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Abstract

This paper develops a method to bridge the two main streams of scanner-data research:
individual choice analysis based on consumer panels, and market-response analysis based on
aggregate (at least store-level) data. The advent of single-source data demands integrated
analysis of both panel and store records. The approach proceeds by isolating the sources of
information in the panel data that are missing from the record of the aggregate causal
environment, and seeking a practical method for completing the picture. The regression-based
method is illustrated using Nielsen single-source data on the catsup category in which the
information on manufacturers' coupons from the panel data are missing from the causal data
reflecting the in-store environment. The results show that diagnostically richer models can be
obtained without a loss of forecast accuracy.



Introduction

The last decade has witnessed a tremendous explosion of research on how to use scanner data
to learn about consumer and market response. The intense efforts at developing methods to
deal with scanner data have fallen into two separate camps. On one hand, there has been
extensive development of discrete choice (mainly logit-based) models and methods for
understanding individual-level choice processes (Bawa and Ghosh 1991; Bawa and Shoemaker
1987; Bucklin and Lattin 1991; Carpenter and Lehmann 1985; Currim, Meyer, and Le 1988;
Currim and Schneider 1991; Elrod 1988; Fader and McAllister 1990; Grover and Srinivasan 1989;
Guadagni and Little 1983; Gupta 1988 and 1991; Jain and Vilcassim 1991; Kalwani et al. 1990;
Kamakura and Russell 1989; Kannan and Wright 1991; Krishnamurthi and Raj 1991; Lattin and
Bucklin 1989; Meyer and Cooper 1987; Moore and Winer 1987; Neslin 1990; Neslin, Henderson,
and Quelch 1985; Pedrick and Zufryden 1991; Ramaswamy and DeSarbo 1990; Tellis 1988,
Vilcassim and Jain 1991; Wheat and Morrison 1990a; Winer 1986 and 1989; and Zufryden 1984
and 1987). On the other hand, there have been substantial efforts to develop market-response
models and methods that address both the vast size and detail of store-tracking data (Abraham
and Lodish 1987; Allenby 1989 and 1990; Bemmaor and Mouchoux 1991; Blattberg and
Wisniewski 1989; Bolton 1989; Bultez and Naert 1988; Cooper 1988; Cooper and Nakanishi
1988; Doyle and Saunders 1990; Kumar and Leone 1988; Russell and Bolton 1988; Shugan
1987; Vilcassim 1989; and Walters and MacKenzie 1988). The few efforts that have tried to use
both panel and store data have been like Wheat and Morrison (1990b) who use the percentage of
times deals occur (computed from store-level data) in there panel-data investigation of purchase-
timing models, or like Pedrick and Zufryden (1991) where store-level causal variables are used in
panel-level modeling efforts. In spite of the common modeling frameworks (i.e. discrete
multinomial-logit [MNL] models and aggregate MNL models) used in some of these undertakings
referenced above, no work has focussed on bridging between these two research streams.

There are very pragmatic reasons for attempting to merge the two traditions. Consumer
panels contain information that is missing from the store-tracking data. Panel data tell for
example about brand-usage frequency, about redemption of manufacturers' coupons, and about
television-advertising exposures -- information that is simply not available in store-tracking
databases. If such data are not incorporated into market-response models, the diagnostic value
of the models is necessarily impaired, and the forecasting ability of the models may also be
affected.



This paper proceeds by:

1. developing a segmentation scheme that divides the consumer panel into mutually
exclusive and exhaustive groups based on usage frequency,

2. aggregating panel variables to the segment level,

3. estimating the store-level sales for each segment (for each brand),

4. calibrating an asymmetric market-share model for the store-level sales of each segment,
5. combining segment-level market-share models into a single forecast,

6. calibrating and forecasting from an aggregate market-share models, and

7. comparing forecasts and diagnostics.

Methods and Restults
1. Developing a Segmentation Scheme

While there many useful bases for segmenting consumer panels (cf. Wind 1978), one of the most
fruitful areas for investigation for market-share models concerns differences in usage frequency.
As pointed out in Cooper and Nakanishi (1988, 43-44 and 89-93) parameters from aggregate
market-share models will not reflect the individual choice processes if the heavy usersin a
category systematically purchase different brands than the light users. Readers are referred fo
Cooper and Nakanishi (1988) for an in-depth discussion of this issue.

