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ABSTRACT OF THE DISSERTATION

Optimal Operation of Energy Storage in Power Transmission and Distribution

by

Seyed Hossein Akhavan Hejazi

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, March 2016

Dr. Hamed Mohsenian-rad, Chairperson

In this thesis, we investigate optimal operation of energy storage units in power transmis-

sion and distribution grids. At transmission level, we investigate the problem where an

investor-owned independently-operated energy storage system seeks to offer energy and an-

cillary services in the day-ahead and real-time markets. We specifically consider the case

where a significant portion of the power generated in the grid is from renewable energy

resources and there exists significant uncertainty in system operation. In this regard, we

formulate a stochastic programming framework to choose optimal energy and reserve bids

for the storage units that takes into account the fluctuating nature of the market prices due

to the randomness in the renewable power generation availability. At distribution level, we

develop a comprehensive data set to model various stochastic factors on power distribution

networks, with focus on networks that have high penetration of electric vehicle charging

load and distributed renewable generation. Furthermore, we develop a data-driven stochas-

tic model for energy storage operation at distribution level, where the distribution of nodal

voltage and line power flow are modelled as stochastic functions of the energy storage unit’s

charge and discharge schedules. In particular, we develop new closed-form stochastic models

for such key operational parameters in the system. Our approach is analytical and allows

formulating tractable optimization problems. Yet, it does not involve any restricting as-

sumption on the distribution of random parameters, hence, it results in accurate modeling

of uncertainties. By considering the specific characteristics of random variables, such as their

statistical dependencies and often irregularly-shaped probability distributions, we propose a

non-parametric chance-constrained optimization approach to operate and plan energy stor-
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age units in power distribution girds. In the proposed stochastic optimization, we consider

uncertainty from various elements, such as solar photovoltaic , electric vehicle chargers, and

residential baseloads, in the form of discrete probability functions. In the last part of this

thesis we address some other resources and concepts for enhancing the operation of power

distribution and transmission systems. In particular, we proposed a new framework to de-

termine the best sites, sizes, and optimal payment incentives under special contracts for

committed-type DG projects to offset distribution network investment costs. In this frame-

work, the aim is to allocate DGs such that the profit gained by the distribution company is

maximized while each DG unit’s individual profit is also taken into account to assure that

private DG investment remains economical.

Keywords: Independent energy storage systems, energy and reserve markets,

wind power integration, stochastic optimization, demand response, power system simulation,

distribution grid, non-parametric probability distributions, chance-constrained optimization.
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Chapter 1

Introduction

1.1 Motivation and Objectives

The electric power system is rapidly changing as more grid-connected technologies

such as renewable and distributed generation [1], and electric vehicles [2] are being deployed.

The fluctuations in both generation and demand have made the power system more unpre-

dictable, both at transmission and distribution levels, making it more challenging to assure

reliability, stability, and security. Note that, transmission grid refers to the system which

delivers electricity from bulk generators to consumer locations while distribution grid refers

to the system that carries electricity from the transmission system to end consumers.

One promising solution to uncertainty in power systems is to install energy storage

devices at both power transmission and distribution grids. Energy storage, whether at the

transmission level or at the distribution level, is playing an increasingly important role in

helping to balance supply and demand in power systems and to ensure system reliability

and stability. As distributed energy resources become more prominent, with attributes such

as scalability, location, and application, the role of energy storage systems becomes more

critical in creating a modern and smart electric system. For example, in California, the

California Public Utilities Commission has mandated that the three largest investor-owned

utility companies install a total of 1,325 megawatts new energy storage units by 2020. Over

50% of such new energy storage installations are expected to be at the transmission level.

About 35% will be at the distribution level and the remaining will be at the consumer level

in form of behind-the-meter energy storage resources [3]. The focus of this thesis is on

deployment and operation of energy storage units both at the transmission and distribution

1



grids.

Considering the challenges at power transmission grids, a recent study in [4] has

shown that significant wind power curtailment may become inevitable if more renewable

power generation resources are installed without improving the existing infrastructure or

using energy storage. Other studies, e.g., in [5–7] have similarly suggested that energy

storage can potentially help in integrating renewable energy resources. Although this basic

idea has been widely speculated in the smart grid community, it is still not clear how we can

encourage major investment for building large-scale independently-owned storage units and

how we should utilize the many different opportunities existing for these units. Addressing

these open problems is one of the main focus areas in this thesis.

At distribution grids, storage operation is also a promising option to manage the

network in the presence of new elements that challenge the traditional structure of distri-

bution feeders [8]. However, the storage objectives and context are different from those in

transmission grids [9]. Energy storage is likely to be installed by users or a utility company.

The distributed energy storage systems may have the ability to provide multiple services to

the distribution grid. These services include:

• electric supply capacity and energy time shift,

• distribution system support and investment differals,

• energy cost management for electric utility customers,

• distributed renewable energy integration,

• enhancing the security of the grid and its stability,

• and providing ancillary services.

Now, the question is: how can we stablish and optimally manage a system of distributed

storage units in power distribution grid and perform various reliable and compatible services

for both the system and the users? Answering this question is also another goal of this

research.

Finally, in the third part of this thesis we address some other resources and con-

cepts for enhancing the operation of power distribution and transmission systems. In this

regard, we proposed a new algorithm to determine the best sites, sizes, and optimal payment
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incentives under special contracts for committed-type DG projects to offset distribution net-

work investment costs. In this framework, the aim is to allocate DGs such that the profit

gained by the distribution company is maximized while each DG unit’s individual profit is

also taken into account to assure that private DG investments remain economical. We also

address the case of automated demand side management where a large portion of loads in

the grid are active participants under a real-time pricing framework.

1.2 Summary of Contributions and Publications

The research performed in this thesis can be outlined under three thrusts. First,

we address the optimal operation of large size energy storage on transmission grids. In this

thrust, we are interested in investigating the best operation strategy for independent energy

storage systems and developing optimization frameworks for investor-owned energy storage

systems to offer various services in two-settlement electricity markets.

Second, we attend to the problem of medium size distributed energy storage sys-

tems operating at the distribution grid. In this regard, we develop models for stochastic

representation of the distribution grid features, such as the load and generation of various

contemporary smart grid elements, as well as the key operational parameters of the system

including bus voltages and line flows. We use a non-parametric chance-constrained opti-

mization method to identify the best operation schedule of energy storage systems and the

best size and location of such systems at the distribution grid.

Finally, in the third part of the thesis, we further examine the operation and de-

ployment of distributed energy resources, but for energy resources other than energy storage.

First, we study the optimal planning of the distribution grids to include the contribution

of distributed generation under incentivated contracts. Next, we address the wide spread

deployment of automated demand side management devices in the distribution networks,

and the issue that may arise under a real-time pricing structure known as load synchroniza-

tion. We investigate how load management of automated devices in response to locational

marginal prices may impact the operation of the transmission power system.

The following publications are resulted from this thesis:

• H. Akhavan-Hejazi, H. Mohsenian-Rad, "Energy Storage Planning in Active Distri-

bution Grids: A Chance-Constrained Optimization with Non-Parametric Probability
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Functions," Under Review (second round) at IEEE Trans. on Smart Grid, 2015.

• H. Akhavan-Hejazi, H. Mohsenian-Rad, "Optimal Operation of Independent Storage

Systems in Energy and Reserve Markets With High Wind Penetration," IEEE Trans.

on Smart Grid, vol. 5, no. 2, pp. 1088-1097, March 2014.

• H. Akhavan-Hejazi, A. Araghi, B. Vahidi, S. Hosseinian, M. Abedi, and H. Mohsenian-

Rad, "Independent Distributed Generation Planning to Profit Both Utility and DG

Investors", IEEE Trans. on Power Systems, vol. 28, no. 2, pp. 1170-1178, July, 2013.

• H. Akhavan-Hejazi, H. Mohsenian-Rad, "Optimal Operation of Independent Storage

Systems in Energy and Reserve Markets with High Wind Penetration", in Energy

Storage for Smart Grids: Planning and Operation for Renewable and Variable Energy

Resources, Edited by Pengwei Du and Ning Lu, Elsevier, 2014.

• H. Akhavan-Hejazi, B. Asghari, R. Sharma, "A joint bidding and operation strategy

for battery storage in multi-temporal energy markets," in Proc. of the IEEE PES

Innovative Smart Grid Technologies Conference, Washington, DC, Feb. 2015.

• H. Akhavan-Hejazi, H. Mohsenian-Rad, A. Nejat, "Developing a test data set for

electric vehicle applications in smart grid research," in Proc of the IEEE Vehicular

Technology Conference, Vancouver, BC, 2014.

• H. Akhavan-Hejazi, H. Mohsenian-Rad, "A Stochastic Programming Framework for

Optimal Storage Bidding in Energy and Reserve Markets" in Proc. of the IEEE PES

Innovative Smart Grid Technologies Conference, Washington, DC, Feb. 2013.

• H. Akhavan-Hejazi, Z. Bahar, H. Mohsenian-Rad, "Challenges and Opportunities

in Large-Scale Deployment of Automated Energy Consumption Scheduling in Smart

Grid", in Proc. of the IEEE Conf. on Smart Grid Communications, Tainan, Taiwan,

Oct. 2012.

Next, we summarize the main results in each research thrust.

1.2.1 Energy Storage Operation on Transmission Grid

The first part of the thesis includes two research projects that are closely inter-

related. They are centered around optimal operation and bidding of energy storage in
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electricity markets. The key question is: How can an energy storage unit that is owned and

operated by an independent investor bid in electricity market to maximize its profit, when

there exists considerable uncertainties? Answering this question is the focus of the first

part of this thesis.

In this regard, in Chapter 2, we develop a stochastic optimization framework for

energy storage system optimal operation and bidding at the day-ahead market to provide

energy and reserve services. We assume a reserve market structure similar to a simplified

version of the day ahead scheduling reserve market in the PJM (Pennsylvania, New Jersey,

Maryland) inter-connection [10], where the exact utilization of the reserve bids is not decided

by the storage unit; instead, it is decided by the market. As a result, finding the optimal

charge and discharge schedules is particularly challenging when the storage unit participates

in the reserve market. Another challenge is to formulate the bidding optimization problem

as a convex program to make it tractable and appropriate for practical scenarios.

In Chapter 3, we look into the problem of coordinated bidding and operation

of energy storage system at day-ahead and real-time markets to provide energy services.

Again, accounting for the uncertainties of the real-time market prices is a key feature in

this work. We investigate the inter-dependencies of energy storage system operation at day-

ahead and real-time markets and how the bids in one market affects the revenues in the

other. We also account for the risk associated with withholding of energy storage capacity

to participate in the real-time market. We propose an optimization framework to obtain

the best bidding strategies in both day-ahead and real-time markets, and coordinate battery

schedules accordingly. A receding time horizon optimization is derived that updates input

information in the operating-day continuously as new forecasts, etc. becomes available and

updates energy storage system decisions accordingly. In presented framework, the Value-at-

Risk of revenues due to errors in forecasts is calculated and controlled throughout both stages

of optimization in day-ahead and real-time markets. Again, obtaining convex formulation

and models for the problem so that it can be solved effectively in real-time is an essential

part of this study.

One journal paper, two conference papers, and one book chapter resulted from the

first part of this thesis.
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1.2.2 Energy Storage Operation on Distribution Grid

At distribution level, the main purpose of using storage devices is to expand the

service capacity of the network without jeopardizing the reliability and security of the system.

The design objective can be to maximize the profit in a flexible and scalable manner, while

the impact of new technologies such as distributed renewable energy sources and plug-in

electric vehicles is taken into account. In order to achieve a flexible and scalable design, it

is usually preferred by the utilities that ownership and operation of energy storage systems

(ESSs) be independent, distributed and modular [9].

Therefore, in the second part of the thesis, we look into the problem of energy stor-

age system operation and planning at the distribution grid. Accounting for the uncertainty

introduced to the distribution grid, as a result of fluctuating load and generation of contem-

porary elements such as photovoltaic distributed generators (PV-DGs) and electric vehicle

(EV) chargers, and designing the best energy storage operation and planning accordingly is

the focus of this part.

An important problem in this regard, which is addressed in Chapter 4, is to obtain

the statistical characteristics of various elements of the system such as the electric vehicle

charging load, solar PV-DG generation, and baseload of residential users from the historical

data. Obtaining statistical characteristics of the charging load of electric vehicles is par-

ticularly challenging. The main issue comes from the lack of data on real measurement of

the electric vehicle charge loads. Therefore, in Chapter 4, we analyze the driving traces for

536 GPS-equipped non-PHEV taxi vehicles in [11] and combine them with the features and

technical characteristics of different PHEV brands in order to obtain a new test data set to

support our investigation of stochastic features of a smart distribution grid. Additionally,

we obtain the statistical features of the solar PV-DGs by synthesizing the load of a solar

panel using a real-time digital simulator from the historical recorded measurements of the

solar irradiation and temperature obtained from [12]. We also obtain the statistical features

of residential baseloads, by combining the metered hourly loads of 600 residential consumers

from PECON Street database [13].

In Chapter 5, we address the question that given the statistical features of various

elements in a distribution grid, how can we obtain the probability distribution of the various

operational parameters such as bus voltages and line flows so that with proper energy storage

operation we mitigate the probability of system violations? We are interested in obtaining the
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distribution of operational parameters analytically without restricting a specific parametric

distribution on the input random variables. In fact, those distributions are obtained directly

from a history of local measurement data. We obtain an analytical representation of the

key operational parameters which enables us to have a deeper understanding of statistical

behaviours of these parameters making the designs and upgrade of the system more efficient.

For example, this model makes it possible to have clear solutions, when it comes to the

probability of having over-/ under- voltage in any bus, or an over flow in any line. Our

analytical model is used as well to formulate a chance-constrained optimization for energy

storage system optimal daily operation plan as well as the optimal site and size of the

energy storage system. Our novel non-parametric chance-constrained optimization model

enables a more effective energy storage operation and deployment planning. We accurately

obtain the probability of violation for various system operational parameters and compensate

accordingly with the optimal operation of energy storage system, so that we achieve the safe

operation of the power distribution grid at a minimum cost.

One journal paper and one conference paper resulted from the second part of this

thesis.

1.2.3 Distributed Generation and Demand Response

In the third and last part of this thesis, we address some other novel paradigms in

smart grid operation and planning. Specifically, demand side management and dispatchable

distributed generation are optimized to relive pressure from the power grids. The results

are presented in Chapters 6 and 7. These studies were carried out in the early stages of this

research. Although not related to energy storage system, the goals and the context of these

projects are in-line with energy storage operation.

In Chapter 6, we investigate the optimal expansion planning of the distribution

grid to support the increasing load, and relieve pressure from the substation by the aid of

dispatchable distributed generation. We aim to find the best mixture of power procurement

from both DGs and the energy market so as to minimize the energy cost and the upgrade

cost of the distribution grid, while maintaining energy production profitable for the DG

investors. The design and assumptions in the proposed approach are well aligned with the

current structure of California utilities. We obtain the best rates for energy at off-peak and

peak periods, as well as the optimal sizes and locations of the DGs in the contract based
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power procurement.

Finally, in Chapter 7, we address the demand side management in the distribution

grids. We investigate the large deployment of automated demand response designs in the

distribution grids and their impacts on the power system operation. Specifically, we address

an important challenge in large-scale deployment of automated demand response under

real-time pricing structure, known as load synchronization. The problem arises when in

response to real-time prices a large portion of automated load scheduling devices shift their

consumption from peak price time intervals to low price periods. This leads to a shift in

the load of a portion of consumers that may cause new peak periods. The fluctuations

in the electricity prices that may occur as a result, can makes the system unstable. To

tackle this problem, we propose to use a moving average smoothing mechanism for LMPs.

Our simulation results show that the proposed approach works well and can assure system

stability. Furthermore, we show that the proposed large-scale deployment of ECS devices

approximates optimal performance in terms of reducing PAR in the aggregate load demand,

minimizing the total power generation cost in the system, and reducing each user’s individual

electricity bill payments.

One journal paper and one conference paper resulted from the third part of this

thesis.

1.2.4 Thesis Organization

This thesis is organized as follows:

The Part I of this thesis is focused on Optimal Energy Storage Operation at the

Transmission Grid. In this regard, the Chapter 2 is dedicated to operation of independent

large-scale battery storage systems in energy and reserve markets with high wind pene-

tration. Chapter 3 presents a joint bidding and operation strategy for battery storage in

multi-temporal energy markets. The Part I of this thesis is focused on Energy Storage Op-

eration at the Distribution Grid. Accordingly, Chapter 4 is focused on data synthesis to

model power distribution networks. Chapter 5 presents a novel approach on energy storage

planning in active distribution grids. A chance-Constrained optimization is proposed in this

chapter with non-parametric probability functions. The Part III of this thesis is focused on

distributed generation and demand response planing at the distribution grid. Chapter 6 is

dedicated to distributed generation planning in order to profit both utility and DG investors.
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And finally in Chapter 7 we address some challenges and opportunities in large-scale de-

ployment of automated energy consumption scheduling systems in smart grids. Chapter 8

concludes this thesis and identifies some future work directions for the research performed

in this thesis.
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Part I

Optimal Energy Storage

Operation at the Transmission

Grid

10



Chapter 2

Operation of Independent

Large-Scale Battery Storage

Systems in Energy and Reserve

Markets with High Wind

Penetration

In this chapter, we consider a scenario where a group of investor-owned independently-

operated storage units seek to offer energy and reserve in the day-ahead market and energy in

the hour-ahead market. We are particularly interested in the case where a significant portion

of the power generated in the grid is from wind and other intermittent renewable energy re-

sources. In this regard, we formulate a stochastic programming framework to choose optimal

energy and reserve bids for the storage units that takes into account the fluctuating nature

of the market prices due to the randomness in the renewable power generation availability.

We show that the formulated stochastic program can be converted to a convex optimization

problem to be solved efficiently. Our simulation results also show that our design can assure

profitability of the private investment on storage units. We also investigate the impact of

various design parameters, such as the size and location of the storage unit on increasing

the profit.
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2.1 Introduction

Due to their intermittency and inter-temporal variations, the integration of renew-

able energy sources is very challenging [14]. A recent study in [4] has shown that significant

wind power curtailment may become inevitable if more renewable power generation resources

are installed without improving the existing infrastructure or using energy storage. Other

studies, e.g., in [5–7] have similarly suggested that energy storage can potentially help in-

tegrate renewable, in particular wind, energy resources. Although this basic idea has been

widely speculated in the smart grid community, it is still not clear how we can encourage

major investment for building large-scale independently-owned storage units and how we

should utilize the many different opportunities existing for these units. Addressing these

open problems is the focus of this chapter.

The existing literature on integrating energy storage into smart grid is diverse.

One thread of research, e.g. in [15–17], seeks to achieve various social objectives such

as increasing the power system reliability, reducing carbon emissions, and minimizing the

total power generation cost. They do not see the storage units as independent entities and

rather assume that the operation of energy storage systems is governed by a centralized

controller. As a result, they do not address the profitability of investment in the storage

sector and the possibility for storage units to participate in the wholesale market. Another

thread of research, e.g., in [18–21], seeks to optimally operate a storage unit when it is

combined and co-located with a wind farm. They essentially assume that it is the owner

of the wind farm that must pay for the storage units. Clearly, this assumption may not

always hold and it can certainly limit the opportunities to attract investment to build new

energy storage systems. Finally, there are some papers, such as [21–25], that aim to select

optimal strategies for certain storage technologies, e.g., pumped hydro storage units, to bid

in the electricity market. However, they typically do not account for the uncertainties in

the market prices which can be a major decision factor if the amount of renewable power

generation is significant. Moreover, they do not consider the opportunities for the energy

storage systems to participate in both energy markets and reserve markets. Finally, the

operation of large storage units such as pumped hydro are different from that of limited

energy storage units which are of interest in this work. While pumped hydro units are

mostly limited to the discharge rate or the capacity of turbines, batteries are limited by the

available sate of charge.
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Therefore, the following question is yet to be answered: How can an energy stor-

age unit that is owned and operated by a private investor bid in both energy and reserve

markets to maximize its profit, when there exists significant wind power penetration in the

power grid? The storage unit may or may not be collocated with renewable or traditional

generators. In fact, the location and size of the unit is decided by investors based on factors

such as land availability and spot price profile. In order to optimally operate the storage

unit of interest, we propose a stochastic optimization approach to bid for energy and reserve

in the day-ahead market and energy in the hour-ahead markets. Here, we assume a reserve

market structure similar to a simplified version of the day ahead scheduling reserve market

in the PJM (Pennsylvania, New Jersey, Maryland) inter-connection [10], where the exact

utilization of the reserve bids is not decided by the storage unit; instead, it is decided by

the market. As a result, finding the optimal charge and discharge schedules is particularly

challenging when the storage unit participates in the reserve market. Another challenge is

to formulate the bidding optimization problem as a convex program to make it tractable and

appropriate for practical scenarios. Our contributions in this chapter can be summarized as

follows.

• We propose a new stochastic optimization bidding mechanism for independent stor-

age units in the day-ahead and hour-ahead energy and reserve markets. Our design

operates the charge and discharge cycles for the batteries to assure meeting the future

reserve commitments under different scenarios, regardless of the uncertainties that are

present in the decision making process.

• An important feature in our proposed market participation model is that the power

grid does not treat independent storage units any different from other energy and re-

serve resources. Therefore, our design can be used to encourage large-scale integration

of energy storage resources without the need for restructuring the market.

• We show through computer simulations that our proposed optimal energy and re-

serve bidding mechanism is highly beneficial to independent storage units as it assures

the profit gain of their investment. We also investigate the impact of various design

parameters, such as the size and location of the storage unit on increasing the profit.

The rest of this chapter is organized as follows. The system model and the optimal

bidding problem formulation are explained in Section 2.2. Two different tractable design
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approaches to solve the formulated problems are presented in Section 2.3. Simulation results

are presented in Section 2.4. The concluding remarks and future work are discussed in

Section 2.5.

2.2 Problem Formulation

Consider a power grid with several traditional and renewable power generators as

well as multiple independent energy storage systems. We assume that not only the generators

but also the storage units can bid and participate in the deregulated electricity market. As

pointed out in Section 2.1, our key assumption is that the storage units are not treated any

differently from other generators that participate in the energy or reserve markets. Since the

energy storage units in the system are owned and operated by private entities, they naturally

seek to maximize their own profit. The stochastic wind generation, however, may create

some extra benefits for storage units, considering that energy and reserve market prices may

fluctuate significantly, giving them more opportunities to gain profit, in the presence of high

wind power penetration. The assumption of high wind power penetration adds to the load

forecast error component of the operating (day-ahead scheduling) reserve1, since the wind

generation is typically considered as part of the net load. With more fluctuations in the net

load, the operating reserves are more likely to be called up frequently. We also assume that

the storage unit operates as a price taker, i.e., it operates as a self-scheduling (must-run)

unit and does not bid for price. Therefore, the storage unit will be compensated based

on market clearing prices. Of course, at the time of bidding in the day ahead market, the

storage unit does not know the actual prices, rather it only has an estimate of them. We

also assume that the storage unit’s operation does not have impact on market prices due to

its typically lower size (in megawatts) compared to traditional generators.

The main decision variables of the storage unit in our system model are the energy

and reserve quantities for different hours in the day-ahead market. However, the storage

decisions and operation in the dayahead market and hour ahead (real time) market are

highly tied together. The storage unit’s bid in the day-ahead market has direct impact on
1Based on the market setup at PJM RTO, the reserves are procured on a day-ahead basis in order to ensure

that differences in forecasted loads and forced generator outages do not negatively impact system reliability. At
PJM, day-ahead scheduling reserve comprises load forecast error component and forced outage rate component
[10].
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Figure 2.1: An example for the charge and discharge cycles for an independent storage unit
when it participates in both energy and reserve markets.

the storage unit’s future profit in the hour-ahead market, since the commitments in the

day-ahead market will put some constraints in the charging and discharging profiles of the

storage unit. An example for the charging and discharging cycles in the day-ahead energy

and reserve markets is shown in Fig. 2.1, where the storage unit has committed to offer

energy and reserve at three hours: h1 = 7:00 AM, h2 = 3:00 PM, and h3 = 8:00 PM. In each

case, the state-of-charge of batteries must reach a level Clh ≥ Ph+Rh for all h ∈ {h1, h2, h3}.
When a storage unit bids for reserve at a particular hour of the day-ahead market,

all, part of, or none of its committed reserve could be used. This will create uncertainty in the

charging level of the storage unit; and depending on which value presumed for the utilization

of reserve, the storage might have more or less charge available in real time. Therefore, even

for the day-ahead market bidding, the storage unit should have some information on hour

ahead operation model.

When an independent storage unit submits a bid to the day-ahead market (DAM),

it seeks to maximize its profit in the day-ahead market plus the expected value of its profit

in the next 24 hour-ahead markets (HAM). Therefore, prior to submitting the bids into

day-ahead market, the storage unit should solve an operation optimization problem in both

day-ahead and hour-ahead markets for all the services that it aims to provide. The services

that we aim to consider here include: day ahead power, day ahead reserve, and hour ahead

power2. Also the storage needs some estimation of the prices at hours h = 1−24 in both day
2The storage may also provide regulation service or synchronized reserve service in the hour-ahead (real-time)

market. However, those scenarios are not considered in the formulation of this chapter.
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Figure 2.2: Overview of the input information and decision process for an independent
storage unit that participates in the energy and reserve markets.

ahead and hour ahead markets. The prices of the hour ahead markets on the next day will

have more uncertainty due to availability variation and uncertainty in wind generation. The

decision process of storage and the input information required is illustrated in Fig. (2.2).

