Bernzweig et al. (1998) showed that the secretion of IL-13 by PBMC was not modulated

by nicotine or ST alone relative to controls.'" P. gingivalis LPS caused a 2.4-fold increase in

IL-13 release compared to control. However, the addition of nicotine or ST to P. gingivalis LPS

did not affect LPS-mediated IL-13 secretion.

Nicotine and LPS

Payne et al. (1996)” studied the effect of nicotine alone and in combination with LPS on

monocyte secretion of IL-13 and PGE2. The result showed that nicotine alone did not result in

significant peripheral blood monocyte (PBM) secretion of PGE2 and IL-13 above that of

unstimulated cultures. However, PGE2 release was potentiated 1.7-fold by the combination of P.

gingivalis LPS and 10 pg/ml nicotine relative to P. gingivalis LPS alone. Prostaglandin E2

release also was potentiated 3.5-fold by P. gingivalis LPS and 100 pg/ml nicotine relative to P.

gingivalis LPS alone and 3.1-fold by E-coli LPS and 100 pg/ml nicotine relative to E. coli LPS

alone. IL-13 secretion was lower for either LPS plus 100 pg/ml nicotine relative to LPS alone,

although not significantly. Bernzweig et al. (1998) showed that 100 pg/ml nicotine resulted in

approximately 7-fold increase in PGE2 secretion.'" In addition, 100 pg/ml nicotine and

P. gingivalis LPS stimulated significantly more PGE2 release than P. gingivalis LPS alone, but

not more than nicotine alone. However, the addition of nicotine to P. gingivalis LPS did not

affect LPS-mediated IL-13 secretion. Inhibition of osteogenesis in vitro by a cigarette smoke

associated hydrocarbon combined with P. gingivalis LPS was studied by Andreou et al.” It was

13



shown that smoke-derived aryl hydrocarbons and bacterial LPS might act additively to inhibit

bone formation. The findings may explain, in part, why bone loss is greater and bone healing is

less successful in smokers than nonsmokers with periodontal infection.

Gingival Crevicular Fluid (GCF)

It has been reported that IL-1B, * TNF-o," and PGE2 "" are found in the gingival

crevicular fluids of periodontitis patients and from clinically inflamed sites in human subjects. Of

these, IL-1 has been studied in greatest detail. Due to its strong relationship with bone resorption,

this cytokine has received considerable attention as a potential marker for active periodontal

tissue destruction. IL-13 concentrations increase significantly during episodes of periodontal

inflammation.” Cross-sectional studies have indicated that the levels of IL-13 are increased at

periodontitis sites compared to gingivitis and healthy sites.” To date, there have not been

enough longitudinal studies investigating the relationship between IL-1 levels in gingival

crevicular fluid to make any conclusive statement regarding its usefulness as a diagnostic marker

for periodontal disease activity.” Elevated PGE2 levels have been noted in the gingival

crevicular fluid from patints with localized aggressive periodontitis compared to patients with

chronic periodontitis.”

It was shown by Boström et al. (1998) that TNF-0 in GCF was significantly increased in

both current and former smokers in treated and untreated patients with periodontal disease.”

TNF-0, was significantly increased in current smokers compared to nonsmokers. In contrast, the

level of IL-6 was not influenced by smoking (Boström et al. 1999).”

A study was done to evaluate the levels of IL-13, TNF-0, and neutrophil elastase activity

in peri-implant crevicular fluid.” It was shown that the peri-implant crevicular fluid of implants



with inflamed gingiva had higher levels of lD-13 and neutrophil elastase activity than implants

with non-inflamed or slightly inflamed gingiva. The peri-implant crevicular fluid of implants in

smoker patients had significantly lower neutrophil activity and IL-13 levels, and significantly

greater TNF-0 levels than the peri-implant crevicular fluid of implants in nonsmokers.

Nicotine Concentration in Plasma, GCF and Saliva

According to Ryder et al. (1998), nicotine was not detected in the GCF of smokers; but

immediately after smoking, the level of nicotine increased to 5961 ng/ml."

