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ABSTRACT 

 

Modeling the Interconnected Effects of Fuel Treatments on Forests, Water, and Fire 

 

by 

 

William Douglas Burke 

 

Fuel treatments, the reduction of forest biomass through mechanical removal or burning, 

are a flexible forest management tool used to address a variety of human and environmental 

concerns. Treatments can be used to reduce high severity fire, improve forest productivity 

and drought resilience, and increase streamflow. However, the effects of fuel treatments can 

be inconsistent and uncertain and are sensitive to both the treatment and the biophysical 

environment in which the treatment is done, and these uncertainties may be exacerbated by 

climate change. Climate change is already increasing wildfire size and frequency, drought, 

and strain on water supply in much of the Western US. Given that fuel treatments are likely 

to play a key role in current and future forest management, it is critical that we understand 

the full range of fuel treatment interactions with climate and effects on forests, water, and 

fire. Existing ecohydrologic models are limited in their ability to model fuel treatment effects 

because they do not account for both the within forest stand ecohydrologic effects of changes 

in forest structure and the watershed scale variation in radiation, water availability, and other 

factors. The ability to simulate heterogenous vegetation at fine scales is key to implementing 

fuel treatments like forest thinning. To address this lack I adapted the Regional Hydro-
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Ecological Simulation System (RHESSYs) to include a new multiscale routing (MSR) 

approach, RHESSys-MSR. In addition to allowing modeling of within forest stand 

heterogeneity, MSR enables an additional layer of hydrologic routing, on top of existing 

topographic hillslope routing. The first chapter of this thesis describes the implementation of 

RHESSys-MSR and the second two apply this model to investigate fuel treatment effects in a 

changing climate. In the first application of these methods, I simulate a large set (13,500) of 

model scenarios varying treatment type, biophysical and climatic conditions for a Central 

California Sierra forest stand. Results show that plant accessible water storage capacity and 

vegetation type are dominant environmental controls on the effects of fuel treatments. More 

broadly I find that estimating the effect of fuel treatments based on only a single biophysical 

variable fails to capture the extent of possible treatment effects. In the second application, I 

investigate the interactions between projected climate change and fuel treatment area on the 

effects of treatments on forest health, fire risk, and streamflow at the watershed scale. Results 

show that projected climate change, has a nontrivial influence on net treatment effects, even 

compared to a maximized area treated. Fuel treatments and their effects are complex, 

spanning the environmental domains of forests, water, fire, and climate. Treatments are 

further complicated by the wide variety in the treatment itself, varying in how forest structure 

is affected, where it’s implemented, and how often. Model applications like RHESSys-MSR 

are critical to reducing this uncertainty and developing place-based estimates of fuel 

treatment effects that can support forest managers. The persistent challenges in understanding 

fuel treatments and their effects make any progress all the more essential, and as this research 

and more contributes to this understanding, we can make better and more informed forest 

management decisions into the future.  
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Introduction 

 Fuel treatments are an important forest management tool used to modify forest biomass 

for a range of purposes. Though fuel treatments can refer to a host of actions, most 

noteworthy are forest thinning and prescribed fire. Fuel treatments are varied in their 

implementation. Different types of thinning can be used to reduce fuels and modify forest 

structure in different ways. Fuel treatments of commonly used with the goal to reduce high 

severity fire risk, increase forest health and productivity, or increase streamflow (Agee and 

Skinner, 2005; Stephens et al., 2012). The magnitude, spatial, and temporal extent of fuel 

treatment effects varies widely and reflects variation in how fuel treatments are implemented 

and the environments where they are performed. The uncertainty surrounding fuel treatment 

effects is exacerbated by climate change which both increases the challenge in predicting 

treatment effects and worsens many of the very problems fuel treatments are used to address. 

As a result, there exists substantial uncertainty in predicting the full effects of a fuel 

treatment. This research aims to improve our understanding of fuel treatment effects on 

forests, water, and fire. Modeling methods, specifically process-based ecohydrologic 

modeling, is the means by which the following chapters investigate fuel treatment effects. 

Chapter 1, “Multiscale Routing: Integrating Tree-scale Water Exchanges into the Regional 

HydroEcologic Simulation System (RHESSys)” develops novel model methods needed to 

adequately simulate the implementation of fuel treatments and their effects on forests, water, 

and fire. Chapter 2, “Understanding how fuel treatments interact with climate and 

biophysical setting to affect fire, water, and forest health: a process-based modeling 

approach” leverages these novel modeling methods to investigate a wide range of fuel 

treatment scenarios. This research takes a broad approach to understanding how differences 
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in treatment and environment combine to alter treatment effects. Finally, Chapter 3, “How 

Climate Change and Treatment Size Impact Fuel Treatment Effects” further studies the 

effects of fuel treatments, with particular interest towards the role of treatment area and 

projected climate change. Together these chapters drive better understanding of how fuel 

treatments effect our environment. Each chapter attempts to answer in some form the 

following question: if fuel treatments are going to be a part of how we manage forests and 

fire in the future, what are the complete extent of fuel treatment interactions and effects on 

climate, forests, water, and fire? 
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Chapter 1: Multiscale Routing: Integrating Tree-scale Water Exchanges 

into the Regional HydroEcologic Simulation System (RHESSys) 

1. Introduction 

As the questions we ask of models become more complex and integrate across multiple 

spatial scales, simulating neighborhood-scale, non-topographic routing processes, which are 

not traditionally accounted for in watershed-scale ecohydrologic models, becomes more 

important (Blöschl and Sivapalan, 1995; Fan et al., 2019; Tague and Moritz, 2019). Models 

that simulate hillslope hydrology typically move water among model units based on the 

topographic gradients. However, a variety of natural or artificial processes can lead to water 

being ‘routed’ or distributed non-topographically, such as in urban areas where many small 

features route water among each other. In this study we highlight the role of non-topographic 

routing associated with lateral root access of shared soil water stores. Tree roots have the 

potential to reach laterally, far enough that they access the same water stores as neighboring 

vegetation (Schenk and Jackson, 2002). Answers to societally relevant questions related to 

land and climate change may depend on whether these exchanges occur. For example, how 

forest management impacts forest water stress and water yield may depend on the extent of 

lateral water exchange between cleared areas and remaining vegetation (Tague and Moritz, 

2019; Tsamir et al., 2019). The role of lateral roots in affecting access to water stores is 

difficult to capture in current models due to both the fine scale (<30m) of root exchanges, 

and the fact that the movement of water is not based on the same topographic routing logic 

that would normally be used when moving water among model units. In this paper we 

present a new modeling approach that combines non-topographic routing with existing 
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topographic hillslope routing within a single model. This dual routing system combines 

traditional ecohydrologic hillslope dynamics with additional exchanges of water at scales 

smaller than are typically modeled with explicit spatial units in distributed watershed-scale 

hydrologic models.  

The motivating case for non-topographic routing used in this paper is assessing the 

hydrologic impacts of forest thinning. Forest thinning (short of a complete clear cut) often 

results in spatially heterogeneous reductions in biomass, with some trees and shrubs cut 

down, and others untouched. This selection of trees can be based on size, age, or species to 

meet specific forest structure goals and the often limited resources available to accomplish 

forest thinning (Agee and Skinner, 2005). For example, thinning to reduce high severity fire 

risk can result in stands with increased gap spaces and reductions in certain types of 

vegetation like shrubs or small trees, while leaving other vegetation untouched (Stephens et 

al., 2012). The change in forest structure following thinning becomes problematic for 

estimating ecohydrologic variables (evaporation, transpiration, net primary productivity) 

using big leaf watershed ecohydrologic models where those fine-scale changes in vegetation 

structure are represented as averaged reductions in biomass across a single model unit. This 

failure to capture the fine-scale subgrid variability that emerges due to disturbance is an 

established challenge in hydrologic modeling (Blöschl and Sivapalan, 1995). The added 

hurdle we highlight here is the need to account for water being routed among these subgrid 

units.  

Lateral root access plays an important role in the dynamics of plant water relations and is 

of relevance here when considering tree access to shared water stores (Saksa et al., 2017; 

Tague and Moritz, 2019). Substantial variation in both vertical and lateral root length can be 
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explained by plant size (Schenk & Jackson, 2002). A common assumption is that lateral root 

spread is commensurate with canopy extent. Though this serves as a useful first-order 

approximation, actual lateral root spread depends on species along with the availability of 

water, nutrients, and incoming radiation (Klein et al., 2016). Lateral root spreads (one-sided) 

of trees average 11 meters with the 25th to 75th percentile range spanning 4 to 15 meters 

(Schenk and Jackson, 2002). These spreads create a tree ‘neighborhood’, within which there 

is the potential for competition for shared stores of water. Given that forest thinning is often a 

process spread across and within forests, and lateral exchanges based on root spread are most 

likely to occur across distances less than 30 meters, a non-spatial approach becomes needed 

to capture such distinctions at neighborhood scales (Schenk and Jackson, 2002).Lateral root 

spread is challenging to measure, moreover, root length and access is varied across and 

within species and impacted by a range of environmental conditions (Fan et al., 2017). The 

uncertainty and variability in lateral root spread makes it a process well suited to exploration 

through modeling. Forest thinning, at neighborhood-scales among trees that compete for 

shared water stores, presents a prime case for the importance of lateral root access, and the 

need to include this non-topographic routing in models. To explore the implications of lateral 

root-based transfers on aggregate watershed fluxes, it becomes important to represent distinct 

unthinned and thinned areas within our models.  

The broader challenge of characterizing and routing between heterogeneous units in earth 

systems and hydrologic modeling is not new (Blöschl and Sivapalan, 1995). Sub-grid 

heterogeneity can present a problem across earth systems as well as land surface modeling, 

and there are a range of approaches to modeling it, notably aggregation, analytical, and 

mosaic approaches (Giorgi and Avissar, 1997).  More recently work by Clark et al. (2015) 
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has reviewed and reframed some of these same issues, highlighting methods from simply 

increasing the resolution of the model (using a smaller cell size), to the use of effective 

parameters which aim to reflect the upscaled effect of the sub-grid heterogeneity. “Mosaic” 

approaches, in which grid cells  are built up of multiple homogenous sub-units or tiles, are 

frequently used as middle grounds between the accuracy of process characterization and the 

computational feasibility of running those simulations (Giorgi and Avissar, 1997). There is 

often a tension between the discretization of the landscape for the purposes of topographic 

routing and segmentation based on other factors like vegetation or the lack or presence of 

thinning (Clark et al., 2015). This is complicated further when the exchanges or ‘routing’ of 

interest is not driven by easily observable gradients (such as topographic or moisture 

gradients). In the case of processes like forest thinning, we are interested in the water 

exchanges that follow disturbance both within and among thinned and unthinned units. 

Within-unit routing occurs between remaining trees and gaps. At hillslope scales, however, 

topographic routing remains important – for example, downslope riparian areas may benefit 

from water released from upslope thinned units. The effects of these two types of routing can 

be in competition or compounding – topographic hillslope routing may reduce the effects of 

any non-topographic sub-grid routing by virtue of moving large amounts of water such that 

no vegetation is water limited. The inclusion of both routing approaches and their 

interactions is needed for a more complete understanding at hillslope to watershed scales.  

With the goal of incorporating non-topographic exchanges of water while still accounting 

for the topographic hillslope routing, here we propose a method termed multiscale routing 

(MSR). Two forms of routing occur in MSR – first hillslope routing moves water 

topographically among explicit spatial model units, followed by neighborhood routing which 
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moves water among co-located non-spatially explicit model subunits. The MSR method is 

designed to be both lightweight and flexible. It does not require further spatial data at greater 

resolutions beyond what is already being used for topographic routing between spatial units. 

By representing sub-grid scale heterogeneity as non-spatial areas, MSR also limits the added 

computational load. Using RHESSys and MSR we present a modeling test case to compare 

the standard and MSR versions of the model. We use a hillslope located within Providence 

creek in the southern Sierra Nevada to compare routing methods as well as the effects of 

varying parameterizations of the MSR method. We examine how the inclusion of MSR 

impacts model estimates of a range of ecophysiological variables including forest health, 

plant accessible soil water storage capacity (PAWSC), and streamflow across different 

temporal scales. 

We ask the following questions: 

 

Research Questions 

1. How does sub-grid vegetation characterization and the inclusion of non-topographic 

routing affect undisturbed (pre-treatment) forest health, productivity, and water use as 

compared to a traditional lumped approach? 

2. How does the routing method and parameterization directly affect the water 

transferred, stored, and subsequently the availability of that water for 

evapotranspiration and productivity? 

3. In comparing pre-treatment and post-treatment thinning impacts, what the effect of 

the routing method and parameterization on forest health, productivity, and water 
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use? In what contexts are these effects noteworthy and in which are they mild or 

difficult to distinguish? 

 

2. Methods 

2.1. Development and testing of the multiscale routing method 

The new MSR method incorporates neighborhood scale heterogeneity and non-

topographic routing into RHESSys. RHESSys is a process-based ecohydrologic model, 

which in addition to traditional hydrologic modeling, dynamically models plant growth, 

carbon, and nitrogen cycling, and has successfully been applied to simulate the effects of 

thinning and similar applications (Grant et al., 2013; Hanan et al., 2018; Saksa et al., 2017; 

Tague, 2009; Tsamir et al., 2019). RHESSys can run at variable resolutions, dependent on 

input data, and can be run across and aggregated up to watershed scopes where management 

decisions are made. RHESSys is a distributed model, and as such, routes subsurface water 

explicitly based on topographic gradients using a precomputed routing table, based on 

methods originally from the Distributed Hydrology Soil Vegetation Model (DHSVM; Tague 

and Band, 2004; Wigmosta et al., 1994). This explicit topographic routing has been used in 

many RHESSys applications across a range of conditions, including Son et al. (2016a) which 

includes the P301 site used in this research. 

2.2. Multiscale Routing General Architecture 

Standard RHESSys uses patches as the smallest spatial unit. RHESSys with multiscale 

routing, RHESSys-MSR, leverages the existing spatial units in RHESSys by placing multiple 

patches in the same location. These co-located patches are then treated as aspatial units, 
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occupying the same spatial extent. Together these co-located patches are termed a “patch 

family” and the constituent units are still referred to as “patches” (or more specifically as 

“aspatial patches”). Each patch is assigned an area, based on its percent cover of the total 

patch family area. The subdivision of the patch family area is tied to one of the key 

assumptions of the RHESSys-MSR architecture – that patch areas are well mixed within each 

patch family. Thus, while patches still have physically accurate total areas, those areas not 

spatially explicit within the patch family, Instead, we assume the area of each patch is 

distributed and mixed with other patches throughout the spatial extent of the patch family. 

Using the MSR method, we consider two categories of routing: “Local routing” is the 

fine-scale routing that occurs within the patch family and between the co-located aspatial 

patches. “Hillslope routing”, or topographic routing, is the standard routing in RHESSys 

which functions as expected based on topography and gradients in water height. Where 

previously topographic hillslope routing moved water between single patches, now it moves 

water between patch families. Hillslope routing is adapted to MSR based on the relative 

coverages of patches within the patch family e.g., a patch covering 50% of the family would 

receive 50% of the incoming water from upslope patch families.  

This general architecture is useful for a few reasons, patch families are a lightweight 

addition to RHESSys and are not true spatial units but rather a structure used to group the 

existing unit, patches. Because of this, the numerous existing ecological and hydrologic 

process sub-models are not changed. The second major advantage of the MSR architecture is 

its flexibility – the division of patch families into “aspatial” patches and the parameterization 

of transfers between them can be adapted to represent a wide range of scenarios. For 

example, water and nutrient transfers between hummocks and small-scale depressions in 
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many low relief settings or between vegetated patches and impervious areas within urban 

settings. Alternatively, transfers between patches within patch families may be “turned off” 

to allow simulation of spatially separate land cover heterogeneity (i.e., A patch family that is 

40% forest, 40% grass and 20% bare soil) as a means of increasing computational efficiency. 

Though this work will use multiscale routing to simulate the root access dynamics of 

neighboring vegetation, future work may use it as a means of accounting for roofs and 

sidewalks when routing urban water at small scales, or upscaling high-resolution remote 

sensing. While novel applications will require careful consideration about parameterization 

and logic of routing within a patch family, they will benefit from the foundation laid as a part 

of the MSR method in RHESSys. 

Multiscale routing features some key differences in the watershed setup, which are 

accounted for by use of the R-based RHESSysPreprocessing package. The setup also 

requires a new input file called a “rules file”, which contains the rules for the setup and 

composition of the patches within each patch family. This rules file describes the different 

types of patch families present in the watershed. Characterizing a patch family at minimum 

includes specifying the number of patches and the percent coverage for each patch. Each 

patch can be further differentiated by any number of variables normally defined by a 

RHESSys template file, including number of canopy strata, vegetation types, soils type, 

landscape characteristics, and changes to any patch or strata-level parameters. There can be 

as many rules, and thus patch family compositions as needed.  

2.2.1. Multiscale Routing – Root Access-Based Routing 

Local routing, the transfer of water among co-located patches, for this research aims to 

simulate the root access of neighboring trees to shared storage. Here we build on the concept 
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of the tree neighborhood and use ‘neighborhood’ as a defining scale at which we consider 

lateral root access to shared stores of water. We present a simulation of the role of lateral root 

access that aims to be both simple and straightforward, the central logic of which is described 

by Equation 1.  