This can be mathematically formulated as the following optimization problem3:

Maximize
P,R,p

24∑
h=1

(Ph · CPh +Rh · CRh) + E
{
HAM

(
p,P,R; c̃p, c̃r, r̃

)}
Subject to
∀h=1,··· ,24

h∑
t=1

(Pt + r̃t + pt) ≥ Clinit − Clfull

h∑
t=1

(Pt + r̃t + pt) ≤ Clinit − Clmin

Rh ≥ 0.

(2.1)

Note that, P can take both positive and negative values while R is always positive. Negative

values for P indicate purchasing power, i.e., charging. The expected value of the profit in

the hour-ahead market, i.e., the second term in the objective function in (2.1), depends on

not only the choices of P and R, but also the storage unit’s decision on the amount of

power to be sold in the hour-ahead market ph, the price of power in the hour-ahead market

c̃p, the price of reserve in the hour-ahead market c̃r, the actual reserve utilization in the
3The formulation in (1) includes the basic, most dominant features of a storage unit. Other features such

as storage efficiency, maximum charging current, and depreciation may also be included in the optimization
problem.
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hour-ahead market r̃, and the fluctuations in wind generated. The third constraint assures

that the reserve bid is non-negative. Note that, at the time of solving (1), c̃ph, c̃rh, and r̃h,

are unknown stochastic parameters.

Using the definition of mathematical expectation, we can rewrite the second term

in (1) as a weighted summation of the aggregate hour-ahead profit terms, denoted by HAM,

at many but finite scenarios, where the weight for each scenario is the probability for that

scenario. That is, we can write

E
{
HAM

(
p̃,P,R; c̃p, c̃r, r̃

)}
=

K∑
k=1

γk HAMk, (2.2)

where HAMk denotes the aggregate hour-ahead profit when scenario k occurs. We have∑K
k=1 γk = 1. It is worth clarifying that one of the main causes for profit uncertainty is

the fluctuations in available wind power. Therefore, in our system model, each scenario is

derived as a realization of available wind power at different wind generation locations, given

the wind speed probability distribution functions, which is assumed to be available, e.g.,

by using the wind forecasting techniques in [26–28]. For each scenario k, the corresponding

aggregate hour-ahead profit can be calculated as follows:

Max
pk

HAMk

(
p,P,R; cpk, crk, rk

)
=

Max
pk

24∑
h=1

(pk,h · cpk,h + rk,h · crk,h)

S.t.
∀h=1,··· ,24

h∑
t=1

pk,t ≤ Clinit − Clmin −
h∑
t=1

(Pt + rk,t)

h∑
t=1

pk,t ≥ Clinit − Clfull −
h∑
t=1

(Pt + rk,t),

(2.3)

where pk is the adjustment to the power draw or power injection of the storage unit in

the hour-ahead market for h = 1, . . . , 24, under scenario k. Here, cpk, crk, and rk are the

actual realizations of the stochastic parameters c̃p, c̃r and r̃ when scenario k occurs. We

note that they are all set by the grid operator. The constraint in (2.3) indicates that the

total generation bid up to hour h of the hour-ahead market has to be limited to the total

charge available to the storage unit at hour h. Such total charge is calculated as the initial

charge minus the sum of all the power drawn from the storage including the bid for power,
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Figure 2.3: The exact utilization of the storage unit in the reserve market at hour h depends
on two factors: First, the storage unit’s committed reserve amount Rh. Second, the grid’s
need rmax

k,h under stochastic scenario k. Two examples for the value of rk,h as a function of
Rh and rmax

k,h are shown in this figure.

i.e., Ph, and the reserve utilization in the hour-ahead market, i.e., rk,h, for all previous hours

t = 1, . . . , h− 1.

Note that, the actual reserve utilization rk,h may not always be as high as the

committed reserve, as the grid may not need to utilize the entire reserve power offered by

the storage unit. As a result, in the hour-ahead market, the storage unit needs to make

corrective decisions to make the best use of any extra charge which is available due to

different reserve utilizations caused by different wind availability and load scenarios. This

makes dealing with parameter rk,h particularly complicated, as shown in Fig.2.3. Let rmax
h,k

denote the maximum reserve power that the grid operator will need from the storage unit

of interest at hour h if scenario k occurs. It is required that:

rk,h ≤ rmax
k,h h = 1, . . . , 24. (2.4)

On the other hand, parameter rk,h also depends on the storage unit’s reserve commitment

for each hour h based on its bid in the day-ahead market. Therefore, it is further required

that

rk,h ≤ Rh h = 1, . . . , 24. (2.5)

From (2.4) and (2.5), at each hour h and scenario k, we have:

rk,h = min{rmaxk,h , Rh}. (2.6)
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Replacing (2.6) in the hour-ahead problem (2.3), it becomes:

Max
pk

24∑
h=1

(pk,h · cpk,h + min{rmaxk,h , Rh} · crk,h)

S.t.
∀h

h∑
t=1

pk,t + Pt + min{rmaxk,t , Rt} ≤ Clinit − Clmin

h∑
t=1

pk,t + Pt + min{rmaxk,t , Rt} ≥ Clinit − Clfull

(2.7)

Next, we use the following equality [29]:

sup
x

(
f(x) + sup

y
(g(x, y))

)
= sup

x,y

(
f(x) + g(x, y)

)
, (2.8)

and combine problems (2.1) and (2.3) into a single problem:

Max
P,R,p

24∑
h=1

(Ph · CPh +Rh · CRh) +
K∑
k=1

γk

24∑
h=1

(pk,h · cpk,h + min{rmaxk,h , Rh} · crk,h)

S.t.
∀h,k

h∑
t=1

pk,t + Pt + min{rmaxk,t , Rt} ≤ Clinit − Clmin

h∑
t=1

pk,t + Pt + min{rmaxk,t , Rt} ≥ Clinit − Clfull

Rh ≥ 0.

(2.9)

However, optimization problem (2.9) is non-convex and hence difficult to solve. Note that,

the non-convexity is due to the way that the min function has appeared in the first constraint.

2.3 Solution Methods

In this section, we consider some practical assumptions in order to make problem

(2.9) more tractable. In this regard, we take two approaches for choosing pk,h before solving

the rest of the optimization problem. In both cases, we assume that the participation of the

storage unit in the hour-ahead market is mainly to sell the unused charge from reserve bids.

Therefore, for both approaches we always have pk,h ≥ 0.

2.3.1 The First Approach

In this approach, the intuition is that the storage unit immediately sells any exces-

sive power available at each hour in case the entire committed reversed power is not utilized.
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That is, at each hour h and for each scenario k, we choose

pk,h = Rh − rk,h. (2.10)

The second term in the objective in problem (2.9) becomes:

K∑
k=1

γk

24∑
h=1

(Rh − rk,h) · cpk,h + rk,h · crk,h

=
K∑
k=1

γk

24∑
h=1

Rh · cpk,h + (crk,h − cpk,h) ·min{rmaxk,h , Rh}.

(2.11)

Next, we note that based on (2.10), the total power sold in the hour-ahead market at hour

h is:
h∑
t=1

pk,t =

h∑
t=1

(Rt −min{Rt, rmaxk,t }). (2.12)

Therefore, the first constraint in problem (2.9) becomes:

h∑
t=1

pk,t + Pt +min{Rt, rmaxt }

=
h∑
t=1

Rt + Pt ≤ Clinit − Clmin.

(2.13)

The second constraint can also be revised as

h∑
t=1

pk,t + Pt +min{Rt, rmaxt }

=
h∑
t=1

Rt + Pt ≥ Clinit − Clfull.

(2.14)
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From (2.9), (2.11), (2.13), and (2.14), we can rewrite problem (2.9) based on (2.10) and with

respect to the rest of the variables as:

Max
P,R

24∑
h=1

(Ph · CPh +Rh · CRh)

+
K∑
k=1

γk

24∑
h=1

(
Rh · cpk,h + (crk,h − cpk,h) ·min{rmaxk,h , Rh}

)

S.t.
∀h=1,...,24

h∑
t=1

(Pt +Rt) ≥ Clinit − Clfull

h∑
t=1

(Pt +Rt) ≤ Clinit − Clmin

Rh ≥ 0.

(2.15)

Since min is a convex function and the rest of the objective function and constraints are all

linear, problem (2.15) is a convex program, as long as crk,h− cpk,h ≥ 0, for all k = 1, . . . ,K

and for all h = 1, . . . , 24. Interestingly, this condition holds in most practical markets,

where reserve utilization price is relatively higher than the energy clearing price. Therefore,

we maintain this assumption for the rest of this chapter. If this condition holds, then

optimization problem (2.11) can further be written as a linear program. To show how, next,

we introduce an auxiliary variable vk,h and rewrite problem (2.15) as

Max
P,R,v

24∑
h=1

(Ph · CPh +Rh · CRh)+

K∑
k=1

γk

24∑
h=1

(
Rh · cpk,h + vk,h · (crk,h − cpk,h)

)
S.t.

∀h=1,...,24
vk,h ≤ rmaxk,h ∀k = 1, . . . ,K

vk,h ≤ Rh ∀k = 1 . . . ,K

vk,h ≥ 0 ∀k = 1 . . . ,K

h∑
t=1

(Pt +Rt) ≥ Clinit − Clfull

h∑
t=1

(Pt +Rt) ≤ Clinit − Clmin

Rh ≥ 0.

(2.16)
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where v is a 24K × 1 vector of all auxiliary variables. It is easy to show that at optimality,

for all k = 1, . . . ,K and any h = 1, . . . , 24, we have vk,h = min{rmaxk,h , Rh}. Therefore, while
problems (2.15) and (2.16) are not exactly the same, yet they are equivalent, i.e., they both

lead to the same optimal solutions [29, Chapter 4]. As a result, solving one problem readily

gives the solution for the other problem. Linear program (2.16) can be solved efficiently

using the interior point method [29].

2.3.2 The Second Approach

In this approach, instead of immediately selling the excessive power Rh − rk,h at

hour h, we may wait and sell accumulated unused reserve powers in an hour-ahead market

with high price of electricity. We define an hour h∗ as a “peak hour" if there does not exist

any h > h∗ such that cpk,h > cpk,h∗ . Based on the second approach, for each k = 1, . . . ,K

and h = 2, ..., 24 , we select pk,h as follows:

• If h is not a peak hour then pk,h = 0.

• If h is the jth peak hour, j = 1, ...,P, then,

pk,h∗j =

h∗j∑
h=h∗j−1+1

(Rh − rk,h). (2.17)

At each peak hour, the amount of electricity sold is equal to the total unused reserve since

the previous peak-hour. Next, we replace pk,h in (2.9) with selling strategy explained above.

The second term in the objective function in problem (2.9) becomes

K∑
k=1

γk

P∑
j=0

( h∗j+1∑
h=h∗j+1

Rh · cpk,h∗j+1
+ min{rmaxk,h , Rh} · (crk,h − cpk,h∗j+1

)

)
, (2.18)

where

0 = h∗0 < h∗1 < h∗j < h∗P = 24. (2.19)

Next, we note that from (2.17), we have

pk,h ≥ 0, ∀k = 1, . . . ,K, h = 1, . . . , 24, (2.20)

and
h∑
t=1

pk,h + min{rmink,t , Rt} ≤
h∑
t=1

Rt, ∀k = 1. (2.21)
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Therefore, a sufficient condition for the first constraint in (2.9) to hold is to satisfy the

following more restrictive constraint:

h∑
t=1

(Pt +Rt) ≤ Clinit − Clmin ∀h. (2.22)

Next, consider the second constraint in (2.9). Given the complexity of this constraint, we

need to separately analyze two different cases. On one hand, for each peak hour h∗j , we have

h∗j∑
t=1

pk,t =
∑

h∗∈{h∗1,...,h∗j}

pk,h∗ =

h∗j∑
t=1

(Rt − rk,t). (2.23)

By replacing (2.23) in the second constraint in (2.9) it becomes

h∗j∑
t=1

pk,t + Pt + rk,t =

h∗j∑
t=1

(Pt +Rt) ≥ Clinit − Clfull. (2.24)

On the other hand, at each non-peak hour h = h∗j + 1, ..., h∗j+1 − 1, since no power is sold

in the hour-ahead market, we only need that the sum of the day-ahead power bids and

the actual reserve utilization do not exceed the maximum charge level permitted for the

batteries. The second constraint in (2.9) for each non-peak hour h ∈ {h∗j + 1, ..., h∗j+1 − 1}
becomes

h∑
t=1

pk,t +
h∑
t=1

Pt +
h∑
t=1

rk,t

=

h∗j∑
t=1

(Pt +Rt) +
h∑

t=h∗j+1

(Pt + rk,t)

≥ Clinit − Clfull

(2.25)

From (2.9), (2.18), (2.22), (2.24), and (2.25) and after using the auxiliary variable

vector v, we propose to solve the following optimization problem as our second approach:
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Max
P,R,v

24∑
h=1

(Ph · CPh +Rh · CRh)+

K∑
k=1

γk

P∑
j=1

( h∗j+1∑
h=h∗j+1

Rh · cpk,h∗j+1
+ vk,h · (crk,h − cpk,h∗j+1

)

)

S.t.
∀k=1,...,K

h∑
t=1

Pt +Rt ≤ Clinit − Clmin ∀h = 1, . . . , 24

h∗j∑
t=1

Pt +Rt ≥ Clinit − Clfull ∀h∗j ∈{h∗1, . . . , h∗P}

h∑
t=1

Pt +

h∗j∑
t=1

Rt +
h∑

t=h∗j+1

vk,t ≥ Clinit − Clfull ∀h∗j < h < h∗j+1, h∗j ∈ {h∗1, . . . , h∗P}

vk,h ≤ rmaxk,h

vk,h ≤ Rh

vk,h ≥ 0

Rh ≥ 0.

(2.26)

Unlike problem (2.9), problem (2.26) is a convex program. Therefore, problem (2.26) is sig-

nificantly more tractable as it can be solved using standard convex optimization techniques,

e.g., see [29]. However, in general, solving problem (2.26) gives a sub-optimal (not neces-

sarily optimal) solution for the original optimization problem (2.9) because of the following

two reasons. First, the first constraint in (2.26) is more restrictive than the first constraint

in (2.9). This can limit the feasible set. Second, there is no guarantee for problem (2.26)

that at its optimality we have vk,h = min{rmaxk,h , Rh}. Therefore, it is possible that the

optimal solution of problem (2.26) does not satisfy the second constraint in problem (2.9).

In such rare cases, in order to maintain a feasible solution, the storage unit needs to sell any

excessive stored energy into the hour-ahead energy market, even if the next hour is not a

peak price hour. This corrective action can cause some minor sub-optimality. Nevertheless,

we will see in our simulation results that the optimality gap of our second approach is very

minor.
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Figure 2.4: The IEEE 24 bus test system with independent storage units at buses 11 and
21. There are also three wind farms at buses 17, 20, and 22.

2.3.3 Selecting Stochastic Price Parameters

Before we end this section, we note that in order to solve problems (2.16) and

(2.26), we must know the values of rmaxk,h , cpk,h, and crk,h as well as CPh and CRh. These

parameters are obtained in an off-line calculation by solving a standard stochastic unit

commitment (SUC), as explained in the Appendix. Once the SUC problem is solved, since

the storage units are price-taker, we can calculate cpk,h from the Lagrange multipliers of

the hour-ahead market constraints in the SUC problem. To calculate crk,h, we assume that

it is proportional to cpk,h. Next, we obtain CPh using the definition of locational marginal

price (LMP) and by comparing the SUC’s optimal objective values with and without having

an additional unit of load at each bus [30]. After that, we set CRh equal to the reserve

market clearing price, which is calculated based on the opportunity costs for generation

units [31]. Here, we assume that the independent system operator (ISO), uniformly utilizes

all available units which are deployed for reserve service. Therefore, parameter rmaxk,h is

obtained by dividing the total reserve utilization in each scenario by the total number of

units that offer reserve. Note that, all these parameters could be obtained based on historical

data on previous market operations, i.e., by following the standard procedure in solving SUCs

for different scenarios. The obtained solutions are then placed in look-up tables to be used

every time that problem (2.16) is solved by the independent storage unit.
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2.4 Numerical Results

2.4.1 Simulation Setting and Experimental Data

In this section, we consider the modified IEEE 24-bus test system [32], as shown in

Fig. 2.4. At any hour, the maximum total load in the system is 2850 MW. There are three

wind farms with 150, 70, and 30 wind turbines at buses 22, 17, and 11, respectively. Each

wind turbine is assumed to have a maximum generation capacity of 1.5 MW. Therefore,

the wind penetration is about 13 percent. The wind speed across these three wind sites

is assumed to be the same, due to relative proximity. The wind speed data was obtained

from the Alternative Energy Institute Wind Test Center [33] for the duration of September-

November 2012. The wind speed probability distribution curves, such as the one shown in

Fig. 2.5, was derived separately for every hour of the day. Given the wind speed probability

distribution curves, we generate 200 daily wind power generation scenarios for the purpose

of our analysis. In order to make our simulations more realistic, 180 scenarios are used as

training scenarios to run the standard SUC to obtain the price values used for the storage

stochastic bidding optimization which can be thought of as historical data. The remaining

20 scenarios are used as unseen test scenarios to evaluate the actual operation of the storage

unit, after it bids in the day-ahead market during its run time.

Two independent investor-owned 4.5 MWhs storage units are assumed at buses 21

and 11. The initial charge level for both units is 1.5 MW. The price values for the day-ahead

and the hour-ahead markets are obtained from the standard SUC analysis that we explained

in Section 2.2. The price curves for the day-ahead energy market, and the average prices

in the hour-ahead energy markets across all scenarios, at bus 21, are shown in Fig. 2.6.

Depending on the scenarios, the hour-ahead prices may go up to $215/MWh. The price

curves for the day-ahead market and for different scenarios of the hour-ahead market are

used to set the storage bid for purchasing or selling of energy and reserve services in the

day-ahead market.

2.4.2 Stochastic versus Deterministic Design

To understand the differences across different design methods, we start by showing

the state-of-charge for each method in Fig. 2.4.2. The deterministic optimization method
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Figure 2.5: An example hourly wind speed distribution from empirical data.
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Figure 2.6: Day-ahead and average hour-ahead market prices at bus 21.
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is intended to serve as a base for comparison, where we use the expected values of the

hour-ahead market prices instead considering each random scenario separately. The two

stochastic optimization approaches are those that we proposed in Sections 2.3.1 and 2.3.2,

respectively. Note that, while the state-of-charge does not change across different scenarios

when Approach 1 is used, it does change when Approach 2 is used as shown by different

dashed lines for different scenarios in Fig. 2.4.2(c).

Table 2.1: Actual Hour-ahead Operation of the Storage Unit for 10 Unseen Test Scenarios
Scenario Number 1 2 3 4 5 6 7 8 9 10

Power Sold at Peak Hours (MW) 7.08 6.52 7.13 4.09 7.08 7.06 6.72 6.92 4.23 7.12
Power Sold at off-Peak Hours (MW) 0.93 0.46 0.88 0 0.89 0.95 0.70 0.63 0 0.61

Optimality Loss (%) 4.37 3.53 4.69 0 4.54 4.45 4.78 3.73 0 3.67

2.4.3 Optimality

Recall from Section 2.3.2 that our second approach may sometimes be sub-optimal

due to the slight differences between the constraints in optimization problems (2.9) and

(2.26). Therefore, in this section, we examine the optimality of the second approach. The

results for 10 different unseen test scenarios are shown in Table 3.1. Here, the optimality

loss was calculated based on the difference in the amount of revenue if the unused reserve

power is sold only during the peak hours in the hour ahead market. We can see that for

two scenarios, 4 and 9, the exact optimal solution was achieved as there was no need to

sell power in any off-peak hour. For the rest of the scenarios, although the solution was

sub-optimal, the optimality loss was very minor. On average, the optimality loss across all

10 scenarios is only 3.367%.

2.4.4 Day-ahead versus Hour-ahead Operation

In this section, we take a closer look at the operation of the storage unit in the day-

ahead and the hour-ahead markets based on an example solution that we obtained by using

our second approach. The day-ahead energy and reserve bids in this example are shown in

Fig. 2.8(a). Here, any negative bar indicates charging of the batteries in an hour h, where

Ph < 0 and Rh = 0. In contrast, any positive bar indicates discharging of the batteries in
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Figure 2.7: Comparing the state-of-charge when a deterministic optimization as well as
our two proposed stochastic optimization designs are implemented. (a) The state-of-charge
level when a deterministic optimization design is used. (b) The state-of-charge level when a
stochastic optimization design based on our first approach is used. (c) The state-of-charge
level when a stochastic optimization design based on our second approach is being used.
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an hour h, where Ph ≥ 0 and Rh ≥ 0. Recall that the exact utilization of the reserve power

and the amount of power sold in the hour-ahead market are determined later during the

operation time. Therefore, different operation scenarios can lead to different outcomes when

it comes to the participation of the storage unit in the hour-ahead market. Three examples

based on three different scenarios are shown in Figs 2.8(b) and (c). We can see that, at

each hour, the amount of reserve that is sold in the hour-ahead market is always limited

by the amount of reserve that the storage unit is committed to in the day-ahead market,

i.e., rr,h ≤ Rh for any scenario k. Moreover, the unused reserve power that is sold in the

hour-ahead market, i.e., ph,k, is almost always sold during the peak-hours to maximize the

storage unit’s profit.

2.4.5 Impact of Increasing the Storage Capacity

The daily revenue obtained using various design approaches are shown in Fig. 2.9,

where the storage capacity grows from 4.5 MW to 4.5× 10 = 45 MW. We can see that both

stochastic optimization approaches outperform deterministic optimization while the second

stochastic optimization approach outperforms the first stochastic optimization approach.

The performance gains maintain across all storage capacity scenarios. When the storage

size is as high as 50 MW, the merit of using our proposed approaches become particularly

evident.

2.4.6 Optimal Storage Capacity Planning

The results in Fig. 2.9 can also be used for optimal capacity planning of investor-

owned storage units by examining both revenue and cost. This issue is better illustrated in

Fig.2.10, where we have plotted the net daily profit, i.e., the revenue minus the cost, versus

the size of the storage units. The battery investment cost was obtained per cycle of charge

and discharge for units with WB-LYP1000AHA lithium ion 1000 Ah battery modules with

3.2V discharge voltage [34]. The life time of the batteries was assumed to be 12000 cycles

and the listed price was $1660 per module which we assumed to decrease to $1000 as more

batteries are installed. We can see that there is a trade-off between revenue and cost and

the optimal profit can be reached for certain sizes of the storage system.
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Figure 2.8: A detailed example for the operation of the storage unit based on our second
approach: (a) Day-ahead energy and reserve schedules. Reserve bids are submitted only
when the storage unit can be discharged. (b) Hour-ahead reserve schedule for three different
unseen test scenarios. At each hour, the amount of reserve that is sold in the hour-ahead
market is always upper bounded by the amount of reserve that the storage unit is committed
to in the day-ahead market. (c) Hour-ahead energy schedule for the same three unseen test
scenarios. The unused reserve power is typically sold during peak hours.
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Figure 2.9: The daily revenue of an independent storage unit versus its storage capacities
for various choices of deterministic and stochastic design schemes.
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Figure 2.10: The trade-off in selecting the storage capacity to maximize profit.
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Figure 2.11: The daily profit of an independent storage unit at different buses. In all cases,
the first stochastic optimization approach is being used.

2.4.7 Impact of Location

Next, we investigate the impact of location for the storage unit with respect to the

revenue achieved. In this regard, we run the simulations for 24 different scenarios, each for

a case where the storage unit is assumed to be located at one of the 24 different buses in the

system. The results are shown in Fig. 2.11. We can see that different buses provide different

opportunities for the storage units, making it more desirable to build the storage unit at

certain locations. The differences are mainly due to changes in the LMP’s at different buses

which is caused by different line congestion scenarios. In our study, in order to see the effect

of line congestions, the capacity of some of the 500 MW transmission lines of the standard

test system was reduced to 200 MW. Note that, the results in Fig. 2.11 are based on the

first stochastic optimization approach, i.e., by solving optimization problem (2.16). That

is, we separately obtained the optimal bids and charge/discharge schedules for the case of

placing the storage unit at each of the buses. As an example, the charging level when the

storage unit is located at buses 21 and 11 are separately plotted in Fig. 2.12.
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Figure 2.12: The charging level when operating two independent storage units at buses 11
and 21 using the second stochastic optimization approach is used.

2.5 Conclusions

Integration of large-scale storage systems in the power system is a key component

of the future smart grids. In this chapter, a novel approach is proposed to optimally operate

such storage systems that are owned by independent private investors. In particular, we

proposed an optimal bidding mechanism for storage units to offer both energy and reserve

in the day-ahead and the hour-ahead markets when significant fluctuation exists in the

market prices due to high penetration of wind and intermittent renewable energy resources.

Our design was based on formulating a stochastic programming framework to select different

bidding variables. We showed that the formulated optimization problem can be transformed

into convex optimization problems that are tractable and appropriate for implementation.

We showed that accounting for the unpredictable feature of market prices due to wind power

fluctuations can improve the decisions made by large storage units, hence increasing their

profit. We also investigated the impact of various design parameters, such as the size and

location of the storage unit on increasing profit.

