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Abstract

On the Time Validity of John Philip’s

Two-Term Rainfall Infiltration Model

by

Yifu Gao

Master of Science in Civil and Environmental Engineering

University of California, Irvine, 2020

Associate Professor Jasper A. Vrugt, Chair

Rainfall infiltration, the process wherein water enters the soil surface and re-

plenishes moisture in the vadose zone, is an important component of the water

balance and hydrologic cycle. Infiltration guarantees a continued availability

of moisture to sustain root water uptake, plant growth, groundwater recharge

and soil structure. There are several ways to estimate rainfall infiltration rates

and volumes. The most rigorous approach would use a partial differential equa-

tion (Richards’ equation), coupled, if necessary, with a surface water routine and

groundwater model (Darcy’s law), to describe infiltration into variably-saturated

soils. Analytic solutions of Richards’ equation and/or Darcy’s law and empirical

infiltration functions may work well under certain conditions (deep-drained soils

with uniform initial moisture content) and/or single rainfall events. Among all

research conducted, the Philip’s two-term infiltration model, I = S
√
t + cKst,
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where I [ L ] is the cumulative infiltration, S [ L·T−1/2 ] signifies the sorptiv-

ity, Ks [ L·T−1 ] denotes the saturated soil hydraulic conductivity, c is a unit-

less curve fitting coefficient and t denotes time in units of length, has found

widespread use and applicability. This model is particularly easy to use as (1)

it only has three unknown parameters, (2) the least squares parameter values

are easily determined from experimental data using linear regression, and (3)

two of the estimated parameters, S [ L·T−1/2 ] and Ks [ L·T−1 ], have a clear

physical significance. In favor of this simplicity, Philip’s two-term infiltration

model eliminates higher-order terms of a polynomial series of time that account

for the effect of gravity on infiltration. This effect becomes more important

at later times as a larger proportion of the soil reaches saturation and the soil

water pressure head gradient becomes negligible. As a result, Philip’s two-term

infiltration model, I = S
√
t+ cKst, has a limited time validity, tvalid [ T ]. In his

work, Philip provides theoretical guidance on the time validity of his two-term

infiltration model. This time validity is of great importance as it determines

the time span of experimental infiltration data to use for parameter estimation.

In this research, we explore the time validity of Philip’s two-term infiltration

model using Bayesian inference and the , Soil Water Infiltration Global (SWIG)

database. This database consists of a large ensemble of measured cumulative in-

filtration curves of a wide variety of soils worldwide. Essentially, we test, bench-

mark and evaluate the approach of Jaswal et al. (2020) on measured data rather

than synthetic infiltration data simulated with HYDRUS-1D. The methodol-

ogy consists of two parts. First, we determine the values of the parameters S
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[ L·T−1/2 ] and Ks [ L·T−1 ] via Bayesian inference of the Haverkamp infiltration

equation using the DiffeRential Evolution Adaptive Metropolis (DREAM) al-

gorithm. As semi-implicit solution of Richards’ equation, the Haverkamp model

is valid for the entire duration of the infiltration experiment. Then, the poste-

rior distribution of the sorptivity and saturated soil hydraulic conductivity of

each measured infiltration curve are used in Philip’s two-term infiltration model

to determine the optimal value of the coefficient c via linear regression. We

implement the Bayesian information criterion (BIC) to return, as byproduct of

our analysis, the optimal time validity of Philip’s two-term infiltration model.

The uncertainty of the time validity, tvalid [ T ], can be estimated by evaluating

the different posterior samples of S [ L·T−1/2 ] and Ks [ L·T−1 ]. We particularly

focus on the “best” samples of each soil type in the SWIG database as results

confirm that the temporal resolution of the infiltration data plays a critical role.

Results demonstrate that coarse textured soils (e.g. sand, loamy sand, sandy

loam) have a rather small value of tvalid [ T ] ranging between 0.10 hour to 1.00

hour. Medium textured soils (sandy clay loam, loam, clay loam) exhibit some-

what larger values of the time validity ranging between 1.00 hour to 4.76 hours.

Unfortunately, the measured infiltration curves in the SWIG database did not

allow us to determine adequate values of the time validity for fine textured soils.

The time validity, tvalid [ T ] of clay loam, silty clay loam, silty clay, and clay

soils was simply equal to the time of the last infiltration measurement. In other

words, the experiments did not last long enough to determine accurately their

respective time validity.
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All results were compared to those of Jaswal et al. (2020) using synthetic

infiltration data. This analysis made evident that (1) the measurement errors of

the infiltration data increase the uncertainty of tvalid [ T ]; (2) The much poorer

measurement (time) resolution of the infiltration data in the SWIG database

makes it difficult to accurately determine the time validity of Philip’s two-term

infiltration model; (3) For fine textured soils, the infiltration experiments were

of insufficient length to reliably estimate the value of tvalid [ T ]. Altogether, we

conclude that it is not particularly easy to estimate the time validity of Philip’s

two-term infiltration model from measured cumulative infiltration data. A large

cohort of the infiltration experiments in the SWIG database lack the temporal

resolution and necessary length of the experiment to warrant an accurate deter-

mination of the time validity. Thus, we recommend using synthetic infiltration

data simulated derived from numerical solution of Richards’ equation to deter-

mine an approximate time validity for each soil type. The resulting estimates

of tvalid [ T ] can then serve as guidelines for analysis of real-world infiltration

experiments.
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1 Introduction

1.1 Definition of infiltration

Infiltration is the process of water entering the soil from the ground surface under

the influence of gravitational and capillary forces. This water may originate

from rainfall or irrigation and will be stored in the pores of the soil matrix. If

the top soil cannot immediately absorb all the water at the soil surface, then

water may pond on the soil surface and/or runoff and concentrate in other

areas depending on the local topography. Infiltration replenishes the moisture

in the unsaturated zone and, hence, is an important component of the soil water

balance and hydrologic cycle. At the field scale, we can write the water balance

as follows

P +W − ET −R = I (1.1)

Where P [ L ] signifies precipitation, W [ L ] denotes irrigation, ET [ L ] is the

evapotranspiration, R [ L ] is the runoff and I [ L ] represents the cumulative

infiltration. Evapotranspiration is sum of transpiration and evaporation, ET =

E + T. The cumulative infiltration can be further written as

I = ∆S +G (1.2)

Where ∆S signifies the change in storage, G is the drainage or groundwater

flow.

Infiltration plays an important role in hydrology cycle. According to the water

balance equation, infiltration constitutes the recharge of the soil water and the
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drainage or groundwater flow. Through recharging the soil layer with water,

infiltration maintains the groundwater level, soil moisture, the structure of the

soil, and the depth of water bodies. Besides, infiltration provides plants with

water source, enhancing the structure of the root zone. Due to the infiltration,

the proportion of runoff from the precipitation gets smaller (compared with no

infiltration), reducing the flood risk to a large extent.

1.2 Mechanisms and factors of infiltration

Due to the significant impact of infiltration on hydrology cycle, the study of

infiltration attracts great amounts of scientific research and experiments on

that, with a product of many mathematical models. Before the deeper learning

of the infiltration model, it is suggested that we have a good understanding of

the mechanisms and factors of infiltration.

The mechanism of 1-D infiltration rate or vertical flow can be described as a

result of hydraulic gradient in the vadose zone (unsaturated zone):

i = K(θ)
∂H

∂z
= K(θ)

(
∂h

∂z
+ 1

)
(1.3)

Where z [ L ] is the vertical distance, H [ L ] is the hydraulic head which can be

written as a combination of soil water pressure head and potential head: h+ z.

K(θ) [ L·T−1 ] is the hydraulic conductivity, which depends on soil moisture

content θ [ L3·L−3 ]. This upper partial differential equation effectively explains

the mechanisms of infiltration. As there is water present at the ground surface,

there is great hydraulic gradient between the surface and subsurface since there

is nearly no moisture in the subsurface zone. This head difference or gradient
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drives the water down into the soil. The moisture content increases as water

infiltrates in, causing the soil water pressure head to increase. Eventually, the

soil get saturated and θ [ L3·L−3 ] goes to the saturated moisture content θs

[ L3·L−3 ], which is a constant for a given soil. At the same time, K(θ) [ L·T−1 ]

will turn to Ks [ L·T−1 ] as the saturated hydraulic conductivity. If a constant

head gradient presents at the surface, it is reasonable to conclude that we will

get a constant infiltration rate after saturation.