Water movement between patches is governed by the water content of each patch relative 

to a mean patch family water content. All routing of water between patches is modulated by 

one of the two sharing coefficients, either shg (gaining) or shl (losing) and is normalized by 

area. Sharing coefficients are static through a simulation and can be set to reflect species 

differences in root spread and distribution or gap size distributions (determined by the 

preexisting forest structure, thinning method, and thinning intensity). Though in many cases 

a patch will gain and lose water equally, there are two sharing coefficients for cases where 

the water routing is unidirectional. Water in the rooting zone and unsaturated zone is 

transferred among patches within each patch family. When gaining water, only water up to 

field capacity is available to the root zone, with excess going to the unsaturated zone. Water 

is lost from the root zone down to the wilting point, with any additional remainder coming 

from the unsaturated zone. Water in the saturated zone can be included though is not in this 

work. If included, saturated water is routed separately and is redistributed based on the 

difference from the mean, and modified by conductivity, to prevent overly large amounts of 

water moving between patches. Nitrate and dissolved organic carbon (DOC) are transferred 

along with water following existing approaches in RHESSys for linking water and nutrient 

transport. 
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2.2.2. Multiscale Routing – Shading 

Shading between patches within a patch family is another addition introduced as a part of 

multiscale routing (Eq 2). Shading already exists within RHESSys in two primary places: (1) 

attenuation of the radiation as it filters through canopy layers (understory canopies are 

shaded by overstory canopies), and (2) as an effect of the horizon angle due to topographic 

shading on the duration and amount of incoming radiation. MSR adds an additional shading 

routing to account for shading by different patches within a patch family. This shading aims 

to model how large height differences among neighboring trees reduce the radiation for 

shorter trees. Shading is implemented by an adjustment to the existing east/west horizon for 

each patch, that is used to determine total daily incoming shortwave radiation. This change is 

based on the relative height of each patch compared to the remaining patch family. Shading 

is adjusted if the shading angle is greater than the existing horizon angle. Shading for a patch 

is based on the angle between ¾ overstory vegetation height and ¾ mean overstory 

vegetation height of the patch family without the patch of interest. The ¾ height is used to 

estimate the location of the bulk of the canopy where shading will be present. The distance 

used to estimate the shading angle is an average for the patch family (since each patch is not 

explicitly located), defined by the square root of the patch area divided by the square root of 

the tree density plus one. This method assumes an even distribution of trees across a patch 

and that we know the tree density in the patch. See the graphics below for greater detail. 

2.3. Setup and Initialization of P301 Test Case 

P301 is a small part subbasin of the Providence Creek Headwater Catchments, part of the 

Kings River Experimental Watersheds (KREW) and Southern Sierra Critical Zone 

Observatory (Hunsaker et al., 2012; O’Geen et al., 2018). The basin covers ~ 0.9 km2, and 
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importantly includes the Grant Grove meteorological station (Grant Grove, National Climate 

Data Center Station, Lat: 36.73603ºN, Lon: 118.96122ºW, elevation 2,005m. Mean annual 

temperature is 8ºC and mean annual precipitation is 1037 mm (highly variable from 635 mm 

to 2172 mm) (Bart et al., 2021). The watershed elevation spans from 1781m to 2104m and 

gets seasonal snowpack. The vegetation is largely mixed conifer (76-99%), with some 

chaparral and bare ground. Conifers include white fir, ponderosa pine, Jeffery pine, 

California black oak, sugar pine, and incense cedar (O’Geen et al., 2018; Safeeq and 

Hunsaker, 2016). Soils include Gerle-Cagwin and Shaver at depths of 76 to 203 cm (Bales et 

al., 2011) The P301 watershed has been used and run previously with RHESSys, which is 

both useful and necessary to benchmark the performance of the MSR method (Bart et al., 

2021; Son et al., 2016a). 

For our test case we set up a hillslope of the P301 basin for use with both standard 

RHESSys and RHESSys-MSR. While the model implementations are similar, they also 

reflect the inherent differences between a ‘lumped’ approach (standard RHESSys) and the 

RHESSys-MSR approach which distinguishes within-stand differences in vegetation. For 

RHESSys-MSR we use a single patch family rule for the entire hillslope, with four patches, 

the conceptual diagram of which is shown by Figure 1. The MSR patch family is composed 

of four total patches, two patches with a conifer overstory and a shrub understory (combined 

64% coverage), an uncovered shrub only patch (26% cover), and a bare earth patch (10% 

cover). The conifer coverage (64%) is based on canopy cover data from the California Forest 

Observatory (“California Forest Observatory,” 2019). The lumped standard RHESSys 

implementation uses the same percent cover data to set the patch level “canopy cover” 

parameter. Though this canopy cover parameterization is useful, in standard RHESSys this is 
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the extent to which that vegetation can be varied at the patch scale. By contrast the MSR 

patch family composition leverages the ability of RHESSys-MSR to characterize more than 

one type of vegetation cover in the same area. In this case in addition to the conifer overstory 

and shrub understory patches (of which there are two to implement thinning more accurately) 

there is a patch of uncovered shrub, which would otherwise not be possible to account for in 

standard RHESSys. This addition of vegetation types is one of the fundamental differences 

between the lumped standard RHESSys approach and the RHESSys-MSR approach, 

specifically in regards to how vegetation is represented within the model. 

RHESSys uses parameters to affect soil and vegetation behavior. Vegetation parameters 

control plant species characteristics, while soil parameters control the hydrologic properties 

of the soils. Parameters can be found via the RHESSys parameter database 

(https://github.com/RHESSys/ParamDB), directly from existing literature, or from previous 

RHESSys implementations. For the P301 watershed soil parameters have been calibrated 

previously by Son et al. (2016a) and so only required minor additional sensitivity analysis 

due to the addition of the MSR method. Vegetation parameters have also been previously 

established but changes due to the addition of multiscale routing warranted further sensitivity 

analysis. Sensitivity analysis of vegetation parameters was done specifically to achieve stable 

overstory and understory canopies that reflect reasonable total carbon estimates. A single set 

of vegetation parameters was found and used across all standard RHESSys and RHESSys-

MSR scenarios to ensure the model runs were similar. In addition to finding vegetation 

parameters, setting up RHESSys also involves “spinning up” the initial soil carbon and 

nitrogen stores. RHESSys was run initially for 200 years, until soil carbon and nitrogen 

reached steady states, and then after clearing, run for an additional 60 years for vegetation to 
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grow to appropriate ages/sizes. While all soil and vegetation parameters were used 

consistently across standard and MSR runs, all runs were spun up separately, allowing for 

divergence due to baseline differences in the watershed setups before the simulation period. 

2.4. Simulation & Analysis of P301 Test Case 

We compare standard RHESSys and RHESSys-MSR estimates of ecohydrologic 

variables under undisturbed and thinned scenarios. RHESSys was run for a single hillslope of 

P301 for using both the RHESSys and RHESSys-MSR versions. All runs were done using 

30-meter patch families, 17 in the case of standard RHESSys, 68 (4 patches for each patch 

family) in the case of RHESSys-MSR. To test the sensitivity of MSR runs to sharing 

coefficients an initial sensitivity analysis was done by varying coefficients from 0-1 by 0.1. 

The parameter space was found to be skewed with much greater sensitivity towards 0, and 

with the range from 0.3 to 1 being highly unsensitive. The final range of runs chosen based 

on this initial analysis include: 0, 0.1, 0.2, 0.3, 1, and the standard RHESSys comparison 

(shortened to MSR0, MSR01, MSR02, MSR03, MSR1, and STD). For simplicity and clarity 

both sharing coefficients (shg, shl) were varied simultaneously, and the sharing coefficient 

was changed for all patches in the simulation. Though this research doesn’t aim to specify 

what values of the sharing coefficients are “realistic”, we do want to highlight the sensitivity 

of ecohydrologic outputs to changes in sharing coefficients, and hopefully give a starting 

place for any further analysis.  

Using available climate data from the Grant Grove station, a simulation period from 1975 

to 2015 was run. Thinning was initiated in all simulations 5 years into the simulation (1980), 

allowing for comparison of pre and post thinning, as well as observing the full length of 

potential regrowth period. For both models (MSR and standard) the implementation of 
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thinning was structured to simulate a 40% reduction in overstory biomass. In standard 

RHESSys, a 40% reduction in carbon was done by a reduction in all aboveground carbon 

stores (leaves, stems), leaving effectively smaller trees. This is the same approach that would 

be used in big leaf models where types of carbon (e.g., leaves) are lumped below the grid 

scale. With RHESSys-MSR, the first of the two conifer and shrub patches (covering 38% of 

patch family area) was thinned completely. When considering only the patches with 

vegetation (see Figure 1) this constitutes 40% of the total coverage of the patch family. In 

both cases only the conifer overstory was thinned. 

Stand carbon, leaf area index, evapotranspiration, and gross primary productivity are the 

output variables selected to cover a broad range of ecohydrologic processes and reflect both 

the structure and behavior of vegetation. Stand carbon here refers to the combined carbon (in 

kg per m2) from roots, stems, and leaves. Output was done at a daily time step, but both daily 

and seasonal timescales were assessed. Analyses also include the multiscale transfers, the 

quantity of water transferred daily due to multiscale routing. Additional hydrologic-focused 

metrics include root and unsaturated zone storage, streamflow, snowpack, and total water in. 

Together these variables are used to paint a more complete picture of the hydrologic effects 

of multiscale transfers and the repercussions of those effects.  

3. Results 

Initialization and spinup of RHESSys with the MSR method led to substantial differences 

in starting carbon, LAI, evapotranspiration, and NPP, as compared to the standard version of 

RHESSys (Figure 3). There are noteworthy differences between standard and MSR methods 

across all four variables. Stand carbon (A) is noteworthy, both due to the median value from 

the standard RHESSys scenario falling in the middle of the MSR runs, and because it’s the 
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only case where the MSR0 scenario diverges noticeably from the other MSR scenarios. Stand 

carbon is also the only variable where the 25th to 75th percentiles are narrow enough to 

distinguish not only median values but also the ranges between the different MSR and 

standard simulations. For the remaining three variables – LAI, ET, and NPP – standard 

RHESSys leads to higher values, and the MSR runs are clustered closely with a slight 

gradient across the sharing coefficient values. This gradient is most visible in the case of LAI 

(B) where MSR1 has the lowest median LAI and as the sharing coefficient decreases, LAI 

increases.  

Central to this research is an understanding of the water transfers involved in multiscale 

routing. Figure 4 gives an in-depth view of these multiscale transfers, showing the total 

transfers for all patch families within the hillslope, for varied sharing coefficients, over a 

period of two years. The transfers metric shown here is a sum of the absolute values of all 

transfers, both gains and losses. The magnitude of the transfers is particularly noteworthy 

here, resulting in daily transfers regularly over 0.5 mm and peaking over 2 mm. These 

values, while slightly lower, are on the same order of magnitude as daily evapotranspiration 

(Figure 6c). The narrow time window here is to better see both the transfers occurring at a 

daily time-step, and the variation between sharing coefficients. The need for such a narrow 

time window is driven largely by the very high day-to-day variability multiscale transfers in 

the MSR1 scenario which regularly exceeds the range of all other sharing coefficients 

combined. Despite the difference in daily variability, MSR1 follows the same seasonal trends 

shown by both MSR03 and MSR02. MSR01 on the other hand routinely diverges from the 

larger trends of the other sharing coefficients. For both years shown, the MSR01 run is 

delayed by nearly a month in reaching the late summer/early fall peak compared to all other 
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runs. A small response is shown immediately following the implementation of thinning 

(marked by the vertical line). At the scale and scope shown, a two-year time window 

showing daily data for patch families across a single hillslope, the effect of varied sharing 

coefficients is notably larger than the effect of the thinning.  

The role of the sharing coefficients is clearly demonstrated when considering average 

daily transfers across the entire simulation period, shown in Figure 5. With sharing 

coefficients of 1, the trend in average daily transfers shows two clear peaks, the first falling 

in late spring around April, and coinciding with falling snowpack. The second peak occurs at 

the end of the water year in late summer around August. Though the second peak doesn’t 

align with a direct hydrologic driver, it does occur only slightly delayed from peak 

transpiration, the same point where water stress would be increasing as well. While all of the 

runs show some degree of peak in August, the April peak is reduced or even nonexistent with 

reductions in the sharing coefficients. An inflection point occurs between sharing coefficient 

values near or just above the 0.1 value, marking noteworthy behavioral differences. While 

there are variations between the larger coefficient values the result is largely a difference of 

degrees, with shifts in the magnitude of the April peak, and the timing of the August peak, 

the MSR01 run demonstrates substantially different behavior. In the MSR01 scenario the 

April peak is nonexistent, with the entire years trend building only to a single peak in 

September, and with a notably reduced magnitude. Conversely, the tail from the peak in the 

fall is longer with the lower sharing coefficient those transfers longer into the winter. The last 

major distinction between sharing coefficients shown by the average daily transfers is the 

increased variability shown in the snowmelt driven period but only in the MSR1 scenario, 

while any reduction in coefficient seems to mute that effect. 
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Figure 6 includes a broader view of ecohydrologic processes to better contextualize the 

relative behavior of the standard RHESSys and RHESSys-MSR scenarios, and the sensitivity 

of ecohydrologic estimates to variation in sharing coefficients. Storage, combined root zone 

and unsaturated zone, is one of the more notable areas of divergence between MSR and 

standard RHESSys runs. The standard scenario features a peak not found in the MSR runs, 

and conversely the standard runs have otherwise markedly lower storage, particularly in the 

post-thinning period. By comparison, though there is variation across MSR scenarios, with 

greater coefficient values having larger storage, the differences are generally small relative to 

difference between MSR and standard scenarios. Both ET and GPP feature minimal variation 

both between standard and MSR scenarios, and among MSR scenarios. In both cases the 

seasonal variation dwarfs any differences among scenarios, with the only noteworthy 

divergence among scenarios occurring at the summer peaks. In the case of ET, the standard 

and MSR0 scenarios peak higher than the other scenarios. Though the same behavior is 

present in GPP, at least in the first summer peak shown, the difference is marginal. 

The effects of thinning are assessed in the broader context comparison between standard 

RHESSys and MSR as well as sensitivity to variation in sharing coefficients (Figure 7). It’s 

important to note that pre- and post-thinning periods are taken from continuous model runs, 

and so reflect different climatic periods. This makes direct comparison of pre- to post-

thinning effects challenging, but the more important analysis remains the comparison 

between standard RHESSys and RHESSys-MSR. This difference in climate is shown with 

total water in (F). Only the MSR1 and MSR01 scenarios are included, to represent the extent 

of ecohydrologic responses to variations in MSR coefficients. Total transfers (A), as 

previously shown in Figure 4, indicate a clear divergence between MSR1 and MSR01, and 
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while thinning does shift the MSR1 peaks earlier somewhat, the variation between 

coefficients remains the dominant feature. GPP (B) is exceptional only in how similar the 

outputs across all scenarios are, with the only visible trend being a slight reduction in peak 

GPP in the post treatment period, though even that is a marginal difference. More substantial 

and dynamic differences are present in ET (C). There we see the standard scenario has a 

notably higher summer peak but also is the only scenario where there is a clear difference in 

the pre- and post-thinning trends, with the post-thinning ET peaking slightly higher and a 

month later. Streamflow (D) shows greater pre and post thinning differences, though given 

the changing water inputs (F), a substantial portion of these thinning impacts may be 

attributed to the influence of different climatic periods. Standard and MSR scenarios diverge 

in how streamflow shifts due to thinning, with the standard runs featuring a higher summer 

peak, but with no meaningful timing shift. The MSR scenarios by contrast show a decrease in 

peak summer streamflow following thinning but a shift ~1 month later. Snowpack (E) is 

unchanged in magnitude in the standard RHESSys scenario, and only shifts earlier due to 

thinning. By contrast, the MSR runs shift slightly earlier, but increase noticeably in 

magnitude. In all cases, the post-thinning period has snowpack both onset and decline earlier 

by a month or more. 

4. Discussion 

Understanding the ecohydrologic implications of fuel treatments is key for any future of 

forest management. This is especially true in the context of climate change which not only 

challenges our ability to anticipate vegetation behavior but brings to the fore sometimes 

competing demands on our forests. Management desires include increasing resilience of 

forests to fire and drought to limit the effects of climate change and wildfire, increasing 
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streamflow to aid water supply, and increasing carbon sequestration to mitigate the causes of 

climate change (Hanan et al., 2020; Stephens et al., 2013). To better account for not only the 

uncertainty of a changing climate, but also the varied effects that fuels treatments have on 

fire, water, and forests, we need modeling tools that adequately characterize those complex 

variables. These new tools need to not only be able to account for fuel treatment-driven 

within-stand changes to forest structure and the ecohydrologic effects that follow, but also be 

aggregated up to watershed scales where forest management decisions are made (Clark et al., 

2015; Fan et al., 2019). Multiscale routing serves to meet this need and works with the 

existing RHESSys model to simulate the neighborhood-scale non-topographic routing that 

occurs due to lateral root access, while still accounting for topographic hillslope routing and 

the range of hydrologic and ecophysiological processes RHESSys normally models.  

Multiscale routing is of potential use in a variety of scenarios, both including and beyond 

the use-case highlighted in this paper. RHESSys applications aiming to simulate within-stand 

scale (<30m), non-uniform disturbance are particularly suited to the use of MSR. In these 

cases, MSR is key to appropriately characterizing the disturbance, and accounting for the 

subsequent effects of that disturbance. Our initial application in this work focuses on thinning 

and the role of lateral root access to shared storage following that thinning. In addition to the 

inclusion of the within-stand routing between heterogeneous vegetation cover, the added 

ability to characterize disturbance at scales that would normally involve lumping and 

aggregation is valuable. In cases where improved characterization of vegetation types and 

structure is of importance, such as modeling with a focus on canopy structure and changes to 

those canopies, MSR adds valuable utility and precision. Simulation of fire effects is a salient 
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example of such a use, and MSR has been integrated into the RHESSys fire spread and 

effects models for exactly this purpose (Bart et al., 2020a; Kennedy et al., 2017). 

The need for more accurate characterization of heterogeneous vegetation at within-stand 

or neighborhood-scales, and the non-topographic routing that can occur among that 

vegetation, is not needed in all modeling contexts. RHESSys is particularly suited to the 

addition of the MSR architecture, while models that simulate a single stands or individuals 

will typically already explicitly capture the heterogeneity in vegetation cover and variable 

water access we highlight here. Conversely, models that simulate across large regions (e.g., 

100’s to 1000’s of square kilometers) will usually use spatial units that already encompass so 

much variability in vegetation that the additional distinction between thinned and unthinned 

vegetation and their subsequent exchanges of water is unlikely to be a meaningful source of 

uncertainty in context. The resulting models where MSR is both useful and applicable can be 

classified as ‘intermediate complexity stand models’ which simulate distributed 

ecohydrology across a watershed (10’s to 100’s of square kilometers). For the models where 

MSR is most appropriate, broadly classified as ‘intermediate complexity watershed models’, 

the addition of non-topographic routing to the existing distributed topographic hillslope 

routing can be critical – as is the case when considering neighborhood routing between 

thinned and unthinned spatial units demonstrated in this paper. For models of this scope and 

scale workloads are frequently in tension with computing capacity, and as such, added 

functionality such as addressing non-topographic routing necessitates an approach like MSR 

that minimizes the added computational burden. 

