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Abstract

It is inconceivable how chaotic the world would look to hu-
mans, faced with innumerable decisions a day to be made un-
der uncertainty, had they been lacking the capacity to distin-
guish the relevant from the irrelevant—a capacity which com-
putationally amounts to handling probabilistic independence
relations. The highly parallel and distributed computational
machinery of the brain suggests that a satisfying process-level
account of human independence judgment should also mimic
these features. In this work, we present the first rational, dis-
tributed, message-passing, process-level account of indepen-
dence judgment, called D∗. Interestingly, D∗ shows a curi-
ous, but normatively justified tendency for quick detection of
dependencies, whenever they hold. Furthermore, D∗ outper-
forms all the previously proposed algorithms in the AI litera-
ture in terms of worst-case running time, and a salient aspect
of it is supported by recent work in neuroscience investigating
possible implementations of Bayes nets at the neural level. D∗
exemplifies how the pursuit of cognitive plausibility can lead
to the discovery of state-of-the-art algorithms with appealing
properties, and its simplicity makes D∗ potentially a good can-
didate as a teaching tool.

Keywords: Rational process models; Distributed computing;
Probabilistic independence judgment; Pearl’s d-separation

1 Introduction
Is there any connection between the quality of your last night
sleep and the color of the shirt your colleague happened to
be wearing at work today? How about Mars’ current weather
and your mood today? We humans judge innumerable such
possible connections a day rather effortlessly, appearing to be
quite good at teasing apart pertinent from impertinent factors
when making decisions. But how does the mind do that? The
famous frame problem (Icard & Goodman, 2015; Nobande-
gani & Psaromiligkos, 2017), a puzzle in philosophy of mind
and epistemology, further highlights this intriguing ability of
the mind in distinguish the relevant from the irrelevant, and
asks a closely related question: “How do we account for our
apparent ability to make decisions on the basis only of what
is relevant to an ongoing situation without having explicitly
to consider all that is not relevant?” (Stanford Encyclopedia
of Philosophy). Computationally, the mind’s ability of dis-
tinguishing the relevant from irrelevant can be characterized
in terms of handling probabilistic (in)dependence relations,
with ‘dependency’ implying the existence of connection or
relevance between factors and ‘independence’ the contrary
(Pearl, 1986, 1988, 2000). For example, assuming that the
random variable x encodes the quality of your sleep, and y
the color of the shirt your colleague happened to wear the
next day, the nonexistence of any connection between x and
y (which seems to be a rational judgment) can be formally
characterized using the notion of probabilistic independence:

x⊥⊥ y (read x is independent of y, and, by virtue of symmetry,
y is independent of x).

In this work, we are concerned with developing a plausi-
ble, process-level account of human independence judgment.
Adopting causal Bayes nets (CBNs) (Pearl, 1988; Gopnik et
al., 2004, inter alia) as a normative model to represent how
the reasoner’s internal causal model of the world is struc-
tured (i.e., reasoner’s mental model), the aforesaid task com-
putationally amounts to checking for independencies in the
distribution encoded by a CBN. Interestingly, Pearl (1986)
put forth a graph-theoretic notion called d-separation, allow-
ing for reading off probabilistic independence relations from
the mere structure of a CBN (Pearl, 1986).1 Ever since
its inception, d-separation has proved fundamental in a va-
riety of domains in artificial intelligence, e.g., probabilistic
reasoning (Pearl, 1988), causal reasoning (Pearl, 2000), de-
cision making (Shachter, 1998; Koller & Friedman, 2009),
and has played important roles in a broad range of areas,
e.g., handling missing data (Mohan & Pearl, 2014), extrap-
olation across populations (Pearl & Bareinboim, 2014), and
deep learning (Goodfellow et al., 2016). In that light, algo-
rithms for implementing d-separation could potentially serve
as a rational, process-level model of human independence
judgment. But what should such a model look like? The
highly parallel and distributed computational machinery of
the brain suggests that a satisfying process-level account of
human independence judgment should also mimic these fea-
tures. Sadly enough, all past algorithms for the implemen-
tation of d-separation have been sequential (aka serial), i.e.,
without any parallelism in computation, and, arguably worse,
centralized, i.e., their executions are fully coordinated by a
supervisory unit, analogous to a homunculus (Geiger et al.,
1989; Lauritzen et al., 1990; Shachter, 1998; Koller & Fried-
man, 2009; Butz et al., 2016). These features strongly call
into question their psychological plausibility.