To further interpret infiltration, it is essential to study the controlling factors

of infiltration. Generally, there are three significant factors:

(1) Precipitation

The intensity and duration of precipitation are essential controlling factors of

infiltration. For a rainfall with small intensity, the hydraulic gradient at the

surface is relatively small, contributing to a slow infiltration rate because the

water infiltrates into the soil and continues going down under the capacity of

the soil, leaving no runoff at the surface. The infiltration rate will be equal to

the rainfall intensity. By contrast, an intense precipitation leads to an overload

of water on the ground, where the rainfall intensity overwhelms the infiltration

capacity the soil can hold and runoff forms. Given such situation, the infiltra-

tion rate at the surface will be equal to its infiltration capacity at saturation.

(2) Soil properties

The soil properties associated with the soil types are influential factors of infil-

tration. Richards (1931) introduced a partial differential equation to study the

unsaturated groundwater flow. The Richards equation vesus vertical flow could

3



be written as [Richards 1931]:

∂θ

∂t
=

∂

∂z

[
K(θ)

(
∂h

∂z

)]
(1.4)

Where ∂h
∂z is the vertical gradient of soil water pressure head, θ [ L3·L−3 ] and

K(θ) [ L·T−1 ] are soil properties which represent the moisture content and hy-

draulic conductivity. Similar to other hydrologic cases, the unsaturated zone

flow is a result of hydraulic gradient, but different in the flow media which

varies spatially with respect to soil types, soil structures, and so on, leaving it

hard to solve the unsaturated flow from a microscopic aspect. This leads to

studies on the relationships between the soil properties and numerical solutions

to the partial differential equation. The water retention function curve (WRF) is

a commonly used measure to study the relationship between soil water pressure

head and soil moisture content [Van Genuchten 1980]:

Se(h) = [1 + (α|h|)n]−m (1.5)

Where α is the reciprocal of the air entry value; m is a parameter equals to

1 − 1/n, and n is the parameter that is proportional to the inverse of the slop

of the water retention curve of that soil; Se [ - ] signifies the effective saturation:

Se(h) =
θ − θr

θs − θr
(1.6)

Where θ [ L3·L−3 ] is the current moisture content; θs [ L3·L−3 ] is the saturated

moisture content and θr [ L3·L−3 ] is the residual moisture content. Fig 1.1

shows the water retention fucntion curves for 12 types of USDA soils, using pa-

rameters estimated from Carsel and Parrish (1988) through HYDRUS-1D soft-

ware [Vogel et al. 1996]. Table 1.1 provides information on the Van Genuchton

4



Table 1.1: Water retention function parameters of 12 soils

Texture θr θs α n

(cm3/cm3) (cm3/cm3) - -

Sand 0.045 0.430 0.145 0.627

Loamy Sand 0.057 0.410 0.124 0.561

Sandy Loam 0.065 0.410 0.075 0.471

Sandy Clay Loam 0.100 0.390 0.059 0.324

Sandy Clay 0.100 0.380 0.027 0.187

Loam 0.078 0.430 0.036 0.359

Silty Loam 0.067 0.450 0.020 0.291

Silt 0.034 0.460 0.016 0.27

Clay Loam 0.095 0.410 0.019 0.237

Silty Clay Loam 0.089 0.430 0.010 0.187

Silty Clay 0.070 0.360 0.005 0.083

Clay 0.068 0.380 0.008 0.083

parameters of the 12 soils. [Carsel and Parrish 1998]

(3) Soil types

The type of the soil is determined through a soil classification process which

primarily takes the particle size as an index for separating the soils. Particle

size affects the soil properties to a great extent, where it affects the packing

Table 1.2: Water retention function parameters of 12 soils

Texture Texture Class (*) Ks (cm/hour)

Coarse sands Coarse 50.81

Sands, Loamy sands Coarse 15.24-50.81

Sandy loam Mod. coarse 5.08-15.24

Loam, Silty loam, Silt Medium 1.52-5.08

Clay loam, Sandy clay loam, Silty clay loam Mod. fine 0.51-1.52

Sandy clay, Silty clay, Clay Fine and very fine 0.15-0.51

*The texture class is specified according to the particle size. (e.g. coarse: 0.5 – 1.0 mm in diameter)
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Figure 1.1: Water retention function curves of 12 types of soil

of the particles and the empty space between the particles. Thus, a difference

in particle size leads to the variation of properties like porosity, saturated and

residual moisture content, and so on. The soil classification system (e.g. USDA)

classifies soils into gravel, sand, silt, and clay (in the order of decreasing particle

size) where 12 types are further determined (sand, loamy sand, loam, clay loam,

etc.). Fig 1.1 shows how θs [ L3·L−3 ], θr [ L3·L−3 ] varies with respect to the soil

types. Table 1.2 also illustrates the relationship between saturated hydraulic

conductivity and soil types.
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1.3 Infiltration model and Philip model

Like previously discussed, the mechanism of an infiltration process in the unsat-

urated soil is based on a partial differential equation, which is difficult to solve

straightly. Consequently, the recent years’ studies of infiltration have turned to

the numerical models. Unlike the vertical flow equation, infiltration models can

easily produce simulation of the cumulative infiltration and the optimization

of the models will enable the simulations to proximate the observation. The

numeric models usually make assumptions to simplify the infiltration process

(e.g. assumptions on the time, simplification of the infiltration mechanisms).

This leads to the model structural error which is inevitable. Despite this, the

residuals (difference between simulations and observations) can be minimized to

get an optimal estimation of the infiltration by analyzing the best fitted param-

eters of the model. Therefore, infiltration model is a more efficient and effective

approach to study the infiltration than the partial differential equation, where

the focus of model study is to increase the model efficiency by minimizing the

residuals.

There are two major methods to study the infiltration model: analytical and

empirical methods. The empirical approach focuses on using numeric models

and parameters. The process or experiment of fitting empirical models to the

data enables researchers to derive the optimal estimated parameters regarding

the sample. One typical empirical method is Horton model [Horton 1941], which

expresses the infiltration rate as an exponential decay regarding the time with

a parameter k.
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The analytical method is aimed at solving the vertical flow equation and deriv-

ing the mathematical solutions to that partial differential equation by simpli-

fying the infiltration mechanisms. One typical analytical infiltration model is

Green-Ampt model [Green and Ampt 1991], which simplifies the wetting front

by assuming a constant soil water pressure head at the wetting front:

I = (θs − θi) ·
√

2D(θs)t (short time) (1.7)

I = Ks · t (long time) (1.8)

Where D(θs) [ L2·T−1 ] is the soil diffusivity, which is defined as: D(θs) = Ks · dhdθ .

Besides, there are many analytical approaches to simulate the infiltration, for

example: Philip (polynomial series) [Philip 1957a], Mein and Larson (combina-

tion of surface ponding and Green-Ampt) [Mein and Larson 1973], Smith (two

branched model for ponding time and infiltration rate decay) [Smith 1978],

Haverkamp (semi-implicit equation solving the Richard equation) [Haverkamp,

Parlange, et al. 1990], Valiantza (linearlized two-parameter infiltration derived

from Philip’s two-term model) [Valiantza 2010]. These models varies within

parameters and dimensions, where each model has their own restriction on time

stage and condition of inflow (e.g. steady rainfall intensity).

Among all the numeric models discussed, Philip infiltration model receives the

greatest popularity and has found wide applications in soil hydraulic property

study. The Philip 1-D infiltration model was first introduced by John Philip

(1957), providing a numeric solution to the partial differential equation describ-

ing the vertical infiltration. This model describes the cumulative infiltration

8



through polynomial series:

I(t) = A1t
1/2 +A2t+A3t

3/2 +A4t
2 + ... (1.9)

Where A1, A2, A3... are the polynomial parameters of different units. Philip

[Philip 1957b] illustrated that A1 is defined as the ‘sorptivity’, which is a term

that measures the soil’s ability to uptake or absorb the liquid through capillar-

ity. The second parameter A2 is a product of saturated hydraulic conductivity

Ks [ L·T−1 ] and an unknown coefficient c.

