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ABSTRACT OF THE DISSERTATION

Golden chip-Free Hardware Trojan Detection through Side-Channel Analysis using
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Design and fabrication outsourcing has made integrated circuits vulnerable to malicious

modifications by third parties known as hardware Trojan (HT). Over the last decade, the

use of side-channel measurements for detecting the malicious manipulation of the chip has

been extensively studied. However, the suggested approaches mostly suffer from two major

limitations: reliance on trusted identical chip (e.i. golden chip); untraceable footprints of

subtle hardware Trojans, which remain inactive during the testing phase. To overcome these

shortcomings, we propose a novel idea of maintaining a dynamic model of the integrated

circuit throughout its life cycle to detect HT that might have been injected anywhere in the

supply chain. In this thesis, we thoroughly investigate post-silicon HT detection through

side-channel analysis using various machine learning models. In this regard, we gather a

comprehensive dataset of power and Electromagnetic (EM) side-channel signals for hardware

Trojan benchmarks from Trust Hub [20] benchmarks to develop a statistical model of the chip

for HT detection. We release our collected power and EM side-channel signals for various

HT benchmarks as a public dataset in [21]. Afterward, we explore many machine learning

models and various techniques that eventually lead to three approaches for golden chip-free

HT detection and HT detection models that outperform the existing methods. Our two

recently published papers [7, 6] are also developed based on this dataset, and they provide

x



further ideas on how to use the dataset to construct an HT detection model.
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Chapter 1

Introduction

Given the growing demand for low-cost integrated circuits (IC), companies tend to have their

chips designed and fabricated by untrusted third-party entities over the globe. This has raised

security concerns about intentional malicious modification of the integrated circuits, referred

to as Hardware Trojans (HT). In this thesis, we want to construct a data-driven model for

an IC that captures the normal behavior of IC and can detect the malicious affect of Trojans

on the chip parameters. Initially, we target power model and investigate two top-down and

bottom-up approaches to build it.

1.1 Bottom Up Approach

We build the power model of a hardwrae design on FPGA in a bottom-up manner, which

is illustrated in Figure 1.1 First, we construct the model of the basic elements in an FPGA,

which are, Configurable Logic Blocks (CLBs) and I/O pads. Then, based on the CLB model

and IO pad model, we build the routing model and form the final power model. While the

SPICE model of I/O pads are usually available on the vendor’s website, the model of CLBs
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and their building blocks, slices, are lacking. Therefore, we need to build models for slices.

To characterize the power profile of the different type of slices, we implement a different

design that is mapped to slices of a single type, apply different test patterns, measure the

power. Then, we use the measured power traces together with the mapping information

(extracted from the .xdl file) to train the power model. To limit the way a design is mapped

to the FPGA elements, we identified two alternatives. The first is using Pblock during

implementation. The Pblock constrains the resources on FPGA design can use. The second

way is to implement the design directly using the .xdl file, which specified how the slices and

interconnect are configured. Although it gives more flexibility, the difficulty is much higher

due to the lower abstraction level. Thus, we use Pblock to create some small design that

fits into a small number of slices and characterize them with different placement and input

patterns.

Figure 1.1: The bottom-up data-driven approach of building a power model for IC.

To build up an accurate power model of FPGA in a bottom-up approach, we list all the

resources that the FPGA has and measure the power consumption of each resource. Table

1.1 represents the available resources in the main FPGA.

We implement a set of Verilog codes which use only one single resource of the FPGA. This will
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Table 1.1: All resources in main FPGA (XC6SLX75)

Components Number of Components
Logic Cells 74637
SLICEMs 2916
SLICELs 2915
SLICEXs 5831

LUTs 46648
Flip-Flops 93296

guarantee that the power consumption of each resource which we measured is exclusively for

one single resource. At the same time, as shown in Figure 1.2, we have changed the location

of the resource on the board and collected power data of it automatically. By doing so, we

consider the effect of resource location on the power trace and we tried to create an accurate

bottom-up power model which covers all the resources of the FPGA.

Figure 1.2: Different locations of SLICEM.

Take SLICEMs for example, the function of the Verilog codes is to force one single SLICEM

to do an additional calculation. In the meanwhile, for each location of SLICEM, we have

used NI USB-6229 to collect 1011712 power data in 5 seconds. Part of the power data is

shown in Figure 1.3.
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Figure 1.3: Power data of SLICEM.