The notion of (conditional) probabilistic independence is
a quintessential feature of CBNs, and, interestingly, the re-
alization that probabilistic independence plays a crucial role
in human cognition was a key element in the development of
the CBN formalism (Pearl, 1986). In Pearl’s (1986) words:
“Whereas a person may show reluctance to giving a numeri-
cal estimate for a conditional probability P(xi|x j), that person
can usually state with ease whether xi and x j are dependent
or independent, namely, whether or not knowing the truth of
x j will alter the belief in xi.” He then continues: “Likewise,

1More accurately, Pearl’s (1986) d-separation is equally valid for
Bayes nets wherein the edges do not enjoy causal interpretations.
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people tend to judge the three-place relationships of condi-
tional dependency (i.e., xi influences x j given xk) with clarity,
conviction, and consistency. This suggests that the notions
of dependence and conditional dependence are more basic to
human reasoning than are the numerical values attached to
probability judgments.” Some psychological literature, how-
ever, does not fully embrace the statement “with clarity, con-
viction, and consistency” as Pearl put it. For example, the
experimental work by Rehder (2014) suggests that adults ex-
hibit deviations from the Markov condition (i.e., CBN’s inde-
pendencies entailed by d-separation). In contrast, drawing on
the experimental studies of Park and Sloman (2013), Sloman
and Lagnado (2015) conclude that people indeed uphold the
Markov condition and the reason behind the observed devia-
tions is that, under experimental conditions, people may not
solely adhere to the information provided by the experimenter
and may bring their own background knowledge into the ex-
periment (see also Rehder & Waldmann, 2017). Specifically,
Park and Sloman (2013) found strong support for their con-
tradiction hypothesis followed by the mediating mechanism
hypothesis, and finally concluded that people do conform to
Markov condition once the causal structure people are using
is correctly specified (i.e., people’s mental causal models).

In this work, we present the first rational, distributed,
process-level account of independence judgment, called D∗.
More formally, D∗ is the first asynchronous, message-
passing, distributed algorithm for implementing d-separation,
with substantial parallelism in computation, and without any
need for a supervisory unit to coordinate its execution (i.e., no
synchrony is assumed in D∗’s execution)—fully in the spirit
of the celebrated parallel distributed processing (PDP) re-
search program in brain and cognitive sciences (McClelland,
1989). Similar to the well-known belief propagation infer-
ence algorithm (Pearl, 1986, 1988), which has played impor-
tant roles in the theoretical neuroscience literature (see e.g.,
Gershman & Beck, 2017; George & Hawkins, 2009; Litvak
& Ullman, 2009; Rao, 2004; Lochmann & Deneve, 2011),
D∗ is a message-passing algorithm, wherein computation is
carried out by propagating messages between computational
units. Interestingly, D∗ shows a curious, normatively justified
tendency for quick detection of probabilistic dependencies,
whenever they hold. Furthermore, D∗ outperforms all the
previously proposed algorithms in the AI literature in terms
of worst-case running time, and a salient aspect of it is sup-
ported by recent work in neuroscience investigating possible
implementations of Bayes nets at the neural level (e.g., Ger-
shman & Beck, 2017; Lochmann & Deneve, 2011).

We provide a comprehensive analysis of the computational
properties of D∗, along with several refined time-complexity
bounds. In the Discussion section, we provide a detailed com-
parison between D∗ and previously proposed algorithms, and
elaborate on the implications of the work presented here for
neuroscience and psychology. Formal proofs of the results
presented can be found in an extended version of this paper
available on arXiv: https://arxiv.org/abs/1801.10186.

