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Figure 1: A screenshot of the TempoCave application. Here, a user compares frames from pre- and post-treatment dynamic
connectomes for an individual patient with major depression disorder. Using the option panels on either side of the application, a
user can choose different visual encodings to accentuate features useful for understanding the activity of particular brain regions.
The left and right coloring of the nodes indicates the modular affinity of a brain region for a patient’s pre- and post-treatment
connectome, respectively. Likewise, the styling of the connections indicates either the connectome they belong to or the strength
of the correlation. A user can synchronize playback of the frames of the connectomes or compare selected frames on demand to
gain insight into their dynamics, and during an analysis session a user can interactively toggle on or off brain regions of interest,
or switch to alternative representations of the connectome defined using layouts based on dimensionality reduction techniques.

ABSTRACT

We introduce TempoCave, a novel visualization application for ana-
lyzing dynamic brain networks, or connectomes. TempoCave pro-
vides a range of functionality to explore metrics related to the ac-
tivity patterns and modular affiliations of different regions in the
brain. These patterns are calculated by processing raw data re-
trieved functional magnetic resonance imaging (fMRI) scans, which
creates a network of weighted edges between each brain region,
where the weight indicates how likely these regions are to activate
synchronously. TempoCave supports the analysis needs of clinical
psychologists, who examine these modular affiliations and weighted
edges and their temporal dynamics, utilizing them to understand re-
lationships between neurological disorders and brain activity, which
could have significant impact on how patients are diagnosed and

treated. In addition to summarizing the main functionality of Tem-
poCave, we present a real world use case that compares pre- and
post-treatment connectome datasets from 27 subjects in a clinical
study investigating the use of cognitive behavior therapy to treat
major depression disorder, indicating that TempoCave can provide
new insight into the dynamic behavior of the human brain.

Keywords: Connectome visualization, dynamic graph comparison

1 INTRODUCTION

The human brain is comprised of trillions of structured neurophysio-
logical connections. Clinical neuroscientists create connectome rep-
resentations of this vastly complex biological network via functional
magnetic resonance imagine (fMRI) scans [24], producing a map
of the connectivity between cortical and subcortical brain regions.
Understanding the structure and functionality of the connectome
is a fundamental goal of cognitive neuroscience and neuropsychol-
ogy, and provides insight into the behavior of various brain con-
ditions [31]. Even when displaying the (relatively) low-resolution



Figure 2: Different views in the TempoCave interface. Upon starting the application, a thumbnail of all connectomes in the data folder appear
in a carousel view (left). Users can add connectomes to the inspection view (middle), which provides a menu panel for each of the selected
connectomes and enables users to interactively investigate various connectome features. Users can zoom into a single connectome (right) to
more clearly examine the modular affiliation of specific brain regions and to investigate the strength of connections between these regions on
demand. In the inspection view, as well as the comparison view shown in Fig. 1, a user can also interactively rotate the connectome, toggle
edge bundling on or off, change the transparency of edges, increase the size of the nodes, change the visual encodings for nodes and edges, and
show or hide selected brain regions or communities. If the connectome has associated alternative layouts, then the user can switch between
these views as well, and if the connectome is dynamic, then user can play through the data, or jump to a specified time frame.

network representations generated by non-invasive neuroimaging
techniques (where a node represents a brain region “voxel” contain-
ing millions of neurons), the visual complexity can be overwhelming.
Nonetheless, this network of nodes enables graph-theoretic methods
that extract useful connectome metrics, and the edges linking the
nodes provide finer details about the strength of the connectivity
between regions. This complexity is exacerbated when analyzing
dynamic connectomes [9, 28], in which a user investigates tempo-
ral patterns across the sequence of frames generated during a dy-
namic fMRI scanning session. Moreover, comparing two (or more)
connectomes is necessary when evaluating pre- vs. post-treatment
changes [7], negative vs. positive connections [38], or healthy vs. un-
healthy connectomes [29], which introduces additional visualization
challenges.

In this paper, we introduce TempoCave, a visualization appli-
cation that facilitates the exploration and analysis of time-series
connectome datasets. We worked closely with our neuroscience
collaborators to identify aspects of their analysis workflow not yet
supported by existing tools, and to determine which tasks are most
relevant for making sense of dynamic connectomes in clinical con-
texts:

T1: Measuring the dwelling time of brain regions, defined as the
length of time a region spends in the dominant community.

T2: Measuring the flexibility or particular brain regions, defined as
the number of times a region changes modular affiliation.

T3: Analyzing the connectivity between brain regions that is used
to define modular affiliations, including edges that are defined by
either a negative or positive correlation between nodes.