We have used commercial tools for power estimation, which cannot provide the required

accurate power model. The accuracy of the power model is critical as the HTs are designed

to be stealthy and very small and their effect on power consumption may fall into error

margin. Therefore, another approach for creating the power model is required which lead

up to top-down approach.

1.2 Top-Down Approach

In the top-down approach, we change our direction to measure the actual power consumption

of the chip as side-channel emission instead of power estimation using the CAD tools. Thus,

we develop an automated testbed to measure the power consumption and electromagnetic

emission of the chip and gather a dataset of time-series side-channel signals, as discussed in

chapter 2. Afterward, we explore various machine learning techniques and construct golden

chip-free HT detection models based on the side-channel through three different approaches;

feature engineering-based model, feature agnostic end-to-end deep learning model, and self-

referencing model based on transfer learning, as elaborated in chapter 3.
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Chapter 2

Side-Channel Data Collection

Design and fabrication outsourcing has made integrated circuits vulnerable to malicious

modifications by third parties known as hardware Trojan (HT). Over the last decade, the

use of side-channel measurements for detecting the malicious manipulation of the chip has

been extensively studied. However, the suggested approaches mostly suffer from two major

limitations: reliance on trusted identical chip (e.i. golden chip); untraceable footprints of

subtle hardware Trojans which remain inactive during the testing phase. To overcome these

shortcomings, we propose a novel idea of maintaining a dynamic model of the integrated

circuit throughout its life cycle for the purpose of detecting HT that might have been injected

anywhere in the supply chain. In this work, we gather a comprehensive dataset of power and

Electromagnetic (EM) side-channel signals for hardware Trojan benchmarks from Trust Hub

[20] benchmarks to develop a statistical model of the chip for HT detection. Our two recently

published papers [7, 6] are based on this dataset that provide further information on how to

use the dataset to develop an HT detection model. We release our collected power and

EM side-channel signals for various HT benchmarks as a public dataset in [21]
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2.0.1 Side-Channel Analysis for HT Detection in Literature

Given the growing demand for low-cost integrated circuits (IC), companies tend to use

third-party IP cores and outsource the chip fabrication process to the foundries over the

globe (Figure 2.1. The globalization of semiconductor industry has raised security concerns

about intentional malicious modification of the original design, referred to as Hardware

Trojan (HT). HT insertion has serious consequences such as leakage of sensitive information,

denial of service, change of functionality, or performance degradation. One of the incidents

that attracted the attention of the research community toward the threat of HT is the

failure of Syrian radars in 2007. As a result of this failure, a suspected Syrian nuclear

installation was bombed by Israel. Further investigation revealed that the commercial off-the-

shelf microprocessors inside the radar were infected with HT, which was triggered through

a hidden back door and disabled the system [1]. Due to the intricate nature and potential

consequence of HTs, many researchers has been working on the countermeasures through

various approaches.

Figure 2.1: IC supply chain which is vulnerable to HT insertion in any stage.

Currently, in the literature, there has been various countermeasures proposed for HT detec-

tion, HT insertion prevention, or performing trustworthy computing on untrusted compo-

nents. The first way to make sure the fabricated chip is genuine is reverse engineering. By

delayering the IC, reconstructing the circuits structure and comparing it with the original
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Figure 2.2: Summary of existing defense mechanism for hardware Trojan

design, one can make sure the IC is not modified by the foundry. However, it does not guar-

antee the detection of HTs inserted during design stage (pre-sillicon) and the cost to reverse

engineering an IC is expensive and the chip will not be usable afterwards. To address this

issue, lots works in the literature, including our approach, focus on observing side-channel

signals for possible anomalous behavior due to existence of the HT in the system through

life cycle of the chip.