Chapter 2, Appendix I: Stochastoc Unit Commitment

First, we explain the new set of notations that we need in order to formulate and

solve the standard stochastic unit commitment problem. C(.) denotes the cost of a particular
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service. Comi,h denotes commitment of ith unit in hour h. Pi,h denotes generation of ith

unit in hour h. Ri,h denotes reserve commitment of ith unit in hour h. P+
i denotes maximum

capacity of ith unit. P−i denotes minimum capacity of ith unit. Ramp+i denotes maximum

ramp up of ith unit. Ramp−i denotes maximum ramp down of ith unit. Gf denotes subset

of fast generators. pi,k,h denotes generation of ith fast unit in the hour ahead market for

hour h and scenario k. ri,k,h denotes reserve usage of ith unit in the hour ahead market for

hour h and scenario k. NLk,h denotes the total net load in hour h of scenario k which is the

actual demand minus the wind power generation. Given these notations and parameters,

we can now formulate the standard SUC as follows, in which the realization scenarios are

considered in order to minimize the the expected value of the unit commitment cost in the

system:

min
Com,P,R,pk,rk

∑
h

∑
i

CComi .Comi,h + CPi .Pi,h + CRi .Ri,h

+
∑
k

γk
∑
h

∑
i

(cpi · pi,k,h + cri · ri,k,h)

s.t. Pi,h +Ri,h ≤ P+
i Comi,h ∀i, h

Pi,h +Ri,h ≥ P−i Comi,h ∀i, h

Pi,h, Ri,h ≥ 0 ∀i, h

Pi,h − Pi,h−1 ≤ Ramp+i ∀i, h

Pi,h−1 − Pi,h ≤ Ramp−i ∀i, h∑
i

Pi,h + pi,k,h + ri,k,h = NLk,h ∀ h, k

0 ≤ ri,k,h ≤ Ri,h ∀i, k, h

0 ≤ pi,k,h ≤ p+i ∀i ∈ Gf , k, h

pi,k,h − pi,k,h−1 ≤ Ramp+i ∀i ∈ Gf , k, h

pi,k,h−1 − pi,k,h ≤ Ramp−i ∀i ∈ Gf , k, h

Comi,h ∈ {0, 1} ∀i, k, h

(2.27)

The above SUC is a mixed integer program. In general, mixed integer programs are difficult

to solve, although some classes of mixed integer programs can be solved, e.g., using MOSEK

and CPLEX software [4]. Alternatively, we can relax the binary constraint, solve problem

(2.27) which is a convex optimization problem after the binary constraints are relaxed, and

then set Comi,h = 1 for any i and h with highest Comi,h. If we repeat this operation
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until any Comi,h in the solution is either zero or one, we can obtain a feasible but sub-

optimal solution for the original problem (2.27). We used this latter approach. Given the

solution and the Lagrange multipliers corresponding to each constraint, the needed system

parameters are calculated accordingly, as we have already explained at the end of Section

??. Note that the above problem is solved in centralized fashion. We also note that, since

the storage units are assumed to have no impact on prices, this optimization problem does

not include any variable from the storage units.

2.6 List of Symbols, Chapter 2

h, t Indices for hours.

k Index of random wind generation scenarios.

K Total number of random wind generation scenarios

γ The weight/probability for different scenarios.

E Expected value operator.

P Storage bid in the day-ahead market for power.

R Storage bid in the day-ahead market for reserve.

p Storage bid in the hour-ahead market for power.

r Actual utilization of the storage reserve.

rmax The upper bound for reserve utilization.

CP Price value for energy in the day-ahead market.

CR Price for reserve in the day-ahead market.

cp Price for energy in the hour-ahead market.

cr Price for reserve utilization in the hour-ahead market.

Clinit Initial charging level of the battery unit.

Clfull Maximum charging capacity of the battery unit.
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Clmin Minimum charging capacity of the battery unit.

h∗j The jth hour from the set of peak price hours.

P The total number of peak price hours.
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Chapter 3

A Joint Bidding and Operation

Strategy for Battery Storage in

Multi-temporal Energy Markets

In this chapter, we provide a method to determine the optimal schedule and market

bids of a battery storage, to maximize revenues from joint operation in day-ahead/ real-time

markets. Our model considers financial risk of revenues in both markets and defines battery

optimal bids in the two stages of the market, to obtain maximum profit with controlled risk

by adapting the Markowitz portfolio selection theory. In the second stage of our framework,

a receding horizon algorithm in real-time, updates the predictions of joint profit as well as

financial value at risk, and improves the optimal battery schedule accordingly. Our approach

has a key feature of tractability, as it is formulated as a convex problem, by several modelling

and relaxation techniques. This model enables us to quantify the trade-off between revenues

from each markets and the risk of revenues in return.

3.1 Introduction

In most ISO structures, there are opportunities for Energy Storage Systems (ESS),

even for mid-sized batteries, to provide services, directly in the bulk market. These oppor-

tunities for ESS, and for battery storage in particular, when they attempt to offer services

competitively in the market, as well as the challenges they face in defining bidding strategies
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and operation schedules, yet needs to be further explored.

In the context of battery ESS, few works have looked into opportunities and chal-

lenges of offering services in energy markets jointly; i.e., few works addressed the question

"what are the possible revenues for a battery ESS in day-ahead, real-time markets, and how

to optimally bid in both markets and operate battery ESS to maximize market profit?" Sev-

eral previous works (e.g., in [35–38]), try to obtain special unit commitment and dispatching

plans for the ISO while ESS are present. In practice, ISO is not involved in operational con-

straints of each and every ESS technology.

A thread of papers, e.g. those in [39–43] have tied the ESS operation with a

secondary generation source (e.g., a wind source or a gas turbine). In the authors viewpoint,

however, the ESS operation and bidding should not necessarily be coupled with other units.

An ESS can independently and modularly manage, operate, and offer services to the market,

or third parties.

Additionally, all named papers, consider the operation of ESS only in either the

day-ahead (DAM) or real-time (RTM) market. The cross market revenues, and the two-

sided impact of RTM and the DAM operations, for Battery ESS, are not considered in such

works. In this regard, the authors of [44, 45] developed a stochastic bidding strategy to

account for next-day real-time operations and coordinate offers in advance, and obtained

the best schedules of DAM. Their work, however, is limited to day-ahead schedules and they

do not look into the reverse problem which is optimal operation in real-time market with

consideration of previous commitments.

In this work, we aim to offer a complete framework, including the best offer strate-

gies in both day-ahead and real-time markets, and coordinate the battery schedule accord-

ingly. We propose to investigate an optimal operation and scheduling strategy for battery

ESS to participate in the joint energy markets structure, i.e. day-ahead/ real-time markets.

Based on these combined offers, optimal suggested schedule of battery ESS is obtained in

real-time to attain the maximum revenues.

Fig.3.1 shows an example of DAM and RTM clearing prices. Participation across

day-ahead and real-time markets with different price features is challenging. Although day-

ahead and real-time markets are held separately, the goal of battery is to obtain the most

revenues in both markets, since limited battery resources tie the operation in these two

markets as the DAM and the RTM operations are jointly dependent.
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Figure 3.1: An example of day-ahead versus real-time market clearing prices in one zone of
NY-ISO. Clearly prices have essential different features. Defining the battery ESS optimal
bidding and operation strategy across the two markets with such prices, is the focus of this
chapter.

In addition to the joint market optimization, a receding time horizon optimiza-

tion, is derived that updates input information in the operating-day continuously as new

forecasts, etc. becomes available and updates ESS decisions accordingly. In the presented

framework, the Value-at-Risk of revenues due to errors in forecasts is calculated and con-

trolled, throughout both stages of optimization in DAM and RTM.

Finally, all market formulation and battery modelling are convex and the problem

can be solved effectively in real-time.

3.2 Storage Joint Market Operations

In this section we discuss the framework of the battery operations and bids/offers,

based on joint markets revenues. In this design, battery ESS participate in both day-ahead

and real-time markets to attain maximum revenues across both markets. Therefore, our

design consists of two parts;

• A) In the day-ahead market operations, the battery ESS day-ahead problem is analysed

and the optimal day-ahead market bids/offers are obtained. The objective here is to

maximize the joint profit of ESS, including the forecast revenues in real-time market
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which are stochastic. To account for uncertainty of such revenues, we restrict the

Value at Risk (VaR) from those revenues.

• B) In the operating day, as the real-time market operations moves forward, the second

part of our design continuously updates the ESS bids/offers in real-time market based

on the most recent forecast of market price, using a receding horizon optimization.

The optimal offers and battery schedule here is obtained by considering previous com-

mitments of the ESS. Also the target VaR is updated to have limited risk of revenues

at all times.

Fig. (3.2) shows an outline of the proposed framework for battery ESS joint market bidding

and operation. The inputs to both modules of the ESS optimizer are the forecasts of DAM

and RTM prices, and battery ESS parameters. Note the actual prices are not known at

the time of decision. Hence, ESS utilizes any forecast of these prices available prior to its

decision. In ESS day-ahead operations, battery decides over the optimal DAM offers, based

on day-ahead forecasts of the RTM and DAM prices. From forecasts, we obtain revenues

from future operations as well as current operations. Similarly, in operating-day, the ESS

continuously updates its real-time forecasts of the RTM prices, and updates the ESS offers

and schedule accordingly.

We should make this general notion that, all the discussions in this work assume

that the battery ESS is a price-taker. Next, we discuss details of the two part proposed

design separately in Sec. 3.3 and 3.4.

3.3 Day-ahead Market Operations

The bulk of energy sales are performed in day-ahead market. Each unit obtains

the right to generate or consume the awarded quantity of energy in DAM, at day-ahead

prices. Generating units however, can preserve a portion of their actual capacity to sell

in the real-time market. A battery ESS unit can as well, participate in both markets and

post bids for energy at different hours. The ESS revenues however, depends directly to the

prices of the market. Market prices are not known at day-ahead. At day-ahead operation

stage, both day-ahead prices and real-time prices are unknown. The ESS obtains forecasts

of market prices, thereby forecast of revenues. Storage decides what is the best schedule for
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Figure 3.2: Illustration of joint market operations for battery ESS. Battery coordinates offers
in day-ahead/real-time markets for most revenues in both markets. The day-ahead problem
accounts for future real-time operations and future revenues based on day-ahead forecasts
of RTM and DAM prices.

ESS and declares the DAM offers at different hours based on current forecast of prices. It

also considers the possible real-time operations that may increase the battery ESS revenues.

In the day-ahead operations, the battery ESS solves optimization (3.1) to obtain the optimal

day-ahead bids/offers for energy, in hours h = 1, ..., 24 of the following day, denoted by vector

of PDAM.

Jf(DA) = Max
PDAM

24∑
t=1

(
Rev.f(DA)[t]− Cost[t]

)
S. t.

∀t∈{1,··· ,24}
ESS Operation Lmt. [t]

ESS Revenue Risk Lmt.f(DA)

(3.1)

ESS Revenue Risk Lmt.f(DA) denotes the risk in ESS revenues due to uncertainty of real-

time operations. In an arbitrary time period, a positive PDAM[t] denotes a power generation

offer, whereas a negative one denotes a power consumption bid. PDAM is only a financial

binding offer ; i.e only defines ESS purchase/sell rights at DAM prices in the following day.

The storage costs, is defined based on storage actual generation, which we denote by PG.

Similarly, storage operation constraints is dependent only on PG.
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3.3.1 Day-ahead Forecast of ESS Revenues

The ESS forecast revenues at time [t] from both DAM and RTM operations can

be obtained by:

Rev.f(DA)[t] = PDAM[t]λ
f(DA)
DAM [t] + PRTM[t]λ

f(DA)
RTM [t] (3.2)

To obtain ESS costs and operation constraints in (3.1), we used auxiliary variable PG[t].

In each time period [t], the following equality exists between the ESS day-ahead power

bid/offer, real-time bid/offer, and the actual power injection:

PG[t] = PDAM[t] + PRTM[t] (3.3)

Therefore from (3.3) we substitute PDAM[t] and rewrite (3.2) as:

Rev.f(DA)[t] = (PG[t]− PRTM[t])λ
f(DA)
DAM [t] + PRTM[t]λ

f(DA)
RTM [t]

= PG[t]λ
f(DA)
DAM [t] + PRTM[t](λ

f(DA)
RTM [t]− λf(DA)

DAM [t]).
(3.4)

In fact, the ESS joint revenues in (3.4) are decomposed into two terms; one obtained from

providing actual generation at DAM prices. The second part is revenues from altering the

ESS schedule due to price differences of DAM and RTM.

3.3.2 Day-ahead Forecast of Revenue Risk

Let us get back to the revenue forecasts of battery ESS in day-ahead problem, i.e.

in (3.4). This equation actually denotes the average value of the revenues. However, the

price forecasts of both day-ahead and real-time markets are uncertain values and random.

Therefore, we actually have a distribution function for battery ESS revenues. Here, we

assume that the forecasts of DAM prices are trusted much more, compared to the RTM

price forecasts. In other words, we assume the forecast error of DAM prices in day-ahead

are negligible compared to RTM price forecasts.

In finance, the Value at Risk (VaR) is a widely used measure, to asses and control

the risk of loss on financial assets. Several prior studies have used this measure in other

areas of energy management. The VaR function is defined as:

V aRζ(Rev.) = inf{R0|Pr(Rev. > R0) ≤ 1− ζ} (3.5)
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where the V aRζ(Rev.) is the minimum revenue at probability (1 − ζ). For a Gaussian

distribution, we can obtain a simpler inequality in term of distribution function of revenues,

e.g. if we have ζ = %2 we can write (3.5) as:

V aR%2 = F−1Rev.(ζ = 0.02) ≈ µ(Rev.)− 2σ(Rev.) (3.6)

Therefore, here we assume that the forecast error of RTM prices are i.i.d Gaussian functions

with N (0,Λ
f(DA)
RTM ). Again, for simplicity and without loss of generality, we only limit the

risk of stochastic revenues, considering that they have no cost for battery. In order to have

a positive V aR we need to have the right hand side of (3.6) to be positive, i.e. we have:

Pᵀ
RTM(λ

f(DA)
RTM − λf(DA)

DAM )− 2(Pᵀ
RTMΛ

f(DA)
RTM PRTM)1/2 ≥ 0 (3.7)

3.3.3 ESS Costs

As pointed out earlier, the costs of generation in both day-ahead and real-time

problems depend only on actual injection PG[t]. The cost of providing energy in our model

has two parts; cost of cycling, and cost of charging/discharging at high current rates. There

are several complex non-linear models for wear costs of the battery. In order to preserve the

tractability of the formulation, cost of battery is modelled as a peace-wise linear function to

incorporate these two elements.

Cost[t] = {
α1|PG| if |PG[t]| < P0.5C

α1|PG|+ α2|PG − P0.5C | if |PG[t]| ≥ P0.5C

(3.8)

3.3.4 ESS Operation Limits

Storage operation limits in (3.1), depends on ESS actual injection PG[t]. There-

fore, for the optimization problem solved in both day-ahead and real-time, the following

constraints should hold in all time intervals of t ∈ {1, · · · , T}:

PDAM , PRTM , PG[t] ∈ [Pmin, Pmax] (3.9a)

SoC[t] ∈ [SoCmin,SoCmax] (3.9b)

SoC[t] = SoC[t− 1]− Pdc[t]∆t (3.9c)

SoC[T ] = SoC[0] + ∆ (3.9d)

Pdc[t] = max{η0PG[t], (1/η0)PG[t]} (3.9e)
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Note that Pdc[t] is an equality constraint in form of a convex function with respect

to PG[t]. However, in regular convex programming, a convex problem has only linear equality

constraints, and all the non-linear constraints are in the form of g(x) ≤ a where g is a convex

function. Therefore, we relax the equality constraint by inequality constraints. We observe

that the relaxation optimality gap is negligible in most cases.

3.4 Real-time Market Operations

ISO runs the real-time market continuously throughout the operating-day. In this

work, we assume 1 hour intervals for real-time market. Battery ESS has the option to

change its schedule throughout the day, when new forecasts of the current and future RTM

prices becomes available. ESS solves its joint market problem again, when it receives new

forecasts with less error, and corrects the optimal strategy accordingly.

Let us assume that ESS receives a new forecast of RTM price, at every hour h.

Obviously, ESS cannot decide or change any of its previous activities; therefore, as the

operating day auctions moves forward the number of variables decrease, i.e., the horizon

recedes. In contrast, since the storage has the chance to alter future schedules, at each

auction time interval h it only needs to submit offer for immediate next hour, i.e. PRTM[h].

At each hour, PRTM[h] = Pf(h)
RTM(1), i.e. the first element of our optimization

decision vector, which is best ESS schedule for all the time periods starting from and after

[h]. Size of P
f(h)
RTM decrease as h increase; i.e. P

f(h)
RTM = [PRTM[h], PRTM[h+ 1], · · · , PRTM[T ]].

Optimization is continuously updated as we proceed in time. In each time h we have to

solve for maximum Jf(h) according to current forecasts:

Jf(h) = Max
P

f(h)
RTM

T∑
t=h

(
Rev.f(h)[t]− Cost[t]

)
S. t.

∀t∈{h,··· ,T}
ESS Opr. Lmt. [t]

ESS Rev. Risk Lmt.f(h)

(3.10)

where for instance Rev.f(h)[t] denotes the forecast of ESS joint revenues at time [t], available

at decision time [h].
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3.4.1 Real-time Forecast of ESS Revenues

Since ESS has already made some commitments in DAM, the real-time offers/bids

are obtained directly, if ESS obtains the real-time decision on actual power generation PG[t].

Therefore, we can formulate optimization (3.10) based on decision variable P
f(h)
G , the real-

time forecast in time [h], of all ESS revenues, in the remaining horizon, i.e., ∀t ∈ {h, · · · , T}
is obtained by:

Rev.f(h)[t] = P RTM[t]λ
f(h)
RTM[t]

= (PG[t]− P ∗DAM[t])λ
f(h)
RTM[t]

= PG[t]λ
f(h)
RTM[t] + P ∗DAM[t](−λf(h)RTM[t])

(3.11)

P ∗DAM [t] is ESS optimal offer in day-ahead market, at time step [t]. Since the ESS day-ahead

offers are already known in real-time market, the second term in (3.11) can be treated as a

constant part of the objective function. However, as we will see shortly, P ∗DAM [t] has impact

on ESS revenue risk.

3.4.2 Real-time Forecast of ESS Revenue Risk

As mentioned, we limit the VaR in day-ahead market, from all revenues obtained

from future operations, i.e., from PRTM. Since our target level of total revenues risk is

determined in DAM, we should define the risk constraints in real-time market in accordance

with our original target risks.Similar to day-ahead, we assume an i.i.d Gaussian distribution

with N (0,Λ
f(h)
RTM) for real-time forecast errors at any decision hour h. Next, we note that,

as we proceed in time, part of our risk target constraint is set fixed and we have no control

on it. Specifically, in the decision hour h we have:

[P−hᵀRTM,P
f(h)ᵀ
RTM ][λ−hᵀDIF , λ

f(h)ᵀ
DIF ]ᵀ − 2(P

f(h)ᵀ
RTM Λ

f(h)
RTMP

f(h)
RTM)1/2 ≥ 0 (3.12)

where λDIF = λRTM−λDAM. P−hRTM = [PRTM[1], · · · , PRTM[h−1]]ᵀ is the vector of all the past

decisions on the real-time market offers up to hour h. Similarly, λ−hDIF = [λDIF[1], · · · , λDIF[h−
1]]ᵀ is the difference of real-time market and day-ahead market prices up to hour h. Clearly,

the prices which are already posted have no forecast error. Next,by separating the constant

part from the variable terms in (3.12) and substituting P
f(h)
RTM = P

f(h)
G −P∗DAM, we have:

2(PG−P∗ᵀDAM)Λ
f(h)
RTM(PG −P∗DAM)1/2

−P
f(h)ᵀ
G λ

f(h)
DIF ≤ P−hᵀRTMλ

−h
DIF −P∗ᵀDAMλ

f(h)
DIF

(3.13)
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Figure 3.3: The day-ahead/ operating-day forecasts of RTM prices in a single zone of NYISO
is simulated by adding a Gaussian error signal.

3.5 Numerical Studies

3.5.1 Input Data

In this section, we present some numerical studies performed to evaluate the pro-

posed bidding/scheduling algorithm. To test the algorithm, the historical prices of both

DAM and RTM, was obtained from New York Independent System Operator (NYISO)

public data. The prices belong to January and May 2010 in three zones of NYISO.

Next, in order to create day-ahead and operating-day forecasts of the actual market

prices, we added some random Gaussian noise with a specific (σ/µ) to the historical prices.

Unless stated otherwise, day-ahead forecasts of the RTM, are added a noise with (σ/µ = 0.4).

Operating-day forecasts are assumed to have variable forecast error. The forecast error signal

in each decision hour of the operating-day has a Gaussian noise starting at σ/µ = 0.05 for

the same hour, and increase upto σ/µ = 0.2 for the successive hours of the decision horizon.

Fig.(6.3) shows a sample of RTM forecasts as well as the actual RTM price for a sample day.

The battery pack in this study is 2 MWh, 1.2 MW, operating between 20%− 80%

of its capacity. The efficiency was assumed to be 80% and the cycle life was considered to

be 7k.

47



1 6 12 18 24
−1500

−1000

−500

0

500

1000

1500

P
ow

er
 (

K
w

)

 

 

1 6 12 18 24
−1500

−1000

−500

0

500

1000

1500

Time (hour)

P
ow

er
 (

K
w

)

 

 
P

DAM
P

RTM
P

G

Figure 3.4: ESS optimal day-ahead forecast schedule and bids in DAM/RTM for two levels
of uncertainty; (a) low forecast error (σ/µ = 0.3), ESS relies more on the high prices of the
RTM. (b) high forecast error (σ/µ = 1.3), storage offers has decreased notably due to high
risk with the same price curves.

3.5.2 Day-ahead Operations

Using the day-ahead forecast inputs, the ESS DAM optimizer determines the op-

timal DAM bids based on the predictions of the ESS operation schedule, and RTM offers of

the next day. We observe in this stage, the market price differences across different hours of

day-ahead market, different hours of real-time market, and the difference of price between

DAM and RTM, all impact the ESS schedule and ESS profit.

The uncertainty in the price forecasts, i.e., the forecast error, has an important

effect in our optimal schedule of ESS as well. For instance, in Fig. (3.4) for two different

levels of uncertainty in RTM price, we have two distinct ESS schedule and market offers.

Note that these values are predictions that ESS uses to set its DAM offer accordingly. Using

the forecasts of RTM prices can help the ESS to increases its revenue, by reserving some

of its resources for the real-time market. However, as the forecast error increase the ESS

becomes more hesitant in utilizing the RTM forecast in the day-ahead market bids. In high

risk of prices, ESS operation prediction will be more based on the day-ahead market prices

and the revenues of ESS will decrease by forfeiting to utilize high-risk revenues.
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Figure 3.5: The ESS schedule in RTM is updated as new forecasts arrive. Here you see the
final ESS schedule, and two predictions of the optimal schedule. The first element of every
prediction, make the final solution over time.

3.5.3 Real-time Operations

As we mentioned in the formulation, ESS operation schedule, and real-time bid

in the operating day, changes over time as new forecasts with new uncertainties become

available. The result of operation schedule can be seen in Fig.(6.4) for a sample operating

day. The final optimal schedule of ESS is shown alongside two predictions of the optimal

schedule in two successive hours. Each prediction of optimal schedule, also consists of one

point on the optimal final schedule, and the real-time market offer as well. Note that

predictions of future hours operations are essential to determine the best decision/ market

offer in the same hour. The difference of schedule prediction with final solution is due to

different inputs, i.e., prices. Therefore, the predictions of optimal solution, fall closer to the

final schedule due to less error in forecasts.

3.5.4 Impact on Revenues

Table 3.1 shows the profit values for the three sample days. It can be seen that

the profit in day-ahead market only, could be a lot less than the profit of joint operation. In

fact, as risk increases, i.e. the information on RTM decrease, the solution will rely less on

RTM revenues. The least of joint revenues will be obtained when we have no certainty, or
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no information at all about the RTM prices, or when we only participate in the day-ahead

market. However, since the optimization relies on uncertain information, the actual profit

could be less or more than what is predicted. The total revenues in the last column of Table

3.1 has two parts. The left-side value shows the day-ahead prediction of the total revenue,

while the other shows the realized revenues from the real-time market optimizer.

Table 3.1: Comparison of revenues; joint operation vs. day-ahead market.

DAM Rev. Operation Cost RTM Rev. Total Rev.
Joint Operation

Day 1 86 51 443 447/478
Day 2 90 63 467 425/494
Day 3 118 50 276 444/344

Day-ahead Only
Day 1 61 40 0 23/ 21
Day 2 93 50 0 44/43
Day 3 79 43 0 35/35

3.6 Conclusion

In this chapter, we proposed a joint multi-temporal market optimization framework

for battery ESS. We observed that the risk of stochastic revenues is an important factor in

driving the ESS to utilise or forfeit the real-time market revenues, both in day-ahead and

real-time market. We showed that risk-constrained joint market optimization can achieve

more revenues compared to participation in risk-free market.

3.7 List of Symbols, Chapter 3

fDA Indicator of variable forecast in day-ahead

fh Indicator of variable forecast in operating-day,hour h.

PDAM Day-ahead market power offer.

PRTM Real-time market power offer.
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PG ESS actual energy generation/consumption.

λDAM Day-ahead market power price.

λRTM Real-time market power price.

λDIF Difference of real-time and day-ahead market power price.

J ESS joint profit in day-ahead/real-time markets.

Rev. ESS total revenues in day-ahead/real-time market.

R0 Revenue with probability of (1− ζ) or more.

Λf(DA)
RTM

RTM price forecast error covariance, day-ahead.

Λ
f(h)
RTM Price forecast error covariance, real-time at hour h.

α1, α2 Appropriate wear cost coefficients in Dolar/kWh.

SoC Battery ESS state-of-charge.

Pdc Battery ESS absorbed/drained net power.

η0 Battery ESS efficiency coefficient.