2 Preliminaries and Notations
Let us introduce the notation adopted in this work. Lower
bold-faced letters (e.g., x) denote random variables and upper
bold-faced letters (e.g., X) represent sets of random variables.
A generic d-separation relation is denoted by (A ⊥⊥ B|C)G
with A,B, and C representing three mutually disjoint sets
of variables belonging to the directed acyclic graph (DAG)
G, where G represents the topology of the underlying CBN.
Read (A ⊥⊥ B|C)G as follows: C d-separates A from B in
DAG G. Similarly, (A 6⊥⊥ B|C)G denotes that C does not d-
separate A from B in DAG G. For ease of notation, we use
(A⊥⊥ B|C)G to denote both a d-separation relation (i.e., C d-
separates A from B in DAG G) and to denote a d-separation
query (i.e., does C d-separate A from B in DAG G?); the dis-
tinction should be clear from the context. Let also GAn(K)

denote the ancestral graph for the variables in set K belong-
ing to the underlying DAG G (Lauritzen et al., 1990), i.e.,
the set of nodes for GAn(K) comprises the nodes in K and all
the ancestors of the nodes in K (hence, GAn(K) is an induced
subgraph of the underlying DAG G).

Informally speaking, throughout that paper, (A ⊥⊥ B|C)G
should be interpreted as follows: “A and B are probabilisti-
cally independent of each other, given C,” and, in the query
format, as follows: “Are A and B probabilistically indepen-
dent of each other, given C?” Likewise, (A 6⊥⊥ B|C)G should
be interpreted as follows: A and B are dependent, given C.2

Next, a notion called refutation-module is introduced; this
will be used later in our formal analysis of D∗.

x y

z

v

t1 t3 t5
t2 t4

x y

z

v

t2 t4

x y

t3
t2 t4

(a) (b) (c)

Figure 1: Examples for refutation modules. (a) The underlying
DAG G is depicted, for which (x 6⊥⊥ y|z)G. (b,c) Two refutation-
modules for the query (x⊥⊥ y|z)G are depicted. Note, z =∅ in (c).

Def. 1. (Refutation-Module) Let X,Y,Z be three mu-
tually disjoint sets belonging to a DAG G. Let also (X 6⊥⊥
Y|Z)G. A connected subgraph of G, M(X 6⊥⊥Y|Z)G , serves as a
refutation-module for the query (X⊥⊥ Y|Z)G, iff M(X 6⊥⊥Y|Z)G
satisfies the following two conditions: (1) M(X 6⊥⊥Y|Z)G con-
tains an active path P (Pearl, 1986) between a node x ∈ X
and a node y ∈ Y, and (2) for every head-to-head node v on
P, M(X 6⊥⊥Y|Z)G contains a directed path between v and a node
z ∈ Z. See Fig. 1 for some examples.

Def. 2. (Minimal Refutation-Module) Let X,Y,Z be
three disjoint sets of nodes belonging to a DAG G. Also, let

2Formally, the said interpretations are not fully granted; how-
ever, for all purposes of this work, they can be taken to be accurate
enough characterizations (see Pearl, 2000, for a complete elabora-
tion on the precise relation between d-separation and conditional
independence.)
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(X 6⊥⊥ Y|Z)G. Let M ∗
(X 6⊥⊥Y|Z)G

denote the refutation-module
for the d-separation query (X ⊥⊥ Y|Z)G which possesses the
smallest number of edges. We refer to M ∗

(X 6⊥⊥Y|Z)G
as the min-

imal refutation-module in G for the query (X⊥⊥ Y|Z)G.
It is easy to prove by construction that the minimal

refutation-module M ∗
(X 6⊥⊥Y|Z)G

need not be unique.

3 The Three-Color Algorithm D∗
In this section, we show how the proposed algorithm D∗ al-
lows us to decide if a generic d-separation query of the form
(A⊥⊥ B|C)G holds in a DAG G; D∗ is an asynchronous, dis-
tributed, message-passing algorithm. More specifically, in
D∗, nodes of the underlying DAG G—symbolizing computa-
tional units—autonomously engage in communicating mes-
sages to their immediate neighbors via the edges of the DAG
G—symbolizing communication channels. We assume that
communication channels are reliable, bidirectional, and first-
in first-out (FIFO) (Lynch, 1996).