T4: Understanding the overall dynamics, or “stickiness” of the
connectome, in terms of how dwelling, flexibility, and connectivity
metrics change over time.

T5: Enabling the comparison of multiple dynamic connectomes,
for example, comparing a connectome to a group average, or com-
paring an individual patient’s connectome pre- vs. post-treatment.

These tasks have broad relevance to psychiatry, as a wide range of
neurological disorders are linked to the disruption of normal brain
connectivity. An important overarching goal of clinical neuroscience
is to find relationships between brain activity and neurological dis-
orders, which can then be leveraged to make diagnoses, to guide
treatment plans, and to better understand the human brain. We devel-
oped TempoCave iteratively, adding relevant visualization features as
we worked successively with individual patients’ connectomes and
group average connectomes for autism spectrum disorder, anxiety
disorder, and major depressive disorder. In this paper, we focus on

connectome datasets gathered during a clinical study on rumination,
a mental disorder characterized by repetitively and passively focus-
ing on symptoms of distress and its causes. The consequences of
prolonged rumination include anxiety and depression [5, 21, 33].

Rumination-focused cognitive behavior therapy, or R-CBT, assists
individuals in realizing that their rumination about negative experi-
ence can be unhelpful, and coaches them on how to shift to a more
helpful style of thinking. For example, patients undergoing R-CBT
are asked to remember previous positive mental states, such as a
time they were completely absorbed in an activity— the opposite
of ruminating [20, 34]. R-CBT appears to be effective at supporting
emotion regulation in patients suffering from depression. A prelimi-
nary study (described in more detail in Sec. 4) finds that patients who
continued treatment remained in remission after 8 weeks, whereas
patients who did not continue treatment had a higher likelihood of
relapse. TempoCave facilitates insight into how R-CBT (and other
clinical interventions) alters brain behavior. In order to conduct these
analyses, clinical neuroscientists make detailed measurements of
the brain activity of patients and compare the patients’ connectomes
before treatment and after treatment, and also compare them against
baseline healthy connectomes. Visualizing the dynamics of connec-
tions within and between brain regions, measured by dwelling time
and flexibility, helps clinical psychiatrists examine the “stickiness”
of these connections, where comparatively high measurements of
stickiness can imply an unhealthy connectome.

To our best knowledge, TempoCave is the first application to
support comparison tasks for multiple time-series connectome net-
works in order to better understand rumination. Our contributions
include: (a) a delineation of analysis tasks relevant to reasoning
about dynamic connectome datasets; (b) the introduction of a new
visualization tool to support connectome-based comparison tasks
for both static and dynamic networks; (c) techniques for observing
and analyzing community affiliation of nodes in a dynamic net-
work; (d) an analysis pipeline that supports easy data loading of
multiple connectomes, including those in alternative topological
spaces [37] or generated using different modularity identification
algorithms [12, 38]; (e) a real-world use case illustrating how Tem-
poCave is used in a clinical setting to elucidate new insight into
neurological aspects of rumination. Fig. 1 presents an overview of
TempoCave comparing two dynamic connectomes.

2 BACKGROUND & RELATED WORK

TempoCave is inspired by previous approaches for visualizing
networks [4], comparing graphs [15], and exploring connectome
datasets [27]. Keiriz et al. [18] survey the landscape of connectome



Figure 3: This figure shows a summary view of the flexibility of brain regions associated with rumination (T2). The top images show the
connectome of a MDD patient who received R-CBT treatment, indicating higher flexibility (blue nodes) post-treatment than pre-treatment
(where the orange nodes indicate lower flexibility). The bottom images show a relapsed patient who did not receive R-CBT, where there is
substantially decreased flexibility in brain regions associated with rumination. The red rectangle highlights the two relevant brain regions:
supramarginal gyrus (top) and angular gyrus (bottom).

visualization, focusing mainly on static datasets, and characterizing
them in terms of their main visualization modality (emphasizing
volume, surface, or graph representations), as well as identifying
tools that include support for virtual reality (VR) environments.
TempoCave presents connectomes as 3D networks, similar to ap-
proaches presented in Connectome Visualization Utility [22], Brain-
Net Viewer [35], Connectome Viewer Toolkit [14], and the AlloBrain
project [32]. However, TempoCave specifically focuses on visu-
alizing nodes and edges to make it easier to reason about metrics
associated with modular affiliation and connectivity.