Our example application of MSR shows that the addition of MSR to RHESSys can have 

impacts on specific model outputs (e.g., carbon stores, water, and carbon fluxes) in different 
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ways that vary over time. The full extent of changes when comparing standard RHESSys to 

RHESSys-MSR are numerous and varied, but there are also key areas in which RHESSys-

MSR demonstrates improvements over standard RHESSys. The impact of MSR can be seen 

in post-spinup differences in initial stores and fluxes (Figure 3), which are driven by the 

differences in how the distribution of vegetation within a stand is characterized. By moving 

from one patch to a patch family containing many patches (Figure 1), variables like total 

carbon reach different equilibriums with spinup. These changes in initial state go on to 

influence subsequent analyses of thinning effects. The RHESSys-MSR runs characterize the 

landscape in a way standard RHESSys is fundamentally unable to replicate due to the 

limitations of a lumped view of vegetation cover. The RHESSys-MSR characterization is 

more realistic not only in the ability to represent the more varied types of vegetation cover 

we know often exist on the ground, but also because it facilitates more realistic modifications 

to forest structure from actions like thinning. 

Specific model applications, such as assessing the impacts of a fuel treatment, further 

highlight the utility of RHESSys-MSR as compared to standard RHESSys. Overall, while 

MSR is unlikely to dramatically change ecohydrologic function in all or even most scenarios, 

it will likely impact hydrologic and plant water use variables in a variety of circumstances 

that are relevant to assessing the impact of disturbance. Following treatment, while standard 

RHESSys shows substantial increases to peak summer ET, MSR scenarios instead lead to 

decreases in ET for the same period (Figure 7C). This effect on ecohydrologic dynamics is 

nontrivial – the RHESSys-MSR simulation matches the expected (short term, 5-year) effects 

of forest thinning in the Sierra Nevada (Roche et al., 2018). Streamflow (Figure 7D) and 

snowpack (Figure 7E) both feature shifts from pre- to post-thinning dependent on standard or 
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multiscale RHESSys, with minimal differentiation among the sharing coefficients. Using 

standard RHESSys leads to an increase in peak streamflow from treatment while the MSR 

scenarios result in minimal change, indicating a greater degree of adaptability in water use as 

the excess water following the treatment must then be used elsewhere before becoming 

streamflow. Snowpack has the opposite trend, with an increase in peak post-thinning 

snowpack in the MSR scenarios, which aligns with the expected effects of a treatment on 

peak snow accumulation (Krogh et al., 2020). This is likely a product of the MSR 

characterization, which results in greater uncovered area in the post-thinning period. 

The sharing coefficients are a central feature of MSR. They serve to demonstrate the 

sensitivity of ecohydrologic processes to assumptions about rooting distributions and 

behavior. Following a thinning, or another type of disturbance, the remaining vegetation, in 

particular trees, may have roots with enough lateral reach to access soil water storages 

previously used by the now thinned vegetation. The exact extent of that root access is very 

difficult to predict, both due to the nature of roots being underground, but also due to the 

variation in how different plants grow roots and allocate resources to root growth. MSR 

allows users to explore the effects of this highly uncertain plant behavior – root access to 

storages of neighboring vegetation by using the sharing coefficients to parameterize that 

behavior. Figure 4, showing total multiscale transfers at a daily time-step over two years, 

gives the most direct insight into the role of the sharing coefficients. Distinct trends in daily 

transfers arising from sensitivity to sharing coefficients can be seen, particularly in the 

leading slopes of the two late summer seasonal peaks. This variation in transfer behavior due 

to sharing coefficients indicates that each scenario reaches a slightly different saturation 

point, where water is being transferred as fast as possible. MSR scenarios with sharing 
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coefficients of 1, 0.3, and 0.2 all follow similar trends, and though small differences in 

transfers exist among them, runs reach similar peaks, and have very similar timing. At a 

sharing coefficient of 0.1 however, the leading slopes are shifted, pointing towards slower 

transfers of water. Although the sharing coefficients directly influence transfers, the other 

key control here is spatial variation in water demand due to patch heterogeneity within a 

patch family. Climatic conditions may also influence how spatially variable water demand 

will be within a patch family, with the potential for disturbance like drought induced 

mortality to affect some but not all patches within a patch family.  

In some cases, MSR with different sharing coefficients produces substantial differences 

in the timing and magnitude of water fluxes as in seen in Figure 5, showing the day of year 

averages over the simulation period. MSR with a coefficient of 0.1 displays only a single 

annual peak in transfers unlike the two peaks present in runs with all other coefficients. 

These differences in the timing of water transfer do not substantially alter timing of ET or 

GPP, which behave similarly across MSR coefficients (Figure 7). This indicates that the 

differences in water transfers among MSR runs with varied sharing coefficients is either 

showing up in other ecohydrologic variables we aren’t tracking or being attenuated. This has 

the potential to lead to similar circumstances to the dynamics with ET across thinning 

scenarios (Figure 7C), where the differences from modeling method only emerge in the 

context of forest thinning. Total transfers when split into pre- and post-treatment periods (A) 

shows further evidence of the diverging behavior between the sharing coefficients of 1 and 

0.1. In this instance the MSR01 scenario shows little variation across pre- and post-thinning 

periods, compared to the greater variability in the MSR1 scenario, indicating the lower 

sharing coefficient serves to attenuate the impacts of the thinning on transfers. 
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5. Conclusions 

Multiscale routing is both a versatile architectural addition to RHESSys, and moreover, 

enables modeling of fine-scale processes and interactions such as forest thinning and the 

subsequent impacts on lateral root access to storage. This advancement to RHESSys enables 

new research avenues, incorporating scales and processes previously not feasible or practical. 

Beyond the application investigated here, MSR has great potential for use in urban 

applications, routing water between discrete areas such as roofs, gutters, and sidewalks, and 

in upscaling high-resolution input data while retaining the input precision. Though MSR can 

benefit from greater input data and observed parameters, it is designed with scarcity of both 

input data and parameters in mind and is well suited to exploring uncertain subgrid 

processes. We demonstrate this here in our simulations of potential root access. This work is 

then well situated to be built upon and coordinate with field work aiming to improve 

understanding and narrow parameterization of root access into the storage of neighboring 

vegetation (Klos et al., 2018). We hope MSR can serve as a foundation for a wide range of 

future research, leveraging not only the root access-focused application included here, but 

both the architecture implemented within RHESSys, and the broader approach towards 

accounting for fine-scale processes which is potentially relevant in a range of similar models.  
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6. Figures 

 

Figure 1. Conceptual figure of patches and vegetation in both standard and multiscale 

RHESSys and showing the effects of a forest thinning. Bars above each scenario indicate 

percent coverages, and continuous bars indicate a single patch (standard RHESSys has only a 

single patch, while MSR has 4 in the scenario shown). 
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Figure 2. Conceptual diagram of the multiscale routing method, specifically the 

underlying logic behind the routing of subsurface water and shading of vegetation within the 

patch family.  
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Figure 3. Distributions of initial variable states, before thinning is implemented. Stand 

carbon (A), leaf area index(B), evapotranspiration(C), and gross primary productivity (D) are 

shown, each with scenarios for standard RHESSys and MSR RHESSys using sharing 

coefficients 0, 0.1, 0.2, 0.3, and 1. 
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Figure 4. Combined root and unsaturated zone transfers owing to multiscale routing, e.g., 

among patches within a patch family. Transfer value is in mm, and is the absolute value of all 

transfers, both loses and gains. Focused on a two-year period to make day-scale effects 

visible. Shows scenarios for standard RHESSys and MSR RHESSys using sharing 

coefficients 0, 0.1, 0.2, 0.3, and 1. 
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Figure 5. Line and column plots showing the annual distribution of average transfers, 

transpiration, snowpack, and precipitation, all averaged across by day-of-year over the 

complete simulation. Total transfers and transpiration each include scenarios for standard 

RHESSys and MSR RHESSys using sharing coefficients 0, 0.1, 0.2, 0.3, and 1. 
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Figure 6. Time series comparison of total transfer, root zone and unsaturated zone 

storage, evapotranspiration, and gross primary productivity show across standard RHESSys 

and MSR RHESSys using sharing coefficients 0, 0.1, 0.2, 0.3, and 1. 
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Figure 7. Monthly averages for pre- and post-treatment periods, for a subset of sharing 

coefficients (0.1 & 1) and standard RHESSys. Includes total transfers, gross primary 

productivity, evapotranspiration, streamflow, snowpack, and total water in (input 

precipitation). 
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7. Equations 

Equation 1. Set of equations describing local routing within a patch family in multi-scale 

routing 

Change in storage = Δ 

For patch X = p (subscript) 

Root zone = rz 

Unsaturated zone = unsat 

Storage = str (subscript) 

Saturated deficit = sat_def 

Field capacity = fcap 

Sharing coefficient (gaining, losing) = shg , shl  

Loss ratio (total estimated loses/potential loses) = lr 

Root zone depth percent = rz_z 

Wilting point = wp 

 

Patch water content: 

𝑤𝑐𝑝 = (𝑟𝑧𝑠𝑡𝑟 + 𝑢𝑛𝑠𝑎𝑡𝑠𝑡𝑟)/𝑠𝑎𝑡_𝑑𝑒𝑓  

Mean water content: 

𝑤𝑐𝑎𝑣𝑔 =  
∑ 𝑤𝑐𝑝 ∗ 𝑎𝑟𝑒𝑎𝑝

𝑡𝑜𝑡𝑎𝑙_𝑎𝑟𝑒𝑎
 

Losing transfer estimate: 

∆𝐿𝑒𝑠𝑡 = (𝑤𝑐𝑝 − 𝑤𝑐𝑎𝑣𝑔) ∗ 𝑎𝑟𝑒𝑎𝑝 ∗ 𝑠ℎ𝑙 ∗ 𝑠𝑎𝑡_𝑑𝑒𝑓 

Gaining transfer total: 

∆𝐺𝑝 = (𝑤𝑐𝑝 − 𝑤𝑐𝑎𝑣𝑔) ∗ 𝑎𝑟𝑒𝑎𝑝 ∗ 𝑠ℎ𝑔 ∗ 𝑠𝑎𝑡_𝑑𝑒𝑓 ∗ 𝑙𝑟 ∗ 𝑟𝑧_𝑧 
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Gained transfer to root zone, unsaturated zone: 

∆𝐺_𝑟𝑧𝑝 = min ((
∆𝐺𝑝

𝑎𝑟𝑒𝑎𝑝
) , (𝑓𝑐𝑎𝑝 − 𝑟𝑧𝑠𝑡𝑟)) 

∆𝐺_𝑢𝑛𝑠𝑎𝑡𝑝 = max (𝑚𝑖𝑛 ((
∆𝐺𝑝

𝑎𝑟𝑒𝑎𝑝
) − ∆𝐺𝑟𝑧𝑝

, (𝑓𝑐𝑎𝑝 − 𝑢𝑛𝑠𝑎𝑡𝑠𝑡𝑟)) , 0) 

Losing transfer total: 

∆𝐿𝑝 = ∆𝐿𝑒𝑠𝑡 − (∆𝐿𝑡𝑜𝑡𝑎𝑙 − ∆𝐺𝑡𝑜𝑡𝑎𝑙) ∗ (
∆𝐿𝑒𝑠𝑡

∆𝐿𝑡𝑜𝑡𝑎𝑙 
) 

Loses from root zone and unsaturated zone: 

∆𝐿_𝑟𝑧𝑝 = −1 ∗ min (∆𝐿𝑝/𝑎𝑟𝑒𝑎 , 𝑟𝑧_𝑠𝑡𝑟 − 𝑤𝑝 ) 

∆𝐿_𝑢𝑛𝑠𝑎𝑡𝑝 = −1 ∗ max ((
∆𝐿𝑝

𝑎𝑟𝑒𝑎
) + ∆𝐿_𝑟𝑧𝑝, 0) 

 

 

Equation 2. Equation describing shading among patches within a patch family 

Patch horizon adjustment: 

ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑝 = atan (
ℎ𝑒𝑖𝑔ℎ𝑡𝑎𝑣𝑔−0.75∗ℎ𝑒𝑖𝑔ℎ𝑡𝑝

√𝑎𝑟𝑒𝑎

√𝑑𝑒𝑛𝑠𝑖𝑡𝑦∗𝑎𝑟𝑒𝑎

) 
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Chapter 2: Understanding How Fuel Treatments Interact with Climate 

and Biophysical Setting to Affect Fire, Water, and Forest Health: a Process-

Based Modeling Approach 

 

This is a pre-publication version of a manuscript which has been published: 

Burke, W., Tague, C.N., Kennedy, M., Moritz, M., 2020. Understanding fuel treatments: how 

treatments interact with climate and biophysical setting to affect fire, water, and forest 

health. Frontiers in Forests and Global Change 3, 143. 

https://doi.org/10.3389/ffgc.2020.591162 

1. Introduction 

Informed forest and vegetation management is progressively more important as both 

severe drought and wildfire activity are predicted to increase in the Western US (Clark et al., 

2016; Moritz et al., 2012). In many Mediterranean fire-prone ecosystems drought is already 

shaping stand-scale dynamics, shifting habitats, and altering the severity and frequency of 

disturbances including fire and insects (Clark et al., 2016). Recent droughts, like the 2012-

2015 California event and subsequent water stress and mortality (Asner et al., 2016), 

highlight the magnitude of potential impacts of droughts on forest structure and water 

resources. At the same time, increasing fire severity in many of these regions has led to 

unprecedented social and economic costs (Moritz et al., 2014). Given these ecologic and 

socio-economic costs, fuel treatments are increasingly proposed as a way to reduce risks 

associated with both droughts and fires. Fuel treatments modify forest structure typically by 

removing understory and small diameter trees, either through mechanical harvest or 

https://doi.org/10.3389/ffgc.2020.591162
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controlled burns (Agee and Skinner, 2005). Fuel treatments have a variety of purposes, from 

timber harvest-oriented practices to increase productivity, to the restoration of historic forest 

structures and associated habitat. Key among these purposes is the role that fuel treatments 

can play in reducing wildfire severity (Hessburg et al., 2016; Barros et al., 2019) and 

mitigating drought impacts on vegetation (Tague et al., 2019). We need to understand more 

broadly how those treatments are altering our landscapes and affecting resources we care 

about, both directly and indirectly. 

Heterogeneity in forest species and stand structures, along with different goals and 

available resources for forest management, leads to a wide range of actions that fall under the 

broad category of fuel treatments. Mechanical thinning is frequently used to reduce fire 

severity and limit canopy fires by reducing surface fuels, increasing the height to live canopy, 

and decreasing the density of the canopy (Agee and Skinner, 2005; Evans et al., 2011). 

Prescribed fire is often paired with mechanical thinning, and in this same context aims to 

increase forest resilience through reductions in surface fuels and scorching (killing) lower 

branches of trees, increasing the height to live canopy (Evans et al., 2011; Fernandes, 2015). 

The size and placement of fuel treatments, however, varies. Treatments, particularly thinning, 

are expensive and are typically focused on areas where fire threatens residences and 

communities, or where abnormally high severity fire is expected (Anderson et al., 2018; 

Wibbenmeyer et al., 2016). Fuel treatments can be effective in reducing fire severity or 

altering fire regimes, but effectiveness varies with forest type and treatment implementation. 

Treatments can also have adverse and unintended effects (Agee and Skinner, 2005; Omi and 

Martinson, 2002; Safford et al., 2012). For instance – the stems removed during thinning, 

called slash, if left on the forest floor can result in greater surface fuels which then increase 
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fire intensity (Stephens et al., 2012). The long-term efficacy and effects of treatments are 

linked to regrowth and the presence or absence of new and competing species, leading to 

uncertainty in the net effects on fire severity (Moritz et al., 2014). The uncertainty in these 

long-term effects, combined with the (often large) expense of each treatment, make long-

term planning for, and prediction of, the effectiveness of fuel treatments for reducing fire 

severity challenging. 

In addition to reducing fire severity, fuel treatments, specifically forest density reductions 

through thinning, have been used to increase forest productivity and growth as part of 

silviculture, and more recently, as a forest management tool to reduce drought vulnerability 

and forest mortality (Cabon et al., 2018; McDowell et al., 2007; Spittlehouse and Stewart, 

2003). While there is general agreement on the short-term effectiveness of treatments to 

reduce drought vulnerability and forest mortality, there is still noteworthy uncertainty in the 

long-term net effects of treatments. In fact, there is potential for post-treatment scenarios to 

instead increase vulnerability to future drought (Clark et al., 2016; Tague et al., 2019). 

Typically, density reduction increases the productivity of remaining trees, and reduces 

overall water stress, largely by a reduction in tree-scale competition for water (Clark et al., 

2016; Sohn et al., 2016). However, in semi-arid regions, increases to productivity may be 

diminished during dry periods (Sohn et al., 2016). Increased leaf-to-sapwood area ratios and 

type conversion can also both lead to greater drought vulnerability (Clark et al., 2016). 

Treatment effects on productivity are further affected by the access of remaining trees to 

shared subsurface storage and changes to the tree scale radiation environment (Tague et al., 

2019; Tsamir et al., 2019).  Density reductions both directly and indirectly affect carbon 

sequestration, and while the short-term effect is straightforward, long term sequestration 
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depends on post-disturbance regrowth (North et al., 2009). The interactions between 

treatments and forest health are also expected to evolve with climate change, making a priori 

predictions of treatment success uncertain (Allen et al., 2010). 