The proposed algorithm D∗ is outlined next. Throughout
an execution of D∗, variables in C ignore all messages re-
ceived from any of their children, and do not send any mes-
sage to any of their children. The variables in the sets A,
B, and C initially activate in the states represented by col-
ors green (•), red (•), and white (◦), respectively. Follow-
ing the prescriptions of the original Belief Propagation algo-
rithm (Pearl, 1986, Sections 1.3 and 2.2.3), we assume that
the variables in the sets A,B,C acquire their initial states in
a self-activated manner. Assuming that a CBN’s node can be
represented at the neural level by a single (Deneve, 2008b,a)
or a population of neurons (Ma et al., 2006), self-activation
reflects the content-addressability of the corresponding mem-
ory traces. D∗ begins with nodes in A,B, and C sending their
colors as messages to their parents. Node x, upon receiving a
message, follows two simple steps in the following order:

(i) If x’s current color differs from that of the received mes-
sage, x replies by sending back its own color as a message
to the transmitter node. If x is in the state of having no
color (denoted by ∅) prior to the receipt of the message, it
does not send back any message to the transmitter node.

(ii) x updates its color in accord with the following primitive
rules, altogether composing the Color Update Grammar
(CUG):

(∅,•)→•,(∅,•)→•,(∅,◦)→◦,
(•,•)→•,(•,•)→•,(◦,◦)→◦,
(◦,•)→•,(◦,•)→•,
(•,◦)→•,(•,◦)→•,
(•,•)→ clash,(•,•)→ clash,

where the syntax is: (x’s current color, received message)
→ x’s new color. If x’s new color turns out to be differ-
ent from its old color, with the exception of the transmitter
node, x sends its new color as a message to all its parents,

and only those children of x with which x has communi-
cated before.

The rules given in the first row of the CUG correspond to
white-, green-, and red-colored nodes sending their colors to
their yet-uncolored parents. Rules in the second row ensure
that the colors of white-, green-, and red-colored nodes persist
upon interacting with nodes of the same color. Rules stated
in the third row bear on the key understanding that the white
color functions as a mere place-holder getting “replaced” by
interacting with green-, or red-colored nodes. Rules in the
fourth row guarantee the persistence of colors green and red
upon interacting with white. Finally, rules given in the last
row correspond to the clash event the implication of which is
discussed in Remark 1 below.

Remark 1. A clash between colors green (•) and red (•)
at a node, any time throughout an execution of D∗, signals
the falsity of the input d-separation query, upon which D∗
decides that (A 6⊥⊥ B|C)G.

Note that the asynchrony of D∗ stems from the fact that
there exists no global clock for the system and hence any
node, upon receiving a message, follows Steps (i) and (ii) au-
tonomously, i.e., informally, without having to attend to what
computations other nodes in G are performing.

Some of the computational properties of the proposed al-
gorithm D∗ are formally articulated in Proposition 1 below.

Proposition 1. The following statements hold for D∗.

(1) For a given d-separation query (A⊥⊥ B|C)G and DAG G,

“C does not d-separate A from B in G”⇐⇒
“Clash takes place during D∗’s execution”.

(2) D∗’s message-passing is confined within the ancestral
graph GAn(A∪B∪C).

(3) During D∗’s execution, either a clash between colors red
(•) and green (•) takes place (see Remark 1) upon which
D∗ decides that (A 6⊥⊥ B|C), or a state of equilibrium will
be reached in O(lAn(A∪B∪C)) time where lAn(A∪B∪C) denotes
the length of the longest undirected path in the ancestral
graph GAn(A∪B∪C).

(4) Message-passing terminates in O(1) time after reaching
the state of equilibrium, thereby guaranteeing the termi-
nation of D∗.

(5) Message-complexity of D∗ is O(|EAn(A∪B∪C)|) where
EAn(A∪B∪C) is the set of the edges of the ancestral graph
GAn(A∪B∪C).