The Philip 1-D model shows two advantages: (1) Given measured data, the opti-

mal parameters can be easily derived through linear regression. (2) Polynomial

series can help weight each term at different time, showing the different stages

of infiltration. Despite this, the dimension of Philip greatly affects the simu-

lation of infiltration, where Runge’s phenomenon [Runge 1931] probably exists

when we adopt high-dimensional Philip model. This will lead to the fluctuation

of simulated infiltration when analyzing high resolution of time. Additionally,

unreasonable interpolation of data points might happen due to the Runge’s phe-

nomenon. To address this problem, the two-term (d=2) version of Philip model

was introduced, which is the exact formula that has been widely used:

I(t) = S · t1/2 + c ·Kst (1.10)

The Philip’s two-term receives popularity based on several reasons: (1) it only

has three unknown parameters, (2) the least squares parameter values are eas-

ily determined from experimental data using linear regression, and (3) two of

the estimated parameters, S [ L·T−1/2 ] and Ks [ L·T−1 ], have a clear physi-

9



cal significance. Regardless of these advantages, the Philip’s two-term removes

the later terms from the the polynomial series, which function as the effect of

gravity (the infiltration is dominated by the potential gradient) as the soil get

close to saturation. This means that Philip’s two-term might simulate effective

infiltration given a limited time length, where the difference of simulated curves

using two-term and polynomial series will start to increase after that time. This

specific time is called the time validity tvalid of Philip’s two-term model. The

time validity is really important because it tells the feasible time length to ana-

lyze the data, which produces the optimal model efficiency of Philip’s two-term.

Based on the existence of tvalid, it is not suggested to directly use the entire

length of data while studying the soil hydraulic properties using Philip’s two-

term.

The objective of this paper is to explore the soil hydraulic parameters: S,Ks, c

and time validity of Philip’s two-term model with respect to 10 types of soils

given the infiltration data from experimental data (SWIG database). In this

paper, a new approach of finding the time validity was introduced through using

Bayesian Information Criterion as a criterion (BIC) [Schwarz 1978] for model

efficiency to test the optimal performance of Philip’s two-term and its corre-

sponding time as tvalid. The general steps of this research are as followed. First,

in Section 3.1, we adopted the semi-implicit Haverkamp model (a model which

does not have restrictions of time validity) to explore the optimal S [ L·T−1/2 ]

and Ks [ L·T−1 ] of the samples. In section 3.2, 1-D infiltration Data from the

SWIG database were collected and preprocessed by analyzing the measuring
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instrument and plotting the infiltration curves, and low-quality data were dis-

carded. Then, in section 3.3, the algorithm DiffeRential Evolution Adaptive

Metropolis (DREAM) [Vrugt 2016] was adopted to analyze the data and derive

the posterior distribution and optimum of these two parameters. In Section 3.4,

the optimal S [ L·T−1/2 ] and Ks [ L·T−1 ] were input to the Philip’s two-term

model. To explore the tvalid, we use linear regression method to calculate the

optimal coefficient c and BIC by analyzing different time lengths. The optimal

coefficient c and tvalid were derived with respect to the minimum BIC. In sec-

tion 4, several results were presented which were derived by analyzing different

samples. Section 4.1 covered the results derived from the total 646 samples. To

address the issue of low resolution of time and measurement errors, best sample

of each soil type were analyzed again in section 4.2. Results of the DREAM

output posterior distribution of S [ L·T−1/2 ] and Ks [ L·T−1 ] were presented.

Tables covering the optimal parameter values were illustrated. To resolve the

problem of low resolution of measured times, interpolation was done and new

results were derived in section 4.3, where uncertainty analysis of the tvalid and

coefficient c were also covered, along with an output of the soil textural triangle

of time validity. Section 5 states the conclusions and limitations of this research.

2 SWIG database

The Soil Water Infiltration Global (SWIG) database [Mehdi Rahmati 2018] cov-

ers the infiltration curves (time series based cumulative infiltration) produced by

11



Figure 2.1: Missing information on soil properties in SWIG database

experiments conducted in 54 countries from a global scale (majorly contributed

by Iran, China, and USA). According to this database, over 5,000 samples were

tested, providing researchers a great support of real-world soil water infiltra-

tion data, along with location information, measuring instrument, land use and

so on. In addition to data-related information, the database contains informa-

tion on soil properties like soil texture, bulk density, initial moisture content,

saturated moisture content and so on. Therefore, the SWIG database is of

enormous value for analyzing real-world infiltration data and studying infiltra-

tion models through fitting the models to the data. Unlike computer simulated

data (e.g. HYDRUS 1D infiltration data) which is sensitive only to the input

soil hydraulic parameters, the SWIG database provides realistic data which are

subject to a great many factors such as measuring instrument, measured time,

location, precipitation, etc. Through analyzing real-world data, scientist will

not only estimate soil hydraulic parameters and optimize the infiltration model,

but also explore more information on the model structural error (the error of

the model itself).

Since the SWIG database consists of infiltration data from worldwide, there

12



are great variations of the measured data with respect to the length of time,

time interval, measurement instrument, and size of data. This is a common

phenomenon to deal with the real-world data where data quality requires to be

double-checked and a preprocess of the data is also needed before analyzing.

For instance, 5,023 samples were tested for infiltration and other soil properties,

where only 3,842 of the total samples cover the information of soil texture (see

Fig 2.1), which is a critical property of the samples providing information on

the soil constituents and particle size. Even though it is possible to analyze the

data and other soil properties to infer the soil texture, discarding those sam-

ples will always be a good approach for preciseness. Another example is that

the measurement instrument plays a significant role in choosing the infiltration

model. In fact, the parameters and structure of the infiltration models are af-

fected by the dimension of the flow (1-D or 3-D infiltration). And the choosing

of the measuring instrument will seriously affect how the water flow through the

unsaturated sample. To illustrate, disc infiltrometer and single-ring infiltrome-

ter are commonly considered as measuring 3-d infiltration [Bouwer 1986] while

double-ring infiltrometer usually measures the 1-d infiltration. In this research,

the targeted model is based on vertical infiltration (1-d). Thus, filtering out

samples measured by double-ring infiltrometer will be suggested.
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3 Methods

3.1 Haverkamp 1-D Infiltration Model

The Haverkamp 1-D cumulative infiltration model [Haverkamp, Ross, et al.

1994] was selected to estimate the optimal parameters of soil sorptivity and sat-

urated hydraulic conductivity. As the objective of this research is to determine

the time validity for Philip model, a problem has come up that the soil saturated

hydraulic conductivity (Ks [ L·T−1 ]) and sorptivity (S [ L·T−1/2 ]) could not be

directly derived through analyzing Philip model. Given that the model input

(time) is not determined, it will be meaningless to apply statistical methods

(e.g. linear regression, MCMC) to this model for parameter optimization. An

effective approach to deal with this problem is to use another infiltration model

which also contains Ks [ L·T−1 ] and S [ L·T−1/2 ] as model parameters. That is

the reason why Haverkamp 1-D infiltration model was introduced to this study.

This model is a semi-implicit equation which shares two parameters with Philip

model and solves the cumulative infiltration [Haverkamp, Ross, et al. 1994]:

2(Ks −Ki)
2

S2
0

· t(1− β) = 2 · (Ks −Ki)(I −Kst)

S2
0

−

ln
{ 1

β
· exp

[
2β(Ks −Ki)(I −Kst)

S2
0

]
+
β − 1

β

}
(3.1)

Where I and t are the cumulative infiltration and time. β is a shape parameter

that is unitless. Ki [ L·T−1 ] and Ks [ L·T−1 ] are the initial (at t=0) and sat-

urated hydraulic conductivity, S [ L·T−1/2 ] signifies the sorptivity, which was

defined by John Philip as an estimation of the soil’s ability to capture liquid
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due to capillary effects [Philip 1957b]. The Haverkamp implicit formulation

is derived through solving Richards equation for cumulative infiltration using

analytical methods [Lassabatere et al. 2009; Haverkamp, Parlange, et al. 1990;

Richards 1931]. The Richards equation vesus vertical flow could be written as:

∂θ

∂t
=

∂

∂z

[
K(θ)

(
∂h

∂z
+ 1

)]
(3.2)

Where h represents the water pressure head, z is the vertical distance, θ [ L3·L−3 ]

is the moisture content, K(θ) [ L·T−1 ] is the hydraulic conductivity which is a

function of θ [ L3·L−3 ]. Therefore, the advantage of Haverkamp model is clear

that it is flexible to any time input without restriction to the time validity,

allowing the whole time series input for parameter optimization. Another ad-

vantage of applying Haverkamp model is that, the two models share the same

parameters Ks [ L·T−1 ] and S [ L·T−1/2 ]. Through importing the optimal Ks

[ L·T−1 ] and S [ L·T−1/2 ] as known parameter, we improve the efficiency of

solving Philip model by reducing the dimension of the model from four to two.