Fuel treatments can also be used to alter water yield (surface and subsurface water 

leaving an area). Though paired catchment clear cutting studies show consistent increases in 

water yield; thinning, particularly in Mediterranean forests, shows variability in the 

magnitude and direction of effects on water yield (Brown et al., 2005; Hewlett and Hibbert, 

1967; Saksa et al., 2017). Thinning effects on water yield are dependent on a range of factors, 

including regrowth, access to storage, species changes, and the resulting forest structure, and 

there remains persistent debate on the dominant controls on the forest cover-water yield 

relationship (Brown et al., 2005; Ellison et al., 2012; Filoso et al., 2017; Tsamir et al., 2019; 

Kirchner et al., 2020, Tague and Moritz, 2019). 

The wide range of covarying factors that both affect and are affected by fuel treatments 

combine to make predicting the net effects of a given treatment difficult. Much of this 

difficulty is associated with the multiple sources of variation including fuel treatment 

options, species characteristics, landscape, topographic position, climate, and the possible 

interactions among them. Understanding and ultimately predicting the total impacts of fuel 

treatments requires considering the interplay between these factors and thinning objectives, 

such as carbon sequestration, fire management, forest health. Models are key tools that can 

be used to explore variable interactions and identify particularly important sources of 

variation even within the same watershed (Fatichi et al., 2016). By identifying which factors 

matter and when, these tools provide uncertainty bounds on expected outcomes and can 

guide strategic fuel treatment placement.  
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Here we use a mechanistic coupled ecohydrologic model to explore the range of fuel 

treatment scenarios through time and across biophysical sources of variation. We focus on a 

mid-elevation forest stand within the California Sierra as a representative example of a 

region where fuel treatments are both likely to occur and may be focused on multiple benefits 

(Gould, 2019a, 2019b). In the context of existing uncertainty around the effects of 

treatments, the goals of this work are twofold: 

1. To characterize the expected distribution of fuel treatment effects on key response 

variables (covering the domains of forests, water, and fire), across likely variability in 

biophysical contexts that would occur within a management unit (e.g., a forest stand 

within a particular bioclimatic region).  

2. To understand how variability in fuel treatment effects is explained by different 

biophysical, climatic, or fuel treatment parameters. We demonstrate a novel approach, 

combining modeling and statistical methods, to understand this parameter-driven 

variability in fuel treatment effects. 

In our analysis, we highlight fuel treatment effects on fire severity, carbon sequestration, 

water yield and forest productivity and examine whether estimates of these effects are similar 

to commonly held assumptions of treatment outcomes. We typically expect that over short to 

medium time periods (5-30 years) fuel treatments: 

H1. Reduce fire severity – fuel treatments remove fuel and alter canopy structure, 

limiting the ability of fire to reach the canopy and thus reducing risk of high 

severity fires (Agee and Skinner, 2005). 
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H2. Reduce carbon sequestration – fuel treatments are a direct removal of carbon from 

the landscape, and so lead to lower carbon sequestration, in the short term and in 

the absence of future fires (North et al., 2009). 

H3. Increase water yield – removal of vegetation directly reduces total transpiration. 

Though more soil is exposed, increasing ET, those increases are typically smaller 

than decreases to transpiration, and so water yield (or streamflow) is expected to 

increase overall (Brown et al., 2005). 

H4. Increase productivity – remaining vegetation after a fuel treatment will tend to have 

less competition and greater access to resources (light, water, nutrients) following a 

treatment, increasing net primary productivity (Cabon et al., 2018; Clark et al., 

2016). 

Through sensitivity analysis, we assess how biophysical and treatment variation within a 

given watershed impact these expected outcomes. While the goal of precise prediction of the 

total long-term effects of fuel treatments on a specific landscape is still in the future, this 

work demonstrates a watershed scale approach for mapping the fuel treatment-ecohydrologic 

parameter space. Our approach can be leveraged to assess fuel treatment effects not only at 

the stand to watershed scale, but regionally. Moreover, understanding the linkages between 

biophysical parameters and fuel treatment effects can serve to inform future modeling and 

forest management in similar watersheds. 



 

 42 

2. Methods 

2.1. Model Framework 

We use the Regional Hydro-Ecological Simulation System (RHESSys) to simulate the 

effects of thinning (RHESSys 7.1.1). RHESSys captures the relevant range of processes, at 

scales that support analysis of the hydrologic and vegetation carbon cycling impacts of 

density reduction. RHESSys is a process-based ecohydrologic model, which in addition to 

traditional hydrologic modeling, dynamically models plant growth, carbon, and nitrogen 

cycling, and has successfully been applied to simulate the effects of thinning and climate 

change impacts on forest growth, carbon cycling and hydrologic fluxes (Tague et al., 2009; 

Grant et al., 2013; Saksa et al., 2017; Tague and Moritz, 2019, Tsamir et al., 2019). In 

particular, Saksa et al. (2017) demonstrated the use of RHESSys to estimate post-thinning 

water fluxes and vegetation responses. The model has also been used to estimate hydrologic 

impacts of the restoration of natural fire regimes, including the removal of understory 

vegetation in Yosemite National Park (Boisramé et al., 2019). RHESSys has recently been 

coupled with fire spread and fire effects models and coupled model evaluation shows the 

model can capture spatial and temporal variation in fire regimes (e.g., variation in fire return 

interval) (Kennedy et al., 2017) and expected relationships in pre- and post-fire forest 

structure (Bart et al., 2020b). Previous work has also evaluated the ability of RHESSys to 

capture hydrologic and carbon cycling in semi-arid mountain systems (Garcia et al., 2016; 

Son et al., 2016b).  

RHESSys accounts for both understory and overstory vegetation. Vegetation 

ecophysiology parameters can be adjusted to simulate a different plant species. These 

parameters are set via the RHESSys parameter database 
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(https://github.com/RHESSys/ParamDB), literature derived values, previous RHESSys 

implementations, or a combination of these methods. Precipitation, wind, and radiation are 

attenuated through overstory and then understory canopies. All vegetation grows stems, 

leaves, and roots dynamically. Downwelling radiation is adjusted by topography following 

MT-CLIM (Running et al., 1987) and landscape scale topographic shading through horizon 

angles. Radiation interactions with the ecosystem are modelled separately for direct and 

diffuse radiation, as radiation is attenuated through the canopy. Leaf scale fluxes differentiate 

between sunlit and shaded leaves. Gross photosynthesis is estimated using the Farquhar 

Photosynthesis model (Farquhar et al., 1980), which is driven primarily by the availability of 

light, water, and nitrogen, as well as growth and maintenance respiration models adapted 

from Ryan (1991). Net photosynthesis is allocated using the method from Dickinson et al. 

(1998) as also described in Garcia et al. (2016), and carbon and nitrogen both cycle vertically 

and can transfer laterally. Water input to RHESSys is driven by precipitation, and the model 

features vertical and horizonal water fluxes, both above and below-ground. Above-ground 

there is canopy, litter, and soil evaporation and transpiration (using Penman-Monteith 

(Monteith, 1965)), as well as overland flow (either Hortonian or saturation) and infiltration. 

Snow accumulation and melt, and the impact of forest shading on these processes is also 

simulated. Below-ground water (and nutrient) stores are separated into the root zone, which 

is dynamically defined by the depth of vegetation roots, the unsaturated zone, and the 

saturated zone. A groundwater store can also be used both as a sink from the saturated zone 

and contribution to the stream, and water fluxes occur vertically between these below-ground 

stores as well as laterally, driven by elevation gradients derived from above ground elevation.  
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A stochastic fire spread module has been recently added to RHESSys (Kennedy et al., 

2017). In the module, spread is iteratively tested against a spread probability that is 

calculated from the litter load, relative deficit (1-ET/PET), topographic slope, and wind 

direction relative to the direction of spread. RHESSys also calculates fire effects on forest 

stand and litter variables for those burned cells (Bart et al., 2020b) by using the spread 

probability as a proxy for surface fire intensity. This, in combination with biomass and the 

relative heights of the understory and overstory, is used to calculate fire-related changes to 

the surface, understory, and overstory carbon stores. We use a subset of this functionality for 

our purposes, not running the full fire spread and effects models but instead components 

derived from them, which is detailed more in section 2.3.2. 

Previously in RHESSys the patch was the smallest modeling unit both spatially and with 

respect to nutrient and water routing. Here, we include the use of a new ‘multiscale routing’ 

method (Burke and Tague, 2019; Tsamir et al., 2019). This approach creates a ‘patch family’ 

as the smallest spatially explicit model unit and use ‘aspatial patches’ within the patch family 

to account for within patch heterogeneity (e.g., areas within a spatial stand that comprise 

thinned, open areas, and remaining trees) without requiring very fine scale (meter) spatially 

explicit representation that would require computational complexity beyond currently 

available tools. In this context, the aspatial patch is then the smallest modeling unit for 

vertical water, energy, and nutrient dynamics. In previous RHESSys applications, RHESSys 

used only hillslope routing, routing subsurface water between spatially explicit model units 

(patch families) based only on topography. Within patch family routing or “local” routing 

occurs not because of topography but rather root access, and at scales smaller than are 

typically modeled. Crucially for the purposes of this work, we have added RHESSys 
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functionality to capture finer scale density reduction impacts on water availability and 

growth. These advances account for between vegetation (aspatial patch) exchanges (among 

gaps, thinned, and unthinned vegetated areas) as well as shading by neighboring trees within 

a stand (patch family). Thus, RHESSys now supports ‘multiscale routing’ with two scales of 

water (and nutrient) routing: a) routing due to topography between patch families within a 

hillslope or watershed and b) a new “local routing” that allows exchanges between aspatial 

patches and their associated vegetation types, that are typically at scales too small (<30-

meter) to characterize as spatially explicit units within a watershed scale model such as 

RHESSys. Sensitivity of ecophysiological fluxes to the addition of multiscale routing 

methods is demonstrated by Tsamir et al. and presented by Burke and Tague (2019; 2019). 

Previous work has shown that this “local” routing between gaps, thinned areas and 

remaining trees can have a substantial impact on post disturbance (fire or density reduction) 

hydrology and regrowth (Tague and Moritz, 2020). In this study, local routing (shown 

conceptually in Figure 2.), moves water between patches, with the water content of each 

patch approaching the mean of the patch family, mediated by the sharing coefficient. Water 

in the rooting zone and unsaturated zone is transferred among aspatial patches in each patch 

family. A sharing coefficient is defined to modulate the transfer of water between patches. 

When gaining water, only water up to field capacity is available to the root zone, with excess 

going to the unsaturated zone. When losing water, only water down to the wilting point is 

available from the root zone, with the remainder coming from the unsaturated zone. Sharing 

coefficients will vary primarily with species (which controls root spread and distribution) and 

gap size distributions (determined by the preexisting forest structure, thinning method, and 

thinning intensity) (Clark et al., 2016; Schenk and Jackson, 2002). Nitrate and dissolved 
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organic carbon (DOC) are transferred along with water following existing approaches in 

RHESSys for linking water and nutrient transport. 

Shading within the patch family is also accounted for as a part of multi-scale routing. 

Though the multi-scale routing method does not model individual trees explicitly, by 

modeling thinned and unthinned areas separately, we approximate the effects of shading 

between neighboring thinned, unthinned and open area patches. Shading is modified by an 

adjustment to the east/west horizon, which is used to determine total daily incoming 

shortwave radiation, based on the relative height of the patch compared to the patch family. 

Shading is adjusted if the shading angle is greater than the existing horizon angle. Note that 

for each patch, vertical shading or attenuation of radiation through vertical canopy layers 

remains as in earlier versions of RHESSys (Tague and Band, 2004). Figure 2 shows our 

implementation of shading and how it evolves with changing conifer height. 

2.2. Site 

Our study site is a typical mid-elevation conifer forest in the Southern California Sierra, 

an area that has been previously identified as a high priority area for fuel treatment 

(Thompson et al., 2016).  For model set up and parameterization we use data from the Kings 

River Experimental Watersheds (KREW) and the Southern Sierra Nevada Critical Zone 

Observatory (CZO). Higher elevations at this site maintain a seasonal snowpack but 

transition to rain dominated at lower elevations (Son et al. 2016). Vegetation cover is mainly 

mixed-conifer forest, consisting of white fir (Abies concolor), ponderosa pine (Pinus 

ponderosa), Jeffery pine (Pinus jeffreyi), California black oak (Quercus kelloggii), sugar pine 

(Pinus lambertiana), and incense cedar (Calocedrus), that transition to sclerophyll shrubs 

(greenleaf manzanita (Arctostaphylos patula), mountain whitehorn (Ceanothus cordulatus)) 
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at lower elevations (Bart et al., 2016; Safeeq and Hunsaker, 2016). Soils are coarse sand and 

sandy loam (Gerle-Cagwin) with high infiltration capacities, and relatively deep storage 

(Bales et al., 2011). For this study, we build on previous watershed scale RHESSys 

simulations at this site (Bart et al., 2016; Son et al., 2016b). Here we sample forest stand 

characteristics by selecting from aspect, elevation, subsurface water storage capacity, and 

vegetation types within the watershed. For our model scenarios, described in more detail in 

section 2.3, we use data from a local meteorology station (Grant Grove, National Climate 

Data Center Station, Lat: 36.73603°N, Lon: 118.96122°W, elevation 2,005m). Historic 

records (1943 - 2015) for this station have a mean annual temperature of 8ºC and mean 

annual precipitation of 1037 mm. 

2.3. Scenarios 

Model simulation scenarios were designed to cover a reasonable range of possible 

physical conditions and fuel treatment types for mid-elevations in the Southern Sierra 

Nevada. A synopsis of these scenarios is included in Table 1. Given the high computational 

cost of simultaneous parameter variation with continuous sampling of the parameter space, 

we use a factorial approach and choose 2-3 end member parameter values encompassing 

high, medium, and low ranges, that define the expected extremes and, in some cases, mid 

points for each parameter. All simulations are done for a single location (patch family). 

2.3.1. Biophysical Parameters and Climate Scenarios 

Three vegetation covers were simulated: shrub, conifer overstory with a shrub 

understory, and a 50/50 mix of uncovered shrub and conifer over shrub (also referred to 

subsequently as shrub, conifer+shrub, and conifer+shrub/shrub). For aspect we used north 
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and south. For plant (root) accessible subsurface water storage capacity (PAWSC, included at 

‘low’, ‘medium’, and ‘high’ intervals), we used parameters from Tague and Moritz (2019). 

These parameters span the range of PAWSC for vegetated locations in mid-elevation Sierras. 

We note that “high”  PAWSC is greater than typical soil depth for this site, and acknowledge 

that plants often access water well below organic soil depths (Klos et al., 2018). We use root 

sharing coefficients of {0, 0.25, 0.5, 0.75, 1}, where 0 indicates no root sharing (all aspatial 

patches are isolated) and 1 indicates complete sharing by all vegetation. Climate in each 

scenario is varied in two ways: the aridity and the presence or lack of climate warming. 

‘Aridity’ is defined by the subset of the observed climate record at Grant Grove station over 

which the simulation is run, with ‘wet’, ‘variable’, and ‘dry’ periods being the maximum, 

median, and minimum of 30-year moving averages of annual precipitation. The ‘wet’ period 

is (water years)1953-1983 (1103 mm mean annual precipitation), ‘variable’ is 1942-1972 

(1057 mm), and the ‘dry’ period is 1985-2015 (967 mm). Though there is overlap in these 

periods, importantly the wet and dry periods are mutually exclusive, and the dry period 

captures the recent Californian droughts which is of particular interest here. Climate warming 

is included through a uniform shift in the observed climate record, increasing temperature by 

2°C, and increasing CO2 to 450 ppm. Climate warming is applied to the wet, dry, and 

variable periods to extend the range of climate conditions (e.g., to include the possibility of 

warmer droughts). We acknowledge that future climate may include a wider range of 

conditions (such as longer duration or more frequent droughts). However, climate model 

estimates of precipitation change for this region remain uncertain (Hayhoe et al., 2018). To 

limit computational and model complexity we focus on our simple set of scenarios that have 

a high likelihood of occurring in the short-term (next decade).  
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Model estimates require initial conditions that may vary with the biophysical parameters 

listed above. To account for this, spin-up to initial conditions was done separately for each 

vegetation, PAWSC, root sharing coefficient, and aspect, as each of these factors could alter 

the long-term soil nutrient and above ground biomass supported by the plot. Each instance 

was initialized with known soil nutrient values for the mid-elevation Southern Sierra site, and 

then each was run for an additional 140 years (looping the observed climate record) to further 

initialize the soil nutrients and allow vegetation to grow and reach maturity. Our analysis 

focuses on mature forest/shrubs, assuming no recent fires as these are likely to be the 

conditions targeted by fuel treatments.  

2.3.2. Fuel Treatment Scenarios 

Fuel treatment scenarios were selected to explore the range of possible thinning methods, 

intensities, and frequencies, while being limited and guided based on reasonable real-world 

(financial and physical) constraints on area treated and treatment frequency (Calkin and 

Gebert, 2006; North et al., 2015). Three main categories of treatment were selected: 

understory thinning (paired with prescribed fire), overstory thinning, and prescribed fire 

alone. In RHESSys, fuel removal is implemented as removal of a combination of litter and 

vegetation understory or overstory carbon and nitrogen stores (including stores in leaf, stems, 

and roots). RHESSys does not currently track individual stems, thus all thinning scenarios 

remove a given percentage of litter, overstory and/or understory pools, based on the type and 

intensity of thinning. Understory thinning is meant to approximate a thinning from below 

strategy, though we limit fuels removed to only the shrub understory. All understory 

treatments were coupled with a lagged (by 1 month) prescribed fire. Understory thinning was 

simulated in RHESSys through removal of both carbon and nitrogen from the shrub 
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understory. Prescribed fire following thinning removes litter carbon and nitrogen stores. 

Overstory thinning is meant to approximate a selection thinning strategy and is limited to 

removal of overstory vegetation carbon and nitrogen pools. Overstory thinning was 

combined with two slash (vegetation removed during thinning) management scenarios. One 

where slash remains and becomes part of litter pools (potentially increasing future fire spread 

and severity) and a second where slash is removed. Prescribed fire, both when it follows an 

understory thinning and when used alone, is simulated by removal of both litter and coarse 

woody debris. 

