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ABSTRACT OF THE DISSERTATION

Multiphase Simulation Using Material Point Method

by

Andre Pradhana

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2017

Professor Joseph M. Teran, Chair

We present a discussion on how one can simulate sand as a continuum using elastoplasticity.

We showed the efficacy of Drucker-Prager plasticity model and St. Venant Kirchhoff with

Hencky strain to model sand. We discretized the continuum equation using Material Point

Method (MPM). We also present a multi-species model for the simulation of gravity driven

landslides and debris flows with porous sand and water interactions. We use continuum mix-

ture theory to describe individual phases where each species individually obeys conservation

of mass and momentum and they are coupled through a momentum exchange term. Water

is modeled as a weakly compressible fluid and sand is modeled with an elastoplastic law

whose cohesion varies with water saturation. We use Material Point Method to discretize

the governing equations. We use two grids, corresponding to water and sand phase. The

momentum exchange term in the mixture theory is relatively stiff and we use semi-implicit

time stepping to avoid associated small time steps. Our semi-implicit treatment is explicit in

plasticity and preserves symmetry of force linearizations. We develop a novel regularization

of the elastic part of the sand constitutive model that better mimics plasticity during the

implicit solve to prevent numerical cohesion artifacts that would otherwise have occurred.

Lastly, we develop an improved return mapping for sand plasticity that prevents volume gain

artifacts in the traditional Drucker-Prager model.

Finally, we revisit the problem of redistancing, which is native to the level set paradigms.

We used an interesting alternative view that utilizes the Hopf-Lax formulation of the solu-
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tion to the eikonal equation, as proposed by [LDO17, DO16]. In this approach, the signed

distance at an arbitrary point is obtained without the need of distance information from

neighboring points. We extend the work of Lee et al. [LDO17] to redistance functions de-

fined via interpolation over a regular grid.
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CHAPTER 1

Introduction

I remember the day when my advisor called me into his o�ce, and he told me, "We have to

do wet sand!"

Later on, during my Advancement-To-Candidacy talk, I showed a YouTube video about

a Lego dam breach in front of my committee members. My advisor claimed that we want to

do a simulation like that. This thesis tells that story.

Chapters 2 and 3 are slight modi�cations of [KGP16] and [PGK17]. They are supposed

to tell a story of how one can simulate a dam breach using Material Point Method (MPM).

Chapter 2 tells a story of how to simulate dry sand as an elastoplastic material using MPM.

One can view it as a study in plasticity as a continuum model of friction. Chapter 3 tells a

story of one way we can simulate water and wet sand using MPM, and how they can interact.

Chapter 4 is a slight modi�cation of [RPL17]. This chapter is an oddity on its own, since

it is a revisiting of an old problem in level set, which is how to do redistancing. However,

with a modest tweak, one can show that the method looks promising as an alternative to do

a return-mapping algorithm in computational plasticity. Finally, the last chapter is a study

on parallel computation using GPU, where the future of scienti�c computing might lie.
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CHAPTER 2

Dry Sand

Before we attempt to simulate wet sand, we need to �gure out how to simulate dry sand. If

we model sand as a continuum, to a great extent, sand can be thought of as an elastoplastic

material. To a �rst order approximation one can think that up to a certain point, the

deformation of sand is governed by elasticity. Beyond this, plasticity imposes a certain

restriction on the grain of sand applies friction and slide against one another. This chapter

tells the story of simulating dry sand.

2.1 Previous work

We build on the work of Mast et al. [Mas13, MAM14a] and develop an implicit version

of their Drucker-Prager-based elastoplasticity model for granular materials. The Drucker-

Prager conception of elastoplasticity is often used in the mechanical engineering literature for

granular materials [DP52], and we show that it can be adopted to animation applications with

relatively simple implementation and e�cient runtimes. This is useful because the models

are well developed and the literature can be consulted to reduce the di�culty of parameter

tuning. We use the Material Point Method (MPM) [SCS94] to discretize the model since

it provides a natural and e�cient way of treating contact, topological change and history

dependent behavior. Furthermore, we show that this can be done with little more e�ort than

was used for simulating snow dynamics in the MPM approach of Stomakhin et al. [SSC13].

Lastly, we replace the particle/grid transfers used by Mast et al. with APIC transfers [JSS15]

and show that this allows for more stable behavior, particularly with simulations that have

higher numbers of particle per cell.
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