(Initially four unknowns: Ks [ L·T−1 ], S [ L·T−1/2 ], c and tvalid; Now two un-

knowns: c and tvalid) What’s more, solving the Philip model will change from a

non-linear problem to a linear problem where linear regression method can be

easily conducted to find the optimal coefficient c.

Parameter optimization for the Haverkamp 1-D model is a four-dimension prob-

lem whereKi [ L·T−1 ], Ks [ L·T−1 ], S [ L·T−1/2 ], β are required to be estimated.

We can reduce the dimension of this problem by writing the initial hydraulic

conductivity as a function of the Ks [ L·T−1 ]. Some of the samples in the SWIG

database provide information on initial moisture content θi [ L3·L−3 ], which can
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be used to derive the initial hydraulic conductivity through the following steps.

According to Van Genuchton (1980), the hydraulic conductivity for unsaturated

soils is a function of the effective saturation (dimensionless water content) and

saturated hydraulic conductivity:

K(Se) = KsS
L
e

[
1−

(
1− S

1
m
e

)]2
(3.3)

Where L is an empirical parameter which is normally assumed to be 0.5; m is

a parameter equals to 1− 1/n, where n is the parameter that is proportional to

the inverse of the slop of the water retention curve of that soil; Information on

parameter n is available in Table 1.1. Se [ - ] signifies the effective saturation:

Se =
θ − θr

θs − θr
(3.4)

Where θ [ L3·L−3 ] is the current moisture content; θs [ L3·L−3 ] is the saturated

moisture content and θr [ L3·L−3 ] is the residual moisture content. In refer to

Table 1.1, the residual and saturated moisture content of different types of soil

are also provided. Therefore, through combining Eq 3.3 and Eq 3.4, we can

derive the equation for computing the initial hydraulic conductivity, which is a

function of the saturated hydraulic conductivity:

Ki = A ·Ks (3.5)

Where:

A =

(
θ − θr

θs − θr

)0.5
[

1−

(
1−

(
θ − θr

θs − θr

) 1
m

)m]
(3.6)

Given the input of m, θi [ L3·L−3 ], θr [ L3·L−3 ], and θs [ L3·L−3 ], coefficient A

will be a constant for a specific soil sample. Combined with the formulas of un-

saturated hydraulic conductivity [Van Genuchten 1980], parameter estimation

16



of Haverkamp 1-D model turns to the estimation of Ks [ L·T−1 ], S [ L·T−1/2 ],

and β.

To derive the optimal Ks [ L·T−1 ], S [ L·T−1/2 ], and β of a sample, the usual

method is: (1)Input the parameters and time to the Haverkamp 1-D model;

(2)Solve the cumulative infiltration; (3)Compare the simulations with real data

and apply a Markov Chain Monte Carlo method (will be discussed in the fol-

lowing section) to derive the posterior distribution and optimal value for each

parameter. One deficiency of using the Haverkamp 1-D model is that it is an

semi-implicit formula which does not directly provide the solution of the cumu-

lative infiltration. To solve this equation, Haverkamp et al. (1994) introduced

the approximation of the solutions to the quasi-exact equation based for very

short time, short time, and long time [Haverkamp, Ross, et al. 1994]:

I1D(very short) = S
√
t (3.7)

I1D(short) = S
√
t+

[
2

3− β
· (Ks −Ki) +Ki

]
t (3.8)

I1D(long) = Kst (3.9)

Based on the current study, the validity time interval for the upper equation

is not determined for all the soil types [Lassabatere et al. 2009; Vandervaere,

Vauclin, and Elrick 2000b]. Some previous studies indicated that for sands and

loams, the validity times for the first approximation is too short to determine the

sorptivity [Vandervaere, M. Vauclin, and Elrick 2000a]. So it is relatively tough

to choose which upper equation to be used. Instead of using the approximation

of the solution, the root-finding methods was applied to solve the equation
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in our study. There are some built-in functions in MATLAB (e.g. vpasolve,

fzero, etc) that could be adopted. In this research, the application of MCMC

method requires huge amounts of computer simualtions to derive the posterior

distribution of each parameters, where the built-in root-finding functions are

time-consuming. A secant method was introduced in this paper to solve the

Haverkamp 1-D equation, which efficiently produces the result.

A secant method is a root-finding method that makes use of the secant lines of

two points on the curve. This is analogous to the Newton’s method but secant

method directly adopts the secant lines instead of the derivative to update

the root [Avriel 1976]. The mathematical expression of secant method can be

decribed as a recurrence relation:

xn = xn−1 −
fn−1

k
(3.10)

Where k is the slope derived from the two starting points xn−2, xn−1 and their

function outputs fn−2, fn−1:

k =
fn−1 − fn−2

xn−1 − xn−2
(3.11)

Starting with two points x0, x1 on the curve, the two ‘roots’ will continually be

updated through iterations based on their secant lines and reach the root while

function outputs of these points give zero value or values close to zero (based

on the setup of tolerance level). In our research, the target function becomes

the left hand side of the equation minus the right hand side, which is a function
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of cumulative infiltration:

F (I) =
2(Ks −Ki)

2

S2
0

· t(1− β)− 2 · (Ks −Ki)(I −Kst)

S2
0

+

ln
{ 1

β
· exp

[
2β(Ks −Ki)(I −Kst)

S2
0

]
+
β − 1

β

}
(3.12)

The implementation of the secant method could be written as:

In = In−1 − F (In−1)
In−1 − In−2

F (In−1)− F (In−2)
=
F (In−1)In−2 − F (In−2)In−1

F (In−1)− F (In−2)

(3.13)

Unlike Newton’s method requiring an analytical solution to the derivative of

the target function: dF (I)
dI , which also takes more time for calculation, the se-

cant method straightly uses the slope of the two points, contributing to a good

computing efficiency. This is the reason why this method was adopted in this

research.

3.2 Data preprocess

Data preprocess was done to retrieve reasonable and effective data for fu-

ture analysis. Regardless of the adequate information provided by the SWIG

database, there are still much missing information with respect to soil texture

class (about 1,211 samples) and some other parameters like initial moisture con-

tent (which is an important input parameter that will affect the simulations).

Before drawing information from the data, a careful analysis of the applicable

soil samples was conducted to enhance the quality of the data to be estimated.

The first thing to process the data is to identify those samples with clear informa-

tion on texture class. This will make it easier for the later work on summarizing
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results for different types of soil. For instance, Sand and loamy sand share the

same boundary for hydraulic saturated conductivity according to Table 1.2. If

MCMC simulations was applied to derive the optimal Ks [ L·T−1 ] for an un-

known sample, which falls into the boundary of 15.24-50.81 [cm/hour], we can

hardly determine whether it is a sand soil or loamy sand soil. A total of 646

1-D infiltration samples (see Fig 3.1) were filtered out from the 3,842 samples

with respect to the measuring instrument. According to the database, a total

of 13 instruments (e.g. single ring, double ring, rainfall simulator, etc.) were

adopted to measure the cumulative infiltration, where the state of 1-D (vertical)

or 3-D infiltration measurement was not determined. To address this issue, soil

samples measured through double ring infiltrometer were assumed to have 1-D

infiltration. The double ring infiltrometer has inner and outer ring, where a

constant head of the water level is often operated in the outer ring to ensure no

leakage from the inner ring [Gregory et al. 2005]. Consequently, measurement

from the inner ring will yield a vertical infiltration (one-dimensional). Instru-

ments like single ring infiltrometer can overestimate the vertical flow because

the infiltration beneath the cylinder will expand to a three-dimensional condi-

tion [Bouwer 1986].

The incoherent infiltration data were identified based on the discrepancies of in-

filtration curves and the differences of the length of data in time and infiltration.

Fig 3.1 provides the 1-D infiltration curves from the SWIG database. There are

conspicuous deviations of infiltration curves in some soil samples which share

the same soil texture and construction. For instance, given the clay soil samples
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Figure 3.1: 646 samples of 1-D infiltration data from SWIG database

in Fig 3.1, it is irrational to have the those infiltration data which approaches

200 cm in a really short time interval. Those data should be viewed as low

quality data. One typical reason for having those data is that the actual time

data is measured in days rather than hours. To deal with those incoherent data,

one method is to plot the infiltration rate versus the time series to check those

outliers (unreasonable data will exhibit a clear bias of the infiltration rate com-

pared with others). Another approach is to estimate the parameter Ks [ L·T−1 ]

for each sample through MCMC methods. Given the information from Table

1.1 and the soil texture, the unreasonable samples will be directly identified

by checking whether the Ks [ L·T−1 ] is within the boundary for that type of

soil. The second approach was valued because the estimated Ks [ L·T−1 ] can
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be straightly input into the Philip model, leading to a linear model problem (as

Ks [ L·T−1 ] is known) which can be easily solved through linear regression.