TempoCave provides features for dynamic data analysis, present-
ing a synchronized playback mode that highlights differences be-
tween two connectomes at different points in time. A number of
2D visualizations have been used to explore dynamic connectome
data [2,10,17,26], and Beck et al. [4] summarize approaches to visu-
alize 2D dynamic networks. Other tools instead utilize a 3D layout
for investigating dynamic connectome data [16,23,25]. For example,
Xing et al.’s Thought Chart [36] presents distinct 3D trajectories for
different task conditions and provides a comparative analysis that
generates a summary view of how much one dynamic connectome
differs in comparison to others. Similar to our implementation, Arsi-
walla et al. introduce BrainX3 [3], an interactive and immersive 3D
visualization of dynamic connectomes, but which does not support
comparison tasks, a main feature of TempoCave.

Alper et al. [1] investigate visual encodings of edge weights within
an adjacency matrix to support comparisons of brain connectivity
patterns. TempoCave further emphasizes comparisons of modularity
affiliation metrics that summarize the edge weights in the network.
Other recent brain visualization tools focus on neurobiological tasks,
such as Ganglberger et al.’s [13] BrainTrawler, which provides
tools to conduct integrated analyses of genomic data and mesoscale
neuroscience datasets at the level of individual neurons. TempoCave
aims to support tasks T1-T5 relevant to diagnosing and treating
patients with neurological disorders, extending previous work that
focused on static connectomes [18], which also presents a 3D view
and enables a user to explore data immersively [8, 11].

3 THE TempoCave APPLICATION

TempoCave is an interactive tool that enables clinical psychiatrists to
load, visualize, and analyze dynamic connectomes, solving several
technical challenges associated with the analysis tasks described in
Sec. 1. TempoCave supports the investigation of multiple connec-
tomes at once, superimposing connectomes to make comparisons,
and providing details about modular affiliation and edge dynamics

that are needed in order to understand some dynamic datasets.
Our clinical neuroscience collaborators capture connectome

datasets using high-resolution functional magnetic resonance imag-
ing (fMRI) scans. The fMRI data is pre-processed to extract node
and edge information, such as connection strength, and to perform
various dimensional reduction steps. Dynamic datasets are obtained
using scans taken at regular intervals over a short period of time.
In the clinical study presented in Sec. 4, 200 frames are captured
over the course of a ∼6 minute scanning session, and then further
processed using the PACE algorithm [38] to determine modular
affiliations.

TempoCave consists of a selection interface (Fig. 2 left), and
an interactive inspection interface (Fig. 2 middle and right). The
selection interface displays show an overview “carousel” of the
available connectomes, along with a list of all the available layouts
(generated through different dimension reduction algorithms, such
as Isomap or t-SNE). The user can select two (in desktop mode)
or more (in VR mode) connectomes for analysis and comparison.
The inspection interface shows the selected connectomes with each
connectome having their own settings panel, which provides options:
to change the representation of the connectomes, to update the
classification of different brain regions, to filter edges based on their
connection strength, and to toggle edge bundling to mitigate visual
clutter.

Summarizing the modular affiliation or “stickiness” of the nodes
in dynamic connectomes is an important aspect of analyzing a pa-
tient’s connectome, as is investigating the amount of time that brain
regions are associated with particular communities (dwelling time)
and the frequency that brain regions change affiliation (flexibil-
ity). Connectomes demonstrating patterns of more rapid modular
change are believed to indicate healthier connectomes. TempoCave
automatically processes the summary statistics for each dynamic
connectome upon being loaded into the application. For each node
in the connectome, changes in the affiliation across the time steps
are used to determine the flexibility metric. Dwelling time is cal-
culated by identifying the maximum time a node is associated with
a specific module. TempoCave uses color-coding to represent both
dwelling time and flexibility, supporting T1 and T2. Fig. 3 shows
how TempoCave is used to analyze flexibility in a rumination study.

To analyze changes in dwelling time, flexibility, and edge connec-
tivity over time, TempoCave provides controls to scrub through the
time steps. Users can play and pause, move forward or backward one
or more time steps, adjust the playback speed, and, if two connec-
tomes are available for inspection, there is an option to synchronize



Figure 4: This figure presents the dynamic connectome of a patient with MDD who received R-CBT. Here, the overlay comparison reveals
differences in modular affiliation and in connectivity patterns pre- vs. post-treatment across multiple time steps.

the playback settings. At each time step nodes are colored based
on their modular affiliation. The edges change their width based on
the strength of the connectivity between two nodes, and are colored
with a gradient representing the regions they are associated with.
The edges can further be classified into positive connections if the
regions are correlated or negative connections if they are uncorre-
lated. TempoCave supports an optional color-coding to show the
negative and positive edges for each time step, as shown in Fig. 1.
The dynamic visualization features support tasks T3 and T4. Fig. 4
shows an example of how the edge connectivity and modularity
change over time in an analysis session using TempoCave.