Salivary concentrations of nicotine range from 73- 1560 pg/ml in ST users” and up to

1.3 pg/ml in smokers.” During smoking itself, nicotine concentrations in the oral cavity may

reach even higher levels. Ryder et al. (1998) found a mean concentration of 109 ng/ml in the

saliva of smokers; immediately after smoking marked elevation to 1821 pg/ml was detected."

Plasma levels of nicotine in ST users and smokers are relatively low, with mean levels

reported to be between 15 and 36 ng/ml.” Plasma levels in ST users and smokers range

from 22 to 73 pig■ ml and have been reported to be as high as 76 pg/ml, respectively.”

Purpose

The purpose of this study was to investigate the effect of chronic and acute exposure to

whole smoke on production of IL-13, TNF-0, PGE2, and TGF-3 released by adherent peripheral

blood mononuclear cells (monocytes and lymphocytes). Monocytes and lymphocytes isolated

from smokers’ blood were chronically exposed to low levels of tobacco smoke in the

bloodstream, which may affect cytokine release. This exposure has been commonly termed

“chronic smoke exposure”. However, during smoking, monocytes and lymphocytes in the mouth,



airways and lungs are exposed to short-term acute levels of smoke at much higher levels.”

This type of exposure is called “acute smoke exposure”. It has been shown that levels of smoke

exposure in an in vitro smoke box system are comparable to levels seen in the oral cavity during

acute smoke exposure." In this study, this smoke box system was used to determine the effects

of acute Smoke on cytokine release from adherent peripheral blood monocytes and lymphocytes.

The significance of this study is that it is the first investigation of the effect of chronic and acute

whole smoke on mononuclear cells and their secretion of inflammatory mediators.

Null Hypothesis

There is no difference between the amount of interleukin-13, prostaglandin E2, tumor

necrosis factor-O, and transforming growth factor-■ } released by peripheral blood mononuclear

cells (monocytes and lymphocytes) obtained from smokers versus nonsmokers when the cells are

subjected to acute smoke exposure in vitro.

Material and Methods

This protocol was approved by the UCSF Committee on Human Research.

Cell separation and Culture

Peripheral blood was isolated from 8 medically healthy current smokers (more than one

pack per day) with no reported serious medical conditions such as pulmonary or cardiovascular

diseases (4 males, 4 females, mean (-/+ SD) age=46.00-4 12.60 years) and 8 medically healthy

nonsmokers (3 males, 5 females, mean (-/+ SD) age 34.00+-13.24 age). Subjects were included

in the study if they did not take long-term anti-inflammatory drugs, which could alter neutrophil

function, and did not have a systemic condition such as diabetes or immunosuppression, which



could markedly alter mononuclear blood cell function. After obtaining informed consent,

approximately 60 ml of peripheral blood was collected from each subject by venipuncture into

heparinized tubes and diluted 1:1 with phosphate-buffered saline (PBS). The mononuclear cells

were separated by Ficoll-Hypaque sedimentation" layered over 10 cc of Histopaque 1077

(Sigma Diagnostics, St. Louis, MO), and centrifuged for 10 minutes at 700g. Histopaque-1077 is

a solution of polysucrose and sodium diatrizoate adjusted to a density of 1.077 +/- 0.001 g/ml.

This medium facilitates rapid recovery of viable mononuclear cells from granulocytes and

erythrocytes. The mononuclear leukocyte fraction, which formed a cloudy section in the middle

of the tube, was drawn off into PBS; this fraction then was diluted with 50 cc PBS. 4 cc

sterilized water was added to the pellet of mononuclear cells to lyse any residual erythrocytes

followed by immediate addition of 1cc 5xPBS. After dilution with PBS, the suspension was

centrifuged for 10 min (700g). The pellets of mononuclear cells were removed and resuspended

in RPMI 1640 media with 25 mM HEPES. An aliquot of the cells was counted in a

hemocytometer, and the remaining cells were plated in 24-well culture dishes at a concentration

of 4x10" cells per well. Each well contained 1 cc of culture media with suspended mononuclear

cells. The mononeuclear blood cells then were incubated for 90 minutes at 37°C in a humidified

atmosphere containing 5% CO2 to allow adherence of mononuclear blood cells to the bottom of

each well. Non-adherent cells were removed by aspiration and the wells washed three times with