As a consequence of data-preprocessing, we not only conduct experiments on

the total 646 one-dimensional infiltration samples, but do further analysis on

partial high-quality data of the 646 samples as well.

3.3 DREAM algorithm

The DiffeRential Evolution Adaptive Metropolis (DREAM) [Vrugt 2016] was

adopted to derive the posterior distribution of the model parameters and find

the optimum. This algorithm is a multi-chain MCMC method which incorpo-

rates initial sampling, partial crossover, multi-chain parallel computing, prior

distribution, family of likelihood functions, modal jump of the proposals, bound-

ary handling, outlier checking, posterior exploration and sampling, convergence

diagnostics, etc [Vrugt, Braak, C.J.F, et al. 2008a]. Substantial advantages has

been found using DREAM algorithm such as the flexibility to low and high di-

mensional models, enforcing detailed balance of Markov Chain, the capability

of tuning the orientation of the chains, the efficiency to reach covergence, and

so on. The fundamental processes of the DREAM algorithm are generating

proposals, computing Metropolis Ratio (accept the proposal or not), searching

for the outliers (chains that stuck at a locally optimized region), and adap-

tively tuning the orientation through adjusting the selection probability of the

crossover value and reinitializing the outlier chains [Vrugt, Braak, Gupta, et al.
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Table 3.1: Parameter boundary for DREAM analysis

Parameter S Ks β

(cm/hour
0.5

) (cm/hour) (-)

Maximum 25.00 100.00 2.00

Minimum 0.00 0.00 0.00

2008b]. The general process of the DREAM algorithm could be shown from the

following steps:

(1) Create N chains with initial states (Initial sampling):

X(0) = {x(1),x(2),x(3), . . .x(N)} (3.14)

Where X(0) is a N×p matrix, which signifies the initial generation of the multi-

chains; xi is a 1× p vector, where p is the dimension (number of parameters) of

the estimated model. Note that the parameter boundary was set provided by

Table 3.1.

(2) Starting from the first chain, select {r1, r2, r3, . . . , r6} randomly from {1, 2, 3,

. . . , N} without replacement as the chosen parent chains;

(3) Generate a total of p values {z1, z2, z3, . . . , zp} from u ∼ (0, 1);

(4) Set initial partial crossover value and selection probability:

CR = { 1

nCR
,

2

nCR
, . . . , 1} (3.15)

Where default value of nCR is assumed to be 3 which shows good results in low

dimensional problems. [Vrugt 2016] This means the maximum crossover value

enforces a full crossover. Then initialize the selection probability:

pCR = { 1

nCR
,

1

nCR
, . . . ,

1

nCR
} (3.16)
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The equal selection probability means that we have equal initial probability of

selecting CR = 1/nCR or CR = 2/nCR, . . . or CR = 1. Given the selected

crossover value, compare z1, z2, z3, . . . , zp with the crossover value, assign those

zi which are smaller than the CR to set A and keep those zj which are greater

than CR in set B. As a result, set A corresponds to elements which will be

updated through differential evolution while set B corresponds to elements that

will remain unmodified.

(5) To start creating proposals, parts of the elements (set A) of the parameters

undergo crossover. The crossover coefficient is previously assumed: γ(δ, p∗) =

2.4/
√

2δp∗ (80% chance, where p∗ is the size of set A and δ is a presumed

value between 1 and 3) or γ(δ, p∗) = 1 (20% chance, this helps implement

modal jumps). Another scaling part of the parents is: ζ = 1 +up∗(−0.05, 0.05).

Lastly, an vector of error coefficient ξ is drawn from N ∼ (0, 10−6) to add to the

generated proposal. For the residual elements, keep those elements for the new

proposal with no modifications. A general equation of this differential evolution

process [Storn and Price 1997] can be written as:

dXj
A = [1p∗ + ζ] · γ(δ, p∗) ·

(
δ∑
i=1

Xri
(0) −

2δ∑
l=δ+1

Xrl
(0)

)
+ ξ (3.17)

dXj
B = 0 (3.18)

Where dXj
A is the jump distance vector for the jth chain with a size of 1× p∗,

Xj
(0) is the jth initial (parent) chain. The proposal now could be written:

dXj
p = Xj

(0) + dXj
A (3.19)
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(6) Enforce the boundary handling. It is possible that that outbound proposals

are created. Outbound proposals are not acceptable and may slow the chains’

speed to converge. To deal with this problem, there are several boundary han-

dling methods. The ‘reflection’ method was adopted in this research. To handle

the proposals that exceed the parameter’s upper boundary:

Xp = 2Xup
p −Xp (3.20)

For those proposals which are smaller than the parameter’s lower boundary:

Xp = 2X low
p −Xp (3.21)

(7) Compute the acceptance rate using the log-likelihood function (Gaussian

likelihood function where measurement error integrated out):

log(L) = −1

2
nlog(2π) +

1

2
nlog(n− 1)−

1

2
(n− 1)− 1

2
nlog

(
n∑
i=1

(Ii − Ĩi)2

)
(3.22)

Where n is the size of data; Ii is the ith data and Îi is the ith simulation. For

analyzing a time series of data, the size of the data is constant. This leads to

the log-likelihood as a function of sum of squared residuals [Eliason 1993]:

log
(
L(x|Ĩ)

)
= −1

2
nlog

(
n∑
i=1

(Ii − Ĩi)2

)
+C ⇒ log(L) ∝ −1

2
nlog

(
n∑
i=1

(Ii − Ĩi)2

)
(3.23)

Where C is a normalized constant which is a function of the data size (how

many data points). The probability to accept proposal (or Metropolis Ratio)

[Hastings 1970] could also be written as:

pacc = α(xp|xi) =
P (xp|Ĩ)

P (xi|Ĩ)
=
P (xp)L(xp|Ĩ)

P (xi)L(xi|Ĩ)
(3.24)
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Since the conditional probability density of P (xp|Ĩ) is extremely small (due

to large size of data), log-density (or log-likelihood) is commonly applied to

derive the probability density of the hypothesis. In this case, we can rewrite the

Metropolis Ratio:

pacc = α(xp|xi) =
exp{log[P (xp)L(xp|Ỹ )]}
exp{log[P (xi)L(xi|Ỹ )]}

=
exp[F (xp)]

exp[F (xp)]

= exp[F (xp)− F (xi)] (3.25)

Where F (xp) is the log-Density (log-prior + log-likelihood) of the proposal,

F (xi) is the log-Density (log-prior + log-likelihood) of the current parent chain;

Then, we can determine whether accept the proposals (u ∼ (0, 1) ≤ α(xp|xi))

or reject (u ∼ (0, 1) ≥ α(xp|xi)).

(8) Given the new generation, update the jumping distance of this partial

crossover and update selection probability. The jumping distance is a 1 × p

vector where each element corresponds to the jumping distance for that specific

crossover value. Taking the first chain x1 for example (assuming the crossover

value is 1/3), we now have the crossover part of X1 which can be written as

dX1
(w). w signifies the generation, since we are now creating the first generation,

w = 1. dX1
(w) is a 1×p vector (assuming the element is dxi, i = 1, 2, . . . , p). The

jumping distance of the selected crossover value for chain x1 could be updated

by:

Jd,CR=1/3 = Jd,CR=1/3 +

N∗∑
i

(
dxi
σi

)2

(3.26)

Where σi is the standard deviation of the ith parameter at the (w− 1)th gener-

ation. dxi is the ith element of the crossover part of chain x1. N∗ is the number
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of times that the crossover value (e.g. CR = 1/3) has been used. As the itera-

tion proceeds, the jumping distance of each crossover value will be updated and

increase theoretically.

To enforce better efficiency of the algorithm, the update of selection probability

is one effective approach. Since the choosing of different crossover value will

result in different jumping distance of the proposals, it is essential to weight

the probability of selecting each crossover value. Given the updated jump dis-

tance, the selection probability for the crossover value will be (take nCR = 3 for

example):

pCR=1/3 =
Q1

Q1 +Q2 +Q3
(3.27)

pCR=2/3 =
Q2

Q1 +Q2 +Q3
(3.28)

pCR=1 =
Q3

Q1 +Q2 +Q3
(3.29)

Where:

Q1 =
Jd,CR=1/3

Td,CR=1/3
, Q2 =

Jd,CR=2/3

Td,CR=2/3
, Q1 =

Jd,CR=1

Td,CR=1
(3.30)

TCR=k represents how many times that the crossover value k has been used to

generate proposals. Therefore, after each time a proposal of the chain is gener-

ated, the selection probability of the crossover value will be updated.