Understory and overstory treatments were performed at 3 intensities, implemented in 

RHESSys through application of the treatment (e.g., removal of vegetation) at fractional area 

coverages of 0.1, 0.25, and 0.4. For example, a 0.1 intensity understory treatment removes all 

understory carbon and nitrogen for an aspatial patch with 10% coverage, which for the 

encompassing patch family, translates to removal of 10% of the total understory (and a 

smaller reduction in total stand carbon). A treatment of only prescribed fire was also run 

where 100% of litter and coarse woody debris pools were removed for all aspatial patches. 

For scenarios with only shrub vegetation cover, where there is no understory, we omit the 

overstory thinning scenarios (as the single shrub canopy ‘overstory’ is already thinned 

equivalently by the understory thinning scenarios). 

Each of the treatment method and intensity combinations was run at three different 

temporal frequencies over the 30-year simulation. All treatment scenarios start with a 

treatment at the simulation start. We then have three different temporal treatment frequencies 

over the 30-year simulations: no further treatments, treatments every 5 years, and treatments 

every 10 years. Each of these treatment scenarios were repeated for all combinations of 
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biophysical parameters. A no treatment scenario was also run for each biophysical scenario. 

A total of 31 treatment scenarios, and 540 biophysical and climatic scenarios were run 

yielding a total of 13500 scenarios (with incompatible vegetation type + treatment method 

scenarios removed). All scenarios were run at a daily timestep for 30 years. For each scenario 

we output three key biophysical variables: stand carbon, net primary productivity (NPP), and 

evapotranspiration (ET), and three fire-related variables: fire spread probability (FSP), shrub 

fuel height (shrub only scenarios), and conifer canopy fuel gap (conifer+shrub scenarios). 

The three biophysical variables broadly serve as metrics for key functions in the domains 

included in Figure 1. Stand carbon is included as a means of tracking carbon sequestration, 

NPP is used as a metric of forest health and is further useful as a measure of drought 

resilience, and ET shows direct effects on the water balance and indirect effects of treatments 

on water yield.  

The fire-related variables: FSP, shrub fuel height, and conifer canopy fuel gap, are 

indicators of how fire regimes might vary across scenarios and parameters. FSP denotes the 

likelihood that a location would burn, given ignition (or fire in a neighboring patch), and is 

broadly an indicator of surface fire occurrence and fire spread. This metric however does not 

reflect the fire severity or the impact of a fire on stand structure and biomass. We note that 

for the single patch family implementation used here (without neighboring patch families), 

we cannot run the full RHESSys-Fire model (Bart et al., 2020b; Kennedy et al., 2017) 

directly. RHESSys, however, does provide fire-related outputs at the patch scale, from which 

we calculate the metrics included here. Shrub fuel height and conifer canopy fuel gap are 

direct indicators of stand structure/biomass, and indirectly serve as proxies for potential fire 

severity. In the shrub only case we use mean annual maximum shrub height (over the 
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simulation period), as it is indicative of available fuels. In conifer+shrub scenarios we use the 

difference in understory and overstory fuel heights. We use the canopy height gap here as an 

indicator of the likelihood that ladder fuels (understory shrubs) would facilitate a crown fire 

if fire were to spread into this patch. The mixed 50/50 vegetation runs (conifer overstory with 

shrub understory combined with uncovered shrub alone) were excluded in these analyses as 

the severity metrics are not comparable. Together the 6 variables, stand carbon, ET, NPP, 

FSP, shrub fuel height, and conifer canopy fuel gap, span the range of domains encompassed 

in Figure 1. 

2.4. Analysis 

The number and breadth of simulation outputs presents a challenge in analyzing the 

simulation results. Each scenario produces a time series of responses to the fuel treatments, 

that reflects the impact of daily to inter-annual variation in meteorological forcing. Figure 3 

highlights an example of this, illustrating the roles of fuel treatment timing, vegetation 

regrowth, and seasonally driven trends in stand carbon. There are complex interactions that 

arise from the layered effects of baseline seasonal trends (in stand carbon) and post-treatment 

regrowth – Figure 3 shows just one example of this that illustrates differences between 

treatments and the baseline ‘no treatment’ case at a monthly time scale. Though these finer-

time scale regrowth dynamics certainly merit greater investigation, this work is focused on a 

broader synthetic perspective. Our goal is to assess the differential role of biophysical and 

climatic parameters and treatment scenarios on the long-term aggregate effects of fuel 

treatments. For all response variables, our analyses look at changes in treated scenarios 

relative to otherwise equivalent untreated scenarios, computed as the percent change of the 

simulation-long (30-year) annual averages, between each treated scenario and untreated 
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equivalent scenario. Because we average over the 30-year simulation, we provide a longer-

term perspective of fuel treatment effects, with less emphasis on the ephemeral and more 

immediate fuel treatment responses. 

As the goal of this research is both to characterize the broader scope of outcomes, while 

also interrogating specific parameter interactions, we include analyses to facilitate both goals. 

Histograms are used to capture the range and distribution of fuel treatment effects on each 

response variable. To illustrate parameter interactions, we also use a series of boxplots, 

showing response variable distributions subset by parameters. Showing all possible 

parameter interactions in this way is not feasible, thus we select several particularly salient 

examples. We also use Random Forests (with the R packages RandomForest and 

randomForestExplainer; (Liaw and Wiener, 2002; Paluszynska et al., 2019)) to identify the 

relative importance of biophysical and climatic parameters in predicting the treatment effects. 

Random forests use a bootstrap of the regression tree combined with random sampling of 

predictors at each node in the tree. We generated the random forests each with 500 trees 

(bootstrap runs) and with local importance set to TRUE. We use minimum depth to rank the 

parameters by importance. The depth in a tree indicates the order in which a parameter is 

selected. A smaller value for depth indicates higher importance, with typical low values (for 

our purposes) of ~1, and high values >3. 

3. Results 

The 13,500 scenarios produced by the varied input parameters result in noteworthy range 

and variability in effects on forests (stand carbon and NPP), water (ET), and fire (FSP, shrub 

fuel height, and conifer canopy fuel gap). The distribution of effect sizes of the biophysical 

and fire variables of interest, across expected variability in biophysical, climatic, and fuel 



 

 54 

treatment parameters, is shown in Figure 4. Effect sizes highlight the long-term mean 

changes in each response variable to a fuel treatment, relative to untreated equivalents. 

Distributions shown for each response variable are grouped (colored) only by treatment type, 

and thus results for each treatment type include variation in not only biophysical parameters 

but also fuel treatment intensities and timing. All four of the expected fuel treatment 

outcomes (H1 – H4) are confirmed to varying degrees by means of simulation distributions, 

although for NPP mean is not significantly different from 0 (no change). Fire severity (as 

indicated by shrub fuel height and conifer canopy fuel gap) is reduced, carbon sequestration 

goes down, and water yield increases. However, for all effects there is substantial variation in 

the magnitude, and for some scenarios, direction of the outcomes. Most treatment effect 

distributions are roughly normally distributed, although some variables including ET, shrub 

fuel height, and conifer canopy fuel gap (Figure 4C, 4E, 4F) show left tailed skews. The 

result of this is that, despite fuel treatment effects broadly conforming to expected outcomes 

(H1 – H4), some subset of scenarios will diverge from those expectations. Stand carbon and 

ET (Figure 4A, 4C) adhere to expected treatment effects (H2, H3) in most cases, with only 

23.4% and 22.4% of scenarios showing increases in stand carbon and ET respectively, and 

those increasing scenarios are weighted towards 0% change. NPP features a large range of 

treatment effects (-150% to 50%), with 42% of scenarios leading to decreases, departing 

from expected treatment effects (H4). FSP has a narrow range, spanning only -13% to 8%, 

which is an expected outcome given that fuel treatments are not typically expected to have a 

strong effect on fire spread rates. Potential fire severity, on the other hand, is expected to be 

affected by fuel treatments. Shrub fuel height and conifer canopy fuel gap show a substantial 

range of outcomes, -62% to 1% for shrubs, and -170% to 48% for conifer. Treatment effects 
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on shrub fuel height consistently align with expected reductions in fire severity (H1) whereas 

changes in conifer canopy fuel gap are strongly dependent on treatment type with overstory 

treatments leading to increases in potential fire severity, diverging from expected effects. 

Interactions between fuel treatment and biophysical parameters, and the subsequent 

impact on fuel treatment effects, are of specific interest in this research. Interactions between 

treatment type and PAWSC alter fuel treatment effects on NPP, ET, conifer canopy fuel gap, 

and fire spread probability (subset for only conifer+shrub vegetation scenarios; Figure 5). 

Treatments, of all types, performed on high PAWSC, largely lead to increasing NPP (Figure 

5A), In contrast, in low PAWSC, overstory thinning produces substantial decreases in NPP 

(median of -24%), while understory thinning and prescribed fire both have a positive median 

change of 4%. These varied treatment effects show that for some sites with lower PAWSC 

(shallow soils), NPP declines may occur and are more likely, while for other sites with high 

PAWSC, differences in treatment can lead to substantially larger or smaller increases. 

Treatment effects on ET (Figure 5B), by comparison to NPP, tend to be smaller and have less 

variation, both across PAWSC and treatment type. At medium and low PAWSC, thinning 

leads to expected reductions in ET, while at high PAWSC and for all prescribed fire 

scenarios ET increases, deviating from expectations (H3). Conifer canopy fuel gap (Figure 

5C) shows a more notable difference in treatment effects across treatment type as opposed to 

PAWSC. Overstory treatment effects on conifer canopy fuel gap are nearly all negative 

(median -32% to -38%), indicating increasing fire severity contrary to expected reductions 

(H1), while understory treatments and prescribed fire have more moderate, and typically 

positive effects on conifer canopy fuel gap (median ~ 0% to 32%). Fire spread probability 

(Figure 5D) has much smaller magnitude of effects overall than any of the other responses, 
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and shows increasingly negative changes with lower PAWSC, though across all treatments 

and PAWSC, median changes still only range from 0% (prescribed fire on high PAWSC) to -

3% (understory thinning on low PAWSC). 

For a subset of parameters, assessed across treatment type, treatment effects on conifer 

canopy fuel gap vary consistently with fuel treatment type, and inconsistently with the other 

varied parameters (Figure 6). Across all parameters, fuel treatment effects on conifer canopy 

fuel gap are split, with consistent negligible to moderate increases from understory 

treatments and prescribed fire, and reductions from overstory treatments. Though treatment 

type is the strongest determinant of whether treatment effects will lead to expected reductions 

in potential fire severity (through increases in conifer canopy fuel gap), the other varied 

parameters alter the magnitude of those changes. Climate warming (Figure 6A) and aridity 

(Figure 6B) lead to marginal differences in conifer canopy fuel gap. Increased warming and 

dry aridity scenarios reduce variability of understory treatments and prescribed fire, though 

median effects are consistent regardless warming at 9% and 2%, respectively (for both 

parameters). Treatment intensity (Figure 6C) results in progressively larger changes in 

conifer canopy fuel gap with greater treatment intensities. For intensities of 0.1 to 0.4, 

overstory treatments lead to reductions of -12% to -77%, while understory treatments 

produce the expected increases (H1) from 5% to 11% (prescribed fire does not have an 

associated intensity). Treatment interval (Figure 6D) mirrors treatment intensity somewhat, 

though with greater variability and smaller median shifts. The shortest treatment interval 

(most frequent) leads to the largest magnitude changes in conifer canopy fuel gap, increases 

coming from understory treatments and prescribed fire, and reductions from overstory 

treatments. 
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To summarize the influences of all parameters, accounting for their potential interactions 

we use random forests. Minimum depth distributions, generated from the random forest 

decision trees for stand carbon, NPP, ET, FSP, shrub fuel height, and conifer canopy fuel gap 

are shown in Figure 7. Climate, treatment scenarios and biophysical parameters (collectively 

‘parameters’) are ordered by mean minimal depth. In all cases the predicted metric is the 

difference between the treated and untreated paired simulation. The rank order of simulation 

parameters differs across effects – a parameter is ranked higher (has a lower mean minimum 

depth) when it has a greater ability to reduce variability in subsets of the variable of interest, 

with the mean value indicating the mean decision tree level at which that occurs. However, 

lower ranked parameters may still contribute to explaining variability in effect size, 

particularly if there are a substantial number of trees (cases) where this parameter is ranked 

highly (ex. minimal depth <= 3). This variable importance occurs for all parameters to some 

degree apart from aspect.  

Fuel treatment method and intensity rank either first or second for all response variables 

while treatment interval shows more variation in its contribution to treatment effects and 

tends to rank lower, ranging from second to fourth. Nonetheless fuel treatment interval is a 

higher-order control, often ranking higher than biophysical or climate parameters. The most 

consistent parameter across variables, and least influential is aspect, ranking last for all 

parameters and with a particularly high mean minimal depth of 3.1-3.4. Both PAWSC and 

vegetation type are moderately important with a consistently high degree of influence. 

PAWSC matches or exceeds the mean minimal depth of the treatment parameters for stand 

carbon and NPP effects. 
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Aridity and climate warming tend to rank relatively low but still contribute to variation in 

effect. For stand carbon (Figure 7A) these climate parameters have influence that is nearly 

equal to that of treatment interval. Climate warming, compared to aridity, has a slightly more 

pronounced effect on NPP and ET (Figure 7B, 7C), and has less influence in the case of FSP 

(Figure 7D), but both the ranking and magnitude of the mean minimal depths (~2 – 2.7) of 

climate warming and aridity are very similar. The root sharing coefficient, which determines 

fine-scale within-stand interaction, ranks low, second to last in general, but both the mean 

minimal depth values (2.39 – 2.58) and the distributions of minimal depth are similar to that 

of climate parameters. 

Minimum depths of shrub fuel height (Figure 7E) and conifer canopy fuel gap (Figure 

7F) feature fewer parameters due to already being subset by vegetation type. The mean 

minimal depth values and distributions for shrub fuel height follow both the form and general 

order of the mean minimal depths and distributions of the other response variables. The 

minimal depth distributions for conifer canopy fuel gap have a somewhat different form, with 

four parameters grouped tightly at mean minimum depths of 1.98 to 2.08. Root sharing 

coefficient also stands out in the conifer case, ranking 3rd with a mean minimal depth of 1.98 

(ranked 5th at 2.06 for shrub fuel height), indicating a greater influence of this parameter on 

the effect of thinning on conifer canopy fuel gap, relative to the role of root sharing 

coefficient for the other response variables.  

4.  Discussion 

This analysis has improved our understanding of the effects of fuel treatments across a 

range of biophysical and climate settings with varied fuel treatment practices. Through the 

simulations and subsequent analysis done here we provide insight towards two goals: 1) 
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understanding the scope and magnitude of expected fuel treatments effects on forests, water, 

and fire for a mid-elevation Southern Sierra site and 2) understanding how fuel treatments, 

biophysical parameters, and climate interact and serve to explain responses in fuel treatment 

effects on forests, water, and fire.  

4.1. Distribution of Fuel Treatment Effects on Water, Carbon, and Fire 

The distributions of fuel treatment effect sizes characterize the range of outcomes across 

expected biophysical conditions and varying treatments at the Southern Sierra site (Figure 4). 

While simulations reflect results for a particular site, these distributions have broader use in a 

few main ways: 1) By varying topographic and climate parameter sets used in our 

simulations, results are likely to be representative of much of the Southern Sierra Nevada 

region. Thus, these results can support regional-scale questions and goals or be upscaled into 

multi-region analyses. 2) The distributions of effect sizes serve as a starting point, 

highlighting potential sources of variation in fuel treatment effects that should be explored by 

more focused simulations for watershed-specific fuel treatment impact assessments. 3) Our 

approach demonstrates a method that could be readily applied in other locations.  

Our sensitivity analysis found non-trivial differences in fuel treatment impacts on mean 

annual stand carbon, NPP, ET, FSP, shrub fuel height, and conifer canopy fuel gap across 

fuel treatment type, biophysical, and climate parameters. This is evident both through the 

varying parameter relationships, such as effects on NPP resulting from varied fuel treatment 

type and PAWSC (Figure 5A), or effects on conifer canopy fuel gap across fuel treatment 

type and treatment intensity (Figure 6C), and the differences in parameter influence across 

response variables shown via the random forest analysis (Figure 7). These parameter 

relationships are complex, context dependent, and vary by response variable, but together 
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they emphasize that fuel treatment effects are likely to be highly variable even within the 

same watershed. Variation is not only in magnitude, but often also in direction with some 

conditions leading to increases and others decreases in the response variable of interest. We 

find key instances where fuel treatment effects deviate from expected outcomes (H1-H4), 

such as increases in carbon sequestration or reductions in water yield. This variation across 

fuel treatment practices, biophysical conditions, and climate parameters (that could all occur 

within the same management unit) underline the need for a more comprehensive 

understanding of the factors affecting fuel treatment effectiveness. Results here can extend to 

regional planning to meet forest management goals; attempting to balance key regional 

priorities like fire severity reduction and carbon sequestration will require accounting for the 

likely variation in fuel treatment effects.  

Our results serve as a first-order approximation of possible outcomes resulting from a 

fuel treatment, as well as distributions indicating likely outcomes. Stand carbon (Figure 4A) 

and ET (Figure 4C; showing changes in water yield), are noteworthy here. Both response 

variables have relatively few scenarios resulting in increases (percent change > 0%), which is 

indicative both of how often treatments lead to increases in water yield (reduce ET) and the 

challenge in increasing carbon sequestration through fuel treatments. These results are 

generally consistent with our expectations (H2, H3) from other modeling and field-based 

studies. While these results suggest that fuel treatments alone will generally lead to a decline 

in sequestered carbon, other studies have shown that if fuel treatments effectively reduce fire 

severity, this could lead to a long term net gain in carbon storage in the Sierra (Liang et al., 

2018). In this study, where wildfire is not explicitly included, the scenarios that do show 

modest increases in carbon (up to 30%), reflect cases where thinning effectively stimulates 
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growth of remaining vegetation (potentially by reducing competition for water or reducing 

understory shading). These cases are particularly noteworthy given the baseline assumption 

of decreasing sequestration (H2). While large scale biomass removal generally leads to 

increases in streamflow due to declines in transpiration (Brown et al., 2005), the smaller 

biomass removal associated with thinning is often compensated for by increases in 

evaporation, and transpiration of remaining trees (Saksa et al., 2017; Tague and Moritz, 

2019). We find similar outcomes in this study where some scenarios have a net decrease in 

water availability (a net increase in ET), diverging from the typically expected water yield 

increases (H3). The magnitude of changes resulting from treatment are modest – a positive 

skew from 0% up to 14% increase in ET. For both stand carbon and ET, understanding the 

limited, but still present, scenarios that depart from typically expected outcomes (H2 & H3), 

will be key to forest management planning, but also useful as a basis for further, more 

focused modeling and analysis. 