PBS. A volume of 1 mL of RPMI 1640 medium with 25 mM HEPES was then added to each

well.
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Smoke exposure and incubation

The adherent mononuclear blood cells in culture wells were exposed to in vitro smoke for

1, 2, and 5 minutes using an enclosed smoke box or not exposed to further in vitro smoke

(baseline controls). In this smoke box system as previously described''", cigarette smoke was

generated from the unfiltered lit end of class A filtered cigarettes. The source of cigarette smoke

was separated from the plates containing mononuclear cells by 3 layers of a 0.5 mm plastic mesh

Screen to prevent large particles of matter from entering the mononuclear cells suspension. In

addition, 2 layers of the same screen were placed over the plate for the same purpose. Smoke was

introduced into the chamber through intermittent injection of air through the cigarette (puffs) at

the rate of 6 puffs per minute. The smoke was allowed to circulate over the mononuclear blood

cells by introducing a gentle system of air at one end of the chamber and pumping the air out by

vacuum through the other end of the chamber at a pressure of + 5 psi. During the time of smoke

exposure, the chamber was placed on a rotary shaker platform operating at approximately 30

rotations per minute. After exposure, the culture dishes were then incubated for 24 hours without

further smoke exposure at 37°C in the humidified atmosphere containing 5% CO2.

Immunoassays

Following incubation, cell culture supernatants were drawn from each well and analyzed

by enzyme-linked immunoassay (ELISA) for measuring the levels of IL-13, PGE2, TNF-0, and

TGF-3. The remaining adherent cells were stored at 4°C for DNA quantification to determine the

relative cell numbers per well.
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Immunoassay for IL-1/3 TNF-a; and TGF-A

Levels of IL-13, TNF-0, and TGF-3 in culture supernatants were determined by

commercially available enzyme immunoassay kits (Quantikine, R&D Systems Inc., Minneapolis,

MN, USA). These assays employ the quantitative sandwich enzyme immunoassay technique

(ELISA). Briefly, plates were precoated with a specific monoclonal antibody to each of these

cytokines. Subsequent stages included incubation with standard or sample, a wash to remove any

unbound antibody-enzyme reagent, addition of a substance to the wells and color development in

proportion to the amount of IL-13, TNF-0, or TGF-3 bound in the initial step. The color

development is stopped and the intensity of the color is measured.

Plates were read at 450 nm and 540 nm. The readings at 540 nm were subtracted from the

readings at 450 to correct for optical imperfections in the plate. The sensitivities for these assays

were IL-13: 1 pg/ml; TNF-a: 4.4 pg/ml; and TGF-3: 7 pg/ml. Calibration curves with known

quantities of each of these three cytokines were conducted in duplicate. Quantifications of the

three cytokines for each subject at each experimental time point were conducted in triplicate.

Immunoassay for IL-1/3

200 pil of standard (recombinant human IL-13, with six different concentrations range:

125-3.9 pg/ml) or sample were added to each well followed by incubation for 2 hours at room

temperature. Aspiration and wash using wash buffer (buffer surfactant) was performed three

times. 200 pil of IL-13 conjugate (polyclonal antibody against IL-13 conjugated to horseradish

peroxidase) was added to each well followed by incubation for 1 hour at room temperature.

Aspiration and wash were repeated. 200 pil of substrate solution (mixture of stabilized hydrogen

peroxide and chromogen) was added to each well followed by incubation for 20 minutes at room
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temperature. Then, 50 pil of stop solution (2 N sufuric acid) was added to each well. The optical

density of each well was determined within 30 minutes.

Immunoassay for TNF-0.

50 pil of assay dilutent (buffered protein base) was added to each well. 200 pil of standard

or sample was added to each well followed by incubation for 2 hours. Aspiration and wash with

wash buffer (buffered surfactant) was performed twice. 200 pul conjugate (polyclonal antibody

against TNF-0, conjugated to horseradish peroxidase) was added to each well followed by one

hour incubation. Aspiration and wash were repeated. 200 pu of substrate solution (mixture of

stabilized hydrogen peroxide and chromogen) were added to each well. 50 pil of stop solution (2

N sulfuric acid) to each well. The optical density of each well was determined within 30 minutes

with wavelength of 450 nm and 540 nm. Readings from 540 nm were subtracted from 450 nm.