(6) Communication-complexity of D∗ is O(|EAn(A∪B∪C)|) bits
where EAn(A∪B∪C) is the set of the edges of the ancestral
graph GAn(A∪B∪C).
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3.1 High-Level Understanding of D∗

D∗ has a simple machinery as we informally discuss here.
Upon variables in A∪B∪C sending their colors to their par-
ents, colors white (◦), green (•), and red (•) begin to propa-
gate in a backwards manner throughout the network. In the
midst of this process, white-color nodes which have a neigh-
boring node colored either red (•) or green (•), change their
color to that of their neighbors, and if a clash ever occurs
between colors red and green, D∗ decides that the input d-
separation query is false (i.e., it is a NO-instance d-separation
query). Informally put, white-color nodes function as relays,
which, by copying the colors of their neighbors, facilitate the
possibility of a (permissible) collision between red and green.

3.2 A Note On The Termination of D∗

According to Proposition 1, if the input d-separation query
presented to D∗ is true (i.e., it is a YES-instance d-
separation query), the system reaches a state of equilibrium in
O(lAn(A∪B∪C)) time and message-passing is guaranteed to ter-
minate in O(1) time after that. However, due to its local view,
a node cannot know if such a global state has been reached.
This is a fairly standard situation for an asynchronous dis-
tributed algorithm to find itself in (Mattern, 1987; Tel, 2000),
leading to the introduction of the fundamental concept of
Termination-Detection (TD) in the distributed systems liter-
ature; see Tel (2000, Ch. 8). There exist a variety of TD al-
gorithms in the literature (e.g., Dijkstra et al., 1983; Mattern,
1987; Mittal et al., 2004, 2007). For example, Mittal et al.
(2004) proposed two TD algorithms, each having detection
latency of O(D) where D is the diameter of the underlying
graph G, and G is allowed to have an arbitrary topology.

4 D∗ in Action: A Case Study
In this section, we present an example to illustrate an execu-
tion and highlight the simplicity of D∗. Consider the CBN
depicted in Fig. 2(a). Let the posed d-separation query be
(X⊥⊥Y|Z)G where X = {x1,x2}, Y = {y1,y2}, and Z = {z}.
According to the d-separation criterion (Pearl, 1988), obser-
vation of z activates the path x1← t1← t2← t3→ t4← t5→
t6→ t7→ y1, thereby yielding the falsity of the d-separation
query (X⊥⊥Y|Z)G (hence, the input is a NO-instance query);
see Fig. 2(a). An execution of D∗ is illustrated using succes-
sive snapshots shown in Figs. 2(b-f) with each figure depict-
ing the global state of the system (i.e., nodes’ colors) at some
instance in global time (aka system’s configuration). As de-
picted in Fig. 2(b), variables in sets X,Y, and Z initially self-
activate in the states represented by colors green (•), red (•),
and white (◦), respectively. Also recall that, as explicated in
Sec. 3, variables in Z ignore any message received from any
of their children, and also do not send any message to any of
their children—depicting the downlinks of the variables in Z
in a dash-dotted format simply illustrates this statement pic-
torially in Fig. 2(b). The colors green (•), red (•), and white
(◦) propagate in a backwards manner (Figs. 2(c-d)). Also, the
color of a white node gets replaced by green or red once a

neighboring node acquires such colors (Figs. 2(d-f)). Even-
tually, in the configuration depicted in Fig. 2(f), a clash takes
place between colors green and red at a node (circled node in
Fig. 2(f)), upon which D∗ decides that (X 6⊥⊥ Y|Z)G.

x1

(a)

y1x2 y2

z

w

t5

t1

t2 t4

t3

t6

t7

x1

(b)

y1x2 y2

z

w

x1

(c)

y1x2 y2

z

w

x1

(d)

y1x2 y2

z

w

x1

(e)

y1x2 y2

z

w

x1

(f)

y1x2 y2

z

w

Figure 2: Illustrative example. The underlying DAG G is shown
in (a). The initial configuration of the system is portrayed in (b),
wherein variables in sets X,Y, Z self-activate in the states repre-
sented by green (•), red (•), and white (◦), respectively. Depicting
the downlinks of the variables in Z in a dash-dotted format sim-
ply symbolizes that the variables in Z ignore any message received
from any of their children, and also do not send any message to any
of their children. D∗ begins by nodes in X,Y, Z sending their col-
ors as messages to their parents and proceeds as shown in (c-f) with
each figure depicting a snapshot of the global state of the system
at some instance in global time. Eventually, upon occurrence of a
clash between colors green and red (at the circled node in (f)), D∗
decides that (X 6⊥⊥Y|Z)G. A better-quality version of this figure can
be found on arXiv: https://arxiv.org/abs/1801.10186