In considering the distribution of fuel treatment effects on fire related variables we see a 

dichotomy between the small range of effects on FSP (Figure 4D) and the more noteworthy 

range of effects on shrub fuel height and conifer canopy fuel gap (Figure 4E, 4F). The 

difference between the fire metrics shown in Figure 4 underscores the often-small magnitude 

of effects a fuel treatment is likely to have on fire spread. However, treatments do produce a 

large range of effects on fire severity, shown in our study particularly when considering the 

conifer canopy fuel gap, which broadly aligns with expected treatment effects (H1). It should 

be noted that despite generating metrics assessing potential fire spread and severity, we do 

not run these simulations dynamically with fires affecting the landscape. Our results 

emphasize that fuel treatments mostly contribute to reducing potential fire severity, rather 
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than fire spread. We note, however, that our spread indicator does not consider active fire 

suppression and it is likely that the fire suppression will be more effective at reducing spread 

when fires are less extreme. Our results also highlight that reductions in potential fire 

severity also differ both with biophysical/climatic conditions and the type of fuel treatment. 

Critically, even when only considering understory treatment followed by prescribed fire, a 

treatment option supported by the literature in regards to its efficacy in reducing fire severity 

(Agee and Skinner, 2005), there is still a nontrivial range of effects, with many at or near 0% 

change. This range of effects is in contrast with the (often assumed) expectation of consistent 

treatment effects on fire severity (H1), and in turn emphasizes the challenge simply in 

consistently altering fire severity through fuel treatments. Though more specificity and detail 

on a fuel treatment scenario may lead to greater certainty on the efficacy of that treatment, 

the baseline assumption should account for this distribution of outcomes, or at the very least 

should emphasize the uncertainty inherent in these estimates. 

4.2. Parameter Interactions 

For all types of fuel treatment responses - carbon, water, and fire – our results 

demonstrate substantial interactions among biophysical, climatic, and fuel treatment 

parameters. Even when only viewing the influence of two parameters on fuel treatment 

effects (Figure 5), we find that treatment type and PAWSC can interact to produce varied 

effects across both dimensions. When comparing high and low PAWSC, changes in NPP 

(Figure 5A) are divergent across treatment type. ET (Figure 5B) and conifer canopy fuel gap 

(Figure 5C) show similar trends, though it is both the median effect as well as variability that 

varies across treatment type and PAWSC. This variability arising from parameter interactions 

is not present for all response variables – fire spread probability (Figure 5D) varies little 
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across PAWSC. Similarly, not all parameters interact and lead to variation in effects. Conifer 

canopy fuel gap (Figure 6) responds similarly across some parameter combinations and 

shows varying or diverging trends across others. Both climate warming and aridity (Figure 

6A, 6B), subset by treatment type, show small median impacts on conifer canopy fuel gap, 

with the primary response being small effects on variability. Treatment intensity and interval 

(Figure 6C, 6D), on the other hand, show much less consistency, with conifer canopy fuel 

gap changing in median effect and variability across both parameters. A critical repercussion 

of the variable responses we demonstrate is that a treatment strategy, or expected outcome of 

a treatment (e.g., H1-H4), assessed solely across a single parameter, may miss key trends in 

how that treatment will more broadly affect forests, water, and fire.  

When we look at the effects of all parameters simultaneously using the Regression Trees 

(Figure 7), we find that most of the parameters play a nontrivial role in explaining response 

variability. Some parameters, however, do appear to be consistently more important – 

treatment method and intensity, for example, more strongly control trends in treatment 

effects as compared to aspect. The high ranking of fuel treatment parameters (treatment 

method and intensity and treatment interval) is encouraging, suggesting that these actions 

(and changes in them) are likely to have an impact across a range of site and climate 

conditions. Nonetheless PAWSC and vegetation type also consistently rank high. 

Collectively this pattern underscores the importance of biophysical setting and its interaction 

with treatment strategies in determining how a treatment affects forests, water, and fire. 

Based on this, PAWSC and vegetation type should be considered in fuel treatment selection. 

This is not always actionable from a management perspective, as often specific locations in 

the wildland urban interface necessitate treatment to mitigate high severity fire risk – but in 
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modeling or planning possible treatments with a degree of flexibility, the cost-benefit of 

where to treat should consider PAWSC and vegetation type with weight similar to the type of 

fuel treatment itself. This is particularly true of treatments aimed at a broader range of forest 

and water-related goals – key among them are drought mitigation efforts like reduction in 

forest mortality or increasing water yield, while still aiming to reduce fire severity. 

Climate is a less dominant control on fuel treatment effects as compared to the treatment 

method and intensity, treatment interval, vegetation type, and PAWSC. Though there is a 

consistent difference in rank order between the climate parameters (climate warming and 

aridity) and the above four parameters, the margin can be small, as with treatment effects on 

stand carbon (Figure 7A) or conifer canopy fuel gap (Figure 7F). Our results indicate that 

while climate is not a clear primary control on the outcome of a fuel treatment, neither can 

we ignore it given the often-marginal difference from other, higher ranked, parameters. As 

focus on fuel treatments used for climate change mitigation increases, the need for inclusion 

of climate in analyses of fuel treatment effects will also increase. This work serves to 

contextualize that inclusion of climate as a control on fuel treatments; in more expansive 

analyses, or those simulating long-term projections, climate (both climate warming and 

aridity) is a reasonable or even necessary control to include and vary, with the opposite being 

true in narrower, or shorter-term analyses. The role of climate here is also likely 

underestimated as we simulate climate warming only with a 2°C increase in temperature and 

our aridity scenarios do not account for the expected increased variability of precipitation 

(Hayhoe et al., 2018). 

Our results are consistent with other research that has considered factors like treatment 

method, storage capacity, vegetation type, and climate as variables that can influence 
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treatment responses (Finney et al., 2007; Hurteau et al., 2014b). Tree-scale interactions 

between neighboring vegetation, specifically lateral transfers of water and shading, are not 

typically considered. In this study, the root sharing coefficient reflects variation in tree scale 

interactions. While the root sharing coefficient is not the dominant factor influencing fuel 

treatment effects, it is consistently comparable to the climate parameters, and has a 

particularly large influence on conifer canopy fuel gap. Our research underscores the 

importance of tree-scale lateral root access in facilitating emergent differences in vegetation 

heights. While more work is needed to fully understand tree-scale water transfers due to 

lateral root access, and how this varies with species and canopy structure, the role of tree-

scale lateral transfers shown here is noteworthy. Finally, we note that aspect demonstrates a 

consistently weaker influence on all fuel treatment effects. Inevitably there will be specific 

cases in which aspect has a more noteworthy influence on treatment effects, but it 

nonetheless would be the first parameter to exclude when narrowing the scope of analysis. 

4.3. Model Limitations and Future Work 

Though our research makes meaningful strides to better characterize fuel treatments and 

fuel treatment effects, both through the incorporation of tree-scale lateral transfers, as well as 

other recent advances to RHESSys, our modeling approach (like any) remains an imperfect 

approximation of reality. Some limitations include the use of indicators of fire severity rather 

than natively including fires within the model, and the absences of lateral subsurface water 

inputs (see Methods). These are not limitations of RHESSys but rather are constraints due to 

modelling a single “patch family” rather than a hillslope. Focusing on a single patch allowed 

us to fully explore a complex parameter space. Practical computing would limit this 

exploration for a full watershed implementation, but future work will investigate watershed 
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scale behaviors for parameter scenarios selected from this study. In this study we did not 

account for heterogeneity in vegetation size classes nor species differences. 

The relationships between scenarios and treatment effects in this research are based on 

assumptions and limitations specific to our mid-elevation Southern Sierra Nevada site. 

Despite this, little of the model or scenario parameterization is truly exclusive to our site. 

Parameter sets were selected specifically to be regionally representative. The results found 

here are then useful across regions where vegetation, climate, and PAWSC are comparable – 

Southern Sierra Nevada mid-elevation regions. Beyond the broader application of the results 

of this work, the methodology developed here, both the modeling methods (RHESSys and 

multiscale routing) and the general architecture of the scenarios, has merit for use elsewhere. 

Interest in fuel treatments for fire severity reduction, improved drought resilience, increased 

water yield, and myriad other purposes is not unique to the Southern Sierras. The methods 

demonstrated here can be replicated in other regions to build improved understanding of 

global effects of fuel treatments, which continues to be a key yet challenging goal (Evaristo 

and McDonnell, 2019; Kirchner et al., 2020). The methods shown in this work also present 

an opportunity for synthesis with empirical data on fuel treatment effects, and can serve as a 

foundational step, to preface either more focused modeling work, or to inform the planning 

of field work. Replication of this work is already planned across a series of sites in the 

Western United Sates, but with climate-driven increases to fire activity projected for many 

regions of the world (Moritz et al., 2012), additional locations merit further investigation of 

fuel treatment effects. 
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5. Conclusions 

Interactions between biophysical setting, climate, and fuel treatments are complex and 

have non-linear effects on forests, water, and fire. As fuel treatments receive more interest, 

and more often with goals beyond fire severity reduction, it becomes increasingly important 

to understand and ultimately quantify the range and distribution of likely effects that a 

treatment may have. This presents a challenging task for modelers and field scientists alike 

given the intersecting scientific domains and complex interconnected processes. Our research 

works to address this problem and provide a blueprint for how to robustly identify both the 

range of expected treatment effects and which factors have the greatest influence on those 

treatment effects. Across our range of scenarios, we highlight cases where treatment effects 

deviate from expectations, such as instances of increasing carbon sequestration or decreasing 

water yields. Even when treatment effects conform to expected direction of change (e.g., 

increasing water yields), results show substantial variation in the magnitude of effects even 

within the same watershed. For our mid-elevation Southern Sierra site, fuel treatment 

parameters (i.e., treatment method and intensity, and treatment interval) along with 

biophysical parameters (i.e., vegetation type and PAWSC), are important controls on fuel 

treatment effects. Climate and root sharing coefficient are of lesser, albeit variable 

importance across fuel treatment effects, while aspect stands out with particularly little 

influence on fuel treatment effects for this site. Arising from these analyses, we underscore 

the difficulty in estimating fuel treatment effects over narrow ranges of biophysical and fuel 

treatment parameters, and the need for greater variation across the parameter space, 

particularly as treatments are used with multiple goals in mind concerning forests, water, and 
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fire. This approach allows for more focused analyses to further interrogate, at finer spatial 

and temporal scales, how fuel treatments affect our natural environment. 

6. Figures 

 

FIGURE 1. Conceptual model of the domains that underpin and are affected by fuel 

treatments. 
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FIGURE 2. Conceptual model of the multiscale routing method, including the local 

routing of subsurface storage and shading that occurs between co-located aspatial patches. 

Shown are examples of pre-treatment, post-treatment, and post-regrowth dynamics, and 

possible associated changes in subsurface storage and shading. 
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FIGURE 3. Monthly stand carbon for two treatment scenarios (40% understory removal 

with following prescribed fire and 40% overstory removal) and a no treatment scenario, 

performed on conifer overstory with shrub understory, implemented every 10 years (vertical 

lines), with otherwise identical biophysical and climatic parameters (‘wet’ aridity, no climate 

warming, ‘low’ PAWSC, 0.5 root sharing coefficient, North aspect) 
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FIGURE 4. Histograms of fuel treatment effect sizes, in percent change of simulation 

long (30-year) means relative to untreated equivalent scenarios, for stand carbon (A), net 

primary productivity (B), evapotranspiration (C), fire spread probability (D), shrub fuel 

height (E), and conifer canopy fuel gap (F). Colored by treatment type. 
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FIGURE 5. Boxplots of percent change of simulation long (30-year) means relative to 

untreated equivalent scenarios, for net primary productivity (A), evapotranspiration (B), 

conifer canopy fuel gap (C), and fire spread probability (D), for only conifer+shrub 

scenarios, subdivided by PAWSC on the x-axis and colored by treatment type. Upper and 

lower hinges indicate the 1st and 3rd quartiles (25th and 75th percentiles), and whiskers 

indicate the greatest/smallest value within the 1.5 times the inter-quartile range. 
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FIGURE 6. Boxplots of percent change of simulation long (30-year) mean conifer 

canopy fuel gap, relative to untreated equivalent scenarios, for only conifer+shrub scenarios, 

subdivided by climate warming (A), aridity (B), treatment intensity (C), and treatment 

interval (D) on the x-axes and colored by treatment type. Upper and lower hinges indicate the 

1st and 3rd quartiles (25th and 75th percentiles), and whiskers indicate the greatest/smallest 

value within the 1.5 times the inter-quartile range. 
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FIGURE 7. Means and distributions of minimal depths for the random forest decision 

trees of stand carbon (A), net primary productivity (B), evapotranspiration (C), fire spread 

probability (D), shrub fuel height (E), and conifer canopy fuel gap (F). Minimal depth 

indicates, for each random forest, the first decision tree node that a given parameter best 

grouped (minimized variance) for the output variable. 
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7. Tables 

TABLE 1. Summary of fuel treatment scenario parameters 

Fuel Treatment Scenarios 

Treatment Method & Intensity 10 

Understory thinning + prescribed fire: high, med, low 3 

Overstory thinning, with/without slash: high, med, low 6 

Prescribed fire 1 

Treatment Frequency: 5, 10, 30 years 3 

No Treatment 1 

Site Characteristics 540 

Vegetation: shrub, conifer, shrub/conifer mix 3 

Aspect: north, south 2 

Plant accessible water storage capacity: low, med, high 3 

Aridity: dry, variable, wet 3 

Climate warming: baseline, + 2°C 2 

Root sharing coefficients: 0, 0.25, 0.5, 0.75, 1 5 

Total (incompatible combinations removed) 13500 
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Chapter 3: How Climate Change and Treatment Size Impact Fuel 

Treatment Effects 

1. Introduction 

Fuel treatments, the removal of vegetation through mechanical methods or controlled 

burns, have a wide range of uses including reducing high severity fire risk, promoting forest 

health, and increasing streamflow (Agee and Skinner, 2005; Ager et al., 2010; Tague et al., 

2019). Depending on the type of treatment and the environment in which it is done, fuel 

treatments have the potential for positive and negative impacts on key areas of concern such 

as wildfire risk or water supply, areas of particular interest to forest and land managers 

(Burke et al., 2020). There is growing interest in the potential benefits of fuel treatments, not 

only as a method to reduce fire risk but also to manage streamflow and forest health. Climate 

change impacts on forests are substantial, mid elevation conifer forests in the Southwest U.S. 

experienced doubled tree death from 1955 to 2007, insect outbreaks killed more than 129 

million trees in California from 2010 to 2017, and climate change led to double the area 

burned by wildfire from 1984 to 2015 in the western U.S (Garfin et al., 2018; Vose et al., 

2018). How then, do the already complex interacting effects of fuel treatments change when 

we consider projected climate change? The effects of forest management decisions will 

change alongside climate, so it becomes necessary to consider how simultaneous changes in 

both the treatments themselves and climate will alter the effects of fuel treatments on the full 

range of biophysical processes we care about such as high severity fire, streamflow, and 

forest health. 
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Fuel treatments, specifically forest thinning, have the potential to affect not only the risk 

of high severity fire, but also a range of hydrologic and ecophysiological factors. Though not 

all landscapes are as well suited to the use of fuel treatments for reducing high severity fire, 

in many cases fuel treatments remain an effective forest management tool, such as in mixed 

conifer regions of the western U.S. (Barros et al., 2019). Longer term effectiveness is often 

dependent on regrowth dynamics and competition between new species (Moritz et al., 2014). 

Fuel treatments, as a means of reducing forest density, have also been long used to improve 

vegetation growth and increase silvicultural production (Cabon et al., 2018). In addition to 

increases in productivity, thinning can improve resiliency to drought, at least in the short 

term, while the longer term impact on drought resilience is more uncertain (Clark et al., 

2016; Tague et al., 2019). Thinning can alter streamflow through changes to vegetation water 

use, with increases in evaporation typically being outweighed by reductions in transpiration 

(Brown et al., 2005; Tague et al., 2019). Though thinning most commonly leads to increases 

in streamflow, there remains cases to the contrary where thinning leads to little or no impact 

on water yield and streamflow (Brown et al., 2005; Ellison et al., 2012; Tague and Moritz, 

2019).  

Climate change is responsible for noteworthy changes in average annual temperatures at 

varied scales, but of note to this research are the impacts on the western U.S. and California. 

The Southwestern U.S. has already seen an increase in average annual temperatures of 0.9°C 

when comparing current temperatures (1986–2016) to those of the first half of the last 

century (1901–1960), with changes in minimum and maximum temperatures following the 

same shift (of 0.9°C) (Vose et al., 2017). Model ensembles for the Southwestern U.S. project 

increases of 4.8°C by 2100 under a ‘business as usual strategy’ (RCP 8.5) (Garfin et al., 
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2018). California-specific estimates range from increases of 2-4°C under a medium 

emissions scenario (RCP 4.5) or 4-7°C under the more severe ‘business as usual’ scenario 

(RCP 8.5) (Pierce et al., 2018). Annual precipitation by contrast has no clear trend though 

time, either historically or in model projections, but instead is expected to increase in 

variability. Precipitation in California is projected to become less frequent but come in more 

extreme events, with estimates of increases in dry-to-wet precipitation events of 25% to 

100% (Swain et al., 2018). 