TempoCave presents an overlay comparison mode supporting T5,
where two connectomes are juxtaposed to form an integrated layout.
Each node in this superimposed view is split into two halves, corre-
sponding to left and right connectomes. As the user moves through
the different frames, each half of the node’s colors change separately
based on the modular affiliation of the associated connectome. The
edges can be activated by clicking the corrresponding half of the
node. To distinguish the connectivity of two connectomes, we use
a solid line for left connectome and a dashed line for the right con-
nectome. A comparison of a pre- vs post-treatment connectome is
shown in Fig. 1.

We developed TempoCave using the Unity Engine, which renders
3D data at real-time frame rates and provides out-of-the-box solu-
tions for immersive applications. We evaluated a range of visual
encodings and interaction modalities to determine useful representa-
tions and interactions that supported the analysis of dynamic connec-
tomes. For example, we initially included animation as a primary
encoding for dynamic network features [30]. While our collabora-
tors found the animation engaging, ultimately it was distracting and
introduced visual fatigue when they needed to scrub through many
time steps. Instead, we color-coded edges to represent both modular
affiliation and edge weights, giving the users the option to choose
which encoding was most useful for a particular analysis session.
We also experimented with a wide range of shapes to represent brain
regions, hoping to more clearly distinguish nodes from different
connectomes in the comparison view. However, our users found that
it was easier to interpret a node when rendered as a multi-colored
sphere. Contrary to expectations, we discovered that our users pre-
ferred to have fewer available encodings overall, but more options
to control which data elements these encodings represent.

4 USE CASE: INVESTIGATING R-CBT TREATMENT

As an initial validation of TempoCave, we explored a dataset from an
ongoing clinical study that measures the effectiveness of rumination
cognitive behavioral therapy (R-CBT) for adolescent patients with at
least one previous episode of major depression disorder (MDD) [6].
In this study, 27 patients were recruited for comparing 8 weeks of
R-CBT data against a control group of 15 healthy participants. The
patients were in remission at the start of the study, and the main

goal of the study was to measure the effectiveness of R-CBT at
preventing a relapse of depression. Of the 27 patients with MDD,
14 were administered a treatment of R-CBT, and none had a relapse
during that time. Of the 13 who were not administered R-CBT, 4
patients had an episode of MDD, providing initial evidence of the
efficacy of R-CBT.

Using TempoCave, clinical psychiatrists observed the modularity
dynamics of individuals’ connectomes. Participants from a healthy
control group were found to have a higher overall flexibility than
patients with MDD, and that on average there is no significant dif-
ference between the pre- and post-treatment connectomes of MDD
patients who received R-CBT. However, as depicted in Fig. 3, the
post-treatment connectome of MDD patients who did not receive R-
CBT (and relapsed) shows much less flexibility than was observed in
their pre-treatment connectome. Fig. 3 highlights the supramarginal
gyrus and angular gyrus, two regions that are indicated in depression
disorder. Fig. 4 shows an overlay comparison view of a patient’s pre-
and post-treatment connectomes who received R-CBT, where the
angular gyrus is selected. Looking at the right half of the selected
node (from the post-treatment connectome), clinical psychiatrists
found that the angular gyrus changed modularity three times (from
t=2 to t=14), but that in left half of the selected node (from the
pre-treatment connectome) the modularity of angular gyrus changed
only once (from t=8 to t=14). This visual analysis corroborates the
hypothesis that R-CBT mitigates rumination, as indicated by the
temporal dynamics of dwelling time and flexibility metrics.

5 CONCLUSION & FUTURE WORK

Our initial use case already indicates that TempoCave helps clinical
neuroscientists form new hypotheses about dynamic connectome
datasets, and in particular that the comparison mode is useful for
providing insight into patterns that emerge when investigating a
patient’s response to treatment. Future work will explore a wider
range of use cases in various clinical contexts. Additional defini-
tions of modularity could generate network metrics that may be
useful for understanding brain dynamics. For instance, recent work
by Kim and Lee [19] introduce an “inconsistency” metric which
can be used as an alternative definition of node centrality. Further-
more, while TempoCave provides textual labelling of nodes and
edges, our collaborators indicated the need for including additional
annotation options, which would make it easier to share results or
hypotheses with other clinicians and to include as figures in presen-
tations and articles. We also plan to extend our approach to other
(non-connectome) dynamic datasets, and to conduct user studies to
determine the effectiveness of our visual encodings as a more general
approach for highlighting dynamic network features and compar-
ing networks. TempoCave is available via our open source GitHub
code repository at https://github.com/CreativeCodingLab/
TempoCave, along with source code, detailed instructions on how to
load in custom datasets, and additional documentation.

https://github.com/CreativeCodingLab/TempoCave
https://github.com/CreativeCodingLab/TempoCave
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