Without a consumer panel to go along with store-tracking data a model developer would
not know if there was a correlation between brand choice and usage frequency. But with single-
source databases come both the knowledge of the problem (if it' exists) and the opportunity to
addrcss it through segmentation.

The problematic correlation between brand choice and purchase frequency can be
detected with a simple xz test on expected purchase frequencies. The theoretical market



shares can be estimated from the long-term sales data in the store-tracking data or the panel
(using the overall panel would eliminate any rejections due to the panel failing to track the store).
The market shares times the total number of purchases in each panel segment provides the
expected purchase frequency for each brand, while the observed purchase frequency is readily
obtainable for each panel segment. The great size of the panels may make it too likely that
trivial differences will be confirmed as statistically significant. Only experience over diverse
categories will tell if extremely conservative testing procedure (i.e. extreme type-one error rates)
should be invoked.

But before we can test for the correlation between brand choice and purchase frequency,
we have to decide who are the heavy users and who are the light users. Cooper (1989a and b)
split Nielsen's single-source panels into heavy- and light-user segments in 19 different ways
(depending on different definitions of how heavy the heavy users had to be). All but the most
extreme definitions lead to groups that were significantly discriminable on the basis of actionable
variables such as income, number of members in the family, number of years at the same
residence, number of TVs in the household, hours per week worked by the male head-of-
household (HOH), highest degree obtained by male HOH, and number of hours per week worked
by female HOH. Given this latitude, we decided to define heavy users as those panel
households that purchased the top half of the total volume in the category. We know that in
general it is tougher to predict more extreme events. This specification of segment membership

means we will have ultimately to forecast less extreme volumes than with any other split.

In the catsup category 50% of volume is purchased by the top 20% of the households.
In the yogurt category the top 10% of the households purchased 50% of the volume. We expect
the concentration to vary from one category to another. Further, in any historical period the
record of which households have purchased the most in a category is an imperfect indicator of
who are the real heavy users. But since Schmittlein et al. (1991) have shown that the longer the
term on which manifest concentration is estimated the closer the manifest concentration is to the
true concentration, our approach is to use all available panel data to classify households into
heavy- and light-users segments.

Using the approximately 50-50 split of volume to define segments in the catsup market,
the market and segment shares for Heinz, Hunts, Del Monte, and a combination of the private-
label and generic catsups appear in Table 1. The x2 for the independence of segment and share
is 372 with 3 degrees of freedom. This extreme significance is, as speculated, due mainly to the
large size of the panel, since the @ coefficient is only .019 for this same cross tabulation.



Insert Table 1 about here.

2. Aggregate Panel Variables to the Segment Level.

The kinds of variables that would be useful to incorporate from the panel file into a market-
response analysis are relatively obvious. We aren't interested in the number of toasters or dogs
in the household not only because we have no hypotheses as to why certain brands would
differentially benefit from the various levels, but more fundamentally because these kinds of
variables do not vary across weeks to any appreciable degree. They would act iike segment-
specific constants or intercepts.

The obvious candidates for inclusion are those variables we wished were in the store-
tracking database to begin with. Highest on this list would be information on manufacturers-
coupon redemptions. While store-coupon redemptions have been reported, and used in market-
share analysis {cf. Cooper and Nakanishi 1988), manufacturer-coupon redemptions have not. |t
may be that inclusion of this information will alter our understanding of price or store-coupon

sensitivity.

A less obvious, but no less important, variable is commercial exposures. GRPs or TRPs
could be recorded in a store-tracking database. But it is not obvious how commercial exposures
would be routinely included in anything but a panel database.

In the catsup-category illustration that we develop in the next sections both manufacturer
coupons and commercial exposures we initially aggregated for each segment. But in the catsup
category too few brands engaged in TV advertising to obtain meaningful results. Thus only
manufacturer coupons are used in this first application.

3. Estimating the Store-Level Sales for Each Segment (for Each Brand).

There are three basic assumptions that drive our method for estimating the store-level sales that
correspond to each panel segment:



® The long-term average panel sales for a brand has an influence on contemporaneous

store sales.

This implies that even if there are no sales in the panel segment for a particular brand in a given
week that there still might be sales in the corresponding store segment. The higher the historic
average sales the more likely it is that there will be sales in the store segment ceteris paribus,
even in absence of sales in the panel segment.