(8) go to step (2) again and form the loop. End the iteration when N proposal

chains has been created. (9) Check for the outlier chains and enforce reinitial-

ization. For models with complex structure and high dimensions, some of the

chains may converge to a local optimum (local maximum likelihood) as the it-

eration proceeds. The jump distance may be not long enough for the chain to
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Figure 3.2: Performance of Markov Chain of the last 25% samples

reach a new space with higher likelihood. To find those outlier chains, the mean

log-density of the second half of the N chains need to be calculated and com-

pared. Those chains which perform badly will exhibit small mean log-density.

Those outliers will be patched through reinitialization.

(10) Keep on the iteration from step (2) to step (9). After thousands of genera-

tions are created, the multi-chain samples will reach convergence. The last 25%

of the posterior samples will be stored and be used to plot the posterior distri-

bution of each parameter. Optimum parameters will also be explored through

the posterior samples.

After running the DREAM algorithm, the posterior distribution and optimum

of each parameter can be derived for each sample. The optimum corresponds
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the parameter values which give the best model simulation using Gaussian like-

lihood as the criterion. Taking the posterior, the statistics (e.g. mean value,

standard deviation, and 95% interval of the posterior samples) of posterior sam-

ples can be analyzed. Fig 3.2 shows the performance of Markov Chain (taking

the last 25% posterior samples) with respect to two hydraulic parameters of

clay soil. Those chains are considered as converged according to the diagnostic

method of R-statistic. [Gelman and Rubin 1992].

3.4 Linear regression and Bayesian Information Criterion

The parameter estimation using DREAM algorithm provided the optimal S

[ cm·hour−1/2 ] and Ks [ cm·hour−1 ] value for each sample. Through taking the

sorptivity and saturated hydraulic conductivity as known values, the Philip’s

two-term model reduced its dimension from 3 (S, Ks, and c unknown) to 1 (c

unknown). The model simulation using Philip’s two-term could be written as

(for a sample having n data):

I1

I2

...

In


= S ·



√
t1

√
t2

...

√
tn


+Ks · c ·



t1

t2

...

tn


(3.31)

Where I1, . . . , In [ cm ] are the simulated infiltration. Given the S [ cm·hour−1/2 ]

and Ks [ cm·hour−1 ] as known input parameters, the linear regression method

was adopted to derive the optimal coefficient c when estimating a sample with

n data. By taking the derivative of the sum of squared residuals (SSR) with
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respect to coefficient c, we derived the following equation to determine the

optimal coefficient c where the derivative of SSR goes to zero:

copt = (X′ ×X)−1 ×X×Y (3.32)

Where X is the Jacobian Matrix and Y is the a function of the measured data,

which are given by:

X = Ks ·



t1

t2

...

tn


, Y =



Ĩ1

Ĩ2

...

Ĩn


− S ·



√
t1

√
t2

...

√
tn


(3.33)

Where Ĩ1, . . . , Ĩn [ cm ] signifies the measurement data. The time validity of

Philip’s two-term model represents the time when best model efficiency presents

(closest simulations to the data). In this research, the Bayesian Information

Criterion (BIC) was chosen as the criterion for model efficiency:

BIC = −2log
(
L(c|Ĩ)

)
+ k · log(n) (3.34)

Where L(c|Ĩ) is the likelihood derived from the coefficient c given the data Ĩ,

which is a function of the SSR. k is the dimension of the model which is equal

to 1 because we are only estimating the coefficient c. n is the number of data

points. To find the time validity of a sample, several measured times were tested

by estimating the optimal coefficient c and calculating the Bayesian Information

Criterion (BIC) [Schwarz 1978] each time. The general steps to estimate time

validity are as follows:

(1) Start from the first sample, input the corresponding optimal Ks [ cm·hour−1 ]
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and S [ cm·hour−1/2 ] to the Philip’s two-term model.

(2) Extract the data, start with analyzing i=3 data points.

(3) Apply linear regression to determine the optimal value of coefficient c with

respect to the extracted data.

(4) Use the optimal coefficient c to calculate the sum of squared residuals (SSR).

Compute the likelihood and BIC. Store the result of BIC.

(5) j = j + 1, go back to step (2), form the iteration and end the loop when

j = n+ 1. This means all the data points (time) have been tested.

(6) Take the time which corresponds to the minimum of BIC as the tvalid of that

sample.

(7) Go back to step (1) and test another sample. Terminate the loop when all

the samples have been analyzed.

Unlike the conventional way to use BIC as an approach to balance the model

accuracy and model complexity, we used the BIC as a function of the number

of data points and determine the optimal number of data points and its corre-

sponding time as tvalid. One thing to note is that the determination of tvalid is

limited to some factors, for example, time resolution, measurement errors. This

means many of the low-quality data might not be feasible to be analyzed.
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4 Results

4.1 Entire samples

The entire 646 samples were analyzed firstly to find if there were any patterns

shown by the whole dataset. This means we derived estimated optimal Ks

[ cm·hour−1 ] and S [ cm·hour−1/2 ], coefficient c and time validity for each sam-

ple. Table 4.1 and Table 4.2 give the statistics of optimal parameters based

on the 646 samples. Given the statistics, it can be found that many samples give

outbound or irrational estimation of the hydraulic parameters along with con-

siderable uncertainties, compared with parameter boundary provided by Table

1.2. Fig 3.1 could probably explain this phenomenon that infiltration curves

show conspicuous divergence for each type of soil. Many existent sharp cumu-

lative infiltration curves are contradictory to the corresponding soil properties,

which should be considered as low-quality data or outliers.

Looking at the output of tvalid, all the soils show a relatively small mean value

and a great uncertainty. Fig 4.1 provide the soil texture triangle of tvalid (mean

value) derived from each sample, where tvalid seems to cluster at the early start

of the infiltration for each soil type, which is theoretically not acceptable. Like

previously discussed, a large proportion of the 646 samples exhibit low quality

with respect to their curves. In addition, the determination of tvalid is affected by

the resolution of time, where accurate estimation requires short measurement

time intervals. Many of the samples were measured around every 0.5 hour,

which leads to huge uncertainty of the tvalid. The measurement error also has
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Table 4.1: Mean and standard deviation of the optimal parameters of the

entire samples

Texture
S

(cm/hour0.5)

Ks

(cm/hour)

mean σ mean σ

Sand 9.7478 0.4666 49.0052 24.9594

Loamy Sand 6.0253 3.5429 23.0827 18.5525

Sandy Loam 5.3194 3.3629 6.7734 12.3299

Sandy Clay Loam 7.0245 3.4027 3.4787 6.9935

Loam 8.0303 2.8802 18.8525 23.3504

Silty Loam 7.4138 3.4363 14.7104 14.7544

Clay Loam 7.3974 3.0825 11.2082 17.6753

Silty Clay Loam 6.0539 3.0123 13.3343 30.6414

Silty Clay 5.8011 3.4552 14.1768 18.6325

Clay 6.4194 3.9048 31.4140 41.6185

Table 4.2: Mean and standard deviation of the tvalid [ hour ]of the entire sam-

ples

Texture tvalid (hour)

Mean σ

Sand 0.1314 0.0745

Loamy Sand 0.7704 1.0386

Sandy Loam 0.9922 1.5033

Sandy Clay Loam 0.7981 1.7652

Loam 0.3427 1.0872

Silty Loam 0.6480 0.9825

Clay Loam 0.8437 1.7074

Silty Clay Loam 0.7130 1.3708

Silty Clay 1.0250 1.7035

Clay 0.8294 1.5607
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Figure 4.1: Soil texture triangle of tvalid derived from 646 samples

impact on the analysis by affecting the results of linear regression. A typical

measurement error can be illustrated in Fig 4.2 where cumulative infiltration

tends to decrease in the late time. To balance some disparate data points, the

linear regression method would derive some optimal coefficient c which might

not be reasonable (e.g. extremely positive or negative value), leading to the

effect on calculating the BIC, then coming into the conclusion of the literally

small tvalid at the start of the infiltration.