∆ Battery daily target state-of-charge.
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Part II

Energy Storage Operation at the

Distribution Grid
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Distribution systems’ planning grows to an ever challenging problem. One source of

challenges arise from the growth of renewable resources such as solar photovoltaic as well as

the increasing load from new devices such as electric vehicle chargers. All these new elements

in the distribution systems have one factor in common as they are highly unpredictable. One

of the key roles presumed for energy storage units in distribution grids, is the mitigation

of fluctuations and time-variations of the contemporary elements such as renewable DGs

and EV loads. Indeed, Energy Storage systems are expected to be an effective and cost-

efficient solution in planning and support of distribution systems in order to prevent early

investments. Optimal planning of storage units for reducing system costs should account

for the impact of stochastic features of such elements on the operation of the distribution

grids.

In our work as part of our efforts on formulating a tractable, computation effective,

chance constrained stochastic formulation for optimal allocation of Energy storage systems

for support of active distribution systems with uncertain resources, we develop and adapt a

chance constrained stochastic formulation to manage the flow and voltage with deterministic

resources in distribution networks with uncertainties.
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Chapter 4

Data Synthesis to Model Power

Distribution Networks

A key part of smart grid research is to use experimental data, both on the demand

side and the generation side, to validate the results. There are currently various publicly

available data sets for electricity prices, solar panels, wind turbines, and residential and

commercial load profiles [46–48]. However, there are still some aspects, e.g., the charging

load of electric vehicles, that is yet to be analyzed. Furthermore, there is still a need to

combine various data sets in a unified modelling framework that is appropriate for various

decision making processes. Next, we explain how one can synthesize a test data set for

electric vehicles from non-electric vehicle traces. After that, we develop a data-driven model

to integrate energy storage units in power distribution networks.

4.1 A Test Data Set for Electric Hybrid Vehicles

Due to the still-insignificant penetration of plug-in hybrid electric vehicles (PHEVs),

there currently does not exist any detailed data set for large fleets of PHEVs. This has caused

obstacles for smart grid researchers, who intend to investigate the challenges and opportu-

nities that the PHEVs may introduce to power systems. Of course, more data is expected

to gradually become available as more experimental PHEV projects are conducted over the

next couple of years. However, for now, one option is to use the existing major non-PHEV

vehicular data sets and combine them with the information and features of the recently

emerged commercial PHEVs in order to synthesize new PHEV data sets that can be used
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in a variety of smart grid research studies. Therefore, the central argument in this section

is that, in the absence of a detailed database of PHEV loads, a synthetic database that

includes the key pieces of information that are needed for PHEV-related smart grid research

is highly useful. Developing such practical data set is our goal in this section.

In this section, we analyse the driving traces for 536 GPS-equipped non-PHEV taxi

vehicles in [11] that are recorded for a duration of three weeks in San Francisco, CA. We then

combine the results with the features and technical characteristics of four different PHEV

brands that currently dominate the North American market: Chevrolet Volt [49], Honda

Accord Plug-in [50], Ford Fusion Energi [51], and Toyota Prius Plug-in [52]. Our analysis

has resulted in a new test data set to support PHEV-related smart grid research. It provides

per-PHEV traces of states-of-charge (SoCs), per-PHEV traces of charging loads, per-PHEV

information on SoC and charging deadline when the PHEV is parked at a charging station,

and the detailed charging load at each of our three carefully identified charging stations.

The dataset that is developed in this section [53], can be used for various smart

grid research projects. Some of the applications include investigating the impact of the

increasing PHEV loads on power distribution feeders and substations, design, operation,

and control of V2G systems based on vehicle arrival and departure data, charger sizing,

design and optimal charger placement, and obtaining more precise statistics regarding the

SoCs based on driving patterns, etc.

4.1.1 The Non-PHEV Driving Traces

Consider the non-PHEV vehicles data in [11]. This data set is widely used in over

100 vehicular research projects, ranging from vehicular movement prediction to vehicular

communications, e.g., see [54–56]. However, the potential of this detailed vehicular move-

ment data set has not yet been investigated in the context of electric hybrid vehicles and

smart grid.

This data set includes the driving traces of 536 taxis in San Francisco, CA. The

data recording starts on May 17, 2008 and ends on June, 10, 2008. For each taxi, each data

record comprises a time-stamp, latitude, longitude, and a flag indicating whether or not the

taxi has a passenger. The GPS tracking system is switched off every time that the vehicle

is turned off. Recording resumes once the vehicle is turned on.

Since the taxis serve mainly the San Francisco area, most of the recorded GPS
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Figure 4.1: By tracking the GPS locations of taxi vehicles in San Francisco, CA, we can
identify the most frequent parking locations, based on our definition of a parking event: (a)
The city map is divided into 5× 12 = 60 regions based on latitude and longitude. (b) The
number of parking events, i.e., the frequency of parking, in each region. The regions that are
marked from 1 to 3 are the most common parking locations: Airport, Taxi Headquarters,
Downtown.

coordinates are within latitudes 37.6 and 37.82 and longitudes −122.52 and −122.37. This

rectangular area is shown in Fig. 4.1(a), where it is divided into 5 × 12 = 60 equal-area,

rectangular regions.

As the first step in our analysis, we identify the number of times that a vehicle is

parked in each of the 60 regions in Fig. 4.1(a). The parking events are important as they are

later interpreted, under certain conditions on their location and duration, as PHEV plug-in

events. Of course, not every stationary behaviour of a vehicle should be interpreted as a

parking event. In many cases, heavy traffic can be the cause of no movement or a very slow

movement. Similarly, some temporary stops are when the taxi is waiting for a passenger,

etc. Therefore, we define a parking event based on both a time duration threshold and a

distance threshold. In this regard, a parking event is a scenario where the vehicle traversed

a distance of 500 meters or less in 15 minutes.

As for the distance travelled between the successive GPS readings, such distance

is approximated by a straight path between each two coordinates. Such approximation is
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reasonable for the purpose of our study since the reading intervals in [11] are fairly small.

Let λ1 and λ2 denote the latitudes of two successive records of the GPS coordinates. Assume

that φ1 and φ2 denote the longitudes of those coordinates. The direct distance traversed

between the two points are calculated as

D1,2 = R

√(
(φ2 − φ1)cos

(
λ1 + λ2

2

))2

+ (λ2 − λ1)2 (4.1)

where R denotes the radius of the earth that is 6371 kilometres.

As we can see in the Fig. 4.1(b), most of the parking events are concentrated

across three locations. We could identify these GPS locations on the San Francisco map in

Fig. 4.1(a) as 1) Airport, 2) Taxi Depot and Headquarters, and 3) Downtown. Hence, it

is reasonable to assume that if these taxis are replaced with PHEVs, then their charging

stations must be placed in these three locations in order to provide them with charging

service with minimum impact on their regular driving patterns. Accordingly, for the rest of

this section, we assume that there are indeed three Charging Stations for the taxis exactly

at these three regions as numbered in Fig. 4.1(b).

Next, we record and analyse the movements and parkings of each of the 536 vehicles

for the entire three weeks of data traces in [11]. The results are shown in Fig. 4.2 for four

sample vehicles over a time window of three days. Here, the value 1 on the y-axis indicates

that the vehicle is parked at one of the three charging stations; and the value of 0 means

otherwise. The index number of the charging station for each parking event is shown with

numbers 1 to 3 on top of the curves. We can see in Fig. 4.2 that different taxis have different

movement and parking patterns. Another interesting observation is that, as expected, the

longest duration parking events are recorded at the second charging station, i.e., the Taxi

Headquarters.

By putting together the detailed driving and parking traces of all vehicles, we can

next calculate the number of vehicles that are parked at each station at any time of interest.

The results are shown in Fig. 4.3. Here, the resolution is one minute. That is, we have

calculated the number vehicles that are parked at each charging station during every one

minute interval of each day. We can see that the parking patterns are quite different across

different charging stations, depending on the dynamics of vehicles movements. For example,

the number of stops vehicles that are parked at the Taxi Headquarters is at its peak during
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Figure 4.2: Examples of drive (0) versus park (1) intervals for four sample taxis during a
three-days window: (a) taxi number 1, (b) taxi number 7, (c) taxi number 10, and (d) taxi
number 17. The numbers on top of each park interval range from 1 to 3 and indicate the
index of the charging station.

the night, when a large number of taxis return to the parking area. In contrast, there are few

cars parking in the Downtown area at night. And of course, we see a completely different

pattern at the Airport station , where the maximum number of vehicles are parked in late

afternoon, when many flights arrive in the San Francisco area. The combination of the

results in Fig. 4.3 with the stop duration and mileage driven by the vehicles could be the

starting point for many useful information as we will discuss next.

The histogram of the parking event durations at each charging station is shown in

Fig. 4.4. We can see that while most of the parking events at the Airport and Downtown

stations have relatively short durations, there are several parking events that are one hour

or longer at the Taxi Headquarters station. Similarly, the histograms for the distributions

of the distance driven since departing the previous charging station for each vehicle that

arrives at each of the three charging stations are shown in Fig. 4.5. This measure gives an
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Monday             Tuesday              Wednesday          Thursday
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Figure 4.3: The number of taxis that are parked at the three charging stations during a
sample four-days window: (a) Charging station number 1, Airport, (b) Charging station
number 2, Taxi Headquarters, (c) Charging station number 3, Downtown. The parking
patterns are different at different charging stations.

indication about how full or empty the battery of a PHEV could be when it arrives at a

charging station, allowing us to calculate the initial state-of-charge for the PHEVs that arrive

at a charging stations, once we also take into account the electric consumption patterns of

various PHEVs into consideration. From the results in Fig. 4.5, we can see that the vehicles

typically drive for longer distances when they arrive at the Airport charging station.

For all the results that we have presented so far, our focus has been solely on the

driving and parking patterns of various vehicles. As is, these results were already insightful

in various aspects as we explained throughout this section. However, these results would be

even more useful, in particular for the purpose of smart grid research, if they are combined

with some more analysis based on the specific operational and technical characteristics of

various PHEVs, as we will see next.
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Figure 4.4: The histograms of the duration of parking for each parking event; (a) Charging
station number 1, Airport, (b) Charging station number 2, Taxi Headquarters, (c) Charging
station number 3, Downtown.

4.1.2 The Features and Characteristics of The Most Common PHEVs

in the Market

In this section, we aim to combine the vehicles’ movement and parking datasets

that we generated in Section 4.1.1 with the nominal operation data of multiple PHEVs that

dominate the present market. The goal is to obtain the charging patterns and SoCs of

the vehicles with the same movement patterns, but different PHEV technologies. Here, we

consider four PHEV brands: Chevrolet Volt, Honda Accord Plug-in, Ford Fusion Energi,

and Toyota Prius. The main operational characteristics of these PHEVs are listed in Table

4.1 [57].

We can see that these vehicle brands are different in various operational character-

istics. Characteristics such as available energy, maximum charge rate, vehicle efficiency, and

vehicle power train, etc. All such characteristics have direct impact on the charging load,

state-of-charge, and V2G potentials. With respect to the power train, we have divided our

selected vehicles into two groups: charge depleting, and charge blending. The PHEVs in the

first group use electric power as long as there is electric energy stored in the batteries. They

switch to gas power only after the batteries are depleted. However, the PHEVs in the second
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Figure 4.5: The histograms of the miles driven since departing the previous charging station:
(a) Charging station number 1, Airport, (b) Charging station number 2, Taxi Headquarters,
(c) Charging station number 3, Downtown.

group may blend the power sources and use the gas engine to increase the torque in high

speed movements even if the battery is not completely depleted. As a result, the SoC for the

second group of PHEVs depends on both the miles travelled and also the travelling speed.

Here, we assume that the charge blending vehicles switch from electric power to gas power

at a speed threshold, set to 60 mph. Finally, it is worth clarifying that while Ford Fusion is

capable of using technology, it typically runs in all electric power mode [51]. Therefore, it

is categorized within the charge depleting group.

Next, we transform the driving and parking trace information of vehicles into their

SoC data sets. When a vehicle is plugged-in to a charging station, it is charged by a 240

V 32 A chargers [58]. However, the actual charge rate for each PHEV is limited by its

own charger interface, as listed in Table 4.1. Therefore, we must calculate SoC during the

charging period specifically based on the characteristics of each particular PHEV. Once a

PHEV departs a charging station, its SoC will start to decrease based on its driving pattern

and also its power train type, as we explained in the previous paragraph.

Four sample SoC trends for four representative taxis over a three-days time window

are shown in Fig. 4.6. All the SoC curves in this figure are based on the Chevrolet Volt data.
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Table 4.1: Operational Data of Four Common PHEVs

Brand Chevrolet Honda Ford Toyota
Model Volt Accord Fusion Prius
Battery Capacity (KWh) 16 6.6 7.6 4.4
Available Energy (KWh) 8.8 3.8 7.1 3.2
Ave. Electric Range (M) 37 13 21 11
Max Charge Rate (KW) 3.5 6.6 3.5 3.5
Electric Consumption * 36 29 34 29
Gas Consumption ** 2.7 2.2 2.3 2
Power Train index *** D B D B
* KW/100 Miles
** Galons/100 Miles
*** D: Charge Depleting, B: Charge Blending
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Figure 4.6: The state-of-charge traces for four sample vehicles over a three-days time window:
(a) taxi number 1, (b) taxi number 7, (c) taxi number 10, and (d) taxi number 17. All
vehicles are assumed to be Chevrolet Volt.
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Figure 4.7: The state-of-charge traces for the same taxi, taxi number 10, but based on
assuming four different PHEV types: (a) Chevrolet Volt, (b) Honda Accord Plug-in, (c)
Ford Fusion Energi, (d) Toyota Prius Plug-in.

Recall that Chevrolet Volt has a charge depleting power train. It is interesting to compare

the SoC curves in Fig. 4.6 with the drive and park intervals in Fig. 4.1. We can see that the

SoC increases, following the charge rate of Chevrolet Volt, at every time that it is plugged-in

to a charging station. Of course, if a charge interval is shorter than the time needed to fully

charge the battery, then the vehicle leaves the charging station with a partially charged

battery. Similarly, the SoC starts decreasing as the PHEV departs the charging station. We

can see that, given the relatively small electric driving range of Chevrolet Volt, for a large

portion of driving times, the SoC is at its minimum level 7.2 kWh, i.e., battery capacity 16

kWh minus available energy 8.8 kWh, indicating that the battery is depleted and the power

train is switched to gas.

Next, we compare the SoC traces of different PHEVs brands. We focus on one taxi,

taxi number 10, and generate its SoC traces based on the characteristics of different PHEVs.

The results are shown in Fig. 4.7. Note that, the traces change from one car to another, not

only during the charging periods, but also during the driving periods. For example, if the

taxi of interest is a Honda Accord Plug-in, then then it can almost fully charge its rather

small 6.6 kWh battery in several of its short duration stops at charging stations.
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Figure 4.8: The combined charging load of all 536 vehicles and across all three charging
stations for a period of one week starting on May 24th. The PHEVs are a mixture of
different types as explained in the text. We can see that the total charging load highly
fluctuates during each day and across different days.

4.1.3 Aggregate Data Sets at Charging Stations

In this section, we aggregate the data sets that we generated in Sections 4.1.1

and 4.1.2 and develop new data sets to provide useful information about the operation of

charging stations. Recall from Section 4.1.1 that we identified three charging stations at

the Airport, Taxi Headquarters, and Downtown. Our focus in this section is on calculating

the combined charging load of all PHEVs as well as the total charging load at each charging

station based on different PHEV types and during different hours of the day and different

days of the week.

The combined charging load of all vehicles for a period of one week is shown in Fig.

4.8. The curve in this figure is the summation of the charging load of all the 536 PHEVs

across all three charging stations. Therefore, it depends on not only the parking, charging,

and driving patterns of each PHEV but also the exact specifications of the PHEVs. Here,

we have assumed the following mixture of different PHEV brands:

• Chevrolet Volt: 161 vehicles,

• Honda Accord Plug-in: 125 vehicles,

• Ford Fusion Energi: 125 vehicles,

• Toyota Prius Plug-in: 125 vehicles.

We can see that the PHEV charging load curve in Fig. 4.8 fluctuates a lot. The average

load during the considered week is 173.1 kWh, while the charging peak load is 598.5 kWh.
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Figure 4.9: The charging load at each of the three charging stations during a weekday
and also during a weekend: (a) Charging station number 1, Airport, (b) Charging station
number 2, Taxi Headquarters, (c) Charging station number 3, Downtown. The load curves
are obtained based on a mixture of different PHEV brands as explained in the text.

Therefore, the peak to average ratio (PAR) is 3.457.

Next, we separately plot the total daily charging load at each of the three charging

stations. The results are shown in Fig. 4.9. The mixture of the PHEV brands is the same

as the one in Fig. 4.8. We can see that the load patterns across different charging stations

are very different. At Airport charging station, the peak load is during the afternoon, where

many taxis wait for incoming passengers. As for the Taxi Headquarters charging station, the

peak load hours are at night, where several taxis are parked at the headquarters overnight.

Another interesting observation is that the load profiles differ on a weekday and a

weekend. This is particularly the case at the Airport charging station and to some extent

at the Downtown and Taxi Headquarters charging stations.

It is interesting also to look at the changes in the charging load at different charging

stations when we change the mixture of the PHEV brands and look at the scenarios where

all PHEVs are of one brand. The results are shown in Fig. 4.10. We can see that the results

are significantly different across some of the PHEV types because of the different features of

65



0 6 12 18 24
0

100

200

300

400
(a)

C
ha

rg
in

g 
Lo

ad
 (

K
W

)

 

 

0 6 12 18 24
0

100

200

300

400
(b)

C
ha

rg
in

g 
Lo

ad
 (

K
W

)

0 6 12 18 24
0

100

200

300

400
(c)

Hours

C
ha

rg
in

g 
Lo

ad
 (

K
W

)

 

 

Volt
Accord
Ford
Prius

Figure 4.10: The PHEV charging load at each of the three charging stations based on the
operational characteristics of four different PHEV brands.

these PHEVs. An interesting observation here is also about the differences between the four

curves across the three charging stations. In particular, such differences are less significant

at the second charging station, i.e., the Taxi Headquarters. This is because the duration of

the parking events are longer at this station. Furthermore, it is notable that the curves in

Fig. 4.10 for the cases of Chevrolet Volt and Ford Fusion are more or less similar. This can

be tracked back by observing that the available charging energy and the charging rates of

these vehicles are relatively close, as shown in Table 4.1.

Another point is that Honda Accord causes rather aggressive charging loads at

short intervals, specifically at the Downtown charging station, where the parking durations

are shorter. Therefore, in order to further examine charging patterns, we look at the total

EV load for the two vehicle brands, i.e. Chevrolet Volt, and Honda Accord.
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Figure 4.11: Metered load traces for two users at Hour=1 for over 900 days.

4.2 A Data Set for Residential Load Probability Distribu-

tion

Residential load is an essential part of stochastic modelling in distribution networks.

In particular, for the purpose of storage planning at the distribution level, the uncertainty

existing in the residential loads needs to be accounted. This calls for analysing the hourly

and seasonal probability distributions of the household loads. To develop such probability

distributions, the metered hourly loads of 600 residential consumers from PECON Street

Database [13] were used. The individual household hourly metered loads, were then com-

bined based on the topology information of the IEEE 13 bus standard test feeder, to from

the hourly load traces of residential buses in the feeder. Finally, from time traces of residen-

tial load buses over the period of historical data, the hourly probability density functions

are obtained in all residential load buses.
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Figure 4.12: A sample of metered generation output traces of a solar panel.

4.3 A Data Set for Solar Generation Probability Distribu-

tion

To develop the hourly probability density functions of solar generation, the metered

output generation of a solar panel with reasonable resolution, i.e. one hour or less, over a

considerable period of time, a year or more, is required. In this project, such data is

generated by applying the pair of metered solar irradiation and metered temperature, to the

dynamic model of a 1,200 kW solar panel on Real-time Digital Simulator (RTDS) [59]. The

solar irradiation/temperature historical data was obtained from the LLNL public database

[12]. The historical data was extracted from LLNL database, with the resolution of 15

minutes over the period of five years, separately for every season. The hourly probability

density functions of solar generation, were then obtained from the synthetic historical solar

generation for each season.
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Chapter 5

Energy Storage Planning in

Active Distribution Grids: A

Chance-Constrained Optimization

with Non-Parametric Probability

Functions

By considering the specific characteristics of random variables in active distribu-

tion grids, such as their statistical dependencies and often irregularly-shaped probability

distributions, we propose a non-parametric chance-constrained optimization approach to

operate and plan energy storage units in power distribution girds. In particular, we develop

new closed-form stochastic models for the key operational parameters in the system. Our

approach is analytical and allows formulating tractable optimization problems. Yet, it does

not involve any restricting assumption on the distribution of random parameters, hence, it

results in accurate modeling of uncertainties. Different case studies are presented to com-

pare the proposed approach with the conventional deterministic and parametric stochastic

approaches, where the latter is based on approximating random variables with Gaussian

probability distributions.

69



5.1 Introduction

5.1.1 Motivation

Small and medium size Energy Storage Systems (ESS) have diverse applications in

power distribution networks. For example, American Electric Power has recently installed a

1MW ESS to relieve pressure on a distribution-level transformer [60]. Distribution-level ESS

installations can also relieve the fluctuations caused by generation of distributed generators

(DGs) and/ or the charging load of electric vehicles (EVs) [61]. Such fluctuations are often

more significant compared to typical baseloads [62]. The traditional distribution systems and

their control equipment are not designed for compensating the excessive load / generation

across their feeders, yet upgrading the existing system for such short periods of deficiency is

not economical. In contrast ESS installations as a multi-functional resource, can maintain

the system safe operation at low cost, if they are deployed and managed effectively.

Modelling uncertainty is different at distribution level versus at transmission level.

For example, it might be reasonable to assume statistical independence and/or Gaussian

distributions for the generation outputs of wind and/or solar farms that are scattered across

a large transmission network [63]. However, these assumptions may not hold in a distribu-

tion grid with renewable DGs and EV charging stations that are confined to a relatively

small geographical location due to the dependency in solar irradiance in proximate system

buses [64] and the non-standard distribution of EV charging loads [65]. Also, the impact

of some fluctuating elements may dominate the overall uncertainty in a distribution grid,

making the typical use of the central limit theorem less practical. Therefore, a more gen-

eral non-parametric approach (with no restricting assumption on the distribution of random

parameters) could be more appropriate for ESS optimization at distribution level.

While non-parametric optimization has been adopted in a verity of problems in

power systems, e.g. see [66–68], the aim of this chapter is to incorporate non-parametric

stochastic modelling and optimization in power distribution systems, by addressing the

specific characteristics of such systems to optimally operate and plan ESS for improved grid

performance.
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5.1.2 Comparison to Related Literature

With respect to the scope of this chapter, the related literature can be classified into

several groups. First, some previous studies, e.g., in [69–72], are based on the assumption

of complete knowledge of the hourly generation, demand, etc. Accordingly, despite their

different design objectives and methodologies, they can all be classified as deterministic

methods. In contrast, here, our focus is on stochastic optimization of ESS.

Second, there are studies, e.g., in [73–75], that do recognize uncertainties in ESS

and distribution generation (DG) planning. However, they require fitting Gaussian or other

parametric distributions into random variables. Accordingly, their design efficiency can

degrade significantly if the Gaussian or other parametric distribution approximations are

not accurate.

Third, there are studies, such as in [76–80], that address uncertainty without re-

stricting the analysis to pre-determined parametric distributions of random variables; how-

ever, they account for uncertainties by defining many instances of each random variable.

For example, the studies in [76,77] use Monte-Carlo simulation methods. Accordingly, they

must deal with a large number of scenarios. Such large-scale scenario generation is tractable

if the focus is primarily on analysis, as opposed to on design and optimization. Other stud-

ies, e.g. in [78–80], utilize stochastic programing to address uncertainties which also involves

scenario generation. Such methods are capable to incorporate non-linear but convex power

flow equations by solving a deterministic problem over many samples of random variables;

yet concerns do exist about the convergence and accuracy of the solution once the number of

scenarios increases. In contrast, here in this chapter, we take an analytical approach where

we improve modeling efficiency without exploding the computation workload, but of course

with the limitation of linearizing the power flow equations.

Forth, there are studies, e.g. in [81–84], that use chance-constrained optimization

for optimal operation and planning of resources, mainly in transmission systems. For ex-

ample, in [81] a chance-constrained optimal power dispatch strategy is developed for trans-

mission systems, using cumulant-based stochastic models. The Gram-Charlier expansion

method is applied in [81,85,86] to approximate the distribution of state variables; however,

it reduces the accuracy of stochastic modelling. Such reduced accuracy could be inevitable

in large transmission systems; but it may not be acceptable at distribution level, which is

where we focus on in this chapter. Also, the DC power flow equations used in [81–85] are
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not appropriate to represent power distribution systems.

Last but not least, our design approach in this chapter is also fundamentally dif-

ferent from the fifth group of prior work, e.g., in [8,87–90], where heuristics such as Genetic

Algorithms are used to optimize ESS in distribution networks.

5.1.3 Technical Contributions

The contributions in this chapter are summarized as follows:

• We propose a new non-parametric chance-constrained optimization approach to oper-

ate and plan ESS in power distribution networks. Uncertainty from different sources

of different stochastic nature, e.g. DGs, EVs, and residential baseloads are taken into

consideration.

• Our analysis is based on developing new closed-form stochastic models for various key

operational parameters of the distribution grid. This allowesd us to formulate opti-

mization problems for ESS operation and planning that are in the form of tractable

linear programs (LPs) or mixed integer linear programs (MILP). In principle, the devel-

oped closed-form stochastic models can be used also in other non-ESS distribution-level

planning problems.

• Our ESS planning framework is customized for distribution grids, as opposed to some

commonly used models that are based on Gaussian approximations of random vari-

ables that were originally intended for transmission systems. For example, our design

accounts for the typical radial configuration of the distribution networks as well as the

close proximity of distribution buses that causes statistical dependency across certain

random variables.