Second, traditional non-destructive hardware Trojan detection techniques can be mainly

divided into two categories, which are enhanced logic testing and side-channel analysis. The

first approach tries to activate the HT by giving certain test vectors, capture the response

of the device under test (DUT) and then determine if there is a HT. Side-channel analysis

approaches control the operation condition of a DUT, measure the side-channel emission and

then compare it with the one acquired from a golden chip. The need to a trusted golden

chip for comparison is the main limitation of the side-channel analysis methods.
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Since HTs can be designed to be dormant during post-manufacturing testing and only trig-

gered by a rare condition during run time, they can easily escape these conventional HT

countermeasures. First, during mass production, the usage of automatic test equipment

is charged by the time. It would be prohibitively expensive to comprehensively test every

condition on every IC in order to activate the HT when using logic testing approaches. Sec-

ond, by using techniques like power gating [17], the circuit under test will not express any

abnormal behavior and therefore cannot be detected using side-channel analysis. A possible

solution would be randomly select some ICs from mass production and keep performing these

HT detection techniques. However, an adversary in the foundry still can choose to insert the

HT only in a small amount of chips therefore it has a little chance of being uncovered. As a

result, a real-time monitoring mechanism becomes very important to ensure the integrity of

an IC.

In this thesis, we measure the power and EM side-channel signals of a chip to develop a

golden chip free HT detection model and data collection experiments are designed in a way

to be used for run-time monitoring the chip and detecting the HT when it get triggered.

2.1 Data Collection Parameters

The data collection condition depends on several factors which are elaborated further. The

factors and their possible values for each one is as follows:

1. Physical parameter (power consumption or EM radiation)

2. HT benchmarks (The 12 different benchmarks listed in Table 2.1)

3. Trojan condition (disabled, enabled, or triggered)

4. Circuit input vector (fixed value or ”next input=current output” method)

8



5. Chip external temperature (25◦C, 35◦C, 45◦C, 55◦C, 65◦C, 75◦C, and 85◦C)

In each experiments, all these factors are set and under these condition, 10000 time-series

signal is collected and individually stored in .csv format. As the main circuit under test is

AES, the data collection is synchronized with AES encryption cycles. Thus, each time-series

data represents the emissions from ship in the time interval between passing the input vector

to AES and receiving the encryption output.

2.1.1 Hardware Trojan Benchmarks

Hardware Trojan is a malicious circuit that is inserted intentionally into a target circuit in

order to degrade performance, leak sensitive information, deny the service, or change the

functionality of chip. The Trojan circuit consists of two major part; payload and trigger.

Payload is the part of Trojan that define its functionality and performs the malicious activity.

Due to stealthy nature of Trojans, the payload is often inactive to evade the detection during

testing and verification stages. The trigger is the optional circuit that monitors various

signals or events in the base circuit and activates the payload when a specific signal or event

is observed.

In this dataset, we measure the power and EM side-channel signals of HT benchmarks derived

from Trust Hub [20]. The list of our HT benchmarks with their payload and trigger types

are summarized in the Table 2.1. All the HTs target an encryption core circuit, AES 128bits.

The AES circuits receives a 128 bits input value (plain text), encrypts it using a secret key

and generates a 128 bits output (cipher text). The key is the sensitive information in this

design which the security of encryption depends on keeping the key secret.

9



Table 2.1: Summary of HT benchmarks.

Benchmark Trigger Condition Payload
AES-T400 A predefined number as input Leaks the key through RF signal

AES-T500
A predefined sequence of
numbers as input

Drains the battery with a
continuously rotating shift register

AES-T600 A predefined number as input
Leaks the key by increasing the
leakage current for each 0 bit in key

AES-T700 A predefined number as input
Leaks the key as CDMA sequence
code through a covert channel

AES-T800
A predefined sequence of
numbers as input

Leaks the key as CDMA sequence
code through a covert channel

AES-T1000 A predefined number as input
Leaks the key as CDMA sequence
code through a covert channel

AES-T1100
A predefined sequence of
numbers as input

Leaks the key as CDMA sequence
code through a covert channel

AES-T1300 A predefined number as input
Leaks the key by increasing the
dynamic power consumption

AES-T1400
A predefined sequence of
numbers as input

Leaks the key by increasing the
dynamic power consumption

AES-T1600
A predefined sequence of
numbers as input

Leak the key through RF signal

AES-T1800 A predefined number as input
Drains the battery with a
continuously rotating shift register

AES-T2000
A predefined sequence of
inputs

Leaks the key by increasing the
leakage current for each 0 bit in key

10



2.1.2 Trojan condition

An inactive HT does not alter the chip’s functionality and hardly affect the side-channel

profile of chip. As a consequence, its detection is very challenging in the testing stage due to

the low probability of activating it with the limited numbers of test vectors. Therefore, we

push the detection process to the run-time when it is possible to detect the Trojan as soon as

it gets triggered and injects anomalies to the side-channel measurements of chip as depicted

in Figure 2.3. An example of power side-channel for AES-T500 HT benchmark in the cases

of inactive and active Trojans is depicted in Figure 2.4 which illustrates the anomalous HT

activation effect on side-channel signals.