Climate change in the western U.S. is already transforming fire behavior and is likely to 

continue to have substantial effects on fire regimes. Climate-driven changes to wildfire, 

while related to changes in temperature, are also impacted by a broader range of variables 

including fuel loading and historic fire exclusion (Vose et al., 2018). Observed changes in the 

western U.S. show increases in area burned owing to longer and drier fire seasons, across a 

range of ecoregions (Parks and Abatzoglou, 2020). Climate has also been identified as 

increasing the frequency of large area wildfires, wildfire duration, and wildfire season 

(Westerling et al., 2006). Temperature is a key mechanism driving changes to fire – 

increased temperatures facilitate warmer drier weather (‘fire weather’) and lead to drier fuels, 

increasing the chances of fire spread (Kennedy et al., 2017). Warmer temperatures can also 

reduce vegetation productivity, which by limiting the available fuels can then reduce area 

burned (Hanan et al., 2020). Projections indicate that fire activity is likely to increase in 

already warm regions in the short term, with more variable impacts across other climatic 

conditions (Moritz et al., 2012). Projections for the end of the 21st century are less varied, 

with most regions estimating increases in fire probabilities. Given the existing and projected 

effects of climate change on fire, fire and forest management is continuously adapting, 
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though the specifics of that adaptation will be variable by site and circumstance, and 

evolving over time (Stephens et al., 2013). 

The site conditions of a fuel treatment, such as soil and rooting depth, vegetation type, 

and topography, have been shown to influence both fire regimes and fuel treatment 

effectiveness (Burke et al., 2020; Tague and Moritz, 2019). In addition to location, fuel 

treatments have a wide range of implementations, notably including the treatment type and 

interval, and the treatment spatial design (Agee and Skinner, 2005; Finney, 2001; Prichard et 

al., 2020). Fuel treatment implementation will change depending on the goals (reducing high 

severity fire vs. improving forest health) and environmental context of the treatment (a shrub 

dominated riparian region vs. a high elevation conifer-dominated region) (Stephens et al., 

2012). Underlying these treatment options though, is the total area treated. Decisions on area 

treated can depend on a variety of factors. In some cases treatment area is limited by design, 

either due to land ownership or other planning considerations, but often, area treated is 

dependent on physical limitations (slopes that are too steep, areas inaccessible due to distance 

from roads) or economic limitations (Anderson et al., 2020; U. S. GAO, 2019). Sometimes 

these factors coincide – forest thinning using heavy machinery is more efficient in time and 

cost, but physical limitations often require manual hand thinning which increases both time 

and cost. Factors influencing area treated are also changing along with climate change. 

Current economic priorities are likely to shift over the course of the next century as climate 

change increases in magnitude such that even ambitious goals for area treated today may 

become necessities in the future. Area treated is also a key variable of interest considering the 

large magnitude of effect, both on fire risk and beyond (Ager et al., 2010). Area treated is 

impactful due to the increased chance of the treatment to encounter and mitigate high 
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severity fire with increased treatment size (Barnett et al., 2016). Larger treatment area will 

also have a larger impact on basin-scale outputs such as streamflow which is the product of 

the contributing areas of the watershed. 

This research uses modeling methods to better understand how the effects of fuel 

treatments may change under climate change. We are specifically interested in assessing the 

interactions between climate change and changes in area treated. Using a coupled 

ecohydrologic model, with novel model developments to better characterize and simulate 

fuel treatments and their effects, we model fuel treatment effects for a mid-elevation 

watershed in the California Sierra Nevada. The goals of this work are to explore: 

 

1. How do fuel treatments of different areas affect fire risk, streamflow, and forest 

health? How do these changes vary in the short (< 5 years) and long term (20 years)? 

2. How do climate change and treatment area, alone and in combination, interact to alter 

how fuel treatments effect fire risk, streamflow, and forest health?  

2. Methods 

2.1. RHESSys & Multiscale Routing 

We use the Regional Hydro-Ecological Simulation System (RHESSys 7.4) along with the 

multiscale routing (MSR) method for RHESSys to simulate the effects of fuel treatments and 

climate change on hydrology and plant physiology. RHESSys is a mechanistic distributed 

watershed model that simulates hydrology, dynamic plant growth, radiation budget, and 

nutrient cycling (carbon and nitrogen) (Garcia et al., 2013; Tague and Band, 2004). 

Multiscale routing builds on the existing RHESSys architecture and the method is more fully 
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described by Chapter 1. RHESSys has been used previously to model forest thinning and 

thinning effects, along with the effects of climate change on plant growth and fire (Grant et 

al., 2013; Hanan et al., 2020; Tague et al., 2009; Tague and Moritz, 2019). Recent additions 

to RHESSys have incorporated both fire spread and fire effects models to simulate changing 

fire regimes and their impacts on vegetation structure (Bart et al., 2020a; Kennedy et al., 

2017).  

There are several key model components which make RHESSys well suited to assessing 

the effects of fuel treatments. RHESSys simulates vegetation ecophysiology using 

parameters that can be adjusted to simulate a different plant species, either relying on 

established parameters from the literature or those used in previous RHESSys 

implementations. Vegetation is simulated using up to two canopy strata (understory and 

overstory), with gross photosynthesis estimated using Farquhar Photosynthesis model (1980), 

and resulting net assimilation, once respiration has been accounted for,  is allocated using 

Dickinson et al. (1998). Radiation is budgeted at the patch scale, adjusted for topography and 

horizon angle, and accounts for variable leaf scale fluxes owing to sunlit vs. shaded areas 

(Running et al., 1987). Water, along with nutrients (carbon and nitrogen) cycle vertically and 

can transfer laterally. Evapotranspiration is based on Penman-Monteith (1965), and is 

separately calculated for canopy interception and soil. Snowmelt processes are calculated 

based on radiation budget and are fed into the vertical profile drainage. A more complete 

description of RHESSys functionality and internal equations can be found in Tague & Band 

(2004) and Garcia et. al. (2013), with more recent additions and application-specific 

accounting can be found in Burke et al. (2020). 
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The MSR method is a key addition to RHESSys that facilitates modelling thinning and 

the subsequent effects of thinning (Burke et al., 2020; Tsamir et al., 2019). RHESSys-MSR 

routes water both topographically over the hillslope as well as non-topographically at a 

within-stand scale. The MSR method builds on the structure of RHESSys – the smallest 

spatial unit in RHESSys is a ‘patch’, MSR adds multiple ‘aspatial patches’ in the location 

where there was only a single spatial patch previously. These aspatial patches, collectively a 

‘patch family’, are defined by percent coverages. Individual patches within a patch family 

can be used to account for small scale variations in vegetation, for example, to 

simultaneously account for conifer, shrub, and open spaces within stands. These same units 

can also be subjected to thinning, reducing carbon for a specific subset of the stand instead of 

applying an average effect over a larger unit to accomplish the same net reduction. MSR 

facilitates the routing of water and nutrients between the co-located aspatial patches, 

allowing for realistic post-thinning regrowth dynamics, which can be influence by the lack or 

presence of access to the storage of neighboring vegetation MSR also introduces shading 

associated with neighboring vegetation that occurs between patches in each patch family, 

accounting for the role that significantly taller neighboring vegetation can have in reducing 

incoming solar radiation of shorter stature neighbors. These changes all coincide with the 

existing functionality of RHESSys, which routes water topographically over the hillslope, 

calculates the energy budget, and dynamically grows vegetation. Full details on both the 

routing and shading components of multiscale routing are featured in Chapter 1. 

2.2. Site 

The study site for this research is the Big Creek watershed, located in the Southern 

California Sierra Nevada, encompassing the Providence Creek watersheds which are a part of 
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the Kings River Experimental Watersheds (KREW) and Southern Sierra Critical Zone 

Observatory (Hunsaker et al., 2012; O’Geen et al., 2018). While the entire ~66 square 

kilometer watershed is used for the main analysis, the smaller P301 subcatchment is used for 

soil parameter calibration. The meteorology station at the subcatchment outlet (Grant Grove, 

National Climate Data Center Station, Lat: 36.73603°N, Lon: 118.96122°W, elevation 

2,005m) is used to drive baseline historic simulations. Historic climate at the site (1943 - 

2015) features a mean annual temperature of 8ºC and mean annual precipitation of 1037 mm 

(highly variable from 635 mm to 2172 mm) (Bart et al., 2021). The watershed elevation 

spans from 957 m to 2344m, with areas of seasonal snowpack at high elevations and rain 

dominated at lower elevations. Dominant soils vary by subregion, but include Gerle-Cagwin 

and Shaver at depths of 76 to 203 cm (Bales et al., 2011). Vegetation is dominated by mixed 

conifer forest, with some areas of shrub and chaparral, as well as regions of bare earth. 

Vegetation species include white fir (Abies concolor), ponderosa pine (Pinus ponderosa), 

Jeffery pine (Pinus jeffreyi), California black oak (Quercus kelloggii), sugar pine (Pinus 

lambertiana), and incense cedar (Calocedrus), that transition to sclerophyll shrubs (greenleaf 

manzanita (Arctostaphylos patula), mountain whitehorn (Ceanothus cordulatus)) (Safeeq and 

Hunsaker, 2016). The Big Creek site has benefited from a variety of previous research, with 

multiple previous studies using RHESSys to model parts or all of the watershed (Bart et al., 

2021, 2016; Son et al., 2016b; Tague and Moritz, 2019) 

2.3. Model Initialization and Calibration 

Initialization and calibration of RHESSys for the Big Creek watershed was done in a 

series of steps commonly used when setting up and running RHESSys: spin up of soil 

nutrient stores, calibration of soil and vegetation parameters based on observed streamflow 
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and vegetation data. The P301 subcatchment was set up and run for a period of 300 years to 

ensure soil nutrients reached steady states. The same subcatchment was then cleared of 

vegetation and regrown for 50 years to achieve vegetation ages and sizes more appropriate to 

the mixed conifer site. The initialized model was used to calibrate soil parameters using 

observed meteorological data and streamflow data from the Southern Sierra Critical Zone 

Observatory for the period from 2000 to 2015. Starting parameters and ranges were taken 

from Son et al. (2016b), which provides soil parameter values for the same basin, though 

significant changes to the model have occurred since those parameters were found. Eight soil 

parameters (including depth, pore size index, conductivity, saturated conductivity, and the 

decay of conductivity with depth) were included in the calibration, though this was 

complicated by the inclusion of the two sharing coefficients (shl and shg), which modulate the 

water transferred among a patch family in multiscale routing. A total of 1500 calibration runs 

were done, sampling uniform parameters, with the best performing parameter set having a 

Nash-Sutcliffe efficiency (NSE) of 0.61. Though the complexity of the vegetation dynamics 

as well as the spatial and temporal scales being run at may make RHESSys challenging to 

calibrate, this NSE value is still on the low end and may warrant further investigation. 

Additionally, new strategies may be needed to properly include MSR in soil parameter 

calibration. Following calibration using the P301 subcatchment, the full Big Creek watershed 

was initialized, based on a DEM using a 90-meter resolution, the watershed was again run for 

300 years until the soil nutrient stores reached steady-state. After clearing and regrowing the 

vegetation to a more realistic age of 50 years, vegetation behavior and structure were 

assessed in the case additional parameter tuning was needed, but the existing vegetation 

parameters were sufficient (Burke et al., 2020; Son et al., 2016b). 
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2.4. Model Scenarios 

Model scenarios in this research were defined by variations in climate and area treated. 

Fuel treatment scenarios were selected to capture a wide range of possible area treated, while 

keeping the type and intensity of that treatment constant. While varying the type and 

intensity of treatment would add additional information the computation cost where 

prohibitive for this study. Previous work has shown the importance of both treatment method 

and intensity but given the watershed scale of the outputs of interest in this work, treatment 

area is likely to play a powerful enough role without additional variation to method and 

intensity (Burke et al., 2020) With respect to the fuel treatment itself, we vary the area 

treated, while leaving the treatment itself as a moderately high intensity reduction of 

overstory biomass – a 40% removal from the conifer overstory, coupled with a 100% 

removal of the shrub understory. This treatment method and intensity, while not the most 

extreme fuel treatment scenario, is still a relatively intense treatment. Treatments are applied 

at the start of the simulation and compared with a control no treatment scenario. We include 

three treatment area options using the previously described method and intensity: no 

thinning, minimal thinning, and maximized thinning. Minimal thinning is a treatment of 20% 

of the total area, and for simplicity of implementation, is arranged based on a random 

sampling over the watershed. The maximized treatment scenario treats all area below a slope 

threshold of 40% slope rise (~22°). While there are a range of mechanical forest thinning 

machinery that can operate up to 50% slope, and in rarer cases even in steeper more extreme 

slopes over 50%, we use a threshold of 40% to account for the less than perfectly optimistic 

access to machinery, and the fact that many areas of shallower slopes are made inaccessible 
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due to barriers of steeper slopes. This area of the ‘maximized thinning’ scenario translates to 

~90% coverage of the watershed. 

We use three climate scenarios: observed, RCP 4.5, and RCP 8.5. Observed climate data 

from the Grant Grove meteorological station for the 20-year period of 1995-2015 serves as 

the ‘historic’, or more accurately ‘early 21st century’ period. Projected climate data using the 

localized constructed analogs (LOCA) method was retrieved via the Cal-Adapt data portal 

(Pierce et al., 2014). A single model, selected from the four priority models for California, 

the HadGEM2-ES was chosen. This is both to simplify the subsequent analysis, but was 

specifically selected due to the prevalence of drought in the modeled climate, as highlighted 

in Pierce et al. (2018) as a part of the analysis for California’s Fourth Climate Change 

Assessment. Representative concentration pathways (RCPs) 4.5 and 8.5 from the HadGEM2-

ES model, representing increases in net radiative forcing of 4.5 W/m2 and 8.5 W/m2 

respectively, are used to simulate moderate and more severe climate change. To be 

comparable with the observed data, and to capture the more extreme end of climate change 

effects, the 20-year period from 2069-2099 is used for the projected data. Altogether these 

three climate scenarios and three treatment options combine to 9 total scenarios. 

3. Results 

Observed climate for the Big Creek watershed broadly aligns with the modeled and 

downscaled data (Figures 3 & 4). Comparing the HadGEM2-ES reanalysis product to the 

observed Grant Grove meteorological data, the observed data is lower by an average of ~1.8 

°C. Though this is a substantial difference, even larger changes in temperature are seen when 

comparing the observed and projected temperature data for the model periods (1995-2015 

and 2079-2099). The observed model period has a mean daily temperature of 8.1°C, while 



 

 87 

RCP’s 4.5 and 8.5, for the late 21st century model period, project mean daily temperatures of 

13.6°C and 15.8°C respectively, increases of 4.9°C and 7.1°C over the course of the century. 

Observed baseline precipitation for Big Creek averages 1032 mm annually, slightly above 

the estimate from the HadGEM2-ES historical reanalysis of 943 mm. For only the model 

periods (1995-2015 and 2079-2099), the baseline period has an average annual precipitation 

of 1019 mm while the projected climate periods have average annual precipitation of 862 

mm and 912 mm for RCP 4.5 and 8.5, respectively. Accounting only for days non-zero 

precipitation, the baseline and projected periods are compared in Figure 4. The baseline 

period has both greater variability as well as larger mean precipitation events of 16 mm, 

compared to RCP 4.5 at 7 mm and RCP 8.5 at 8 mm. These metrics are based only on days 

with non-zero precipitation, which for the observed period constitutes 17% of days, while for 

RCP’s 4.5 and 8.5 are 32% and 33% of days. This together indicates that the projected 

periods anticipate more frequent but lower average intensity rainfall compared to observed 

data, though the difference is slight overall. 

The direct effect on total forest carbon of the implemented fuel treatment – a 40% 

reduction in conifer overstory, and a 100% reduction in shrub understory, performed at the 

start of the model runs, is shown in Figure 5. Climate scenarios were spun up separately 

leading to differences in initial conditions, 8.9 and 7.3 kg of Carbon/m2 for baseline and RCP 

8.5 climate scenarios respectively. Short-term (2-year) effects of treatment on total carbon 

are shown in Figures 5 A & B, starting with the drop in carbon due to the fuel treatment 

itself. Changes to mean total carbon during the 20 years following treatment are generally 

minor, reductions of 3% and 11% in the baseline climate, and 1% and 2% in RCP 8.5 

climate, for minimal and maximum treatments respectively. 
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Long term projections of carbon (Figure 5C) point to climate scenario as being a key 

predictor. Compared to the baseline climate, RCPs 4.5 and 8.5 lead to reductions in average 

carbon of 31% and 40% over the 20-year simulation period. The effects of treatment, though 

consistent across climate, are relatively small compared to climate differences. The reduction 

due to treatment comparing maximum treatment to no treatment only spans 6% for baseline 

climate or 3% for RCPs 4.5 or 8.5. The range of variability for each treatment and climate 

scenario is typically small, less than 0.5 kg Carbon for the projected climate scenarios and 

only slightly greater for the baseline climate.  

GPP is gross photosynthesis, which can be used as an indicator of forest health (Figure 

6). Short term differences in GPP show the effect of treatment, with noteworthy reductions in 

GPP resulting from the maximized treatment scenario, for both observed and projected RCP 

8.5 climate scenarios. The effect of the minimal treatment scenarios is smaller, with small 

differences compared to the untreated scenarios. Though the maximum treatment scenarios 

show notable reductions in peak GPP, the differences are minor during the trough periods 

(typically January) and all treatment scenarios converge at the trough at the end of 2 years 

following treatment. Though Figures 6 A & B span only 2 years, the longer-term trajectory 

and behavior of GPP is noteworthy. For both the baseline and RCP 8.5 climates the effects of 

all treatment scenarios progressively diminish until 5 years following treatment when there is 

no discernable effect of the treatment. Crucially though, while there remains no differences 

from treatment for the RCP 8.5 climate, for the baseline climate the maximum treatment 

scenario leads in higher peak summer GPP compared to no treatment and minimal options, 

starting in year 5 and lasting until year 15. 
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Long term differences in GPP are dominated by the differences in the climate scenario 

(Figure 6). The baseline scenarios are on average 32 % greater than RCP 4.5 and 69% greater 

than RCP 8.5. For each climate scenario, treatment scenario has little impact on long term 

GPP, and minor decreases in GPP occur as treatment area increases. For each climate 

scenario, the range of variation from no treatment to maximum treatment only spans 4%, 8%, 

and 14% for baseline, RCP 4.5, and RCP 8.5 (absolute ranges of 0.00016, 0.00019, and 

0.00016 kg Carbon/m2 daily). Variability (range from 25th to 75th percentiles) within climate 

scenarios is substantial and eclipses differences in the median values. 