• Several case studies confirmed the advantages of non-parametric chance-constrained

optimization over deterministic and parametric chance-constrained optimization.
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Figure 5.1: An example radial distribution network with 12 distribution buses.

5.2 Stochastic System Model

5.2.1 Notations and Power Flow Equations

Consider a radial distribution network, such as the one in Fig. 6.1. Let N denote

the set of all buses, including reference bus 0. Also let L denote the set of all distribution

lines. We define N s, N e, N r, and N b as the sets of buses with storage units, EV charging

stations, renewable DG units, and baseloads, respectively. At each bus i, we define Di and
Ni as the sets of direct descendant and descendant buses of bus i, where Di ⊆ Ni. We also

define Li,0 as the set of lines that connect bus i to bus 0. As an example, in Fig. 6.1, we

have N e = {7, 8, 9}, N r = N s = {7} and N b = {2, 3, 4, 5, 8, 9, 10, 11}. At bus 3, we have

D3 = {6, 7, 8} and N3 = {6, 7, 8, 10, 11}. Set L7,0 = {(0, 1), (1, 3), (3, 7)}.
Suppose the operation time is divided into T time slots. For each line (i, j), let

P(i,j)[t] and Q(i,j)[t] denote the line active and reactive power flows at time slot t. The

voltage at bus i at time slot t is denoted by Vi[t]. At each bus i, the active power draw

at time slot t is denoted by P si [t], P ei [t], P ri [t], and P bi [t], for storage units, EV charging

stations, renewable DG units, and baseloads, respectively. A negative power draw means

power injection. The notations Qsi [t], Q
e
i [t], Q

r
i [t], and Q

b
i [t] are defined similarly for reactive

power.

Next, we model power flows in the distribution grid using the linearized DistFlow

equations, which are widely used in the literature, e.g., see [91–93]. For all non-reference
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buses i ∈ N\0, and all distribution lines (i, j) ∈ L we have:

P̃(i,j)[t] =P sj [t]+P̃ bj [t]+P̃ ej [t]+P̃ rj [t] +
∑
l∈Dj

P̃(j,l)[t] (5.1)

Q̃(i,j)[t] = Qsj [t]+Q̃
b
j [t]+Q̃

e
j [t]+Q̃

r
j [t]+

∑
l∈Dj

Q̃(j,l)[t] (5.2)

ṽ2i [t]− ṽ2j [t] = 2R(i,j) P̃(i,j)[t] + 2X(i,j) Q̃(i,j)[t], (5.3)

where v0 = 1 and the tilde sign indicates random variables. Bus 0 serves as a slack bus

with infinite supply capability. Note that, the DistFlow model is originally non-linear and

non-convex. Certain convex relaxation techniques are proposed, e.g., in [94], that are exact

under certain deterministic formulations. However, those techniques are not applicable in

chance-constrained programming. See Section 5.4.6 for additional discussions on the impact

of the DistFlow model linearzation.

For the ease of notation, for the rest of this chapter we denote:

V , v2. (5.4)

Given the above one-to-one relation, we refer to V as voltage, even though it is technically

voltage squared. Obtaining all characteristics of v from V is straightforward.

5.2.2 Stochastic Representation of Key Operational Parameters

We classify the parameters and variables in a distribution grid into three groups:

First, the key operational parameters, i.e., the voltages at all buses and the power flows at

all lines; second, all random variables, i.e., baseloads, EV charging loads, and renewable

DG outputs at all buses; third, our decision variables, i.e., the charge and discharge powers

of all ESS units. Using the recursive relationships in (5.1)-(5.3), we can describe the key

operational parameters in the first group in terms of the variables in the second and the

third groups:

P̃(i,j)[t] =
∑
k∈Nj

P sk [t] +
∑
k∈Nj

(
P̃ bk [t] + P̃ rk [t] + P̃ ek [t]

)
, (5.5)

Q̃(i,j)[t] =
∑
k∈Nj

Qsk[t] +
∑
k∈Nj

(
Q̃bk[t] + Q̃rk[t] + Q̃ek[t]

)
, (5.6)
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and

Ṽi[t]=1−
∑

(k,j)∈Li,0

(
2R(k,j) P(k,j)[t] + 2X(k,j) Q(k,j)[t]

)
=1−

∑
(k,j)∈Li,0

∑
l∈Nj

(
2R(k,j) P

s
l [t] + 2X(k,j) Q

s
l [t]
)

−
∑

(k,j)∈Li,0

∑
l∈Nj

[
2R(k,j)

(
P̃ bl [t] + P̃ rl [t] + P̃ el [t]

)
+2X(k,j)

(
Q̃bl [t] + Q̃rl [t] + Q̃el [t]

)]
.

(5.7)

We can see that each line power flow or each bus voltage is formulated as a sum of a

deterministic term and a stochastic term. The former is a linear combination of ESS injection

decision variables while the latter is a linear combination of power draw from random

variables at different buses.

Given the expressions in (5.5), (5.6), and (5.7), at each time slot t, we can define

the Cumulative Distribution Functions (CDFs) for the distribution line active power flows

as

FP(i,j)[t](p) , Pr
{
P̃(i,j)[t] ≤ p

}
= Pr

{
φ̃P(i,j)[t] ≤ p− ψ

P
(i,j)[t]

}
,

(5.8)

and for reactive power flows and voltages as

FQ(i,j)[t](q) , Pr
{
φ̃Q(i,j)[t] ≤ q − ψ

Q
(i,j)[t]

}
, (5.9)

F Vi [t](v) , 1− Pr
{
φ̃Vi [t] ≤ 1− v − ψVi [t]

}
, (5.10)

where

φ̃P(i,j)[t] ,
∑
k∈Nj

(
P̃ bk [t] + P̃ rk [t] + P̃ ek [t]

)
, (5.11)

φ̃Q(i,j)[t] ,
∑
k∈Nj

(
Q̃bk[t] + Q̃rk[t] + Q̃ek[t]

)
, (5.12)

φ̃Vi [t] ,
∑

(k,j)∈Li,0

(
2R(k,j) φ̃

P
(k,j)[t] + 2X(k,j) φ̃

Q
(k,j)[t]

)
, (5.13)

and

ψP(i,j)[t] ,
∑
k∈Nj

P sk [t], ψQ(i,j)[t] ,
∑
k∈Nj

Qsk[t], (5.14)

ψVi [t] ,
∑

(k,j)∈Li,0

(
2R(k,j) ψ

P
(k,j)[t] + 2X(k,j) ψ

Q
(k,j)[t]

)
. (5.15)
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Note that, the expressions in (5.11)-(5.13) depend solely on random variables and the ex-

pressions in (5.14)-(5.15) depend solely on the decision variables of the storage units.

At each bus i and time slot t, the Probability Density Function (PDF) for baseload,

EV charging load, and renewable generation is denoted by f bi [t](·), fei [t](·), and f ri [t](·),
respectively. These random variables are represented by discrete empirical distributions

with no specific mathematical expressions. Also, fP(i,j)[t](·), f
Q
(i,j)[t](·), and fVi [t](·) denote

the PDFs of the system operational parameters at each line and each bus.

Next, we group the random variables based on their statistical dependence. For

example, the outputs of all solar panels are dependent due to their proximity, given the

relatively small size of distribution grids. Accordingly, such outputs can be grouped such

that they can all be represented in terms of solar irradiance as the independent random

variable. Other grouping can be done for other renewable DGs of the same type.

Without loss of generality, suppose solar panels are the only DG types on the

distribution grid. Let Ũ [t] and H̃[t] = κu[t] Ũ [t] denote the active and reactive power

outputs of a solar panel at time slot t, where κu is a constant of the solar panel and its

power electronics interface [95]. The PDF of the random variable Ũ [t], i.e. a unit of solar

panel active power output, is expressed by fu[t](·). At each bus i ∈ N r, we have:

P̃ ri [t] = λui Ũ [t], Q̃ri [t] = λui κ
u[t] Ũ [t], (5.16)

where λUi is a constant that is set for the the DG installation at bus i. Random variable

Ũ [t] solely depends on solar irradiance. Statistical dependency also exists among active

and reactive power injections at each bus [96]. Therefore, at each bus i, we assume that

Q̃bi [t] = κbi [t]P̃
b
i [t] and Q̃ei [t] = κei [t]P̃

e
i [t], where κbi depends on the type of loads and their

power electronics interfaces and κei depends on the EV chargers.

Theorem 1 The CDFs in (5.8)-(5.10) are obtained as

FP(i,j)[t](p) = Gφ
P

(i,j)[t]
(
p− ψP(i,j)[t]

)
, (5.17)

FQ(i,j)[t](q) = Gφ
Q

(i,j)[t]
(
q − ψQ(i,j)[t]

)
, (5.18)

F Vi [t](v) = 1−Gφ
V

i [t]
(

1− v − ψVi [t]
)
, (5.19)

where GφP , GφQ, and GφV are some CDFs that have the following probability density func-

tions:

gφ
P

(i,j)[t](z) , ζu(i,j)

(
∗

k∈Nj

f bk[t]∗ fek [t](z)

)
∗ fu[t]

(
ζu(i,j)z

)
, (5.20)
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gφ
Q

(i,j)[t](z) ,
ζu(i,j)

∏
k∈Nj

(
κbk[t]κ

e
k[t]
)

κu[t]
fu[t]

(ζu(i,j)z
κu[t]

)
∗
(
∗

k∈Nj

f bk[t](
z

κbk[t]
) ∗ fek [t](

z

κek[t]
)

)
,

(5.21)

gφ
V

i [t](z),γui [t]
∏
l∈N

(
γb(l,i)[t]γ

e
(l,i)[t]

)
fu[t]

(
γui [t]z

)
∗
(
∗

l∈N
f bk[t](γb(l,i)[t]z) ∗ f

e
k [t](γe(l,i)[t]z)

)
.

(5.22)

The proof of Theorem 1 and the definition of coefficients ζu(i,j), γ
b
(l,i)[t], γ

e
(l,i)[t], and γui [t]

are given in Appendix I. Here, we do not make any assumption about the distribution

of random parameters. Specifically, we do not assume any pre-determined PDF, such as

Gaussian distribution. The discrete convolution in Theorem 1 can be calculated efficiency,

e.g., using the methods in [97]. A brief discussion on the computational complexity of these

convolution operations is given in the Section 5.4.6.

5.2.3 Design Implications

The results in Theorem 1 can be used to analytically, yet accurately, model the

complex probability distributions of line power flows and voltage buses. An example is shown

in Fig. 2. Here, we compare two methods. First, the proposed analytical method where

we obtain the non-parametric distributions of operational parameters from the numerical

convolution in Theorem 1. Second, the Monte-Carlo Simulation (MCS) method, where

extensive scenario generations from the original random variables are applied to the power

flow model in (1)-(3). We can see that the PDFs obtained from Theorem 1, achieve the

same results as the MCS method. However, the computation complexity of our analytical

method is much less than that of the MCS method, see Section 5.4.6.

5.3 Optimal Operation and Deployment

of Energy Storage Units

The analytical approach in Section 5.2 can also be used to find the best charge

and discharge schedules for the ESS in an optimization-based framework, as we will see in

details next.
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Figure 5.2: Example non-Gaussian PDFs for the parameters of the network in Fig. 1: (a)
and (b) power flow in line (6, 10); (c) and (d) voltage at bus 10.

5.3.1 Bus Voltage Violation Chance Constraints

At each time slot, the probability of under- and over- voltage violations must be

less than a certain threshold ε > 0:

Pr
{
Vi[t] ≤ v

}
< ε ⇒ FVi [t](v) < ε,

Pr
{
Vi[t] ≥ v

}
< ε ⇒ 1− FVi [t](v) < ε.

(5.23)

From (5.19), we can rewrite (5.23) as

Gφ
V

i [t]
(

1− v − ψVi [t]
)
> 1− ε,

Gφ
V

i [t]
(

1− v − ψVi [t]
)
< ε.

(5.24)

Since, by definition, Gφ
V

i [t] is a non-decreasing function, we have unique equivalents for

(5.24) as follows [98]:

1− v − ψVi [t] > sup{φ|Gφ
V

i [t](φ) ≤ 1− ε},

1− v − ψVi [t] < inf{φ|Gφ
V

i [t](φ) ≥ ε}.
(5.25)

The right-hand sides in (5.25) are known, as long as Gφ
V

i [t] is known. Since ψVi [t] is a linear

function of the ESS active and reactive power variables, the constraints in (5.25) are linear.
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5.3.2 Line Active Power Flow Violation Chance Constraints

Next, we set the constraints to limit the probabilities of violating line thermal

limits based on the line power flows:

Pr
{
P(i,j)[t]≥ p

}
< ε ⇒ FP(i,j)[t](p)> 1− ε,

Pr
{
P(i,j)[t] ≤ p

}
< ε ⇒ FP(i,j)[t](p) < ε,

(5.26)

and with the same analogy of Section 5.3.1, we arrive at

p− ψP(i,j)[t] > sup{φ|Gφ
P

(i,j)[t](φ) ≤ 1− ε},

p− ψP(i,j)[t] < inf{φ|Gφ
P

(i,j)[t](φ) ≥ ε}.
(5.27)

5.3.3 Energy Storage System Operation Constraints

The energy that is discharged from an ESS into the grid at a certain time slot must

be first charged into the ESS at some earlier time slots. Let Esi [t] denote the energy that is

stored in the ESS at bus i during time slot t. We must have:

t∑
τ=1

Esi [τ ] ≤ Kup
cp Ahi ∀i ∈ NS ,∀t ∈ {1, · · · , T},

t∑
τ=1

Esi [τ ] ≥ Kdw
cp Ahi ∀i ∈ NS ,∀t ∈ {1, · · · , T}.

(5.28)

The ESS power output constraints can be expressed as:

−Isi ≤ P si [t] ≤ Isi , (5.29)

where Isi denotes the rating of its interface.

5.3.4 Energy Storage System Efficiency Constraints

The efficiency of the storage unit can be modelled as [99]:

Esi [t] = max{η0P si [t], 1/η0P
s
i [t]}∆t. (5.30)

5.3.5 Energy Storage System Deployment Constraints

If we seek to select the best location(s) to install the storage unit(s), then we need

to also define a variable di∈{0, 1} which indicates whether or not an energy storage unit is
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installed at each bus i. Hence, the following constraints must hold:

Ahi ≤ di ·Ah, (5.31)

Isi ≤ di · Is, (5.32)∑
i∈N

Ahi ≤ Ah, (5.33)∑
i∈N

Isi ≤ Is, (5.34)∑
i∈N

di = NESS . (5.35)

5.3.6 Energy Storage System Design Objective

Various design objectives can be considered when it comes to installing energy

storage units on a distribution grid, e.g., see [78]. However, since the focus in this chapter

is on understanding the impact of using non-parametric stochastic optimization in energy

storage planning, we account only for a typical design objective. Specifically, we seek to

minimize ∑
i∈N

(
T∑
t=1

πopr · |Esi [t]|

)
+ πcap ·Ahi + πinv · Isi . (5.36)

The first term is related to the operation cost, i.e., the wear cost, which is proportional to

the charge/discharge level at each time slot. The second and third terms are related to the

installation cost, which are proportional to the size of the ESS.

5.3.7 Optimization Summary

In brief, the ESS optimization problem is formulated as:

Minimize
P s

i [t],E
s
i [t],Ahi

(5.36)

Subject to (5.25), (5.27), (5.28), (5.29), (5.30), (5.31), (5.32), (5.33), (5.34), (5.35).

(5.37)

All the constraints in Sections 5.3.1, 5.3.2, and 5.3.3 are linear. The absolute-value

function in the first term of the objective function in (5.36) can be replaced by linear con-

straints using auxiliary variables, c.f. [100]. Therefore, depending on whether the constraints

in Sections 5.3.5 and 5.3.4 are taken into consideration, the formulated optimization problem

is either a linear program or a mixed-integer linear program.
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Figure 5.3: The pdf of voltage at bus 10 with and without installed ESS: (a) The ESS is
charged during time slot 8, which is an off-peak hour, and this has resulted in some tolerable
drop in voltage; (b) The ESS is discharged during time slot 22, which is a peak hour, and
this has resulted in some desirable increase in voltage; (c) The ESS is discharged also during
time slot 24, which is another peak hour, and this has resulted in some desirable increase in
voltage. The probability of violating the minimum threshold at hour 22 reduces from 0.7 to
only 0.1 when the ESS is being used.

5.4 Case Studies

Again, consider the 13-bus distribution feeder in Fig. 6.1. It is assumed to be

balanced. The baseload is synthesized by aggregating the metered hourly loads of 633

residential consumers in the PECON project [13], from January 2012 to August 2014. This

is done such that the average combined load at each bus roughly matches its original feeder

load in [101]. The generation output of a solar panel is synthesized by applying the metered

pair of solar irradiation and temperature to a detailed dynamic model of a 1.2 MW solar

panel in PSCAD [102]. The solar irradiation and temperature data was obtained from the

LLNL database over six years form 2008 to 2013 for the months of May and June [12]. The

hourly load of EV charging stations are from [65]. Given the focus of this chapter, we take

the PDFs of the random variables, e.g., solar generation, baseload, EV charging, etc. as

given. These PDFs are obtained using the above historical hourly data.

The cost of battery is calculated for WB-LYP1000AHA lithium ion 1000 Ah battery

modules with 3.2V discharge voltage [34]. The batteries operate between 20% to 80% of

their nominal capacity. The rated lifetime of these batteries is 12,000 cycles and the current
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Figure 5.4: The hourly ESS operation schedule based on three optimal designs.

market price is $1,660 per module. Therefore, by dividing the module price by

2×Ah× volts× cap(%)×Ncycle, (5.38)

we can estimate the battery wear cost as 36 $/MWh per cycle.

5.4.1 Parametric versus Non-Parametric Design

We compare our Non-Parametric Chance-Constrained (NPCC) approach with two

other approaches in ESS planning: 1) Deterministic, where all random variables are repre-

sented by their mean values; 2) Parametric chance-constrained (PCC), where all random

variables are represented by their Gaussian approximations, i.e., based on their mean and

variance.

We start off our analysis based on a simplified problem set up, where the line power

flow limits are not enforced, and only the bus voltage limits are considered. The minimum

voltage threshold is assumed to be 0.95 per unit. The acceptable probability of violating the

minimum voltage threshold is ε = 0.1 or less. We consider the typical scenario where the

battery system does not provide reactive power support. The location of the storage unit is

assumed to be fixed at bus 7.

The probability mass functions of voltage at bus 10 are shown in Fig. 6.3, where

there is severe voltage drop at peak hours prior to using ESS. The voltage distributions in

one off-peak hour, hour 8, and two peak hours, hours 22 and 24 are shown prior and after

ESS compensation. We can see that the use of ESS reduces the probability of violating the
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Figure 5.5: The pdf of voltage in bus 10 at hour 24, under three different design approaches
for the case study in Section 5.4.1.

minimum threshold at peak hours. The probability of violating v = 0.95 in bus 10 at hour

22 prior to ESS installation is 0.7. Such probability reduces to only 0.1 once the ESS is

installed.

Next, we show the ESS operation schedules for various designs in Fig. 5.4. We

can see that different designs lead to significantly different charge and discharge schedules.

Accordingly, the obtained optimal size of the ESS is also different for each design. Based

on the deterministic approach, it is presumed that the system constraints are met most of

the time, thus under-estimating the potential for voltage violations. Accordingly, the size

of the ESS unit is under-estimated and the allocated ESS unit is not used extensively. On

the contrary, the PCC approach over-estimates the potentials for voltage violations. As a

result, the ESS utilization based on PCC approach is higher than the NPCC approach in

most peak hours. The required ESS capacity is also larger. Note that, the optimal ESS

size based on the deterministic, PCC, and NPCC design approaches are 1.05, 3.57, and 2.69

MWh, respectively.

The voltage distributions for the deterministic, PCC, and NPCC designs are shown

in Fig. 5.5. We can see that the deterministic approach compensates for the voltage less

than the NPCC approach, whereas the PCC approach compensates more than the NPCC

approach at this hour. The probability that the voltage distribution falls below v = 0.95 is

0.21, 0.093, and 0.018 for the deterministic approach, the NPCC approach, and the PCC

approach, respectively.
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Figure 5.6: Voltage compensation at hour 24 based on the PCC approach: (a) the Gaussian
approximation of the voltage pdfs; (b) the true voltage pdfs.

Additional details about the ESS operation during time slots 22 and 24 based

on the PCC approach are given in Fig. 5.6. Here, the Gaussian approximations of the

voltage probability functions with and without ESS unit are compared with the empirical

pdf curves. The approximated probability of voltage violation, i.e., the black shaded area in

Fig. 5.6(a), is 0.07. However, the empirical probability of voltage violation is only 0.02 in

Fig. fig:gaussian(b). This confirms our previous observation that a PCC approach often over

estimates the probability of voltage violation; thus, requiring a ESS size larger than what

is actually needed. The inaccurate estimation of the probability of violating the voltage

constraints is the main reason for the difference between the PCC approach and the NPCC

approach.

5.4.2 Compensation on System Operational Limits

In this section, we discuss another factor that further shows the advantages of

NPCC over PCC. First, we note the fact that an ESS cannot increase the voltage or decrease

the power flow at a certain hour, unless it decreases the voltage and increases the power flow

at another hour. Therefore, the distribution network must originally be capable of tolerating

bus voltage decreases or line power flow increases during certain hours; otherwise the ESS is

not the solution for alleviating the system undesirable states. Therefore, next, we examine

the system operational bounds under different ESS design approaches.

Unlike in Section 5.4.1, where the minimum threshold for voltages was pre-set
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Figure 5.7: The best minimum voltage bounds achieved during 11 × 24 = 264 bus-hour
instances under NPCC approach.

to v = 0.95, and the required ESS capacity was obtained using different approaches, in

this section, we instead assume that the ESS storage capacity is fixed to 2MWh and we

rather obtain the best voltage operation thresholds using non-parametric and parametric

approaches. Same as in Section sec:Ilust, we assume that ε = 0.1.

To examine the system operational bounds, we introduce some slack variables to

all chance constraints. That is, we treat the acceptable system state bounds in Sections

5.3.1 and 5.3.2 to be decision variables. Instead, we set the ESS capacity to be fixed. We

also introduce a new regulatory term Kreg maxi,t{vi[t]} into the objective function in (5.36),

where Kreg is a large weight factor. The purpose of adding this regulatory term is to make

all chance constraints binding so that we can obtain the best bounds achievable for each

state.

Fig. 5.7 shows the tolerable bounds for the case of bus voltage compensation when

the proposed NPCC approach is used. The blue dashed line shows the minimum of such

bounds across all locations and all time slots. Here, we also show the similar minimum

bounds for the PCC and the No-ESS case. In this figure, if the minimum bound is 0.94

p.u. with at least 90% probability at all times, then the PCC approach gives an infeasible

solution with 2 MWh of ESS at bus 8.

A similar analysis can be done to assess the tolerable bounds for line power flow

compensation. Here, we must minimize the power flow on the most congested line. To
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Figure 5.8: The best maximum active power flow bounds achieved during 11 × 24 = 264
line-hour instances under NPCC approach.
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Figure 5.9: The maximum lower thresholds bounds achieved in all buses for different ESS
capacities under NPCC and PCC design approaches.

do so, we shall minimize the maximum of p/pnominal for each line. The results are shown

in Fig. 5.8. We can see that the ESS compensation brings down the highest power flow

limit. However, the ESS may affect only the lines that lie on the path from the ESS to

the substation bus. Therefore, the ESS location is of importance if we intend to lower the

power flow on a particular line. For each ESS capacity, this figure also shows how much the

maximum power flow can be reduced by the ESS among the lines that have the possibility

of improvement based on the ESS location.

The best minimum voltage bounds achieved in 24 hours at all buses as a function

of ESS capacity under NPCC and PCC stochastic design approaches are shown in Fig. 5.9.
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First, we note that both curves are continuous, piecewise linear, concave, and monotonic

increasing, c.f. [103, Lemma 2]. Second, we can see that the NPCC approach can always

enforce higher minimum voltage, regardless of the capacity of the ESS.

5.4.3 Impact of Location

Next, we take a closer look at the impact of the ESS location on improving the

system tolerable bounds that we introduced in Section 5.4.2. This also brings up the question

on optimizing the location, when there are multiple ESS units. We observe in Fig. 5.10 that
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Figure 5.10: The Impact of ESS location on voltage improvement at each bus.

installing an ESS at either of buses 1, 2, 4, 5, and 9 does not significantly improve the

minimum voltage bounds. Therefore, at least for the purpose of voltage improvement, these

buses are not suitable locations for ESS installation. Note that, we do not suffer from

over-voltage issue of PV injections at end buses since the grid is heavy-loaded.

Based upon a similar analysis as in Section 5.4.2, Fig. 5.11 shows the normalized

maximum active power flow bound reduction in each line, i.e. ∆p for the cases of with and

without ESS installation. We can see that installing the ESS at each bus improves the active

power flow only on certain lines in the path between the ESS bus and the reference bus.

Since the back current issue is not considered, installing an ESS is always preferred in the

end buses of a heavy-loaded line.
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Figure 5.11:The impact of ESS location on active flow improvement at each line.

5.4.4 Optimal Locations and Sizes of Multiple ESS Units

Recall that in in sections 5.4.1 to 5.4.3, only a single ESS unit was deployed and the

optimization did not involve choosing the location of the ESS. As we illustrated in Section

5.4.3, however, the location of the ESS unit can have a significant impact on its ability

to improve the system operational parameters. Additionally, the locations of uncertain

resources in the distribution system can also have impact on the ESS requirements for the

system. Therefore, we obtained the optimal ESS locations and sizes for the base-case as

well as for several additional test cases, where the location of some random resources are

changed in the test distribution system of Fig. 6.1. The results of the optimal deployment

solutions for the NPCC and PCC approaches are given in Table 5.1 for two ESS units (i.e.