Notice that, since w is unobserved (Fig. 2(a)), the path
x2 → w← y2 indeed remains blocked (Pearl, 2000); this is
nicely captured by the machinery of D∗. Algorithm D∗ pre-
vents x2 and y2 from sending their colors in the forward di-
rection (i.e., along the edges pointing to w), thereby guar-
anteeing the occurrence of no clash along the blocked path
x2→w← y2. Also notice that, since z is observed (Fig. 2(a)),
the path x2← z→ y2 is blocked as well (Pearl, 2000). Once
again the machinery of D∗, due to z refraining from engaging
in message-exchange with its children, ensures that no clash
takes place due to the blocked path x2← z→ y2.

5 Technical Discussion
A number of algorithms for the implementation of d-
separation are proposed in the literature (Geiger et al., 1989;
Lauritzen et al., 1990; Shachter, 1998; Koller & Friedman,
2009; Butz et al., 2016). Assuming |E| ≥ |V |, to decide
if (A ⊥⊥ B|C)G holds in G, the worst-case running time of
Geiger et al.’s, Koller and Friedman’s, Shachter’s, and Butz
et al.’s is O(|E|) and that of Lauritzen et al.’s algorithm3 is
O(|V |2) where |V | and |E| denote the number of the nodes
and the edges of the underling DAG G, respectively. Note
that, since for any DAG G, |E| ≤ |V |2, an O(|E|)-time algo-
rithm (e.g., Geiger et al.’s) outperforms an O(|V |2)-time algo-

3The reader is referred to Geiger et al. (1989) for a detailed anal-
ysis of the running-time of Lauritzen et al.’s algorithm.
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rithm (e.g., Lauritzen et al.’s) in terms of worst-case runtime4

(see Geiger et al., 1989, for more discussions on this). Ac-
cording to Proposition 1, the time-complexity of the proposed
algorithm D∗ is O(lAn(A∪B∪C)) where lAn(A∪B∪C) denotes the
length of the longest undirected path in the ancestral graph
GAn(A∪B∪C). Since, for any DAG G, lAn(A∪B∪C) ≤ |E| ≤ |V |2,
the proposed algorithm D∗ outperforms all the previously
proposed algorithms in terms of the worst-case running time.5

Particularly, the gain is significant in dense DAGs. Note that,
in the limit as the underlying DAG G gets denser, the worst-
case runtime performances of the previously proposed algo-
rithms become identical, i.e., O(|V |2).

Another noteworthy property of D∗ is its tendency to-
ward quick detection of false d-separation queries (i.e., NO-
instance queries), manifested in an occurrence of a clash ac-
cording to Remark 1. For a NO-instance d-separation query,
Proposition 2, below, gives a more refined upper-bound:

Proposition 2. Let A = {ai}i, B = {b j} j, C = {ck}k be
three disjoint sets of nodes belonging to a DAG G. Let
ld
An(A∪B∪C) denote the length of the longest directed path in

the ancestral graph GAn(A∪B∪C), and li j
An(A∪B∪C) the length

of the shortest unblocked path between the nodes ai and b j
in GAn(A∪B∪C). As a convention, if all paths between ai

and b j are blocked, li j
An(A∪B∪C) = ∞. If (A 6⊥⊥ B|C)G then a

clash between colors green (•) and red (•) occurs in time
O
(
ld
An(A∪B∪C)+min

i, j
li j
An(A∪B∪C)

)
, upon which D∗ decides that

(A 6⊥⊥ B|C)G.
In Sec. 2, we formally defined a notion called refutation-

module (see Def. 1). In the language of computational com-
plexity and theorem-proving, a refutation-module M(X 6⊥⊥Y|Z)G
can serve as a certificate (or witness) for disproving a d-
separation query (X ⊥⊥ Y|Z)G. This interpretation is re-
lated to the verifier-based definition of the complexity class
coNP. Next, in Proposition 3, we provide an even more re-
fined upper-bound on the time required for an occurrence of
a clash, thereby strengthening our claim as to D∗’s tendency
toward quick detection of false d-separation queries.