Immunoassay for TGF-A

To activate latent TGF-3 to the immunoactive form, HCl was added to samples

followed by incubation for 10 minutes at room temperature. Neutralization of the acidified

sample was performed by adding NaOH/HEPES. 200 pil of standard (recombinant human TGF

31 in different concentration range 1000-31.2 pg/ml) or activated samples were added to each

well. Incubation was provided for three hours at room temperature. Wells were aspirated and l

washed twice with wash buffer. 200 pil of TGF-31 conjugate (polyclonal antibody against TGF

31 to horseradish peroxidase) was added to each well followed by incubation for 1.5 hours at

º,
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stabilized hydrogen peroxide and chromogen) was added to each well followed by incubation for

20 minutes at room temperature. 50 pil of stop solution (2 N sulfuric acid) was added to each well

and the optical density of each well was determined within 30 minutes at 450 nm and 540 nm.

Substraction at 540 nm from 450 nm was done to correct for optical imperfections in the plate.

Immunoassay for PGE2

Levels of PGE2 in culture supernatants were determined by a commercially available

enzyme immunoassay kit (Quantikine, R&D Systems Inc. Minneapolis, MN, USA). This assay is

based upon competition between the unknown concentrations of free PGE2 in the samples with a

known concentration of alkaline phosphatase-labelled PGE2 for the limited number of PGE2

specific mouse antiserum binding sites in each of the assay wells. Briefly, the technique entailed

adding sample or standard with mouse monoclonal antibody to human PGE2 to ELISA plates

precoated with goat anti-mouse antibody. A subsequent step was the addition of alkaline

phosphatase-labelled PGE2 (PGE2 conjugate). During the incubation, the mouse monoclonal

becomes bound to the goat anti-mouse antibody coated onto the microplate. Following a wash to

remove excess conjugate and unbound sample, a substrate solution (para-nitrophenyl phosphate)

was added to the wells to determine the bound enzyme activity. A stop solution (trisodium

phosphate) was added followed by immediate reading of absorbance at 405 nm and 54 nm. The

intensity of the color is inversely proportional to the concentration of PGE2 in the sample.

Calibration curves with known quantities of PGE2 were conducted in duplicate. Quantitations of

PGE2 for each subject at each experimental time point were conducted in triplicate.
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DNA Assay

The DNA content of the adherent cells in culture wells was assayed as described by

Shapira et al. (1992).” Each well was sonicated for 20 seconds. Bisbezimidazole or 4,6-

diamidino-2-phenylindole (DAPI) was added to a final concentration of 1pg/ml and the DNA

content was measured using luminescence spectrophotometer at an excitation wavelength of 365

nm and an emission wavelength of 450nm. Following addition of DAPI, the fluorescence

reaction was recorded immediately. The DAPI-DNA complex is stable at room temperature for

several hours, and it is not readily photodissociated by the spectrofluorometer" DAPI interacts

with high-molecular weight DNA by specific binding to adenine-thymidine base pairs (A-T),

thereby making the reaction sensitive to the A-T content of the DNA. Since A-T content of DNA

is species-specific, calibration of the system with appropriate DNA preparation is an important

consideration. Human placental DNA served as the standard. The purpose of this DNA assay was

to assess indirectly whether there were marked differences in adherent mononuclear blood cell

numbers between different time-points, and to adjust the concentration values where there were

significant differences in DNA content. Emission intensities of known quantities of human

placental DNA were used for calibration of values of the experimental samples between baseline

and 1, 2, or 5 minutes of smoke exposure. As there were no differences in DNA content between

baseline and 1,2,or 5 minutes of smoke exposure, no adjustments to cytokine concentrations

relative to cell numbers were performed.

Statistics

For statistical analysis, each cytokine concentration for each subject at each time point

was derived from the mean of the triplicate samples from each time point. These resulting means
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from each subject at each time point were considered the individual “n” values. For differences

in cytokine concentrations between smokers and nonsmokers at each time point, a repeated

measures analysis of variance (ANOVA) was used. For differences of cytokine concentrations at

different time points within the smoking and nonsmoking groups, the paired Student's t-test was

used within each subject. Results were considered statistically significant at p3 0.05.