Ness = 2). Note that, the ESS units are deployed in order to maintain the voltage violation

probabilities within 10% of the thresholds as in Section 5.4.1.

Table 5.1: Optimal locations and sizes for two ESS units

Case
Number

PV
Bus

EV Chargers
Buses

Optimal ESS Plan
Capacity (MWh) Bus Location

NPCC PCC NPCC PCC
1 7 7,8,9 1.6,0.33 0.12, 3.2 8, 11 8,10
2 3 2,4,11 0.29, 0.03 0.31,0.02 8,10 8,10
3 4 2,3,6 0.38, 0.08 0.5,0.3 8,10 10,11
4 1 4,5,7 0.32, 0.01 0.13,0.21 8,10 7, 8
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From the results in Table 5.1, we can make several observations. First, the NPCC

method achieves a better solution in terms of a lower deployed ESS capacity to maintain the

same voltage thresholds. The overall ESS capacity deployed by NPCC is 1.93 MWh, whereas

PCC requires the deployment of 3.32 MWh ESS capacity. Second, the deployed capacity

with multiple ESS units and in the optimal locations is smaller both in NPCC and PCC

approaches compared to Section 5.4.1 where the location of the single ESS was arbitrarily

selected. Third, the choice of the design method, i.e., NPCC or PCC, in representing

the random variables can have an impact on the optimal locations of ESS unit as well.

Specifically, from case numbers 2-4 in Table 5.1, it is also observed that the required ESS

capacity as well as the optimal ESS locations are greatly affected by the locations of the

random resources on the distribution system. In Case 1, the placement of those resources at

the end buses has led to more voltage drops and hence more ESS capacity requirements. In

contrast, in Cases 2 to 4, we have less ESS requirements, because several random resources

are placed in up-stream buses of the distribution grid. Finally, the design objective towards

which the ESS deployment is optimized, e.g. better voltage compensation, lower line power

flow reduction, and/or reverse flow prevention, has great impact on the choices of the ESS

capacity and locations.

5.4.5 Comparison with Scenario-Based Stochastic Optimization

In this section, we compare the performance of our proposed NPCC approach with

that of the methods that rely on sampling of input random variables. To this aim, we

approximate the chance constraints in (25) and (27) with some convex bounds in the form

of their expected values, specifically by using the Markov Bounds [104]. We then compare

the two approaches for the same set-up and objectives of Section 5.4.1.

Table 5.2: Optimal locations and sizes for two ESS units to mitigate the voltage violation.

Method Decision Vars.
Num.

ESS Cap.
(MWh)

Voltage Violation
Worst Probability

NPCC 97 2.69 0.105
SBO(50) 55800 6.25 0.112
SBO(100) 217800 5.5 0.086
SBO(500) 1M+ 4.1 0.073

The optimal ESS capacity deployed by each approach to maintain the system volt-

age within the 90% tolerable range is compared for each approach, and the results are shown
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in Table 5.2. Here, the scenario-based optimization (SBO), solved with 50 scenarios, con-

verges roughly within the same time that our proposed approach converges, including its

distribution processing time. However, the deployed ESS capacity to maintain the volt-

age violations within the probability threshold, is much higher for SBO than the NPCC

approach, which means a better resource management for our proposed NPCC approach.

We also compared the actual numerically-obtained probability of voltage violation

for each method using Monte-Carlo simulation with 10,000 random scenarios. The worst

probability of voltage violation across the system buses and at different hours is shown in

Table. 5.2. We observe that SBO with 50 scenarios leads to even a higher probability of

violation, even with a larger ESS capacity deployed. We also see in Table 5.2 that the

performance of SBO indeed improves with a larger number of scenarios. However, such

improvement is obviously at the expense of higher computational complexity. Another

observation was that increasing the number of scenarios is not easy, because as we increase

the number of scenarios, the performance of the scenarios-based optimization approach either

becomes dependent to the choice of solver software or all solvers face numerical issues to

reach a solution.

We note that, there exist techniques, e.g those in [105–107], to decompose and / or

improve the computation efficiency of scenario-based optimization approaches. They often

are applicable to a wide range of optimization problems, including our intended problems,

and are independent of the inherent computation burden of solving the optimization problem

under many instances of the random variables. However, those techniques are not always

guaranteed to convergence.

5.4.6 Computational Complexity and Accuracy

Finally, we assess the impact of the common DistFlow model linearization on the

result accuracy. Fig. 5.12 compares the empirical voltage PDFs obtained from Theorem 1

and that of a Monte-Carlo Simulation that is based on non-linear power flow equations. We

can see that due to ignoring the line losses, the analytical voltage PDFs are slightly different

from the empirical PDFs. Thus, there is a small over estimation in the voltage PDFs when

the linear flow model is used. However, the significantly lower computation complexity of

our analytical method compensates its slight inaccuracy. For example, in Fig. 5.12, we

perform only 12 convolution operations to obtain the voltage PDF in each bus, whereas
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Figure 5.12:Power flow linearization impact on a voltage distribution at hour 17.

more than 60, 000 scenarios are generated to construct the empirical PDF.

Next, we examine the impact of considering the transverse distribution line param-

eters, e.g. the capacitances of coaxial cables, on the probability distribution of operational

parameters, e.g. bus voltages. Note that, all the results in Sections 5.4.1 to 5.4.5 are ob-

tained by neglecting the impact of transverse line parameters. However, it is still possible

to consider the impact of transverse line parameters as constant power elements connected

to buses. This is done in Fig. 5.13, where we compare the results of bus voltage distribution

at bus 11 and hour 17, for two cases. The first case is where the impact of transverse line

parameters are neglected. The second case is where we did model such parameters. The

results are obtained from MCS with 60,000 scenarios. The AC power flow equations are

solved by applying second-order cone programming, c.f. [94].

We see in Fig. 5.13 that the voltage distribution inaccuracy due to neglecting

the line suscpetance is not significant. The reactive power injections from the lines shunt

capacitors are well below 8×10−4 p.u. in all buses. It is presumed the results inaccuracy due

to inability of Distflow model in representing lines constant impedance capacitance, instead

of constant power, is even less significant.

We also compared the computation efficiency of our proposed approach with those

of the two existing approaches. The results are shown in Table 5.3. Note that, our pro-

posed approach consists of two parts: first, an analytical stochastic representation of the

operational parameters, i.e. bus voltages and line active and reactive flows; and second, a

chance-constrained optimization approach based on the results in the first part. The com-
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Figure 5.13: The voltage distribution at bus 11 and hour=17, which are obtained using MCS
with 60,000 scenarios and AC power flow model: (a) the line transverse parameters (Y) are
neglected; (b) Those parameters are modelled as constant power shunt elements.

putation time required for the first part is compared to that of the Monte-Carlo simulation

method discussed in section 5.2.3 with 60,000 scenarios to produce comparable resolution

of operational parameters probability density functions. The amount of computation time

required for MCS is more than 500 times that of our proposed analytical approach. The

overall runtime of our proposed approach, i.e. for the first as well as the second part men-

tioned earlier, is also compared with that of scenario-based stochastic optimization (SBO),

discussed in section 5.4.5, with a mere 100 scenarios. Clearly, in order to increase the accu-

racy of the scenario-based optimization approach, the required computation time increases

significantly. The runtime obtained for all the methods above is based on a single 2.67 GHz

processor.

Table 5.3: The computation time required form Different Methods.
Method Analytical Monte-Carlo NPCC SBO

Runtime (min.) 37 20000 90 225

The convolution operations required to obtain each operational parameter is at

most equal to the number of independent random variables. It does not depend on network

size. Also, for a practical system, we may not need the PDFs of all operational parameters,

but just for a few important ones. To assess the computation efficiency, in the data prepa-

ration process, the hourly PDFs of more than 500 individual residential users with length of

60 for each vector, i.e., 12,000 operations in total, was convolved in only few minutes using

a single processor.
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5.5 Additional Remarks and Extensions

5.5.1 Modeling Chance-Constraints Based on Line Currents

In section 5.3.2, the chance-constraints related to line flows were expressed in terms

of power. However, in practice, for lines below 36 kV, this value is often expressed in terms of

current. If one chooses to use a current-based model, he/she needs to transform our power-

limit constraints to current-limit constraints, e.g., in form of I2 < I2max. Since I2 = S2/V ,

such constraint can then be transformed into S2 ≤ I2maxV . If we neglect the changes in

voltage, then after replacing S2 with its active and reactive power terms, we have:{
P 2
i,j +Q2

i,j < S2
max.

}
> 1− ε. (5.39)

If the ESS power injection is given, then we can obtain the distributions of Pi,j , Qi,j , and Si,j
in terms of ESS injections. But even in that case, the above family of constraints will not be

convex. Note that, since Pi,j = ψPi,j+φPi,j , for the square variable, we will have multiplication

of random variables and decision variables, which renders the optimization non-convex when

we use non-parametric distributions. Of course, a tractable chance-constraint on the current

of the transmission line can still be approximated, possibly by using several independent

linear constraints on active and reactive power flow of the line. However, addressing this

issue is beyond the scope of this chapter. This could be a pointer for a future work.

5.5.2 Impact of Slack-Bus Voltage Variations

In order to study the stochastic representation of the model in Section 5.2, we

assumed that the voltage on the slack bus is fixed. However, in practice, this value might

fluctuate as a function of the state of the upstream grid. The impact of slack bus voltage

fluctuations may as well be treated as a stochastic random variable, independent of the

nodal power injections. By considering the slack bus voltage as a random variable with

probability density function of fV0 , we can write (9) as

F Vi [t](v) , 1− Pr
{
φ̃Vi [t]− Ṽ0 ≤ −v − ψVi [t]

}
, (5.40)

which will result in the following CDF of voltage distributions:

F Vi [t](v) = 1−Gφ
′V

i (−v − ψVi ). (5.41)
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Here Gφ
′V

i is the CDF corresponding to density function

gφ
′V

i (z) = −gφ
V

i (z) ∗ fV0(−z). (5.42)

5.6 Conclusions

A non-parametric chance-constrained optimization approach was proposed for en-

ergy storage operation and planning in power distribution networks. The analysis was done

by introducing new closed-form stochastic models for various key operational parameters,

with no restricting assumption on the probably distribution of random parameters. Uncer-

tainties from different sources of different nature, such as DGs and EVs, were considered.

Several case studies confirmed the advantages of the proposed design method compared to

the conventional deterministic and parametric (based on Gaussian approximation) chance-

constrained optimization frameworks. In future, the developed closed-form stochastic models

can be used in other non-ESS distribution-level planning problems.

Chapter 5, Appendix: Proof of Theorem 1

From the properties of linear transformations on density functions, c.f. [108], if

Y = a1X1 + · · ·+ aNXN , then

fY (y)=fa1X1(y)∗· · · ∗ faNXN
(y)

=

(
1

a1
· · · 1

aN

)
· fX1(y/a1) ∗ · · · ∗ fXN

(y/aN ).
(5.43)

Therefore, the expression in (5.20) results directly from (5.11) and (5.16), where the co-

efficient ζui,j is defined by tracking all the DGs that are on descendants of the intended

node:

ζu(i,j) , 1/

∑
k∈Nj

λuk

 . (5.44)

We can show (5.21) similarly. Note that, since Q̃bk = κbkP̃
b
k and Q̃ek = κekP̃

b
k , we have

fQ
b

k (z) = (1/κbk)f
b
k(z/κbk),

fQ
e

k (z) = (1/κek)f
e
k(z/κek).

(5.45)

Therefore, from (5.12), (5.16) , and (5.43), we can obtain (5.21).
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To derive (5.22), we note that the distributions φPk,j across (k, j) ∈ Li,0 are not

independent. The distributions of φQk,j across (k, j) ∈ Li,0 are not independent either. Thus,

we can rewrite (5.13) in terms of the original independent random variables f bk, f
e
k , and f

u.

Specifically, from (5.11)-(5.13), we have:

γb(l,i)[t] , 1

/ ∑
(j,k)∈Li,0∩Ll,0

2(R(j,k) +X(j,k))κ
b
l [t]

 , (5.46)

γe(l,i)[t] , 1

/ ∑
(j,k)∈Li,0∩Ll,0

2(R(j,k) +X(j,k))κ
e
l [t]

 . (5.47)

For renewable DGs, since they are all assumed to depend on the similar solar

irradiance, we combine the coefficients of all the DG’s that share a path with the intended

node:

γui [t],1

/∑
l∈N s

∑
(j,k)∈Li,0∩Ll,0

λul
(
2(R(j,k)+X(j,k))κ

u
l [t]
) (5.48)

5.7 List of Symbols, Chapter 5

N ,L Set of all buses, and all distribution lines.

Ni,Di Set of descendants and direct descendants of bus i.

Li,0 Set of lines on the path from bus i to bus 0.

s Superscript indicating storage.

e Superscript indicating charging station.

r Superscript indicating renewable generator.

b Superscript indicating baseload.

u Superscript indicating solar panel.

i, j, k, l Subscripts indicating bus numbers.

(i, j) Distribution line connecting buses i and j.

V, P,Q Functions for voltage, active and reactive power.
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v, p, q Values for voltage, active power, and reactive power.

U,H Active, and reactive power output of a solar panel.

φ Random part of an operational parameter.

ψ Decision variable part of an operational parameter.

t,∆t Index of time slot, duration of a time slot.

R,X Line resistance and reactance.

f, g Probability density function.

F,G Cumulative probability distribution function.

κ Reactive to active power ratio for an energy resource.

λ Number of solar panels.

ζ Scale of a random input at power flow distributions.

γ Scale of a random input at voltage distributions.

∗Ni=1 Convolution integral over N functions.

ε Probability target for a chance constraint.

E Drawn energy from battery storage system.

η0 Efficiency coefficient of energy storage system.

Ah Installed capacity of energy storage system in a bus.

NESS Number of total installed energy storage systems.

π Scale factor for installation or operation costs.

Kcp Scale factor for capacity to available energy.

(·), (·) Indicators of maxima and minima of variables.
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Part III

Distributed Generation and

Demand Response Planing at the

Distribution Grid
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Chapter 6

Distributed Generation Planning

to Profit Both Utility and DG

investors

Most current regulations allow small-scale electric generation facilities to partici-

pate in distributed generation (DG) with few requirements on power-purchase agreements.

However, in this chapter, it is shown that distribution companies can alternatively encourage

DG investors into DG contracts that can significantly benefit the utility network. In this

regard, a new algorithm is proposed to determine the best sites, sizes, and optimal payment

incentives under such special contracts for committed-type DG projects to offset distribution

network investment costs. On one hand, the aim is to allocate DGs such that the present

value profit gained by the distribution company is maximized via procuring power from

DGs and the market at a minimum expense. On the other hand, each DG unit’s individual

profit is taken into account to assure that private DG investment remains economical. The

algorithm is verified in various cases and the impacts of different factors are accordingly

studied.

6.1 Introduction

The increasing growth in electric load has made the traditional vertically inte-

grated power systems inefficient due to the significant investment cost of transmission and
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distribution systems expansion. Therefore, there is a growing interest towards a distributed

generation (DG) paradigm to provide small-scale generation opportunities close to consumer

sites. Furthermore, DG systems can benefit from short lead time and low investment risk,

small physical sizes, and flexibility in locations. For example, they can be installed nearly

everywhere without the land availability challenges of traditional power plants. Due to these

and many other advantages, DG is expected to play a significant role in the power grid’s

operation, structure, design and upgrading planning [109,110].

There exists a wide range of algorithms in the literature for the purpose of distri-

bution planning incorporating DGs. One thread of research focuses on optimization-based

approaches with a single objective function, e.g., with respect to power losses, voltage pro-

file, and total generation or distribution costs. In [111], the authors proposed an algorithm

to determine the optimum locations of DGs to minimize power losses. In [112], an optimal

planning framework is introduced to minimize the total system planning costs for DG in-

vestment, operation, maintenance, as well as the cost of purchased power and system losses.

In [113], the Artificial Bee Colony algorithm is applied to determine the optimal size, power

factor, and location of DGs to minimize the total real power loss in the system. Another

thread of research in DG planning involves optimization-based approaches with multiple

objectives. For example, a particle swarm optimization algorithm is introduced in [114] to

determine the location and size of DGs considering voltage profile, total harmonic distortion

reduction and losses on distribution lines. Another multi-objective algorithm is developed

in [115] to minimize the losses, investment cost in new facilities and distribution lines, and

the number of faults and the lengths of interruption times. A heuristic approach for DG

investment planning is proposed in [116] that aims to minimize the distribution company

(DISCO)’s investment costs, operation costs and the costs related to system losses. It works

by searching for a set of DGs that can have their marginal benefits greater than their overall

installation and operation cost. Finally, in [117], a multi-objective approach is proposed to

determine the optimal size and location of DG units, considering various implementation

challenges, using the particle swarm optimization.

Most of the previous studies, such as those in [111–119], focus on reducing the

investment and running costs of DISCO, including the cost for installing new DG units.

In this regard, they implicitly assume that the DISCO is solely responsible for the invest-

ment and operation of the DG units. However, in many practical scenarios, distribution

companies purchase power from independent DG owners without being directly involved in
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investment or operation [120]. To address this issue, in [121], the authors apply the concept

of local marginal prices (LMPs) to distribution generation to maximize the social welfare

between DISCO and DG providers. Similarly, in [122], DG units are positioned based on

LMPs, power loss reduction, and voltage improvement criteria. However, unlike the whole-

sale electricity markets, the distribution systems are not fully decentralized and a single

utility company usually operates across a region. Finally, in [123], increasing economic ben-

efits for DG investors is addressed, but there is no consideration of achieving the optimal

utility network performance or maximizing DISCO’s profit. Therefore, a major challenge

for a DISCO while implementing purchase-based procurement of power is to enforce opti-

mal system performance across several independently owned and operated DGs. The key

question that needs to be answered is: How can a DISCO encourage the DG investors and

operators into special contracts which can benefit the utility and enforce optimal overall grid

performance? Answering this challenging question is the main focus of this chapter. Our

contributions can be summarized as follows.

• First, a detailed economic model is developed for DG installation in distribution net-

works. Our model determines the optimum location, capacity, generation amount in

different load levels (namely at on-peak and off-peak periods), as well as retail power

procurement prices for each DG unit in each period of time.

• A new optimization problem is developed to maximize the total profit gained by the

distribution company while maintaining the investment attractive for independent DG

owners and operators by keeping DG profitable.

• Our design takes into account various parameters: the network upgrade costs, in-

cluding the costs for expanding line segments and transformers, the value of released

capacities, DG’s lead time, different investment conditions in each bus which could

be due to different land value or environmental standards, different daily load levels,

future demand growth, power losses, and voltage profile.
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6.2 Problem Formulation

6.2.1 Problem Description and Background

Many Independent System Operators (ISOs) have already established policies to

facilitate integration of on-site efficient generation, in accordance with their country/state

administration objectives in supplying renewable and distributed generation. For example,

in many countries, the Renewable Portfolio Standards (RPS) and Renewable Obligation

Orders (RO) mandate electricity providers to serve a portion of their load from renewable

resources. Although these regulations help the growth of DGs, they do not attempt to

optimize the operation and expansion of the distribution networks. As a result, while utilities

have to operate in accordance with RPS regulations, they are individually responsible to

ensure economic procurement of power. Furthermore, despite the supportive regulations

and policies, it is still the case that sometimes the DG investors may find the long-term

payback time of the project uneconomical [123–125].

Tackling the above problems is our focus in this chapter. Our system model is

within the framework of some existing DG structures in the United States. For instance,

consider the Sacramento Municipal Utility District in California, where the feed-in contracts

are available for renewable generating units up to 5 MW, including Combined Heat and

Power (CHP) Units with a certain required level of pollution standards. These contracts are

to sell generation at different periods of time, such as on-peak or off-peak hours, under long-

term 10, 15, or 20-years power purchase agreements [126]. The prices offered by the DISCO

are usually set to be fixed at different buses and for the whole duration of the contract,

depending on the start date of project. Similarly, in this chapter, it is assumed that the

DISCO offers standard agreements for DGs, which may include CHP units, and the DISCO

has to pay the contracted DG owner at the minimum standard rate in every bus.

Within the practical framework described above, one option to reduce the costs of

utilities and to make the investment more attractive, is to encourage certain DG projects that

are strategically located with financial benefits for lowering the distribution costs. In other

words, distribution companies may increase the offered price to even more than standard

tariffs for certain DG projects at certain buses, considering the location, size, technology,

and potential external costs (e.g., impacts of the gas infrastructure and real-estate aspects)

in order to encourage investors into providing desired on-site generation in desired locations.

The DG units considered are the CHP units capable of operating at base load to provide
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committed generation. In the rest of this section, the focus is on formulating a new optimiza-

tion problem to find the best allocation for the DG sites, sizes, and prices to maximize the

DISCO’s profit while attractive investment for the DG owners is guaranteed. The algorithm

needed to solve the formulated optimization problem will be developed later in Section 6.3.

6.2.2 Optimization Problem

The objective of the proposed optimization problem is to maximize the DISCO’s

profit; while maintaining positive profit for each individual DG in the system to assure DG

investment attractive. Profit is evaluated in terms of Net Present Value (NPV ), a concept

in finance that takes into account all the capital investment costs, variable costs during the

term of a project, as well as the revenues gained during the planning term. In this regard,

the NPV indicates the net present total profit gained with a target interest rate [127]. The

optimization problem can be formulated as follows:

maximize NPVDISCO

subject to NPVDGi ≥ 0, i = 1, . . . , nDG,
(6.1)

where for the ith DG, NPVDGi can be obtained in terms of present values for benefit and

cost:

NPVDGi = PV BDGi − PV CDGi . (6.2)

The present value of DG’s costs can be written as:

PV CDGi =

(
(if + 1)nend − 1

if .(if + 1)nend

)
.

(
if .(if + 1)PEL

(if + 1)PEL − 1

)
× λi.Ccapital(TDGi).IDGi

+

nend∑
j=nstart

1

(if + 1)j

( nperiods∑
k=1

PDGi(k).H(k)

×
[
Cfuel(TDGi) + CO&M (TDGi)

])
.

(6.3)

To reach (6.3), all the cash flows that the ith DG receives or pays are discounted back to

their present values before they are added together in the summation term. Note that, the

present value (PV ) of DG’s future annuities during the contract is obtained with respect to

a future value (FV ) in period n as:

PV =
FV

(1 + if )n
, (6.4)
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where the nominal interest rate if is usually greater than the real interest rate that an

investor expects to receive. The nominal interest rate is obtained from the real interest rate,

r, by considering inflation rate p, according to:

if = r + p+ r.p . (6.5)

Here, r is set to the Minimum Acceptable Rate of Return (MARR) for DG investors.

Clearly, if the NPVDG considering MARR becomes negative, then the DG investment fails

to meet the minimum expectation and becomes uneconomical.

The payment period in (6.3) is assumed to be one year and the payments are

made at the end of each year. For investments with PEL greater than nend, obtaining

the present value requires two steps. First, the capital cost is distributed evenly across

the future annuities during the project’s economic life. Then the present value of these

annuities are added together for the duration of contract. The capital investment for DG is

determined regarding its installed capacity, while its variable costs are defined according to

each period’s generating level (e.g. on-peak or off-peak periods), and the duration of each

period. Both capital and variable costs depend on the classified type or technology of the

DG. The capital costs also depend on the location of DG which are represented in (6.3) by

λi. Finally, note that the variable costs begin at the start time of project, which depends

on the DG installation lead time.

Following similar discussions as above, the present value of benefits that the ith

DG gains can be obtained as:

PV BDGi =

nend∑
j=nstart

1

(if + 1)j

nPeriods∑
k=1

(
PDGi(k).H(k).Coffer(i, k)

)
.

(6.6)

Finally, the NPV of all the cash flows for the DISCO is:

NPVDISCO =

nend∑
j=1

1

(if + 1)j

nperiods∑
k=1

(
Pload(j, k)H(k)Cretail(k)

)

−
nend∑
j=1

1

(if + 1)j

nperiods∑
k=1

(
Pnet(j, k)H(k)Cmarket(k)

)

−
nDG∑
i=1

PV BDGi + CRB .

(6.7)
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Note that, the revenue of the DISCO is provided by selling power to the retail customers.

Of course, the load level may change during different daily and seasonal periods and the

total demand may also experience an annual growth. Therefore, both Pload and Pnet may

take different values over the years and in different time periods. Since Pnet also includes the

network losses; therefore, reducing the losses means reducing the total amount of procured

power. In (6.7), the expenses considered for the DISCO include the payments to the DGs

and the cost of procuring the excess power from the wholesale market. While the market

price is changing during the day, the customer rates are normally constant; in the optional

time of use programs, limited tiers of price rates in summer or winter season (e.g. two rates

in SMUD) are considered [126]. The payment of DISCO to the DGs is equal to the total

revenue that all DGs will have, thereby is the sum of PV BDGi .

It is worth mentioning that the DISCO expenses may also include the investment

costs for upgrading the network transformers and line segments in order to meet the growing

demand in the upcoming years. Installing DG may lower these expenses by releasing the

network capacity and hence postponing the network upgrade. The benefit gained from

delaying the network upgrades, which is referred to as Capacity Release Benefit (CRB), is

obtained by calculating the network expenses of the upgrades during the planning term, when

a particular set of DGs are installed, and subtracting from the network upgrade costs when

no DG is installed. By performing power flow in the successive years of the planning term and

in different load levels, the anticipated year in which each line segment or transformer will

be over loaded is obtained and the costs related to its upgrade is discounted back to present.