Proposition 3. Let X,Y,Z be three disjoint sets of nodes
belonging to a DAG G. Also, let (X 6⊥⊥ Y|Z)G. Let M(X 6⊥⊥Y|Z)G
denote a refutation-module for the query (X ⊥⊥ Y|Z)G with
ld
M and |PM | denoting the length of the longest directed path

and the shortest unblocked path in M(X6⊥⊥Y|Z)G , respectively.

4The gain is particularly significant in sparse graphs.
5According to Proposition 1, a NO-instance d-separation query

can be decided by D∗ in time O(lAn(A∪B∪C)). The upper-bound
O(lAn(A∪B∪C)) is an improvement over the worst-case runtime of all
the previously proposed algorithms. Also note that, adopting a TD-
algorithm with detection latency of O(D) (see Mittal et al., 2004,
2007, for such TD-algorithms), a YES-instance d-separation query
can be decided by D∗ in time O(lAn(A∪B∪C) +D) where D is the
diameter of G. Once again, since lAn(A∪B∪C) ≤ |E|,D ≤ |E|, |E| ≤
|V |2, the upper-bound O(lAn(A∪B∪C) +D) is an improvement over
the worst-case runtime of all the previously proposed algorithms.
(Notice that, for any DAG G, 1

2 (lAn(A∪B∪C)+D) ≤ |E|, hence fol-
lows |E|= Ω(lAn(A∪B∪C)+D).)

Finally, let M ∗
(X 6⊥⊥Y|Z)G

denote the minimal refutation-module
for the query (X⊥⊥ Y|Z)G, with EM ∗

(X6⊥⊥Y|Z)G
denoting the set of

the edges of M ∗
(X6⊥⊥Y|Z)G

. Then the following statement holds
true: A clash between colors green (•) and red (•) occurs
in time O(minM(X6⊥⊥Y|Z)G

{ld
M + |PM |})≤ O(|EM ∗

(X6⊥⊥Y|Z)G
|), upon

which D∗ decides that (X 6⊥⊥ Y|Z)G.
Finally, we would like to point out an interesting property

of the CUG, referred to as order-invariance, which is charac-
terized informally as follows: The order according to which
nodes in the network receive their messages is irrelevant.

6 General Discussion
The Algorithm D∗, in the spirit of Pearl’s (1986) belief prop-
agation scheme, employs the edges of the underlying CBN as
the medium through which message-passing between nodes
takes place. The latter echos Pearl’s (1986) insight when he
advocated the idea that a CBN must not be viewed as “merely
a passive parsimonious code for storing factual knowledge
but also a computational architecture for reasoning about that
knowledge.” D∗ adheres to this idea. Recent literature in neu-
roscience investigating possible implementation of CBNs at
the neural level supports Pearl’s idea (see Lochmann & Den-
eve, 2011; Gershman & Beck, 2017). Lochmann and Den-
eve (2011) advocate the idea that a CBN’s node can be rep-
resented at the neural level by a single (Deneve, 2008a,b)
or a population of neurons (Ma et al., 2006) with the neu-
ral network resembling a “mirror image” of the CBN it
implements—though sometimes not a ‘perfect’ mirror (see
Fig. 1 in Lochmann and Deneve, 2011)—and the links of the
neural network providing the medium for inference to be car-
ried out, either in the form of belief propagation or sample-
based methods like Gibbs sampling.