® The contemporaneous panels sales for a brand has an influence on contemporaneous

store sales.

Of course we expect the contemporaneous brand sales in a panel segment to be positively
related to brand sales for the corresponding store segment. Each panel segment can have its
unique sensitivity, i.e. the regression weight that relates contemporaneous panel sales for the
heavy panel segment to contemporaneous store sales for the heavy store segment may be
different from the regression weight that relates the corresponding sales figure for the light
segments in the panel and in the store.

® The sensitivity of contemporaneous store sales to long-term panel sales is the same

within brand across segments.

There is no reason that would force us to speculate that long-term historic sales for a brand
affects one segment differently than another. We do of course expect different levels of average
sales across segments, but this restriction is much more specific than that. It merely says that
the sensitivity of contemporaneous sales to historic sales for a brand is the same for each panel
segment. This amounts to a necessary restriction on the intercept for the regression model.

If we let Sjt be the store sales for brand j in period t, let PLjt and PHijt be the panel
sales for the light-users segment and the heavy-users segment, respectively, and let SLjt and
SHjt be the store sales we seek for the light segment and the heavy segment respectively, then

these three assumptions can be represented in the following theoretical relations:

(1
Sjt = ojpLj. + BLj PLjt



SHjt = %jPHj. + BHj PHjt

Estimates for o; B;j and B may be obtained from the multiple-regression equation:

Sjit = & (PLj. +PHj)+BLj PLjt + BHj PHjt + &jt

Rather than merely estimate store segment sales from the theoretical relations in (1) and (2)
using the parameter estimates in (3), advantage should be taken of the fact that these store

segment estimate must sum up to a known total in each store. This can be achieved if we let
wyjt and wyyjs be weights such that:

(4)
Wth+ WHjt = 1

WLjt X Sjt = SLjt

WHjt X Sjt = SHjt

and obtain estimate of these desired weight by post hoc normalization of the sales estimates
based on (1) and (2).

7)

A A A

WLjt = SLjt/Sjt
(8)

A N A

WHjt = SHjt/Sjt



Plugging the weights estimated in (7) and (8) into (5) and (6) provides store-segment sales
estimates that sum to the known total sales in the store.

This procedure was employed using the Nielsen single-source database tracking catsup
sales in Sioux Falls, S.D. for 138 weeks. Table 2 presents the regression-model results for
Heinz, Hunts, Del Monte, Control (Private-Label) Brands, generic catsup, and aggregation of all
other branded catsups, and an aggregation of all catsup called "ALLBRAND" in the analysis. The
top 20% of users in this market purchased approximately 53% of the catsup volume. These
households constituted the heavy-users segment in the panel.

The models all have very high R-Square values, but one must be careful to recognize
that since the normal intercept is suppressed, R-Square is more like a congruence coefficient that
the coefficient of multiple determination we expect. All of these models are highly significant
when compared to the simulation results reported by Korth and Tucker (1975). All of the
parameters are also statistically significant. These tables also report the split of the baseline
volume into the average historical weekly volume (in ounces) for each panel segment.

Insert Table 2 about here.

4. Calibrating an Asymmetric Market-Share Model for the Store-Level Sales of Each
Segment.

Remember we have created a sales stream that we believe corresponds to the part of total brand
sales that was purchased by the light-users segment, and a corresponding sales stream for the
heavy-users segment. Except for the aggregated information from the panel file (which in this
illustration concerned only the redemption of manufacturers coupons), the causal environment
encountered by these segments is the same. So we calibrated an asymmetric MCI model using
the procedures outlined in Cooper and Nakanishi (1988, p. 168). Basically these procedures
estimate all differential effects and brand-specific intercepts, search among the residuals for
potentially significant cross effects, and finally re-estimate all effects using weighted least
squares. Given the tiny shares of the aggregate representing all other branded catsups, this
aggregate was dropped from the analysis. The private-label and generic catsups were combined
into an aggregate simply called Private Labels. Each brand was represented by a brand-specific



intercept (Int) and a differential effect for line ads (Ad-L), major ads (Ad-M), end-of-aisle display
(D-EA), front-aisle display (D-FA), in-aisle display (D-In), an aggregate of all other displays (D-
AO), percent of brand volume sold on store coupon (Cp-S), and price (Price). Manufacturers
coupon (Cp-M) was represented as the percent of panel-segment sales on which a
manufacturers coupon was redeemed. All variables were represented as exp(z-scores) (ct.
Cooper and Nakanishi 1988, pp. 68-78).