By replacing (6.2)-(6.7) in (6.1), the formulation of the proposed optimization problem is

complete. However, in order to have a practical and implementable design, there is also a

need to include some other constraints in the optimization problem which are explained in

detail in the next sub-section.

6.2.3 Additional Optimization Constraints

• Active and reactive power balance equations: The sum of active and reactive

power flows injected into a node should match the power flows extracted from that

node. Note that PG(i) in buses which include distributed generation also includes

PDGi . Furthermore, note that Pnet is equal to, the power injection in the first bus,i.e.
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PG(1). A similar statement is true for the reactive power injection.

PG(i)− PD(i) =

Vi.

nnodes∑
j=1

[
Vj .
(
Gij . cos(δi − δj) +Bij . sin(δi − δj)

)]
,

(6.8a)

QG(i)−QD(i) =

Vi.

nnodes∑
j=1

[
Vj .
(
Gij . sin(δi − δj)−Bij . cos(δi − δj)

)]
.

(6.8b)

• Bus voltage limit: Bus voltages must remain within the acceptable range of levels

in all periods:

V min
i < Vi < V max

i (6.9)

• Transmission injected power limit: Regardless of distribution substation up-

grades, the transmission system may have a limited capability in supporting the dis-

tribution substation. Therefore, with growing demand Pnet(j, k), i.e., the difference

between load and local provided generation should be lower than a maximum value.

Pnet(j, k) < Pmax ∀j, k . (6.10)

• Generating unit capacity: The limited generating capacity of the units cannot be

violated at any time.

0 < SDGi(k) < IDGi i = 1, . . . , nDG ,

SDGi(k) =
PDGi(k)

PFnominal(TDGi)
.

(6.11)

• Offered price limit: Each electrical corporation has to obey the standard tariffs

by purchasing electricity from small-scale electric facilities at the price set by the

Commission, which is known as Market Price Referent (MPR) and reflects the market

price. Therefore, the contract purchase prices should be at least as high as the MPRs:

Coffer(i, k) ≥MPR(k) k = 1, . . . , nperiods . (6.12)

Together, equations (6.1)-(6.12) formulate our proposed optimization problem. Once solved,

the optimal solution allocates the distributed generation sites, sizes, and prices, such that

the DISCO’s profit is maximized, all DG owners’ individual profits are guaranteed, and the

solution is assured to be implementable in practical scenarios. Next, in the next section it

is showed how the problem (6.1)-(6.12) can be solved numerically.
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Figure 6.1: The flowchart of the proposed DE algorithm to solve problem (6.1)-(6.12).

6.3 The Optimal Allocation Algorithm Using Differential

Evolution

The optimization problem formulated in (6.1)-(6.12) is very challenging as it cannot

be solved using classic optimization techniques, such as the linear or convex programming

methods [128,129]. Therefore, here, it is proposed to solve (6.1)-(6.12) using the Differential

Evolution (DE) algorithm, which was originally proposed to solve non-convex discontinuous

optimization problems [130–132]. Here, DE is used over a continuous space optimization.

Our other modifications of the DE algorithm include applying some individual constraints

in initialization and also after cross over. The flow chart of proposed DE algorithm to

solve optimization problem (6.1)-(6.12) is depicted in Fig.6.1. In the DE algorithm, the

population individuals or vectors evolve under algorithm operators, mutation, and cross

over, to generate new populations with better objective values. This evolution continues

until the objective values of the population get close to each other and to that of previous

generations. The implemented algorithm has three main elements to be described in the

next three sub-sections.
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6.3.1 Initialization phase

Differential evolution is a population-based algorithm, where a population of indi-

viduals, each consisting of a particular arrangement of control variables, is seen as a possible

solution to the optimization problem of interest. In each generation, a new set of solutions

are generated to find a better fitness, a greater objective value, i.e. a higher overall profit.

The first step in utilizing a DE algorithm is to define the control variables. In our model,

each individual or vector from each generation m consists of the following variables:

xn,m = [IDGi , PDGi(k), Coffer(i, k)]

i = 1, . . . , nDG , k = 1, . . . , nPeriods .
(6.13)

From (6.13), the control variables in each node consist of the installed capacity, the com-

mitted generating level in different periods, and their associated offered price tariffs. Since

the number of candidate DG locations are limited compared to the DG capacities and given

the fact that the choice of location can significantly change the outcome of the objective

function, it is better to make sure that the program examines all candidate locations at

which a DG can be sited. Therefore, since each vector in (6.13) contains the active power

generation in each available node of the distribution system; we set nDG in the initializa-

tion phase to be equal to the network’s available locations. Note that, although the DG

units are initially placed in all locations, quite a few of the DG units will remain in the

successive generations until the optimum solution is obtained and the generation in many

nodes will gradually be eliminated. While IDGi takes integer values between available DG

types, PDGi(k) and Coffer(i, k) are continuous variables. The initial value of the control

variables are determined using randomization to assign each parameter of the nth vector,

a value within its upper and lower bounds. Such initialization is done for all elements in

each xn. The population size is considered as four times the number of control variables.

In order to avoid calculating the fitness for infeasible solutions and to reduce computational

complexity, the initial values of parameters related to xn,1 should meet:

nDG∑
i=1

PDGi < Pload(k) , k = 1, . . . , nperiods . (6.14)

Otherwise, the solution is infeasible and must be replaced. It should also be verified that

with the determined generation levels and price tariffs, whether the unit operation will be

economical. To do this, for each xn, all NPVDGi with the pre-set price tariffs and generating
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levels are determined. Note that, NPVDGi must be positive. Furthermore, generating in

each period under the associated price tariffs should be beneficial. That is, it should be

more than the current revenue gained by generating at peak hours in post-contract life of

DG, assuming the unit has a limited total hours of efficient operation and it can generate

later under standard contracts. This constraint is checked at all periods for each DG unit.

If the generation levels in all periods for DGi are zero or if NPVDGi is negative, then the

DGi capacity is set to zero and the DG is eliminated.

6.3.2 Power Flow and Fitness Evaluation

For each xn, the power flow is performed in every period of each year during the

planning stage. The voltage violations and line flows are obtained for every year, as well as

the excess power to be procured from the network. Then, the CRB is calculated according

to Sec. 6.2.2 and the NPVDISCO is as in (6.7). The fitness function is obtained as:

Fitness(xn) = NPVDISCO − FV − FS (6.15)

where

FV = KV .

nend∑
l=1

nPeriods∑
k=1

nnodes∑
j=1

max(0, Vmin(l, k, j)

− Vj , Vj − Vmax(l, k, j)

(6.16)

and

FS = KS .

nend∑
l=1

nPeriods∑
k=1

max(0, Snet(l, k)− Smax) (6.17)

denote the penalty functions related to violating the voltage profile tolerance or violating

the transmission capacity limit. Here KV and KS usually take large values to eventually

remove an infeasible solution from the next generations.

6.3.3 Applying the DE Operators, Obtaining the New Generation

Once the fitness functions are obtained, we apply the DE operators of mutation,

cross-over, and selection. The details on how these operators are applied can be found

in [130–132]. Note that, here, the mutant vector is obtained as

vn,m = xr1,m + ζ(xr2,m − xr3,m) , (6.18)
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where r1, r2, and r3 are random integers to choose different random vectors from the current

population. The control parameter ζ is chosen within [0.5, 1]. Smaller values of ζ are

usually used for larger population sizes. Here, we set ζ = 0.7 by experiment. In fact, it was

observed that the lower values of ζ may help the algorithm converge faster. However, in

small population sizes, this may cause the algorithm to reach a local minimum, rather than

a near global optimum, confirming the trade-off between DE optimality and convergence

speed [132]. For our design, a uniform cross-over is used. In our analysis, Cr ∈ [0, 1] the

parameter that controls the fraction of parameters copied from the mutant vector is set

at 0.3. [130]. The three steps of mutation, cross-over, and selection are repeated for each

generation until the termination criteria is met, i.e., the difference between the average

fitness values of successive generations drop below a pre-determined level. A maximum

number of generations are also considered as an additional criterion for termination. Once

the algorithm converges, the optimal solution of problem (6.1)-(6.12) is achieved.

6.4 Case Studies

The modified IEEE 37-bus distribution system which is an actual feeder located in

California has been used to test the functionality of the proposed algorithm [133]. The graph

diagram of this network, with renumbered branches and nodes, is depicted in Fig. 6.2. This

system serves a total demand of 2.63 MW and 1.55 MVAR reactive power. The distribution

transformer capacity is 3200 kVA with a rough value of $50,000. The characteristics of

different cable types, used in line segments and their rough per meter prices, as well as

their maximum allowable currents are shown in Table. 6.1 [134]. The demand curve takes

different values during the day. The load level considerably changes from the morning to

the afternoon and at night. The demand also slightly varies at each hour of these periods.

Therefore, the load curve can be approximated to several periods with an average level of

demand in each period. The simplified load curve that has been used for this study is shown

in Fig. 6.3. A demand growth of 6.5% has been considered during the term of planning.

The customer price rates are defined in two periods: on-peak and off-peak. The on-peak

price is set to be $0.21/kWh and the off-peak price is set at $0.10/kWh [135].

To develop a robust market for distributed resources, there is a need for uniform
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Figure 6.2: The IEEE 37 bus distribution system with renumbered buses.

technical inter-connection standards on a national or state-wide basis. Currently, there are

certain limits in existing standards for connection of DG resources into the distribution

networks. Therefore, in our study, the capacity of DGs is assumed to be between 50-1500

kW. The contract term, decided by the DISCO, may take different values between 5-20 years.

Without loss of generality, the contract term in this study is assumed eight years, since it is

stated in [124] that a payback period of less than eight years is essential for DG penetration.

Therefore, we set any NPVDGi after eight years to be positive to attract investment. It is

assumed that DGs can benefit from standard power purchase agreements afterwards.

We assume that the DG technologies in the system operate as CHP units. The

non-renewable DGs are often not efficient enough to make the project economical unless

process heat can be captured and re-used. Recoverable heat is valued at the cost of natural

gas delivered to end-users. Only the least-cost DG technologies capable of operating at

base-load are considered. The CHP technologies are divided into three classes based on

application size: 50-500 kW, 500-1000 kW, and 1-1.5 MW. The characteristics of these

classes are depicted in Table 6.2 [124]. The current tariff provides the buyer with the right

to terminate service if seller has not achieved operation in 18 months from the execution

date [136]. This requires the commercial operation of units to be less than 18 months. In
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Table 6.1: Underground Cable Line Configuration Data.

Config. Cable(AWG) Conductor size Ampacity Price($/m)

(mm2) (A)

721 1000AA,CN 3×500 550 213

722 500AA,CN 3×240 385 161

723 2/0AA,CN 3×70 200m 64

724 2# AA,CN 3×35 135 41
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Figure 6.3:Approximated daily load and market daily price in the case studies.

this work, for gas engine and gas turbine units, a rough installation lead time of 12 months

is assumed. For micro-turbine units, the installation lead time is assumed insignificant.

The weekly average natural gas spot prices in California for the fourth quarter of

2009 are used from [137]. The DG penetration and offered prices are obtained with different

gas prices in the range of $3.5-6/MMBTU. The average daily value of energy in this study

was considered $65.8/MWh; while the hourly values vary in the range of $45-120/MWh

from the low period to super-peak period. The off-peak period consists of the low and

medium load periods and the on-peak period consists of the peak and super-peak periods.

The minimum offered price MPR to DG facilities is set to $0.06/kWh for off-peak periods

and $0.065/kWh for on-peak periods.

Given the above simulation setups, next we obtain the optimum size, site and

111



Table 6.2: The Characteristics of Different Types of CHP Units.

System Micro Gas Gas
Type Turbine Engine Turbine

Applicable Size (kW) 50-500 500-1000 1000-1500
Heat rate (BUT/kWh) 9,477 9,382 9,605
Recovered Heat (BTU/kWh) 2,748 3,096 3,746
Turnkey Cost ($/kW) 915 690 950
O&M Cost ($/kWh) 0.011 0.009 0.005
Project economic life 10 Years 15 Years 15 Years
Recoverable Heat Used (%) 70% 70% 80%

prices in two scenarios. First, we obtain the optimum solution considering all the introduced

constrains. Second, for a better understanding of the results, a hypothetical case is studied

where the DISCO’s investment costs and voltage profile limits are neglected.

6.4.1 Simulation Scenario I

In this scenario the results of best locations, capacities and generating level in

each period with the optimum price tariffs are obtained, taking into consideration all the

constraints that we introduced in Section 6.2. The impact of an increase in spot gas prices

and bilateral contracts are also studied. First, we assume that the gas price for DGs is

$3.5/MMBTU. The results for best locations, generating levels in different periods and the

prices are shown in Table 6.3. The locations of DG units are also depicted in Fig. 6.2. We

can see that the offered price for the first two units is set to the minimum allowable value

MPR. However, for the third unit with a relatively smaller capacity, the offered price needs

to be more than MPR to maintain investment economical. The first two units are of type-2

with lower investment and maintenance costs where the generation can be still economical

with lower FiT prices. Here in this scenario, the average cost of energy procurement from

DG units is lower than the market price; therefore, the DISCO tends to utilize the DGs as

much as possible. total optimal NPVDISCO in this scenario becomes $3,372,600.

Next, we show the impact of an increase in gas prices on the optimal solution in

Table 6.4. Note that, gas price have significant effects on both DGs’ and DISCO’s profits,

since higher gas prices increase the cost of generation. When the price increase from $3.5
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Table 6.3: DGs optimal sites, generating levels and fit prices in each period in Scenario I
with $3.5 for the gas price.

DG Bus PDG (kW) Coffer ($/kWh) NPVDG

on-peak off-peak on-peak off-peak

720 700 655 0.065 0.060 57770

708 900 800 0.065 0.060 57988

741 400 345 0.0723 0.060 235

to $4.5, the optimal choice of locations and generating levels do not change. However, the

offered prices in on-peak period has to increase in order to maintain NPVDGi positive for

all DGs. Note that the DGs’ profits are notably lower when the gas price is $4.5, compared

to when the gas price is $3.5. However, we can see that the average cost of DGs’ energy

procurement is still slightly lower than the market price . Therefore, the DISCO still benefits

from utilizing NPVDISCO and we have $3,230,300.

Table 6.4: Comparison of the solutions with different gas prices.

Fuel cost Generation Levels(kW) offered prices(cents/kWh)
$/MBTU on-peak off-peak on-peak off-peak

3.5 700-900-400 655-800-345 6.5-6.5-7.2 6.0-6.0-6.0

4.5 700-900-400 655-800-345 7.08-7.3-9.06 6.0-6.0-6.0

6 800-700 800-658 7.62-7.34 7.0-7.03

Next, consider the case where the gas price increases to $6. Clearly, this will lead

to a major increase in the generation cost and will require a significant increase in the offered

price of electricity to maintain DG investment economical. However, in this case, the average

cost of DGs becomes higher than the market price. This makes the DISCO less interested

in distributed generation, which results in decreasing the total amount of DG capacities.

Note that, NPVDISCO in this case is $2,956,800 and the DISCO investment cost is $87,893.

If the DISCO were to use no DG, the corresponding NPVDISCO would become $3,003,000

with DISCO investment cost of 200,026$ which is still higher than the profit gained by

DISCO from utilizing DGs. However, to avoid the installation of a new transformer with

the capital cost of $50,000 and to prevent the technical difficulties related to transmission

injected power limit and voltage profile, the DISCO decides not to procure the power solely
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Figure 6.4: The impact of project start time on the DISCO’s and the DGs’ profits.

from the market. In this case, in order to maintain the DG investment profitable in presence

of the minimum offered prices, the multiple local generation units have to be merged into

fewer but bigger units. For this purpose, the algorithm optimally increases the capacity in

bus 741 to a larger unit and disconnects one of the DGs from bus 720.

Next, we show the impact of start date of the projects on the net profits of both

DG units and the distribution company. So far, we have assumed in the numerical studies

that the DGs start generation right after their installation time has completed. Now we

consider four cases when the start dates of the DG projects are postponed. In Case 1, all

units are installed in the first year and depending on the project installation time, they start

generation in the first or the second year. In Case 2 and 3, we assume that the installation of

the second unit is postponed one year and two year, respectively. We also consider another

case where the generation of the smallest unit is postponed for two years. We can see in Fig.

6.4 that the net profit of the DG units decrease as they delay the start time of the project ,

and with the same offered prices, considering the time value of cash flows and relatively high

interest rate, the projects will not remain profitable. However, postponing the DG projects

start time may serve the DISCO in terms of net profit, depending on the average purchase

price to be offered by the DG unit. We can see that the profit of DISCO from postponing

the start time of the largest DG unit decreases, while the profit rather increases when the

generation time of the smallest unit with a higher purchase price is delayed.

Finally, the optimum solution for the case that a portion of DISCO’s required
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Table 6.5: The optimal solution of dg sites and sizes with 800 kW bilateral contract and
3.5$ gas price .

DG Bus PDG (kW) Coffer ($/kWh) NPVDG

on-peak off-peak on-peak off-peak

708 800 650 0.065 0.060 27,786

741 400 350 0.0717 0.060 141

energy is procured through bilateral contracts is shown in Table 6.5. The capacity to be

procured through bilateral contract is 800 kW with the price of $0.065/kWh. We can see

that the NPVDISCO in this case is still higher than the case where all energy is procured

from the market. However, the total amount of DG’s generation capacity decreases in this

case as well as their associated profits since the DISCO has to obtain the power from the

network. The results on NPVDISCO as well as the summation of NPVDGi for all DGs with

and without bilateral contract is shown in Table 6.6. We also see that NPVDISCO decreases

in presence of bilateral contracts compared to the case with no such contracts, where more

energy is procured from DGs. In this case, although the bilateral price is less than market

average price, less power is procured from the DGs with an average price of less than $0.065.

Moreover, since the total power to procure from DGs has decreased, the DISCO has offered

higher prices in bus 741 in order to maintain the investment attractive, causing an increase

in the average price of energy procurement from DGs.

Table 6.6: Comparison of profits with and without bilateral contract.

Bilateral Contract NPVDISCO Sum(NPVDGi) NPVtotal

0 3,372,600$ 115,993$ 3,488,593$

800 kW 3,301,820$ 29,060$ 3,330,880$

6.4.2 Simulation Scenario II

The second scenario is defined by removing the network upgrade costs and voltage

profile limits from the optimization problem formulation such that the design objective

becomes limited to just finding the allocation that best suits DISCO with minimum power

procurement cost. Our intention to study Scenario II is to gain insights with respect to the
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prominent factor in choosing the optimal allocation. Thus, the results here complement

those already obtained for the case of Scenario I.

Table 6.7: DGs Optimal Sites, Generating Levels and FIT Prices in Each Period in Scenario
II without distribution investment costs.

DG Bus PDG (kW) CDG ($/kWh) NPVDG

on-peak off-peak on-peak off-peak

720 1000 1000 0.065 0.060 107,880

734 1000 800 0.065 0.060 29,218

The optimization results for the case of Scenario II are shown in Table 6.7. The

number of units has been decreased to two such that we can integrate more power generation

to be able to procure power with lower prices. Furthermore, by increasing the generation

level of unit-2, the DG has been moved upward to prevent the flow back of current. We

can see that the DISCO utilizes the DGs in the off-peak period despite the fact that the

average market price in this period is lower than the MPR. Note that, the increase in the

generation levels are indeed required in order to decrease the on-peak price of DGs such

that we can maintain NPV values positive. In other words, since a DG unit with on-peak

period generation cannot maintain economical with $0.065/kWh; the DISCO should also

procure the power from DGs in off-peak period with a loss of about $0.005/kWh so that

it can purchase the power in the on-peak period with a profit about $0.0237/kWh. In this

way, DISCO procures more overall power at less overall price.

The results in this section show that apart from the capacity release benefits that

DISCO may have from utilizing DGs, a proper choice of DG size and offered price can

lead to increased benefits for DISCO in procuring the energy. This factor motivates the

DISCO to merge the DG units into bigger sizes to make it possible for lower prices for

energy procurements. However, network constraints and network upgrade costs motivate

the DISCO to distribute the DG units. The combination of these competing factors leads to

an optimal trade-off between the size and offered price which is achieved using the proposed

optimization-based algorithm.
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6.5 Conclusion

In this chapter, a novel optimization-based approach is presented to determine the

best sites, generation levels in different periods of time, and the Feed-in-Tariff incentives in

distributed generation systems. The design goal is to maximize the DISCO’s profit while

maintaining investment attractive for each individual DG owner. A detailed economical

model was proposed that takes into account different factors related to the DISCO’s and

DGs’ profits, including gas price and the total MW of bilateral contracts. A differential

evolution algorithm is proposed to effectively solve the formulated optimization problem.

The performance of algorithm is verified in various cases. Simulation results show that

despite the lower value of average market price in off-peak period, if the DG sites, sizes, and

prices are allocated optimally, the DISCO can utilize and coordinate the DGs to gain more

profit compared with purchasing the power only from the grid, while the DGs can assure

positive profits and attractive investments.

The results in this chapter can be extended in several directions. First, given the

observation that some factors, such as gas price, may change the optimal solution for DG

sizes and offered prices, the models can be adjusted to incorporate the presence of such risks

to maximize the profit with minimum risk. Second, the DG units considered in this chapter

of committed types. However, it is likely that a DG unit has a force outage; therefore,

the costs that DISCO might incur from loss of load in these conditions need to be further

investigated. Finally, integrating renewable DGs in the proposed optimization framework

remains as an interesting open problem.

6.6 List of Symbols, Chapter 6

nDG Number of DG units

nstart Year of starting generation in DG contract

nend Year of ending generation in DG contract

nperiods Number peak periods in DG contract

PV BDGi Present value benefit for ith DG

PV CDGi Present value cost for ith DG
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H(k) Total number of hours in kth peak period

PDGi(k) Active power of ith DG in kth period (kW)

SDGi(k) Apparent power of ith DG in kth period (kVA)

PFnominal Nominal power factor of ith DG

Pload(j, k) Load in kth period of j th year (kW)

Pnet(j, k) Power procured in kth period of j th year (kW)

Coffer(i, k) Tariff rate for ith DG in kth period (kWh)

Ccapital DG capital investment cost ($/kW)

Cfuel DG fuel cost ($/kWh)

CO&M DG operation & maintenance cost ($/kWh)

Cmarket Wholesale market price ($/kWh)

Cretail Price rate for retail customers ($/kWh)

if Nominal interest rate

PEL Project’s economic life

λi Installation cost coefficient of ith DG.

TDG Classified type of DG

IDG Installed capacity of DG (kVA)

PG Total injected active power at a node (kW)

QG Total injected reactive power at a node (kW)

PD Active power demand at a node (kW)

QD Reactive power demand at a node (kW)

Vi Voltage magnitude of ith bus
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δi Voltage angle of ith bus

KV Penalty for violating voltage tolerance

KS Penalty for violating transmission capacity

xn,m nth member vector of mth generation

vn,m nth mutant vector of mth generation

Cr Cross over probability ratio

ζ Differential variation control parameter
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Chapter 7

Challenges and Opportunities in

Large-Scale Deployment of

Automated Energy Consumption

Scheduling Systems in Smart

Grids

Recent studies have shown that the lack of knowledge among users on how to re-

spond to time-varying prices and the lack of effective home automation systems are two

major barriers for fully utilizing the advantages of real-time pricing. Therefore, there has

been a growing interest over the past few years towards developing automated energy con-

sumption scheduling (ECS) devices to constantly monitor the hourly prices and schedule

the operation of users’ controllable load to minimize their energy expenditure. While the

prior results in using ECS devices are promising, all prior work are limited to small-scale

deployment of ECS devices. For example, in most cases, the users that are equipped with

the ECS devices are assumed to be part of a microgrid or a feeder connected to a sub-station.

In this chapter, we rather investigate large-scale deployment of ECS devices in a power grid

with several buses and generators. The price of electricity at each bus is set according to the

locational marginal price (LMP) at that bus. We show that a key challenge in large-scale

deployment of ECS devices is load synchronization. However, we propose to use a moving
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average smoothing mechanism for LMPs that can fix the load synchronization problem and

stabilize the system. Furthermore, we show that the proposed large-scale ECS system has

a close to optimal performance in terms of reducing peak-to-average-ratio in load demand,

minimizing the total power generation cost, and lowering users’ electricity bills.

7.1 Introduction

Real-time and time-of-use electricity pricing models can potentially lead to sev-

eral economic and environmental advantages compared to the current commonly used flat

rates. In particular, they can provide power consumers with the opportunity to reduce their

electricity expenditure by responding to pricing that varies at different times of day and is

higher at peak load hours [138]. Furthermore, they can help utilities and independent sys-

tem operators to reduce the peak-to-average-ratio (PAR) in aggregate load demand which

can lead to minimizing the need for building new power generation capacities [139].

Despite several advantages that real-time, time-of-use, and other non-flat pricing

models can offer, recent studies have shown that the lack of knowledge among users about

how to respond to time-varying prices and the lack of effective home automation systems are

two major barriers for fully utilizing the benefits of non-flat electricity pricing tariffs [140,

141]. In fact, most of the current residential load control activities are operated manually.

This makes it difficult for users to optimally schedule the operation of their appliances in

response to the hourly updated pricing information they may receive from the utilities in

a non-flat pricing program. For example, the experience of the real-time pricing program

in Chicago, IL has shown that although the price values were available via telephone and

the Internet, only rarely did households actively check prices as it was difficult for the

participants to constantly monitor the hourly price values to respond properly [142].

To tackle the problems with manual load control, there has been a growing interest

recently towards using automated energy consumption scheduling (ECS) device [143–152],

similar to the one shown in Fig. 7.1. In this setup, each user is equipped with an ECS devices,

e.g., in its smart meter, which is assumed to be connected to a smart power distribution

system with a two-way digital communication capability through computer networking [153,

154]. Based on the updated pricing signals that the ECS device receives from the utility

through the available communications infrastructure, and also given the users’ personal

energy needs, the ECS device optimally schedules the energy consumption for the users’
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Figure 7.1: An automated energy consumption scheduling device in a smart meter. The
prices are obtained through a communications infrastructure.

controllable load such that it can minimize the users’ daily or monthly electricity expenses.