Results

IL-13

The mean secreted levels of IL-13 from mononuclear blood cells at baseline (time zero)

and after exposure to 1, 2, and 5 minutes of in vitro smoke in the smoke box system (acute

Smoke exposure) were consistently higher among the 8 smokers when compared to the 8

nonsmokers (figure 1). The mean values of secreted IL-13 in smokers compared to nonsmokers

were 90% higher at baseline (p<0.05, repeated measures ANOVA), 88% higher at 1 minute (p=.

0.052), 44% higher at 2 minutes (p=0.073), and 32% higher at 5 minutes (p=0.36). In the

nonsmoking group, there was a mean increase in IL-13 secretion of 76% from baseline to 5

minutes (p<05, paired t-test). In the smoking group, there was a mean increase in IL-13 secretion

of 32% from baseline to 5 minutes (p-0.05). When comparing the distribution of secreted IL-13

values for individual subjects within the smokers and nonsmokers group, there was a

considerable range of values for each time point in each group as shown in the box plots of the

distribution of values in Figure 2. For example, at baseline, the secreted IL-1B values for

individual subjects ranged from 3.39-12.89 pg/mL of supernatant for nonsmokers and 3.53-20.35

pg/mL for smokers. While the extreme range of values of both smokers and nonsmokers were

º
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comparably broad, the range of values within the 50" percentile around the median value was

considerably greater in the smoker group.

TNF-0.

The mean secreted levels of TNF-0 from mononuclear blood cells at baseline (not

exposed to further in vitro smoke) and at all times (exposed to 1, 2, and 5 minutes of in vitro

smoke, acute smoke exposure) were consistently higher in nonsmokers compared to smokers

(figure 3). Specifically the mean values of secreted TNF-0 in nonsmokers compared to smokers

were 43% higher at baseline, 75% higher at 1 minute, 65% higher at 2 minutes, and 53% higher

at 5 minutes. None of these differences were statistically significant. In the nonsmoker group,

there was a 29% higher mean secretion of TNF-0 at 2 minutes when compared to baseline which

was not significant. This rise was due in part to a greater range of values at this time point (figure

4 box plot). The mean secreted TNF-0 values from smokers were essentially similar at baseline

when compared to 1, 2, and 5 minutes of smoke exposure. While the extreme range of values of

both smokers and non-smokers were comparably broad, the range of values within the 50h

percentile around the median was considerably greater in the group of nonsmokers (figure 4).

PGE2

The mean values between smokers and nonsmokers were similar at baseline and at 1, 2,

and 5 minutes of smoke exposure (figure 5). At 5 minutes of smoke exposure, the mean PGE2

values were 141% greater in nonsmokers and 94% greater in smokers when compared to baseline

values. These differences were not significant in part due to the much wider spread of upper and

lower values among the individual subjects at 5 minutes when compared to baseline (figure 6).

i
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For example, although the range of values within the 50'h percentile around the median value

were similar in nonsmokers at baseline and at 5 minutes, the extreme range of values for

nonsmokers was 93.5-665.0 PG/Ml of supernatants at baseline vs. 175.3-3396.0 pg/mL at 5

minutes (figure 6). A similar distribution of PGE2 values was observed in smokers at baseline as

compared to 5 minutes of smoke exposure.

TGF-3

The mean level of TGF-3 secreted from mononuclear blood cells was higher in smokers

at baseline (not exposed to further in vitro smoke) and at all times (exposed to 1, 2, and 5

minutes of in vitro smoke) compared to nonsmokers (figure 7). The mean values of secreted

TGF-3, in smokers compared to nonsmokers were 44% higher at baseline (NS), 32% higher at 1

minute (NS), 32% higher at 2 minutes (NS), and 36% higher at 5 minutes (p<. 05). For both

smokers and nonsmokers, there were no significant differences in mean secreted TGF-3 values

between baseline and at 1, 2, or 5 minutes of smoke exposure. The range of TGF-3 values for

individual subjects was generally greater in the smoking group when compared to the

nonsmoking group (figure 8). This greater range of values in the smoking group included both a

greater range in extreme values and a greater range of values in the 50" percentile around the

median value.