Table 3 and 4 report the parameters estimated for the market-share models for the Light
and Heavy Segments, respectively. Both models fit very well in calibration (R-Squares of .824
and .829 respectively). One would hope that this would be the case since the cross-competitive
effects are selected so that they are very likely to be significant in the calibration data set
(approximately two-thirds of the store weeks are used for calibration). The models also fit quite
well in cross calibration in which the specification developed in the calibration dataset is applied
to the remain one-third of the store weeks). Here the R-Squares were .803 and .814
respectively. And finally the models also cross validated quite well. The cross validation used
the parameter values form the calibration dataset to forecast market shares for the untouched
data in the final one-third of the store weeks. Here we form a single composite for each segment
and perform a simple regression on the appropriately transformed (log-centered) dependent
measure. The R-Squares are .756 and .766 respectively for models with one predictor and 1607
degrees of freedom. The comparison to the aggregate model is discussed in Section 7. The
cross effects are described verbally, by comparison with what would be expected from a
symmetric market-share model (cf. Bell, Keeney, and Little 1975). In symmetric market-share
models, when one brand loses share the other brands are represented as if they gain share
strictly in proportion to their prior market shares. Further interpretation is deferred to section 7
where diagnostics are also compared.

Insernt Tables 3 and 4 about here.

5. Combining Segment-Level Market-Share Models into a Single Forecast.

Combining the segment-level forecasts mentioned in the previous section into a single market-
share forecast is relatively straightforward since we already have the weights from equation (7)
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and (8). Combined forecast of market share for each brand merely applies these weights to the
estimated brand shares from the segment models.

The variance accounted for (VAF) in the forecast period of the combined forecast is over
71%. This is a strong indication of very good forecasting ability. The root mean squared error
(RMSE) of .128 might seem high, but we must remember that there are tremendous swings in
market share when looked at on a week-by-week and store-by-store basis.

6. Calibrating and Forecasting from an Aggregate Market-Share Models,

Excluding the manufacturers coupons, the procedures for specification of the aggregate market-
share model were the same as those for the segment-level models. The R-Square in calibration
was .845, in cross calibration was .816 and in cross validation was .772 -- just slightly higher in all
cases than the corresponding values for the segment-level models.

The parameter values are reported in Table 5. Here too the cross effects are described
verbally, in relation to what we expect from a symmetric market-share model. Further
interpretation of the parameters is postponed to the next section.

Insert Table 5 about here.

7. Comparing Forecasts and Diagnostics.

Table 6 compares the summary statistics on model calibration, cross calibration, cross validation,
and forecasts. The similarities are remarkable. Although a slight edge might seem to go to the
aggregate model (there are no statistical tests to compare these R-Square values), when it
comes to forecasting the models are identical to three decimal places.

Insert Table 6 about here.
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The condition index is also reported for the models in each of the calibration datasets.
This number is the ratio of the largest singular value (square root of the eigenvalue) to the
smallest singular value in the sum-of-squares-and-crossproducts (SSCP) matrix for the (reduced-
form) regression model. This index is discussed by Belsley, Kuh, and Welsch 1980) as an
indicator of the degree of collinearity in the regression system. These authors indicate that
condition indices over 100 can cause "... substantial variance inflation and great potential harm to
regression estimate” (p. 153). Indices from 21 to 35 are moderate at worst and give further
evidence that asymmetric market-share models that use exp(z-scores) (cf. Cooper and Nakanishi
1988, pp. 141-3) are exempt form the wamnings concerning collinearity first given by Bultez and
Naert (1975).

We may begin the comparison of the diagnostic value of this approach by looking at the
parameter values listed in Table 7. This table shows only the differential-effect parameters for
the three models calibrated earlier. There are no statistical tests for the equality of parameters
across equations of this sort. What we are undertaking is not a statistical comparison, but rather
a comparison of how differently these models would be interpreted by managers having to

develop brand plans in a competitive environment.

insent Table 7 about here.

For convenience the parameters have been grouped into four classes. Those with no
border are relatively stable across analyses. Note that 28 of the 40 groups (70%) fall into this
stable class, which is reassuring in many ways. The brand-specific intercepts, line-ad
parameters, front-aisle display parameters, and store-coupon effects all seem stable within
brands across analyses.

