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The draft genome of Thermocrinis jamiesonii GBS1T is 1,315,625 bp in 10 contigs and encodes 1,463 predicted genes. The pres-
ence of sox genes and various glycoside hydrolases and the absence of uptake NiFe hydrogenases (hyaB) are consistent with a
requirement for thiosulfate and suggest the ability to use carbohydrate polymers.
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Strain GBS1T was isolated from the water column of Great Boil-
ing Spring (GBS), Nevada, and described as a novel species,

Thermocrinis jamiesonii, belonging to the family Aquificaceae (1).
It is thermophilic, autotrophic, obligately microaerophilic, and
grows chemolithoheterotrophically on peptone, casamino acids,
or acetate with thiosulfate as the electron donor (1). It is different
from other species of Thermocrinis in its use of thiosulfate as the
sole electron donor and its high tolerance for NaCl (1).

The draft genome of strain GBS1T was generated at the U.S.
Department of Energy (DOE) Joint Genome Institute (JGI) using
Illumina HiSeq 2000 sequencing technology yielding 18,071,694
filtered reads totaling 2.7 Gbp. Details of library construction and
sequencing performed at JGI can be found at http://www.jgi.doe
.gov. Filtered reads were assembled using Velvet (ver. 1.2.07) and
Allpaths–LG (ver. r46652) (2, 3). The genome was annotated us-
ing Prodigal ver. 2.5 (4), as part of the JGI microbial annotation
pipeline (5). The T. jamiesonii GBS1T draft genome is
1,315,625 bp in 10 contigs, and encodes 1,463 predicted genes,
including 1,415 protein-coding genes, 43 tRNA genes, and a single
rRNA operon. Analysis of the genome for carbohydrate-active
enzymes (CAZymes) (6) revealed 36 CAZymes, 6 of which are
glycoside hydrolases (GHs) probably involved in degradation of
chitodextrins/peptidoglycans (3 genes belonging to the GH23
family) and starch (GH13, GH57, GH77). These genes suggest
GBS1T might be capable of growth on some polymers, such as
starch, as has been shown for Thermocrinis minervae (7). These
cultivation and genomic data, along with in situ experiments, sug-
gest some Aquificales to be mixotrophic or heterotrophic, rather
than strictly autotrophic (8).

Consistent with the previous report (1), the GBS1T genome
encodes a sox gene cluster (soxABXYZ) required for thiosulfate
oxidation (9). The genome lacks an NiFe hydrogenase (hyaB) and
a canonical formate dehydrogenase (fdhA), which is consistent

with the inability of GBS1T to grow with H2 or formate as electron
donors. However, the GBS water metagenome (JGI taxon identi-
fication number 2084038020; hyaB: GBSWBa_00119800; fdhA:
GBSWBa_00059550) and a fraction of the Thermocrinis popula-
tion in GBS has hyaB and/or fdhA (10). A variety of Aquificales fix
CO2 via the reverse tricarboxylic acid (rTCA) cycle, including
other Thermocrinis species, Aquifex, and Hydrogenobacter (11).
The GBS1T draft genome lacks 2-oxoglutarate-ferredoxin oxi-
doreductase, which is required for the rTCA cycle, but possesses
other key enzymes, such as citryl-CoA lyase, citryl-CoA synthe-
tase, and fumarate reductase (11). GBS1T is capable of autotrophic
growth, and the GBS water metagenome contains genes with high
nucleotide identity to the Thermocrinis albus 2-oxoglutarate-
ferredoxin oxidoreductase (GBSWBa_00110880), so it seems
likely that GBS1T possesses this gene but it is not present in the
assembly. Though neither motility nor flagella was observed in
cultures of GBS1T (1), its genome has all the genes required for
flagellar assembly, L rings, and P rings. The GBS1T genome en-
codes capacity to synthesize C16:0, C18:0, and C18:1�9c fatty acids,
which were abundant cellular fatty acids along with the Aquificales
C20 –22 signature lipids (12) under standard growth conditions.

Accession number(s). The T. jamiesonii GBS1T genome se-
quence is available in GenBank under the accession numbers
JNIE01000001 to JNIE01000010. The data are also available from
GenBank (NZ_JNIE00000000.1; GI: 657836485) and from the
Joint Genome Institute (JGI) Integrated Microbial Genomes
(IMG) system (2562617198) (13).
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