Discussion

In this study, the effects of in vitro smoke on cytokine secretion from smokers and

nonsmokers were assessed. Other factors such as age and periodontal disease were not equalized

between groups due to the small size of the study population. The conditions of in vitro smoke

.
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exposure used in this study and in previous studies may be comparable to levels of smoke in the

oral cavity, airways, and periodontal tissues during acute smoke exposure”

The level of IL-13 increases from baseline to 5-minute exposure in both smokers and

nonsmokers. It shows that acute exposure to smoke increases secretion of IL-13. The level of IL

13 was higher in smokers versus nonsmokers at baseline and at all times, with statistically

significant differences at baseline. This indicates that chronic exposure to smoke causes elevation

of IL-13 secretion. Elevation in the level of IL-13, which also has been shown in previous

studies, may be one of the factors for the increased severity and prevalence of periodontal disease

in smokers (Offenbacher 1996; Schenkein 1999).”

The mean Secreted levels of TNF-0 from mononuclear blood cells at baseline and at all

times were consistently higher in nonsmokers compared to smokers. The level of TNFO in both

groups increased from baseline to 2 minutes followed by a fall from 2 minutes to 5 minutes. The

fall could be explained by possible sublethal effect at 5 minutes or perhaps the secretion of TNF

O. was exhausted with smoke exposure.

There was no significant difference in PGE2 between smokers and nonsmokers at

baseline. There was an increase from baseline to 5 minutes exposure. This shows that acute

smoke causes elevation in PGE2 secretion. In this study, the elevation of PGE2 was primarily due

to marked elevations after 5 minutes of smoke exposure in one smoking and one nonsmoking

subject. Further studies on a larger group of subjects may yield a clearer statistical pattern.

The results show that in smokers mononuclear cells chronically produce higher levels of

the potentially destructive inflammatory cytokine, IL-13. Furthermore, levels of acute smoke

exposure as seen in the mouth during smoking appear to enhance release of more IL-13 as well
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as PGE2 and TNFO in a time-related manner. These elevations were significant for IL-13

secretion in nonsmokers. It is possible that these elevations may contribute to the progression

and severity of periodontal disease in smokers (Offenbacher 1996, Shenkein 1999).” But, a

direct connection between smoking and elevated cytokines has not been definitely determined in

periodontal diseases or in other systemic conditions such as cardiovascular disease and chronic

obstructive pulmonary diseases. There are discrepancies in the literature with regard to the effect

of smoke on the release of inflammatory cytokines.”" These studies have shown positive

or negative or no effect on release of these cytokines by acute or chronic smoke exposure. This

could be due to the differences in type of cells, groups of cells, or organ system used in these

l." andstudies, or to the type of exposure to the tobacco products. For example, Wesselius et a

Wewers et al.” have reported decreased levels of cytokines from macrophages cultured from

Smoker's lungs vs. nonsmoker's lungs. However, such in vitro studies do not take into account

the increased numbers of inflammatory cells in the lung, and the effect of other local tissue cells

169to the overall levels of these inflammatory mediators.” According to Carty et al.,” in the case

of atherosclerosis, the smooth muscle cells of the vascular intimae may release cytokines when

exposed to tobacco smoke. It is also shown that epithelial cells in the oral cavity when exposed to

smokeless tobacco extracts may contribute to the secreted pool of inflammatory mediators." In

this study a mixed culture of monocytes and lymphocytes was used which may give a more

complete picture of cytokine secretion than monocytes alone," but does not include the

contribution from other host response cells such as neutrophils, macrophages and resident cells

of periodontium such as epithelial cells, fibroblasts.

It has been shown in the literature that smoke products can affect the secretion of

cytokines when stimulated by lipopolysaccharides from selected bacteria." The results are

;
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contradictory depending on the time of smoke and LPS exposure, and type of cell culture studied.