Figure 2.3: The proposed pipeline to detect HT when it gets triggered in run-time.

In order to develop this run-time monitoring model to detect Trojan, we gather a comprehen-

sive dataset of power and EM radiation side-channel signals for hardware Trojan benchmarks.

We measure the side-channel signals in three conditions:

• Trojan Disabled: The DUT includes both the main circuit and Trojan, but the trigger

part of HT is disabled and it cannot be triggered. Thus, the collected side-channel

signals includes the emission from both main circuit and the inactive HT.

11



• Trojan Enabled: The DUT includes both the main circuit and Trojan and the trigger

part of HT is enabled and it can be triggered. Thus, the collected side-channel signals

includes the emission from both main circuit and the HT which can be active or

inactive.

• Trojan Triggered: The DUT includes both the main circuit and Trojan and the trigger

part of HT is not only enabled but also it is activated by applying its trigger condition.

Thus, the collected side-channel signals includes the emission from both main circuit

and the active HT.

Figure 2.4: A example of the power side-channel time-series signal for AES-T500 benchmark.

2.1.3 Input Vector

The main circuit in our experiment is the AES core that performs encryption on a 128 bits

input vector. The input vector affect the switching in the circuit and alter the side-channel

12



measurements. In each data collection experiment, the encryption process is repeated for

10000 times which leads to generating 10000 time-series signal. Therefore, we send 10000

input vectors to AES iteratively for each experiment which are generated in two way. The

first method is to always send a fixed value as input to AES in which the measurement are

not influenced by variation in switching activity. The other way is to send various sequences

to the AES which infuses some variation to the measurements. In order to generate different

input vector, we use the ”next input=current output” method in which set the initial input

vector as zero and the input for the next encryption cycle is the output of current cycle.

Thus, instead of a fixed input vector, we generate a fixed sequence of varied input vectors.

The directory of data samples collected using the ”next input=current output” method have

”1” suffix and for fixed value method, it has ”2” suffix.

2.1.4 Chip External Temperature

Another variable in this data collection is the temperature because it is high affect the power

and EM emission of the chip. In order to analyze the temperature effect which mimics the

circuit againg phenomena as well, our experimental setup embeds a heater, temperature

sensor, and temperature controller and we measure the signals under 7 different temperatures

including 25◦C, 35◦C, 45◦C, 55◦C, 65◦C, 75◦C, and 85◦C.

2.2 Automated Experimental Setup

In this section, we describe our automated testbeds for power and EM side-channel data

collection.

13



Figure 2.5: Our experimental setup for power side-channel data collection.

2.2.1 Automated Power Side-Channel data collection

To speed up the data collection process, we have implemented an automated FPGA testbed.

Since variables of the data collection are numerous, it is impossible for people to repeatedly

program different design, apply corresponding test vectors, tune the oscilloscope to have

steady waveform-of-interest displayed, transfer the measured power data to PC and post-

process the data. The automated testbed, as shown in Figure 2.6 and Figure 2.5, comprises

four major components:

1. Test control program on computer

2. Oscilloscope

3. SAKURA-G FPGA board

4. Temperature Controller

The test control program runs on a desktop computer and consists of three modules and a job

queue. The job queue is a series of test to be conducted, which includes the design-under-test

14



Figure 2.6: The automated power analysis testbed architecture.

(DUT) in bitstream format, a test configuration, and the name of the response waveform file,

which will later be captured and saved. The test control program dispatches a test job from

the job queue and uses the three modules to complete the test. First, it uses the programmer

module to program the design bitstream into the main FPGA (XC6SLX75) via a USB-JTAG

cable. At the same time, it uses the test configurator to transfer the description file to the

secondary FPGA (XC6SLX45), which serves as the test pattern generator (TPG), which

is shown in Figure 2.7. The test description file specifies the connection of the two FPGA

and the test vector the TPG will generate. After the test start, the TPG on the secondary

FPGA will send a start signal, which will be used by the oscilloscope as a trigger to capture

the waveform. The oscilloscope controller uses the test duration in the test description file

to adjust the oscilloscope to have steady waveform displayed, and then save the waveform

to the controlling PC. The temperature controller consists of a temperature sensor which is

attached to the chip, a heater, and a controller to keep the temperature in the desired range.
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Figure 2.7: Test Program Generator (TPG) architecture.