We use height gap as an indicator of likely fire risk. Long term estimates of height gap, 

the distance from the shrub understory to the conifer overstory (in the patches which feature 

two canopy strata), is included in Figure 7. The effect of treatment on height gaps is 

consistent across climate scenarios, although maximum treatment scenarios lead to an initial 

increase in height gap (when averaged over the basin), the long-term effects show slightly 

smaller height. Climate is the larger driver of height gap, with baseline climate having 

substantially larger and more varied height gaps compared to RCP 4.5 and 8.5. Though there 

is some variation in shrub heights (3 m – 1 m), the greater control on height gap is the conifer 

heights, ranging from an average of 13 m in the baseline scenario to 10 m and 5 m in RCP 

4.5 and 8.5. Dead trees and trees unable to successfully grow are a large component of the 

vegetation in RCP 8.5, with the 25th percentile height falling at 1 m. 

Figure 8 shows the effects of treatment and climate scenarios on streamflow. In the short-

term (2 years following treatment), the maximized treatment stands out, leading to nontrivial 

increases in peak streamflow across climate scenarios (Figure 8 A). The largest relative 

differences in peak streamflow due to treatment occur in the RCP 4.5 scenario, maximum 
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treatment is 91% greater than no treatment, though RCP 8.5 has larger absolute differences 

between maximum and no treatment (5 mm peak average daily streamflow, 38% greater). 

Minimal treatment falls between maximum and no treatment scenarios, though for all climate 

scenarios it falls closer to no treatment than maximum treatment. Interestingly, despite both 

RCP 4.5 and 8.5 being over the same period, the streamflow behavior is markedly different 

between the two climate scenarios, with RCP 4.5 having nearly no winter streamflow peak in 

the first year following treatment. Total water yields in year one after treatment are 99 mm 

averaged across treatment scenarios for RCP 4.5 compared to 688 mm and 415 mm for RCP 

8.5 and baseline climate respectively. 

Long-term (20-year) seasonal streamflow, both monthly medians and 25th to 75th 

percentile boxplots, is shown across climate and treatment scenarios in Figure 8 B and C. 

Changes in climate scenario result in more substantial differences in the magnitudes of 

monthly flows whereas fuel treatment scenarios lead to similar distributions of seasonal flow. 

Compared to baseline, RCP 4.5 leads to a long-term average increase in mean daily 

streamflow of 22% and RCP 8.5 leads to an increase of 77%. Though peak flows follow a 

similar shift (increases of 5% and 73% for RCP 4.5 and 8.5 respectively), RCP 4.5 does have 

relatively less 25th to 75th percentile variability compared to baseline, particularly in peak 

months (March – May). There is also a 1-month shift in peak timing, moving from April in 

the baseline climate to March in both projected climate scenarios. Differences in fuel 

treatment have minor impacts on long-term streamflow (Figure 8C). Fuel treatments result in 

long-term average increases in streamflow of 1% and 22% for minimal and maximum 

treatment scenarios respectively. Though average flows change somewhat, peak flows are 

unaffected by fuel treatment scenarios, increasing less than 1% compared to no treatment. 
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Across both climate and fuel treatment scenarios, low flows are consistently unchanged, and 

the lowest flow months (September and October) feature no change in mean streamflow. 

4. Discussion 

Climate models broadly agree on projections of temperature but in many other respects 

there is a large degree of uncertainty as to how climate will impact our environment. 

Precipitation is emblematic of this – climate models are unclear as to the direction of change 

in the western U.S., though there is agreement as to the expected increase in variability 

(Garfin et al., 2018). As we trace the effects of climate change further from the more certain 

projections of temperature change, increased uncertainty is both expected and difficult to 

avoid. Projecting climate impacts on wildfire is such a challenge – fire, and specifically the 

risk of high severity wildfire, is linked to both temperature and precipitation, as well as a 

range of other difficult to predict variables such as wind, forest structure, and fuel loading. 

Recommendations in regards to managing wildfire in the context of climate change often 

point towards restoring forests, building resiliency, and anticipating change (Stephens et al., 

2013). While these are excellent recommendations in general, watershed or forest-specific 

plans are nonetheless desirable when considering the long-term effects of climate change on 

fire. 

Observed and projected climate data for Big Creek broadly align with the expected 

changes for California and the Western U.S. The offset of the observed temperature data as 

compared to the historic reanalysis or projected data (Figure 3) is somewhat notable but is 

likely a product of both model/downscaling inaccuracy as well as bias or microclimate 

present at the Grant Grove Meteorological station. The larger trend in temperature, in 

particular the expected changes from observed to late 21st century projected data directly 
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aligns with regional projections for climate warming (Garfin et al., 2018). Similarly, while 

precipitation projections, as compared to observed data, don’t align perfectly with the 

regional prediction of increased variability and large storms, the mean rainfall is largely 

unchanged which does agree to wider expectations.  

Modeling is a key means by which we can compensate for this uncertainty through 

simulation of a range of potential outcomes. Model simulations are only useful if they can 

paint a complete picture though, and any accounting of climate and climate change impacts 

on fire will be tightly linked and influenced by potential fuel treatments. Fuel treatments in 

the short term are a means of modifying forest structure in order to alter key biophysical 

variables like high severity fire risk, forest health, or streamflow. Our research supports this, 

with carbon, GPP, and streamflow effects responding clearly to treatment, particularly to the 

more intense ‘maximized’ treatment. Previous work has argued that fuel treatments have the 

potential to mitigate climate change (Hurteau et al., 2014a; Vernon et al., 2018). These 

papers highlight the effects on fire and on reductions in drought mortality losses. In this 

paper we focus only on the latter effect. When viewed through the lens of productivity, fuel 

treatment effects on carbon sequestration in Big Creek are either too short lived, or not 

achieved at all and are overwhelmed by the effect of climate change. 

Across responses in total carbon, GPP, height gap, and streamflow, changes in climate 

scenario stand out by comparison to changes in treatment scenario. The treatment itself, as 

shown in Figure 5 A & B, has a direct but typically minor effect on total carbon in terms of 

percent change, at most an 11% reduction in carbon in the first two years. The relatively 

small effect of the fuel treatment is partially because of the limits of the treatment itself on 

total carbon, total carbon includes carbon stores not directly altered by fuel treatments, 
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including root carbon, coarse woody debris, and litter. Additionally rapid short-term recovery 

and the compensating growth of unthinned trees combine to quickly return the basin to pre-

treatment levels of carbon. Long-term effects on carbon are most influenced by climate, with 

projected climate periods anticipating substantial decreases in total carbon regardless of 

treatment (31% and 40% for RCPs 4.5 and 8.5). Though the possibility of fuel treatments 

leading to increased carbon sequestration is often considered, we show no evidence for that 

being an option here. While the goal of carbon sequestration may be partially addressed with 

a different fuel treatment, and effects will change if the dynamic effects of fire and fire 

severity were included, it also seems likely that Big Creek as a mixed conifer Sierran 

watershed has limited capacity to substantially increase sequestered carbon (Stephens et al., 

2012). 

Changes in GPP (Figure 6) are varied between short and long-term perspectives, with 

fuel treatments having a substantial effect in the short term and climate scenario ultimately 

having a greater impact on long-term (20-year) productivity. This differences in GPP points 

towards less productive forests in the short-term as a repercussion of the maximum treatment 

option, with a more moderated effect from the minimal treatment. Long-term GPP instead 

looks to be limited by climate scenario and is not sensitive to differences in treatment 

scenarios. The projected lower GPP for RCP 8.5, and to a lesser extent RCP 4.5, likely 

originates in part from the differences in precipitation between observed and projected 

periods, a reduction of 157 mm average annual rainfall in the case of RCP 8.5. This is 

particularly relevant due to the tight linking in Mediterranean watersheds like Big Creek 

between seasonal precipitation and productivity. We also see the limits in terms of a 

longevity of a single treatment in the context of a 20-year period. We find noteworthy 
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differences in the longevity of impact on GPP due to climate, with the RCP 8.5 climate 

leading to more temporally limited effects due to treatment compared to baseline climate. 

Beyond the role of climate that we highlight, reductions in the effects of treatment over time 

can also be due to other factors such as soil water storage which can influence regrowth and 

recover following treatment (Tague and Moritz, 2019).  

To assess potential fire risk, we use the height gap (Figure 7) between the conifer 

overstory and the shrub understory as an indicator of the chances that a low intensity fire 

could climb ladder fuels and make the jump to being a crown fire with potential for higher 

fire severity. Height gap provides one of the most compelling cases where the impact of 

climate is overshadowing the potential impact of fuel treatments. It is also important to note 

that the fuel treatment that was implemented, a 40% reduction in overstory and 100% 

reduction in understory, is not focused on creating a large height gap. The reduction of 

overstory results in small height gaps, further limited by the slower growth of the conifer 

overstory compared to the shrub understory in the post thinning period. Conifer heights for 

RCP 4.5 and 8.5 average 10 m and 5m, but the 25th percentile for both is 1 m and medians 

are 2.7 m and 1.6 m, indicating a large amount of dead and unsuccessful vegetation. In the 

context of such a large coverage of short overstory vegetation, a different fuel treatment 

strategy, one targeting more of the overstory, would be much more effective at reducing 

potential for high severity fire(Stephens et al., 2012). By comparison, the baseline climate 

scenarios feature much more successful conifer overstories (median height of 6 m) and so 

maintained a larger height gap despite the treatment reducing it slightly. 

Fuel treatments also can impact climate change indirectly by mitigating the effects of 

climate change. For instance, by encouraging forest stands with both lower risk of high 
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severity fire, but that also allow for greater streamflow to reach downstream where it can be 

used to meet the ever-increasing demands for freshwater. In this way it becomes critical that 

we have a complete picture of how fuel treatments impact the biophysical environment under 

a range of climate change scenarios. Streamflow (Figure 8), over the long term, mirrors the 

behaviour of total carbon and GPP where effects are dominated by climate scenario. Despite 

this, there are noteworthy short-term effects in the maximized treatment scenarios. Most 

notable are the short-term increases to peak flows from maximum treatment (38-91% 

increase), though simultaneously the minimal treatment has very little effect compared to the 

no treatment scenario. In the longer-term (Figure 8 B & C), fuel treatment scenario is of 

lesser impact, while climate scenario shifts streamflow more noticeably (1% and 22% for 

minimal and maximum treatments, 22% and 77% for RCP 4.5 and 8.5). Changes due to 

treatment, specifically in the case of the maximum treatment (22% increase in mean daily 

streamflow), are partially due to the treatment itself but also dependent on the broader 

impacts of the projected climate scenarios on plant growth, which when combined with the 

more prevalent maximum treatment, lead to more noticeable effects on streamflow compared 

to the minimal treatment. The largest mean changes due to treatment scenario are in February 

of the RCP 8.5 climate scenario, which has an average increase of 0.4 mm/day in comparing 

the no treatment to maximized treatment scenarios, but low flow months (September and 

October) remain unchanged across climate and treatment scenarios. Fuel treatments have 

substantial effects on streamflow in the short term across climate scenarios, and still notable 

effects in the case of maximum treatment in the long-term, but these increases to streamflow 

are occurring at or adjacent to the existing peak streamflow. Increases to streamflow like this 

are less beneficial as it is the low-flow months where the need for additional water is 
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greatest, and a tool like fuel treatments has the most potential. The longevity of treatment 

effects on streamflow varies by climate scenario. Both baseline and RCP 8.5 have no 

differences in daily streamflow after 5 years while RCP 4.5 features persistent differences in 

the maximum treatment scenario leading to increased peak flows, that last through the 20-

year simulation. 

5. Conclusions 

Fuel treatments are both multi-faceted and multi-purposed, with the potential to interact 

with and affect a wide variety of biophysical variables. We highlight a handful of those here 

through total carbon, GPP, height gap, and streamflow. We show the consistent impact of 

high intensity treatments in the short-term, but in each case, long-term effects are diminished 

in the context of, or because of, climate change. While there is the potential for more 

frequent treatments or changes to the treatment implementation, the underlying issue we find 

here is that climate change is an often-overwhelming force across a range of variables and 

contexts. Though there is still room for fuel treatments to play a range of roles, particularly at 

shorter (<5 year) time scales, the context of that treatment matters, as differences between 

historic climate, and RCP’s 4.5 and 8.5 can be noteworthy. There are ever-present financial 

limitations on repeat treatments, and that can often lead to infrequent or one-off treatments. 

Based on the longevity of effects on both GPP and streamflow, the most substantial impacts 

of fuel treatments are no longer evident after 5 years, and given this, fuel treatment repetition 

would need to occur within that 5-year window to maintain effects. This work further 

underscores the need to investigate the full context and effects of potential fuel treatments. 

We find that accounting for and including the long-term effects of climate change is an 
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integral part of assessing future treatments and planning forest management through the end 

of the 21st century. 
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6. Figures 

 

Figure 1. Study site of the Big Creek watershed and the p301 subwatershed. 
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Figure 2. Big Creek watershed showing fuel treatment area coverages in green. Showing 

both ‘minimal’ and ‘maximized’ treatment scenarios in green. For both coverage options, the 

treatment implamemnted is a 40% removal of overstory canopy and complete clearing of the 

shrub understory. 
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Figure 3. Temperature data for Big Creek watershed. Shows baseline observed data from 

the Grant Grove meteorological station and modeled data using the HadGEM2 model, 

downscaled using LOCA. Representative concentration pathways 4.5 and 8.5 from the 

projected period are used in the ecohydrologic modeling, while historic reanalysis data is 

used for comparison to observed data. 
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Figure 4. Precipitation data for Big Creek watershed. Shows observed data from the 

Grant Grove meteorological station and modeled data using the HadGEM2 model, 

downscaled using LOCA. Representative concentration pathways 4.5 and 8.5 from the 

projected period are used in the ecohydrologic modeling, while historic reanalysis data is 

used for comparison to observed data. Subplot A shows annual totals, while subplot B shows 

daily averages. 
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Figure 5. Total carbon following treatment. A, B, and C show total carbon short-term (2 

years) following treatment, including the effect of the 40% reduction in conifer overstory and 

complete removal of shrub understory at the start of simulation. D shows long term (20 year) 

effects of treatment across climate projections. All plots are faceted by climate, boxplots span 

25th to 75th percentile ranges of monthly carbon. 
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Figure 6. Gross primary productivity. A and B show GPP short-term (2 years) following 

treatment, including the effect of the 40% reduction in conifer overstory and complete 

removal of shrub understory. C shows long term (20 year) effects of treatment across climate 

projections. Showing boxplots spanning 25th to 75th percentile ranges. 
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Figure 7. Height gap in meters between shrub understory and conifer overstory across 

climate and treatment scenarios. Showing boxplots spanning 25th to 75th percentile ranges. 
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Figure 8. Daily streamflow per unit watershed area (m/m2/day), shown at short (2-year) 

and long (20-year) time scales. A shows time series of streamflow for 2 years following 

treatment, across climate projections and treatment scenarios. B and C boxplots, spanning 

25th to 75th percentiles, show distributions of daily streamflow across the 20-year simulation 

period for each month. 
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Conclusions 

The chapters of this dissertation take important steps towards understanding the effects of 

fuel treatments. The development of RHESSys-MSR, and the functionality it enables are 

prime among these contributions. The RHESSys-MSR method developed in Chapter 1 is 

valuable in that it not only enables the research pursued in Chapters 2 & 3, but also a variety 

of applications beyond. RHESSys-MSR fills a niche in the domain of process-based 

ecohydrologic modeling; it enables characterization and simulation of fuel treatments at 

scales that were previously not possible or practical for RHESSys or comparable existing 

models. The key to this is the simulation of both within-forest stand ecohydrologic effects 

due to changes in forest structure and the watershed-scale simulation of ecohydrologic 

processes including hillslope hydrology and spatial variations in atmospheric forcing 

conditions (radiation, temperature, precipitation) among other factors. Results of Chapter 2 

highlight the different roles that environmental and climatic variables can play in influencing 

fuel treatment effects. Notable among these influential environmental variables are 

vegetation type and plant accessible water storage capacity. Results further emphasize the 

year-to-year variability in fuel treatment effects coming from variation in climate and 

treatment type. In this context it becomes necessary to consider the outcomes of treatments as 

probabilities rather than more direct and certain responses to treatments. Chapter 3 focuses 

on the relative effects of projected climate change and fuel treatments. While projected 

climate impacts tend to be dominant in the long-term, fuel treatments have clear short-term 

effects on carbon, gross primary productivity, and streamflow. These results reflect the 

potential extreme magnitude of climate change at the end of the 21st century, as well as the 
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specific interaction of environmental conditions and climate in the Southern Sierran Big 

Creek watershed.  

There is ample opportunity and directions for continuation of this dissertation research. 

Application of the fully coupled RHESSys-MSR and WMFire fire model are a priority which 

will facilitate further research into the dynamics among fuel treatments, fire severity, 

vegetation growth, and climate. The applied components of this thesis in Chapters 2 & 3 also 

present opportunities for replication, particularly in regions with differences in fire regime, 

vegetation, and climate type. Model applications of this type, using the RHESSys-MSR 

method, are key to building site-site specific understanding of fuel treatment effects. The 

variation in fuel treatments and the environments in which they are done is inherently linked 

to the distribution of likely fuel treatment effects – and this new method can provide 

estimates of this distribution. As we continue to gain understanding, through methods like 

RHESSys-MSR and many others, we can reduce uncertainty and make better informed 

decisions for future forest management.  
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