The solid, dark lines highlight parameter groups with major differences in levels (although
no changes in the pattern of statistical significance across analyses). For Del Monte the

aggregate price parameter is -.57, but the introduction of the manufacturers coupon and
segmentation leads to a heavy-user segment that is very price sensitive (B Hj Price = -1.13) and

somewhat coupon sensitive (BHj Coupon = -26), While the light-user segment is much less price
sensitive (B price = --61) and more opportunistic users of manufacturers coupons (B;; Coupon

= 51). For Private-Label brands the manufacturers’ coupon effect is not significant in either

12



segment (as should be the case), but the segmentation still leads to major ditferences in the price
parameter -- with the heavy-user segment being much more price sensitive than the light-user
segment.

The dotted lines highlight groups in which the analyses reveal differences in the patterns
of significance across analyses. In the aggregate analysis of Heinz there is a significant price
effect. But segment-level analysis indicates that the heavy-user segment is not price sensttive,
but is sensitive to manufacturers coupons, while the light-user segment is somewhat price
sensitive and not effected by manufacturers coupons. For Hunts we see that both segments are
somewhat sensitive to the presence of manufacturers coupons, but that all of the price sensitivity
that appears in the aggregate is due to the sensitivity of the heavy-users segment.

Particularly for Heinz (the dominant brand in the category) we see diagnostically ditferent
patterns comparing the segment analyses and the aggregate analysis. Major ads and other
displays appear effective in the aggregate but have no significant effect in either segment. The
end-of-aisle displays that seem effective in the aggregate analyses influence the heavy users but
not the light users. All of these difference lead us to believe that segment-based analyses
provide a diagnostically richer picture of this brand and of the market -- without a sacrifice in
forecast accuracy.

Conclusion

The goal of this effort was to propose and illustrate a method for bridging the too long separate
traditions of individual-choice modeling and market-response modeling. We have shown that
some kinds of information in panel databases can be used to segment otherwise aggregate
market-response models, and other kinds of information can be integrated into these segment
models to provide a diagnostically richer representation of market and competitive influences.
And we have shown that these diagnostically rich, asymmetric market-share models can be
estimated without the fear of collinearity.

This was a modest effort involving segmentation by usage frequency and the integration

of a single variable from the panel database. But the underlying methods are so simple and
robust that more venturesome applications seem readily doable.
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Table 1. Store and Segment Market Shares

Brand
Heinz
Hunts
DelMonte
PviGeneric

Share
67.40%
15.80%

7.60%

Heavy Light

Store Segment Segment
Share Share

68.79%  68.25%

15.98%  15.31%

8.15% 8.52%

7.08% 7.91%

9.20%



Brand
Heinz
(t-values)

Hunts
(t-values)

DelMonte
(t-values)

Ctl Brands
(t-values)

Generic
{t-values)

All Others
(t-values)

All Brands
(t-values)

5

Table 2. Summary of Regression Analyses - Sioux Falls Panel

Alpha

R-Square F (3,138) Baseline

0.976

0.965

0.923

0.967

0.931

0.578

0.983

1827

1233

539

1315

604

62

2645

8.506
10.811

8.273
11.98

5.024
6.095

13.381
17.993

26.599
17.95

10.496
6.401

9.719
11.01

Beta
Light
15.137
5.248

11.786
5.837

14.287
6.746

8.623
5173

11.813
7.504

4.737
4.301

8.545
3.268

Beta Average Volume

Heavy
10.562
3.429

15.617
8.761

13.208
7.314

14.585
10.519

6.014
3.1

6.843
6.283

14.798
5.024

Light
2403

539

300

233

45

3524

Heavy
2784

647

330

243

4050
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9

Table 6. Comparison of Market-Share Models

Calibration
D.F.

Condition Index

Cross Calibration

D.F.

Cross Validation

D.F.

Forecast Accuracy

Light-Users Heavy Users

Segment
R-Square
0.824
52 -- 3210
325

0.803
51 -- 1558

0.756
1--1607

RMSE
VAF

Segment
R-Square
0.829
48 -- 3214
34.8

0.814
47 -- 1562

0.766
1-- 1607

Combined
0.128
0.711

Aggregate
Market
R-Square
0.845
45 -- 3217
216

0.816
44 -- 1565

0.772
1--1607

Aggregate
0.128
0.711
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