2.2.2 Automated EM Side-Channel data collection

Similar to automated power analysis testbed, we create an automated testbed to measure

the Electromagnetic side-channel of the circuit. In this testbed, the test program generator

architecture is the same as the power testbed, but the data collection equipment differs. The

automated testbed, as shown in Figure 2.8, comprises five major components:

1. Oscilloscope

2. Spectrum Analyzer

3. SAKURA-G FPGA board

4. EM probe

5. Test control program on the computer

6. Temperature controller
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Figure 2.8: Our experimental setup for EM side-channel data collection.

The desktop computer is connected to the Sakura-G FPGA board through JATG cable for

programming, as well as a USB cable for communication and supplying the power of the

board. The test program the FPGA and implement the target circuit design automatically.

Then, it starts the data collection process by sending the input waveforms to the circuit

input and receiving the output. The target circuit for our current benchmarks is the AES

circuit, which outputs the encrypted version of the input signal. When on encrypted starts,

the oscilloscope captures a trigger signal which is used for synchronization purposes. The

computer is connected to the oscilloscope through a USB cable. When the oscilloscope

captures the trigger signal, it means the encryption is started, and it transmits it to the

computer program to start the EM data collection. EM emissions of FPGA are measured

by an EM probe, which includes an amplifier. It sends the amplified signal to a spectrum

analyzer for further analysis. The spectrum analyzer is connected to the computer through

an Ethernet cable, and it starts the data collection when the encryption process starts, and

the computer receives the trigger signal. The spectrum analyzer captures the EM signal,

saves the waveform in the frequency domain, and sends it to the computer.
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Chapter 3

Machine Learning for Hardware

Trojan Detection

This chapter discusses the machine learning methodologies for HT detection based on the

side-channel dataset that we gathered using our automated testbed, mentioned in chapter 2.

The ultimate goal of the model is distinguishing between the normal behavior of the circuit

versus the scenario where an HT is triggered in the system. Hence, we craft statistical

models to classify EM and power consumption traces and label the circuit as HT-free or

HT-triggered. To evade the need for a trusted golden chip for HT detection, we propose

defense mechanisms in the run-time that can alert Trojan’s presence when it gets activated.

In the following sections, we first review the existing HT detection methods and current

research challenges. Then, we discuss three golden chip-free HT detection approaches based

on machine learning, which are trained and tested on our power and EM side-channel, to

pinpoint the HT activation in the run-time.
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3.1 HT detection methods in the literature

Given the growing demand for low-cost IC, companies tend to use third-party IP cores and

outsource the chip fabrication process to the foundries over the globe. This trend has raised

security concerns about HT. One of the incidents that attracted the attention of the research

community toward the threat of HT is the failure of Syrian radars in 2007. As a result of this

failure, a suspected Syrian nuclear installation was bombed by Israel. Further investigation

revealed that the commercial off-the-shelf microprocessors inside the radar were infected

with HT, which was triggered through a hidden back door and disabled the system [1].

Due to their stealthy nature, most HTs are designed to be minuscule and remain inactive

with a negligible impact on the circuit specification until a rare specific event triggers them.

Ideally, any drift from the original circuit design should be detectable by post-fabrication

testing and verification. However, these methods fall short to detect HT because the prob-

ability of triggering the HT is usually low.

Therefore, some other methods are required to ensure circuit security. To this end, two major

paths are pursued in literature: i) imaging techniques, and ii) side-channel and covert-

channel analysis. Destructive approaches mainly involve following steps: de-layering the

chip, imaging the die, reverse-engineering the image of the circuit, and conducting element by

element comparison. Although these methods are relatively capable of guaranteeing trust on

the fabricated IC [19, 4, 5], they are destructive, impractical, time-consuming, expensive, and

inapplicable to detect the contaminated third-party IPs. In contrast, the second approaches

are non-destructive and assess the behavior of the chip through side-channel (e.g. power,

temperature, electromagnetic, and timing) or embedded sensor measurements. In these

methods, the parameters are measured and compared to the expected values to identify the

presence of additional structure.