Interestingly, the peculiar tendency of D∗ toward quick de-
tection of NO-instance d-separation queries is consistent with
our pre-theoretical intuition that humans tend to detect possi-
ble dependencies between concepts and propositions rather
swiftly, once such dependencies do exist. The following
question then presents itself: Could this tendency be sup-
ported based on any rational grounds? In what follows we
provide an argument supporting the rationality of the fore-
going tendency. (†) Assuming that the mind incurs a higher
rate of loss (defined as incurred cost per unit of time) for dis-
covering a dependency when one does exist, compared to the
condition wherein one does not exist and the mind recognizes
that, we formally show that the foregoing tendency is sim-
ply a consequence of the mind acting as a boundedly-rational
satisficer (Simon, 1957), trying to attain good performance in
terms of expected accumulative cost. But why should the rate
of loss under the condition wherein a dependency does exist
be higher? Informally put, why should the mind be so hasty
in detecting dependencies under that condition? One possible
explanation is that it is crucial for the mind to swiftly detect
dependencies under that condition, with the rationale being
that delay in detecting those dependencies could be harmful
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to the reasoner and potentially jeopardize their life, hence im-
portant from an evolutionary standpoint. Furthermore, given
the prominent role that explanation and inference play in hu-
man cognition (see Lombrozo, 2016), it is crucial for the
mind to promptly detect those factors deemed relevant to the
task faced by the reasoner.

Let us formally characterize a general condition under
which the aforesaid tendency can be given a rational basis.
Let CA denote the accumulative cost of an algorithm A im-
plementing d-separation criterion, πYES and πNO denote the
prior probability of the input being a YES-instance and NO-
instance d-separation query, respectively. Let also TYES

A and
TNO

A denote the worst-case runtime of A on YES-instance and
NO-instance d-separation queries, respectively. Finally, let
LYES,LNO ∈ R>0 denote the cost per unit of time incurred
by A for delay in detecting a YES-instance and NO-instance
d-separation query, respectively. Then, for any DAG G, the
following holds true: E[CA ]≤ LYESTYES

A πYES +LNOTNO
A πNO,

where the expectation E[·] is taken with respect to the (un-
known) distribution of all d-separation queries. It is then easy
to show that, under the condition (∗) LNOπNO ≥ LYESπYES, it
is rational for the mind trying to attain good performance in
terms of expected accumulative cost to demonstrate the said
tendency toward quick detection of NO-instance d-separation
queries. The setting portrayed in (†) above is a special case
of Condition (∗): It corresponds to Condition (∗) subject to
the assumptions πNO = πYES (reflecting the reasoner’s unin-
formative, a priori expectation that YES- and NO-instance
queries are equiprobable) and LNO ≥LYES (reflecting a higher
rate of loss for erring on NO-instance queries, as alluded to
earlier). Future work should experimentally investigate if
humans demonstrate the forgoing normatively justified ten-
dency in probabilistic (in)dependence judgment tasks, or that,
on the contrary, they systematically deviate from that.

Also interestingly, the forgoing tendency of D∗ toward fo-
cusing its search on the minimal refutation module can be
taken as evidence for its least-effort-like characteristic, and
is fully consistent with recently proposed frameworks which
seek rational understanding of the mind at the algorithmic
level of analysis by appealing to the notion of economical use
of limited computational and cognitive resources (in our case,
by striving for minimizing the size of the module required to
be investigated for refuting a false d-separation query); see
Nobandegani (2017) and Griffiths et al. (2015). Although we
briefly discussed the idea of termination detection for asyn-
chronous distributed algorithms, a boundedly-rational agent
may decide to only run an asynchronous distributed algorithm
for a period of time which is justified based on the oppor-
tunity cost incurred by delaying another task. In that light,
the boundedly-rational agent may plausibly decide to adopt
termination detection algorithms only in settings wherein the
opportunity costs involved would be relatively low. Also no-
tably, D∗ exemplifies how the pursuit of cognitive plausibility
can lead to the discovery of state-of-the-art algorithms.

Perhaps the biggest limitation of D∗ (and, likewise, of be-

lief propagation) is the assumption that communication chan-
nels are faultless, allowing for reliable message exchange.
The brain’s neural circuits involve much stochasticity and re-
sponse variability (e.g., Ma & Jazayeri, 2014; Ma, Beck, and
Pouget, 2008; Summerfield & Tsetsos, 2015), undermining
this assumption. Future work should investigate extensions
of D∗ that are more robust to neural noise. While many
questions remain open, we hope to have made some progress
toward understanding human probabilistic (in)dependence
judgment at the algorithmic level, a capacity without which
the world would seem too chaotic for humans to live by.
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