Based on the upper findings, we concluded that many samples are not applicable
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Figure 4.2: Typical measurement error issue

to the time validity and hydraulic parameters analysis due to the low-quality

data (e.g. irrationally sharp curves, low resolution of measured time, appar-

ent measurement errors). The great uncertainty of each parameter can hardly

enable us to explore any patterns for each soil type. Therefore, as the next

steps, it is essential to isolate some good-quality data with respect to the fol-

lowing criteria: (1) The cumulative infiltration is reasonable where estimation

of the hydraulic parameters are acceptable. (2) The measurement points should

be as many as possible and the time intervals are small enough for more ac-

curate estimation of tvalid. (3) The measurement data exhibit relatively small

measurement errors where infiltration curves are smoother.
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4.2 Best sample from each soil type

10 samples (see Fig 4.3) were isolated from the 646 samples as the best sample

from each soil type. Those samples were selected based on the criteria discussed

above. From the plots of the data, each sample is measured under a relatively

long time with feasible measured cumulative infiltration. Although there are still

inevitable measurement errors and the measured times are not quite of high

resolution, these data show superior quality compared with other samples in

the dataset. Through analyzing those best samples, the DREAM algorithm can

produce better estimation of the optimum which gives more accurate simulated

curves and smaller sum of squared residuals. A higher resolution of measured

time enables us to explore more accurate tvalid with smaller uncertainty.

The DREAM algorithm estimates the optimal parameters for each soil type,

along with the posterior distribution, which can be used to analyze the posterior

statistics of each parameter. Table 4.3 provides the DREAM output of the

optimal parameters. Table 4.4 covers the statistics of DREAM posterior. Fig

4.4 and Fig 4.5 illustrate the posterior distribution of S [ cm·hour−1/2 ] and Ks

[ cm·hour−1 ]. From these tables and figures, it can generally concluded that the

Markov Chains generated using DREAM algorithm have effectively converged,

where the posterior samples converged to the specific range, given the prior

distribution of each parameter. Given the optimal parameters, the simulated

curves using Haverkamp model were plotted in Fig 4.6, which are satisfying to

show the ’true’ values of the parameters derived from DREAM. This shows the

excellent analysis of DREAM algorithm. By taking those optimum as the input
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Figure 4.3: Best sample from each soil type

Table 4.3: Optimal parameter estimation from DREAM

Texture S Ks β

(cm/hour0.5) (cm/hour) (-)

Sand 20.6845 18.2727 0.0350

Loamy Sand 2.7939 24.8784 0.0122

Sandy Loam 2.9685 8.4559 0.0030

Sandy Clay Loam 8.1994 3.7050 0.0326

Loam 8.9526 3.1824 0.0742

Silty Loam 5.2363 2.3422 0.0092

Clay Loam 3.8281 0.8477 0.0156

Silty Clay Loam 4.6060 0.0010 0.9988

Silty Clay 1.7993 0.6610 1.9949

Clay 2.8217 1.3934 0.0794
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Table 4.4: DREAM posterior statistics of S [ cm·hour−1/2 ] and Ks

[ cm·hour−1 ]

Texture
S

(cm/hour0.5)

Ks

(cm/hour)

2.5% Mean Median 97.5% 2.5% Mean Median 97.5%

Sand 18.9966 21.0636 20.9378 23.8725 17.1944 19.3937 19.3736 21.6321

Loamy Sand 1.7941 5.4593 5.3476 9.5585 24.4609 24.9383 24.9635 25.2752

Sandy Loam 2.7461 2.9924 2.9780 3.2789 8.3973 8.4912 8.4907 8.5871

Sandy Clay Loam 8.1254 8.2379 8.2339 8.3775 3.6546 3.9402 3.9160 4.3480

Loam 8.7841 9.0221 9.0230 9.3325 3.0413 3.5337 3.5090 4.1436

Silty Loam 5.2102 5.2428 5.2420 5.2814 2.3283 2.4210 2.4076 2.5813

Clay Loam 3.6133 3.8763 3.8698 4.1792 0.7442 1.0431 1.0383 1.4222

Silty Clay Loam 4.4342 4.5634 4.5704 4.6528 0.0042 0.1403 0.1013 0.4519

Silty Clay 1.6226 1.7705 1.7779 1.8975 0.2310 0.5678 0.6093 0.7376

Clay 2.6580 2.8317 2.8257 3.0164 1.3085 1.4466 1.4355 1.6309

Figure 4.4: Posterior distribution of S [ cm·hour−1/2 ] of each sample
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Figure 4.5: Posterior distribution of Ks [ cm·hour−1 ] of each sample

parameters to the Philip’s two-term model, the optimal coefficient c and tvalid

were determined through the methodology described in section 3.4. To explore

the uncertainty of c and tvalid, 500 DREAM posterior samples were randomly

selected from the last 25% of the generations. Those posterior samples of S and

Ks were taken as the model input of Philip’s two-term. The output of optimal

coefficient c and tvalid of each soil type is provided in Table 4.5. Fig 4.7 shows

the soil texture triangle of the estimated tvalid. In addition to the results from

SWIG database, The results derived from analyzing HYDRUS-1D simulated

data [Jaiswal 2019] are also provided to compare results derived from different

datasets. The tchar was covered as well, which is the time validity calculated
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Figure 4.6: Haverkamp Simulated curves using the DREAM optimum

and proposed by Philip. The results from SWIG database and HYDRUS-1D

share relatively close estimation of tvalid for some coarse soils and fine soils

(e.g. sand, sandy loam, silty loam, clay). Comparing the results from SWIG

database and Philip, there are close estimation of tvalid for coarse and medium

soil (e.g. sand, loamy sand, sandy clay loam, loam). Table 4.7 shows the

uncertainty of tvalid given by the 95% range. Based on the output DREAM

posterior samples, 500 samples of each parameter were randomly selected from

each posterior distribution to derive the estimation of tvalid. By sorting the 500

outputs of the tvalid, we calculated the 95% interval of the tvalid. Many of the
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Table 4.5: Estimated tvalid derived from the best samples

Texture tvalid(SWIG) tvalid(HYDRUS-1D) tchar(Philip) σ(SWIG)

(hour) (hour) (hour)

Sand 0.1833 0.1159 0.0962 0.0000

Loamy Sand 0.7333 0.2453 0.1805 0.0000

Sandy Loam 0.5000 0.6383 0.7505 0.0000

Sandy Clay Loam 2.3000 1.1552 1.4918 0.2697

Loam 4.3333 1.995 4.4343 1.3418

Silty Loam 5.0000 4.1833 13.4444 2.2937

Clay Loam 0.5000 4.7842 31.1021 1.1905

Silty Clay Loam 6.0000 43.0141 51.1837 0.6209

Silty Clay 3.5000 30.6717 306.2500 0.4338

Clay 6.5667 6.2032 26.0100 0.0000

uncertainty output of coarse soil are approaching or equal to zero mainly due

to the low resolution of the measured time. For example, for the best sample of

loamy sand, there are only four data points before t goes to 1 hour.

Those evident differences between the results for other soils can be attributed

to two aspects. Unlike the HYDRUS-1D data which were simulated with 100

data points and high resolution of time, the SWIG database provides real-world

measured data with low resolution (even best samples were selected), which

affect the estimation of time validity and lead to poor results of the uncertainty.

Besides, due to the short period of measured time, the data provided by SWIG

could hardly be applied to estimate the true tvalid of some fine and very fine

soils, where tvalid goes to the maximum of the measured time tmax. Apparently,

the issue that the measured length of time is too short plays a limiting factor

on exploring the tvalid. To address the issue of low resolution, we conducted our

next step analysis by interpolating data points to the original data.
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Table 4.6: Uncertainty of tvalid from best sample of each soil type

Texture tvalid (hour)

2.5% Mean Median 97.5%

Sand 0.1833 0.1833 0.1833 0.1833

Loamy Sand 0.7333 0.7333 0.7333 0.7333

Sandy Loam 0.5000 0.5000 0.5000 0.5000

Sandy Clay Loam 2.3000 2.3694 2.3000 4.7667

Loam 1.3333 2.6909 1.8333 4.3333

Silty Loam 0.4167 2.4723 0.4167 5.0000

Clay Loam 0.3333 0.9705 0.5000 4.0000

Silty Clay Loam 4.0000 5.7690 6.0000 6.0000

Silty Clay 3.0000 3.7008 3.5000 4.5000

Clay 6.5667 6.5464 6.5667 6.5667

Figure 4.7: Soil texture triangle of tvalid derived from the best samples

42



Figure 4.8: Best samples with interpolated data

4.3 Best samples with interpolated times

Given the results derived from last section, low resolution of measured times is

a major issue that should be addressed. Thus, we again conducted the analysis

discussed before but with interpolated measured times in this section. To man-

age the interpolation and ensure high resolution of time, the new infiltration

time series were created by setting the cumulative infiltration as 0 cm to the

maximum Imax, where the interval is defined as 0.05 cm. For instance, the Imax

of the best sand sample is 87.1 cm. The cumulative infiltration for this sample

will be initially set to: 0.00 cm, 0.05 cm, 0.10 cm, . . . , 87.1 cm. Based on the
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Table 4.7: Estimated tvalid derived from best samples with interpolated tem-

poral data

Texture tvalid(SWIG) tvalid(HYDRUS-1D) tvalid(Philip) σ(SWIG)