The fundamental shortcoming of the majority of side-channel based HT detection method-
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ologies is the reliance on a trusted chip (a.k.a golden chip) to create a reference model of

the expected side-channel values. Reliance on golden chip is a problem since, in practice,

a trusted supply chain to manufacture the golden chip is not available, or it would be too

expensive and unaffordable for most of SoC designers [15]. A few works in the literature

have tried to resolve this issue by using self-referencing techniques [10], or using accurate

trusted simulations combined with embedded sensors in the chip to analyze the side-channel

emissions [16]. However, similar to other side-channel based HT detection methodologies

they often perform poorly when HT is not triggered.

Their poor performance occurs because inactive HT has an insignificant footprint that fits

in the process variation margin[11]. Despite the efforts for triggering the HT during the

testing of the chip [11], the HT may remain inactive. Therefore, complimentary run-time

monitoring and validation mechanisms such as [2, 12, 8, 14] are introduced to provide a

last line of defense against HTs in the mission critical systems. Nevertheless, these methods

come with the area overhead. Additionally, they will have a high false-positive detection

rate if they cannot adapt to the acceptable alteration of the IC side-channel profile over its

life span [13, 14]. Variety of machine learning models have been used for HT detection and

as the Figure 3.1 demonstrates, the majority of them are supervised model which perform

classification and require two set of labeled data.

3.1.1 Research Challenges

In a nutshell, the state-of-art approaches for HT detection often experience the following

challenges:

• Reliance on a reference golden chip, which in practice is costly to obtain or unavailable

in some HT threat models such as untrusted IPs.
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Figure 3.1: A survey of machine learning models used for HT detection.

• Detection of HTs often requires activating them while the probability of triggering an

HT during testing is very low due to their stealthy nature.

• Process variation in the IC production supply chain will result in the HT detection

mechanisms’ failure if proper measures are not taken.

• For each new IC design, a new feature space needs to be defined to extract the most

relevant features in the side-channel signals that can be used for detecting HTs.

3.2 Feature Engineering Approach

The majority of the solutions proposed in the literature for HT detection through side-

channels build a statistical model based on the specific features that the researchers had

found in the side-channel data under examination. Following this trend, in our first attempt,

we create the pipeline represented in Figure 3.2 for HT detection. This figure shows the three

stages of hardware design, fabrication, and Run-time and how the model fits into different
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Figure 3.2: HT detection approach based on feature engineering.

stages. In the design and implementation stage, this pipeline consists of three major modules.

The raw side-channel signal from libraries of known Trojans and circuits is fed to the feature

extraction module. This module converts the input signal to a set of predetermined features.

Next, the feature Engineering module reduces the number of features extracted and selects

the most effective ones. A model is developed based on the initial dataset’s selected features.

It is passed to the run-time stage to detect HT from the extracted features from the fabricated

chip side-channel signals. To evaluate this approach, we develop various classifier models

and train and test them on out power consumption side-channel dataset. We elaborate each

module in the pipeline and the evaluation results below.

3.2.1 Feature Extraction

We implement all the feature extractors that have returned useful discriminative features

in the literature for time series data and concatenated those features. As it is shown in
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Figure 3.3: Snapshot of the feature extraction module.

Figure 3.3, we extract various types of time domain features, use coefficients of Fast Fourier

Transform (FFT) as frequency domain features, and calculate Continuous Wavelet Transform

(CWT) coefficients for different windows sizes as wavelet-based features.

3.2.2 Feature Engineering

Given that our oscilloscope stores 2500 points in the signal at a time, the total number

features extracted in the feature extractor module adds up to around 7000 features. Since

the number of features is enormous, in the training phase, the classifiers might not converge to

the optimal statistical model representing the input-output relationship. Hence, decreasing

the number of features can simplify the model behavior. Here, we chose to use the method

described in [3] for features dimensionality reduction.
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Table 3.1: HT detection accuracy using feature extraction before feature selection.