Furthermore, Hasday et al.'" has shown that cigarette smoke itself contains significant amounts

of LPS. This finding makes it difficult to study the separate effects of tobacco products and LPS

in cytokine secretion. Furthermore, studies that have been done on the effect of nicotine alone do

not take into account the effect of about 2000 other substances in tobacco that may contribute to

the altered release of cytokines. For example, it has been shown that while nicotine did not have

an effect on cytokine Secretion by macrophages, hydroquinones found in smoke could suppress

the release of IL-13 and TNF-0.” It should be mentioned that in that particular study,

monocytes were exposed to these substances for 3 hours vs. the maximum 5-minute exposure of

mononuclear cells in the present study.

From this study and others, it is evident that chronic and acute levels of smoke can

potentially elevate cytokines such as IL-13, TNF-0, and PGE2 in periodontal tissues and in other

tissues and organs of the body exposed to smoke such as lung. Cytokines secreted in the lung and

oral cavity can enter the blood stream and cause an increase in incidence and severity of the

systemic diseases. For example, increased levels of TNF-0 and/or IL-1B from smoke-exposed

periodontal tissue and airways could lead to increased insulin resistance with exacerbation of

diabetic mellitus, decreased levels of high density lipoproteins and elevation of low density

lipoproteins.” These could lead to concomitant development of atherosclerosis, and

elevation of C-reactive proteins which are risk indicators for a variety of inflammation related

systemic diseases. Therefore, acute smoke not only can play a role in the progression of

periodontal disease by elevating the cytokine production but may also play a role in possible

relationship between periodontal diseases and systemic diseases. Many studies have shown that

in patients with periodontal disease there is an increase in the local levels of IL-13 and PGE2.
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These inflammatory mediators could enter the blood stream and affect systemic conditions such

as cardiovascular problems and low birth weight.

The factors that can affect the amount of secretion of cytokines are the age of individuals

and the feedback pathways among cytokines. In the present study, the mean age of the smoking

population was 12 years older than nonsmokers. This age discrepancy may be an important

variable in the reported differences between cytokine secretions in smokers vs. nonsmokers as

shown by some studies.” There is positive and negative feedback among the cytokines. For

example, elevated prostaglandin levels may suppress the secretion of IL-13, while IL-1B and

TNF-0, may reciprocally induce each other's secretion.” Furthermore, smoke products may

enhance the destructive effects of inflammatory cytokines by suppressing the expression of IL-13

receptor antagonists in periodontal tissues." Kunkel et al.'" have shown a regulatory interplay

between IL-13 and PGE2. IL-1 upregulates PGE2 synthesis by macrophages. Conversely,

increased PGE2 concentrations inhibit IL-1 production. Furthermore, the addition of

cyclooxygenase-inhibiting drugs can increase IL-1 synthesis by decreasing arachidonic acid

metabolites such as PGE2. Therefore, IL-1 can regulate its own production through a self-induced

inhibitor, PGE2." PGE2 modulates IL-1 levels by a negative feedback mechanism, it is

conceivable that, in the subjects in whom depressed IL-13 release was observed, this

phenomenon might have been due to inhibition of IL-13 synthesis by PGE2.

In this study, the level of TGF-3 did not seem to be associated with acute exposure. But,

the level of TGF-3 was higher in smokers compared to nonsmokers at all time points. This shows

that chronic exposure could cause an elevation of TGF-3. This could be interpreted as a

compensatory mechanism for the destruction caused by the elevated inflammatory cytokines.

TGF-3 has a reparative function that is increased in tissue in response to smoking to increase turn
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over and repair mechanisms against damage from smoke" Whether these elevations of TGF-3

from peripheral blood mononuclear cells have a beneficial or detrimental effect on the

periodontal tissues has yet to be determined.

Future studies are necessary to further investigate the effect of nicotine and whole smoke

on other cell types and on studying the mechanism(s) by which nicotine and whole smoke

modulates mononuclear secretory response.

Conclusion

1. Chronic and acute levels of smoke can potentially elevate inflammatory cytokines such as

IL-13, TNF-0, and PGE2 in periodontal tissues and in other tissues and organs of the

body exposed to smoke.

2. Chronic exposure to smoke could cause an elevation of TGF-3. This could be a

compensatory mechanism for the destruction caused by the elevated inflammatory

cytokines.

3. Future studies are necessary to investigate the effect of nicotine and whole smoke

on all cell types and the mechanisms of their action.
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