(hour) (hour) (hour)

Sand 0.0451 0.1159 0.0962 0.0000

Loamy Sand 0.1760 0.2453 0.1805 0.0651

Sandy Loam 0.1125 0.6383 0.7505 0.0114

Sandy Clay Loam 4.7667 1.1552 1.4918 2.0552

Loam 4.3333 1.995 4.4343 1.2384

Silty Loam 4.8529 4.1833 13.4444 0.0000

Clay Loam 4.8358 4.7842 31.1021 1.7094

Silty Clay Loam 6.0000 43.0141 51.1837 0.3141

Silty Clay 3.5013 30.6717 306.2500 0.4238

Clay 6.5667 6.2032 26.0100 1.9902

original data and the new infiltration series, we did the linear interpolation of

the new temporal data. Consequently, interpolation were conducted for each

best sample, where the new interpolated data are shown in Fig 4.8. The new

time series of infiltration of each sample is of much higher resolution compared

with the original data. The simulated curves are also included in Fig 4.8 us-

ing the optimal parameters derived from Section 4.2 because it is reasonable

to assume that the linear interpolation of data will not make great different to

the estimated optimal parameters S [ cm·hour−1/2 ] and Ks [ L·T−1 ]. Based on

the new interpolated data, the experiment of time validity analysis was tested

again. Given the optimal parameters, the output of tvalid [ hour ] was covered in

Table 4.7, along with a soil triangle of tvalid [ hour ] in Fig 4.9.

Looking at the result derived from interpolated data, the new estimated tvalid

[ hour ] exhibits proximation of the output from HYDRUS-1D or Philip with
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Figure 4.9: Soil texture triangle of tvalid [ hour ] derived from new interpolated

data

Table 4.8: Uncertainty of tvalid from best samples with interpolated temporal

data

Texture tvalid (hour)

2.5% Mean Median 97.5%

Sand 0.0451 0.0451 0.0451 0.0451

Loamy Sand 0.0066 0.0611 0.0349 0.2854

Sandy Loam 0.0938 0.1139 0.1125 0.1375

Sandy Clay Loam 0.0125 3.4450 4.7667 4.7667

Loam 1.6167 3.0458 3.7917 4.2879

Silty Loam 4.8549 4.8549 4.8549 4.8549

Clay Loam 1.2692 3.0699 4.2083 5.0833

Silty Clay Loam 4.8500 5.6528 5.7778 5.7778

Silty Clay 2.9375 3.7059 3.6250 4.5000

Clay 0.1058 5.8561 6.5667 6.5667
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Table 4.9: Estimated coefficient c corresponding to the tvalid [ hour ]

Texture c

(-)

Sand -0.5260

Loamy Sand 0.6378

Sandy Loam -0.3052

Sandy Clay Loam 0.7405

Loam 0.7220

Silty Loam 0.7394

Clay Loam 0.6815

Silty Clay Loam 1.7295

Silty Clay 0.1610

Clay 0.6540

respect to sand, loamy sand, loam, silty loam, clay loam, and clay. By ran-

domly selecting 500 samples fron the DREAM posterior samples as input to the

Philip’s two-term, the uncertainty of tvalid [ hour ] (Table 4.8) and coefficient

c (Table 4.10) were derived. The 95% intervals of tvalid [ hour ] derived from

SWIG database include most of the results from HYDRUS-1D and Philip, ex-

cept for soils like clay loam, silty clay loam and silty clay. The major reason why

the uncertainty interval could not cover results of those soils is that the best

samples of SWIG do not have measured times of 8 hours or longer. Regardless of

the limitation of short measured periods, the uncertainty output indicates that

using SWIG could make estimation of the tvalid [ hour ] but with large uncer-

tainty, which is mainly attributed to the measurement error and minorly model

structural error of the Philip model. Like previous discussed, HYDRUS-1D sim-

ulates synthetic data with no measurement error, where the uncertainty of the

estimated tvalid [ hour ] is only subjected to the time intervals. Thus, due to the
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Table 4.10: Uncertainty of the estimated coefficient c

Texture c (-)

2.5% Mean Median 97.5%

Sand -1.2818 -0.5272 -0.5242 -0.4459

Loamy Sand -4.4547 -0.7252 -0.4456 0.7805

Sandy Loam -0.5237 -0.3003 -0.3005 -0.0799

Sandy Clay Loam -16.9183 -3.9026 0.6687 0.7416

Loam 0.4390 0.5898 0.5907 0.7294

Silty Loam 0.6718 0.7159 0.7184 0.7435

Clay Loam 0.0365 0.4557 0.4741 0.9528

Silty Clay Loam -0.3804 4.9716 0.2042 10.1740

Silty Clay 0.0377 0.2702 0.2434 0.6654

Clay -4.1509 0.1972 0.6950 0.7961

measurement error, the use of real-world data (SWIG) to explore time validity

of Philip’s two-term is probably deficient compared with using HYDRUS-1D.

With large uncertainties of the tvalid [ hour ], it is then generally suggested that

we propose a 95 % interval of the tvalid [ hour ] with respect to different soils

rather than specific singular value of tvalid [ hour ] for each soil.
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5 Conclusion

From the results of best samples with interpolated data, we can come to the

conclusion that coarse soils (e.g. sand, loamy sand, sandy loam) have extremely

short tvalid [ hour ] from 0.10 hour to 1.00 hour. Medium soils (sandy clay loam,

loam, clay loam) have medium lengths of tvalid [ hour ] from 1.00 hour to 4.76

hours. The tvalid [ hour ] of the fine soils (clay loam, silty clay loam, silty clay,

clay) could hardly be determined based our data due to the 95% intervals cover

the measured tmax. Based on the experiments and results, we could only con-

clude that the ’true’ tvalid [ hour ] of those soils will be longer than the results

provided in Table 4.7. Despite this, the output 95% interval of tvalid [ hour ]

of the coarse soils can be viewed as important results, providing the valid time

that should be adopted to estimate the soil hydraulic properties using Philip’s

two-term model. The tvalid [ hour ] of the medium soils exhibits conspicuous and

large uncertainties, which could hardly be used as a reference of feasible tvalid

[ hour ] for other experimental tests.

Looking at the methodology that has been adopted, we conducted three ex-

periments which differ with respect to the data that were analyzed. Through

the steps of using Haverkamp model and DREAM algorithm, it shows that

Haverkamp 1-D semi-implicit equation is a effective model to simulate the cu-

mulative equation, which can be efficiently solved using a secant method and

is not limited by time validity. By comparing the results derived from the best

samples with interpolated data and the tchar proposed by Philip, the use of

Bayesian Inference Criterion can be a feasible approach to derive the time va-
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lidity of Philip’s two-term model where two results both follow the pattern that

coarse soils have shorter tvalid [ hour ] while fine soils have longer tvalid [ hour ].

The differences of results estimated from different data sources greatly speci-

fies the drawbacks of using real-world data (SWIG) to study the soil hydraulic

properties and tvalid [ hour ] of Philip’s two-term model. The real-world data

has the following issue when doing the analysis: (1) Data exhibit conspicuous

measurement error, which will result in great uncertainty of estimation of tvalid

[ hour ]; (2) Data are measured at large time interval, which means that the low-

resolution measured times will lead to significant errors when estimating the

tvalid [ hour ]; (3) Data are not measured under a relatively long period, which

makes it hard to derive the ’true’ tvalid [ hour ] of fine soils. Even though inter-

polation could be adopted to address the second problem, the other two issues

could hardly be resolved or eliminated when using real-world data. This comes

to the conclusion that instead of real-world data, using synthetic data (e.g.

HYDRUS-1D) is a suggested approach to explore the tvalid [ hour ] of Philip’s

two-term model, which numerically computes infiltration from Richards’ equa-

tion and eliminates the effect of measurement error.
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