The use of ECS devices is recommended not only for residential consumers [143] but also

for industrial consumers [155]. Furthermore, there have been companies that have already

started offering commercial ECS devices for home automation products, e.g., see [156].

While the prior results in using automated ECS devices in smart grids have been

very promising, all prior work along this line of research have been limited to small-scale

deployment of the ECS devices. For example, in most cases, the users that are equipped

with the ECS devices are assumed to be part of a microgrid or part of a small feeder in

a distribution line that is connected to a single generator or a sub-station. Therefore, in

this chapter, we investigate large-scale deployment of ECS devices in power grid such as the

one shows in Fig. 7.2. The price of electricity at each bus in this system is assumed to be

set according to the locational marginal price (LMP) at that bus. Note that, most existing

deregulated electricity markets in the United States currently use LMPs to settle various

bulk sale and ancillary service transactions [157]. Although setting retail prices according to

LMPs is still not a common practice in most regions, it is recently shown that by reflecting

the prices in the wholesale market to the consumer side, users will be better encouraged to

consume electricity more efficiently [158].

We will show that a key challenge in large-scale deployment of ECS devices is

load synchronization. This problem can be explained as follows. Every time the electricity

prices, i.e., the LMPs, are set, the ECS devices move their load from high-price hours to low-

price hours in an attempt to minimize their energy expenditure. However, this will in turn
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overload low-price hours, making them high-price hours in the next iteration, and underload

high-price hours, making them low-price hours in the next iteration. This causes constant

fluctuations in the electricity prices and makes the system unstable. To tackle this problem,

we propose to use a moving average smoothing mechanism for LMPs. Our simulation results

show that the proposed approach works well and can assure system stability. Furthermore,

we show that the proposed large-scale deployment of ECS devices has a very close to optimal

performance in terms of reducing PAR in the aggregate load demand, minimizing the total

power generation cost in the system, and reducing each user’s individual electricity bill

payments.

7.2 System Model

Consider a power grid system, such as the IEEE 24-bus system in Fig. 7.2(a). Let

B, with cardinality B, denote the set of buses in the system. For each bus i ∈ B, let Ni,
with cardinality Ni, denote the set of users connected to bus i. Clearly, in bus i is not a load

bus, then we have Ni = 0. For each load bus, we assume that all users are equipped with an

ECS device. An example for the case of bus 8 with N8 users is shown in Fig. 7.2(b). The

price of electricity at each load bus is set according to the locational marginal price at that

bus. Let LMP hi denote the locational marginal price at load bus i at hour h. Consider an

H > 1 hours ahead energy consumption scheduling problem for a user n ∈ Ni connected to

bus i. Note that for day-ahead planning, we have H = 24. Given the following H × 1 price

vector

LMPi = [LMP 1
i , LMP 2

i , . . . , LMPHi ], (7.1)

the ECS device in user n’s smart meter is responsible for scheduling the operation of all user

n’s controllable load such that user n’s daily energy expenditure is minimized.

For each user n, let An denote the set of all appliances that have controllable /

shiftable load. Examples for such appliances may include washer, dryer, dishwasher, and

plug-in hybrid electric vehicles. For each appliance a ∈ An, we define an energy consumption

scheduling vector as

xn,a = [x1n,a, x
2
n,a, . . . , x

H
n,a]. (7.2)

Let En,a denote the total energy needed to finish the operation of appliance a. For example,
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Figure 7.2: An example for large-scale deployment of automated ECS devices: (a) An IEEE
24-bus power system with 16 load buses. (b) The set ofN8 users, equipped with ECS devices,
that are connected to bus 8. The retail price of electricity at each bus is set according to
the LMP at that bus.

En,a = 16 kWh for a sedan electric car with 40 miles daily driving range [138]. Furthermore,

for each appliance a, the operation needs to be scheduled within a time frame [αn,a, βn,a],

where 1 ≤ αn,a < βn,a ≤ H. These parameters are set by user n based on his energy

consumption needs for each appliance. For example, user n may set αn,a = 1:00 PM and

βn,a = 5:00 PM for the operation of a dishwasher after lunch table and before diner. Of

course, the time duration βn,a − αn,a must be larger than or equal to the time needed to

finish the normal operation of appliance a. To assure on time operation of appliances, it is
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required that user n’s ECS device fulfills the following constraints

βn,a∑
h=αn,a

xhn,a = En,a. (7.3)

Furthermore, it is required that

xhn,a = 0, ∀ h ∈ H\Hn,a, (7.4)

where

H = {1, . . . ,H}, and Hn,a = {αn,a, . . . , βn,a}. (7.5)

Finally, we note that some appliances may have some minimum standby power γmin
n,a and/or

some maximum supported power γmax
n,a . In that case, it is also required that

γmin
n,a ≤ xhn,a ≤ γmax

n,a , ∀ h ∈ Hn,a. (7.6)

For notational simplicity, for each user n, we introduce a new vector xn, which is formed by

stacking up energy consumption scheduling vectors xn,a for all appliances a ∈ An. In this

regard, we can define a feasible energy consumption scheduling set corresponding to user n

as follows:

Xn = {xn |
∑βn,a

h=αn,a
xhn,a = En,a,

xhn,a = 0, ∀ h ∈ H\Hn,a,

γmin
n,a ≤ xhn,a ≤ γmax

n,a , ∀ h ∈ Hn,a} .

(7.7)

An energy consumption schedule calculated by the ECS unit in user n’s smart meter is valid

only if we have xn ∈ Xn.
For each user n ∈ Ni at bus i, the total electricity bill within the scheduling horizon

of interest is calculated as

H∑
h=1

LMP hi ×

(
Lhn +

∑
a∈A

xhn,a

)
, (7.8)

where Lhn denotes the total load of user n at hour h due to his appliances that have non-

controllable load. Examples for such appliances may include lights, refrigerator, television

and other entertainment devices. Note that the operation of appliances with non-controllable

load is not scheduled by ECS devices. To minimize user n’s energy expenditure, the ECS
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Figure 7.3: Interactions between the grid operator and the ECS devices. (a) The electricity
prices are set based on the original LMPs. (b) The electricity prices are set based on a
smoothed version of LMPs in order to enforce stability.

device in user n’s smart meter should solve the following optimization problem across ap-

pliances that have controllable load:

minimize
xn∈Xn

H∑
h=1

LMP hi ×

(
Lhn +

∑
a∈A

xhn,a

)
. (7.9)

Note that the above optimization problem can capture the behavior of each user’s ECS

device. Next, we investigate the interactions between the ECS devices and the grid operator

when the ECS devices are deployed in a large scale.

7.3 Operator-User Interactions

If the ECS devices are deployed only in small scales, e.g., in a microgrid or in a

single distribution feeder as in [143–152], the operation of ECS devices may not have any

impact on the LMPs. However, if the ECS devices are deployed in a larger scale and at

several buses, such as in the power system in Fig. 7.2, then the operation of the ECS devices

may have a significant impact on the LMPs at different buses as we explain next.

Let Xh
i denote the total load at bus i at hour h. Once all ECS devices set the load

by solving problem (7.9), we have

Xh
i =

∑
n∈Ni

(
Lhn +

∑
a∈An

xhn,a

)
. (7.10)

Using the standard power system dispatch control model in [159], at each hour h, the grid
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operator can solve the following optimization problem to calculate the LMPs at each bus:

minimize
Gh

i , ∀i

B∑
i=1

Ci

(
Ghi

)
(7.11a)

subject to
B∑
i=1

Ghi −
B∑
i=1

Xh
i = 0 (7.11b)

B∑
i=1

fk,i × (Ghi −Xh
i ) ≤ Fmax

k , ∀ k ∈ K (7.11c)

Gmin
i ≤ Ghi ≤ Gmax

i ∀ i ∈ B, (7.11d)

where Gi denotes the amount of dispatched power generation at generator bus i at hour h,

Ci(·) denotes the cost function for the generator at generator bus i, K denotes the set of all

transmission lines in the system, fk,i denotes the [160] injection shift factor to transmission

line k from bus i, and Fmax
k denotes the transmission limit of transmission line k. Finally,

Gmin
i and Gmax

i denote the minimum and maximum generation range for the generator at

bus i. Clearly, if bus i is not a generation bus, then we have Gmin
i = Gmax

i = 0. Assuming

that power loss is negligible on transmission lines, the formulation of LMP at bus i can be

written as [161,162]:

LMP hi = λ+
K∑
k=1

fk,i × µk, (7.12)

where K denotes the number of transmission lines, i.e., the cardinality of set K, λ denotes

the Lagrange multiplier corresponding to the energy balance constraint in (7.15b), and µk
denotes the Lagrange multiplier corresponding to the line capacity constraint in (7.15d) for

transmission line k ∈ K.

7.3.1 Decentralized Model

The interactions between the grid operator and ECS devices can be analyzed under

the real-time pricing framework in [163]. Given the price values, i.e., vector LMPi at each

bus i, the ECS devices schedule the load based on the optimal solution of problem (7.9). In

turn, if the updated load profiles are plugged in optimization problem (7.11), the resulted

LMPs can become different from the original values. This is shown in Fig. 7.3(a). Note

that, the message exchanges are supported through the two-way digital communications

capability which is expected to be available in the future smart grid [138]. The key question
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Figure 7.4: The fluctuation in total power generation cost in the system when the electricity
prices are set based on the original LMPs as in Fig. 7.3(a).

is: Do the back and forth iterations between the grid operator and the ECS devices converge

to any fixed point?

To answer this question, we perform a simulation based on the power grid topology

in Fig. 7.2. The detailed simulation setup is explained in Section 7.4. As shown in Fig.

7.4, the objective value of the generation dispatch problem (7.11), i.e., the total cost power

generation in the system, does not converge. The fluctuations in this figure can be explained

as follows. Every time the prices are set, the ECS devices move their load from high-price

hours to low-price hours. This will in turn overload low-price hours, making them high-price

hours in the next iteration, and underload high-price hours, making them low-price hours

in the next iteration. This problem is referred to as load synchronization [143]. While load

synchronization does not have a major impact on electricity prices when the ECS devices

are deployed only in a small scale, large-scale deployment of the ECS devices can cause

significant instability in the price signals as well as the aggregate load profiles, as it is

evident from the simulation results in Fig. 7.4.

Next, we propose a moving average smoothing mechanism for LMPs to resolve

the load synchronization problem. Let LMPi[t] denote the locational marginal price vector

at bus i that is obtained by solving optimization problem (7.11) at iteration t ≥ 1. We

introduce a smoothed version of LMPi at iteration t, denoted by ¯LMPi[t], to be calculated

as follows:
¯LMPi[t+ 1] = (1− ηt) ¯LMPi[t] + ηk LMPi[t], (7.13)
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Figure 7.5: The total power generation cost in the system when the electricity prices are set
based on the smoothed version of LMPs as in Fig. 7.3(b).

where 0 ≤ ηt ≤ 1 is an iteration-dependent step-size. Choosing a diminishing step-size can

particularly assure convergence to a fixed point. Therefore, we select ηt as

ηt =
t0

t0 + t− 1
, (7.14)

where t0 ≥ 1 is a fix parameter. As iteration number t → ∞, step-size ηt → 0. In the new

model, the interactions between the grid operator and the ECS device becomes as in Fig.

7.3(b). The simulation results in this case are also shown in Fig. 7.5. Note that, once the

price signals sent to the ECS devices converge to a fixed point, the load profiles will also

stop changing and the whole system reaches an equilibrium.

7.3.2 Centralized Model

Before we conclude this section, it is worth emphasizing that the interaction be-

tween the grid operator and the ECS devices shown in Fig. 7.3 is due to the fact that the

utility / grid operator does not usually have any centralized control over the operation of

users’ personal appliances. In fact, for each user, the ECS device in his smart meter does

not follow the utilities commands. Rather it solely responds to the price signals sent by

utilities and aims to minimize the energy expenditure specifically for its corresponding user.

However, if the grid operator does have direct control over the operation of ECS devices,

e.g., as in a direct load control (DLC) framework [164], then the interactions between the

grid operator and the ECS devices would no longer be based on Fig. 7.3. Instead, the oper-

ator would solve the following global optimization problem and it would send the obtained
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optimal energy schedules as a command signal to each corresponding ECS device to enforce

optimal energy consumption scheduling:

minimize
Gh

i , ∀i,

xn∈Xn,∀n

B∑
i=1

Ci

(
Ghi

)
(7.15a)

subject to
B∑
i=1

Ghi −
B∑
i=1

Xh
i = 0 (7.15b)

Xh
i =

∑
n∈Ni

(
Lhn +

∑
a∈An

xhn,a

)
(7.15c)

B∑
i=1

fk,i × (Ghi −Xh
i ) ≤ Fmax

k , ∀ k ∈ K (7.15d)

Gmin
i ≤ Ghi ≤ Gmax

i ∀ i ∈ B, (7.15e)

where Xh
i acts as an auxiliary variable. Recall that, in (7.11), Xh

i was a known constant.

The centralized design in (7.15) is not the focus of this chapter as it may not be practical as

users could be reluctant to relinquish full control of their load to utilities. Nevertheless, the

solution of optimization problem (7.15) can provide a benchmark to assess the performance

of our proposed distributed design in Section 7.3.1, when it comes to minimizing the total

cost of power generation in the system.

7.4 Performance Evaluation

To evaluate the proposed approach on an illustrative system, the IEEE 24-bus stan-

dard test system is selected [32]. This system has a total 2650 MW maximum consumption

in any hour. In order to alleviate the computation burden of the problem and to better see

the impact of energy consumption scheduling in the overall power system, the scale of the

users’ load is assumed to be relatively high, such as major industrial loads. The total load is

distributed among 100 users located at load buses. Each user has a fixed or uncontrollable

portion of consumption as well as some shiftable load as discussed in Sec. 7.2. We also

defined four specific tasks with known total consumption for each task that users will have

at least two or more of these tasks during the day.
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7.4.1 Peak Shaving

In order to develop a natural load profile, we assumed that users will select the

deadlines for their daily tasks, i.e. αn,a and βn,a randomly. However this selection follows

some normal distribution for each task, around some specific time period of the day, e.g.

one task might be concentrated at some time intervals during the evening. For the Base

case, with no ECS units installed, the users will start their consumption with the maximum

capacity for each task right after the start time, αn,a, until the task is done. This results in

the load curve shown in Fig. 7.6 with the PAR of 1.58.

In the distributed scheduling of the ECS units, The controllable portion of the

users consumption is shifted from the peak hours, leading to a more even load profile and

a reduced PAR. This is shown in Fig. 7.6 with the aggregate consumption curve for 50%

controllable load. The PAR in this case is 1.32.

We can also see that in the distributed mode, we reach to a very similar curve

to the load profile for centralized scheduling of the ECS units which is the best case the

grid can achieve with PAR of 1.23. Therefore, the proposed large-scale distributed ECS

deployment system can significantly reduce the peak-to-average ratio (PAR) in the aggregate

load demand.

7.4.2 Reducing Total Power Generation Cost

We solved the problem to obtain the optimal schedule and minimum cost for dif-

ferent penetration levels of controllable load.i.e. different ratios of En,a to the total load of

each user. The fixed portion of the load,i.e. Lhn is assumed to have the same pattern of

the base case. The optimal cost of generation for different percentage of controllable load is

shown in Fig.7.7. From this figure, we can say that although the proposed large-scale dis-

tributed ECS deployment system cannot achieve the same performance as a in benchmark

centralized energy consumption scheduling scenario, its performance is close to optimal and

significantly better than the case with no ECS deployment, as far as minimizing the total

power generation cost in the system is concerned.

7.4.3 Benefit to Users

The average bill of the users for the whole day is shown in Fig.7.8 at some different

buses when 50% of the load is shiftable. It is evident that, users will individually benefit
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Figure 7.6: The daily load profile for various ECS deployment scenarios.

from participating in the proposed large-scale distributed ECS deployment system, beside

their contribution in reducing the peak to average ratio of the system load.

7.4.4 Collected Revenue by Utility

Fig.7.9 illustrates the collected revenues from the users based on the smoothed

LMPs sent to the users, in different levels of controllable load, as well as the Intended rev-

enues based on actual LMMs of the unit commitment problem. The revenues are calculated

for the whole day. Here, although we change the prices from original LMPs to smoothed

LMPs, the intended revenue and the collected revenue are very close and sometimes the

collected revenue is even slightly higher than the intended revenue. Therefore, the proposed

large-scale distributed ECS deployment system is beneficial to utilities.

7.5 Conclusion and Future Work

This chapter represents the first step towards understanding the challenges and

opportunities in large-scale deployment of automated energy consumption scheduling sys-

tems in smart grids. To gain insights, we considered an IEEE 24 bus reliability test system

with nine generator buses and 16 load buses. We assumed that all users connected to each

load bus are equipped with an ECS device to obtain the updated price information from the

smart grid and accordingly schedule the operation of the user’s controllable load to minimize
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Figure 7.7: The total power generation cost in the system versus the portion of controllable
load for various ECS deployment scenarios.

the user’s daily electricity bill. We showed that unlike the case when only a few users are

equipped with ECS devices, the large-scale deployment of ECS devices can directly impact

the electricity prices. In particular, the phenomenon of load synchronization can cause fluc-

tuations and instability in locational marginal prices at different buses. We proposed to fix

this problem using a moving average smoothing mechanism for LMPs. We showed that once

this mechanism is applied, the interactions between the grid operator and the ECS devices

can be coordinated such that a very close to optimal performance is achieved in terms of

reducing peak-to-average-ratio in load demand, minimizing the total power generation cost

in the system, and lowering all users’ electricity bill payments.

The results in this chapter can be extended in several directions. First, in addition

to using a smoothing mechanism, new pricing models can be examined to enforce stability.

Second, larger grid topologies as well as the presence of intermittent renewable power gen-

erators can be considered. Finally, while we assume that users are price taker and ignore

the impact of their load profiles on LMPs, one can extend the results to the case when users

are price anticipator. The interactions among users in this case can be studied, e.g., using

game theory.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis we investigated various optimization and modeling techniques for the

operation and planning of the energy storage systems at the transmission and distribution

grid. We also designed planning and pricing schemes to facilitate the distributed genera-

tion and automated demand response integration in the context of smart grids. In the first

part of the thesis, we obtain novel mathematical methodologies and algorithms to tractably

formulate and solve the independent energy storage unit problem of bidding and operating

in the energy and ancillary service markets. In the second part of the thesis, we propose

stochastic optimization and modelling formulations for energy storage operation and plan-

ning to enable the integration of renewable generation and EV loads at the distribution

grids. In the third part of the thesis, we develop an optimization framework to integrate

incentivized distributed generation with minimum cost for the utility operators and inves-

tigate the impact of large penetration of automated demand response on the operation of

the system. Next, we will summarize the observations and conclusions driven in each part

of this thesis.

8.1.1 Conclusions at Part I

In Chapter 2, a novel approach is proposed to optimally operate energy storage

systems that are owned by independent private investors. In particular, we proposed an

optimal bidding mechanism for storage units to offer both energy and reserve in the day-

135



ahead and the hour-ahead markets when significant fluctuation exists in the market prices

due to high penetration of wind and intermittent renewable energy resources. Our design

was based on formulating a stochastic programming framework to select different bidding

variables. We showed that the formulated optimization problem can be transformed into

convex optimization problems that are tractable and appropriate for implementation. We

showed that accounting for the unpredictable feature of market prices due to wind power

fluctuations can improve the decisions made by large storage units, hence increasing their

profit. We also investigated the impact of various design parameters, such as the size and

location of the storage unit on increasing the profit.

In Chapter 3, we proposed a joint multi-temporal market optimization framework

for battery energy storage systems. We observed that the risk of stochastic revenues is

an important factor in driving the ESS to utilise or forfeit the real-time market revenues,

both in the day-ahead and real-time market. We showed that risk-constrained joint market

optimization can achieve more revenues compared to participation in risk-free market.

8.1.2 Conclusions at Part II

In Chapter 4, We developed a data set for a large 536 fleet of synthesized plug-in

electric vehicle data to be used in PHEV-related research in the filed of smart grid. The

generated data lines include the electric vehicle temporal and nodal charging loads, the

minute-by-minute state-of-charge traces based on four brands of dominant PHEVs in the

North American market, and the movement traces and parking analysis to identify the right

locations for charging stations. In the absence of a detailed measured data on large PHEV

fleets, this synthesized data set is available as a useful substitute in various smart grid studies

in presence of PHEVs, such as the distribution feeder analysis, protection, planning, and

optimal control as well as demand response. It can be useful also for a number of charging

station studies such as charging station sizing, placement, and operation. Moreover, it can

also serve for evaluating many novel V2G technologies and algorithms based on the time

duration of charging events.

In Chapter 5, a non-parametric chance-constrained optimization approach was pro-

posed for energy storage operation and planning in power distribution networks. The anal-

ysis was done by introducing new closed-form stochastic models for various key operational

parameters, with no restricting assumption on the probably distribution of random param-
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eters. Uncertainties from different sources of different nature, such as DGs and EVs, were

considered. Several case studies confirmed the advantages of the proposed design method

compared to the conventional deterministic and parametric (based on Gaussian approxima-

tion) chance-constrained optimization frameworks. In the future, the developed closed-form

stochastic models can be used in other non-ESS distribution-level planning problems.

8.1.3 Conclusions at Part III

In Chapter 6, a novel optimization-based approach is presented to determine the

best sites, generation levels in different periods of time, and the Feed-in-Tariff incentives in

distributed generation systems. The design goal is to maximize the DISCO’s profit while

maintaining investments attractive for each individual DG owner. A detailed economic

model was proposed that takes into account different factors related to the DISCO’s and

DGs’ profits, including gas price and the total MW of bilateral contracts. A differential

evolution algorithm is proposed to effectively solve the formulated optimization problem.

The performance of algorithm is verified in various cases. Simulation results show that

despite the lower value of average market price in off-peak period, if the DG sites, sizes, and

prices are allocated optimally, the DISCO can utilize and coordinate the DGs to gain more

profit compared with purchasing the power only from the grid, while the DGs can assure

positive profits and attractive investments.

In chapter 7, some challenges in large-scale deployment of automated energy con-

sumption scheduling systems in smart grids are investigated. To gain insights, we considered

an IEEE 24 bus reliability test system with nine generator buses and 16 load buses. We

assumed that all users connected to each load bus are equipped with an ECS device to

obtain the updated price information from the smart grid and accordingly schedule the op-

eration of the user’s controllable load to minimize the user’s daily electricity bill. We showed

that unlike the case when only a few users are equipped with ECS devices, the large-scale

deployment of ECS devices can directly impact the electricity prices. In particular, the

phenomenon of load synchronization can cause fluctuations and instability in locational

marginal prices at different buses. We proposed to fix this problem using a moving aver-

age smoothing mechanism for LMPs. We showed that once this mechanism is applied, the

interactions between the grid operator and the ECS devices can be coordinated such that

a very close to optimal performance is achieved in terms of reducing peak-to-average-ratio
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in load demand, minimizing the total power generation cost in the system, and lowering all

users’ electricity bill payments.

8.2 Future Works

The future works for the research performed at this thesis can be envisioned in

several directions. The first direction of future work suggested for this research, is on the

operation and bidding of large energy storage systems in the electric markets. Several

improvements can be imagined for both energy storage models as well as the assumptions

regarding the various services offered by energy storage systems; for example regulation

service, operating reserve and so on. The operation and bidding of energy storage system

when they are large enough to impact the market price or a group of coordinated storage

units is also an interesting problem in this regard, Although some recent works have already

proposed new algorithms and games for this problem, e.g. see in [165, 166]. The stochastic

models incorporated in the stochastic optimization can be improved in this problem as well.

The second direction of future works is with respect to the second part of this

thesis. Some of the limitations of our analysis in Chapter 4 include the estimation errors in

GPS signals, the direct line distance calculation errors, and not knowing the true distance

and time duration thresholds to define parking events. The characteristics considered for

PHEVs are based on nominal values which are posted by PHEV manufacturers. The actual

values may differ from one car to another even for the same PHEV brands. The distribution

estimation methods for other types of random variables presented in this chapter such as

solar PV-DGs and residential consumer loads can also be enhanced. In Chapter 5, we

may extend our stochastic models to account for more system constraints in the stochastic

optimization problem and also to account for the types of constraints that require random

variables and decision variables to be tied together. We may also compare our results with

some other types of stochastic optimization such as robust optimization and multi-stage

optimization. The impact of partial correlations on the accuracy of designs can also be

investigated.

In the third direction for the future research with respect to Part III of this thesis,

we can also envision some future works. The results in chapter 6 can be extended in several

directions. First, given the observation that some factors, such as gas price, may change the

optimal solution for DG sizes and offered prices, the models can be adjusted to incorporate
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the presence of such risks to maximize the profit with minimum risk. Second, the DG units

considered in this chapter of committed types. However, it is likely that a DG unit has a force

outage; therefore, the costs that DISCO might incur from loss of load in these conditions need

to be further investigated. Finally, integrating renewable DGs in the proposed optimization

framework remains as an interesting open problem. The results in chapter 7 can be extended

as well. First, in addition to using a smoothing mechanism, new pricing models can be

examined to enforce stability. Second, larger grid topologies as well as the presence of

intermittent renewable power generators can be considered. Finally, while we assume that

users are price taker and ignore the impact of their load profiles on LMPs, one can extend

the results to the case when users are price anticipator. The interactions among users in

this case can be studied, e.g., using game theory.
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