Classifier AdaBoost L-SVM NB KNN NN QDA RF VC
AES-
T400

71.88% 66.46% 74.00% 79.38% 81.29% 67.54% 70.12% 80.79%

AES-
T500

99.71% 99.67% 99.71% 88.38% 99.71% 99.71% 99.00% 99.71%

AES-
T600

80.50% 67.38% 73.21% 79.42% 82.67% 57.00% 71.75% 82.17%

AES-
T700

100% 100% 100% 98.00% 100% 100% 100% 100%

AES-
T800

100% 100% 100% 98.71% 100% 100% 100% 100%

AES-
T1000

71.75% 68.00% 72.13% 77.54% 82.08% 68.92% 69.25% 82.33%

AES-
T1100

82.25% 67.83% 73.71% 78.46% 82.08% 59.21% 69.29% 76.58%

AES-
T1300

90.92% 67.46% 98.33% 79.00% 95.75% 59.79% 97.21% 98.33%

AES-
T1400

76.13% 67.38% 73.92% 78.42% 81.38% 59.96% 67.04% 80.58%

AES-
T1600

73.79% 66.29% 74.21% 78.21% 81.71% 73.54% 70.08% 81.63%

AES-
T1800

73.37% 65.96% 73.79% 78.96% 81.96% 63.38% 72.04% 82.08%

AES-
T2000

72.29% 65.75% 72.67% 77.37% 81.33% 68.83% 72.25% 82.25%

Average
Accuracy

82.72% 75.18% 82.14% 82.65% 87.50% 73.16% 79.84% 87.20%

Table 3.2: HT detection accuracy using feature extraction after feature selection.

Classifier AdaBoost L-SVM NB KNN NN QDA RF VC
Average
Accuracy

86.44% 85.28% 82.01% 82.48% 87.43% 81.06% 79.80% 87.29%
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3.2.3 Classifier Models

We have implemented eight different classifiers that are widely used in the literature for the

classification task and HT detection in particular. Here is the list of classifier we implement

and test:

• Adaptive Boosting (AdaBoost)

• Linear Support Vector Machine (L-SVM)

• Naive Bayes (NB)

• K Nearest Neighbor (KNN)

• Neural Network (NN)

• Quadratic Discriminant Analysis (QDA)

• Random Forest (RF)

• Voting Classifier (VC)

3.2.4 Evaluation

We have implemented eight different classifiers that are widely used in the literature for

the classification task and HT detection in particular. Table 3.1 represents the accuracy of

each classifier for detecting the given HT benchmark before feature selection while Table 3.2

shows the average accuracy of benchmarks for the different classifiers. Comparing the results

indicated that the neural network classifier has the best performance. It also demonstrates

that the classifier’s accuracy is maintained or even improved after the feature selection pro-

cess. It means that we can utilize the feature selection to reduce the model overhead without

deterring its performance.
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3.3 Feature Agnostic Deep Learning Approach

Although the pipeline described in the previous section seems to return acceptable prediction

accuracy in most of the benchmarks, we believe that it cannot be used as a live representation

of the circuit power consumption behavior because of the following reasons:

1. Once the model is designed and trained for a given benchmark, it will not be flexible

to add new feature extractors to the feature extraction module. Also, if the feature

selection module determines to eliminate some of the features, retrieving them would

mean a completely different implementation and retraining of the classifiers.

2. We want to keep the model alive along with the main circuit and update it to address

the process variation and temperature effect on the distortion of the side-channel profile

on the chip.

3. Using a model in run-time and keeping it alive requires an efficient and high-performance

hardware implementation of the model. Hardware implementation of the model will be

significantly less complicated and efficient if the operations used are repetitive. How-

ever, the algorithms’ architecture extracting the features is usually completely different

from the classifiers. For instance, if we decide to use frequency-domain features (FFT)

and random forest as a classifier, we will have numerous multiplication operations

on one side of the pipeline. In contrast, the classifier part would be mostly if-else

statements.

4. Based on our experience, choosing features for each circuit is very time-consuming, and

often, the knowledge learned for one circuit cannot be easily transferred to the next.

Hence, if we decide to use the general feature extraction-based approach described

in the previous section, huge engineering effort will be required for each given new

hardware circuit.
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Figure 3.4: HT detection approach based on end-to-end deep learning model.

To address these issues, we explore a deep learning approach by combining the feature

extraction module with the classifier to develop an end-to-end model. The overview of this

new approach is depicted in Figure 3.4. In this approach, the feature extraction and selection

modules are removed and included inside our customized deep learning model. Thus, the

model automatically extract and select features and this dynamic feature extraction make

it possible to update the model in run-time and keep it alive.

3.3.1 Our Customized CNN Architecture

We develop a customized Convolutional Neural network (CNN) for golden chip-free HT

detection in run-time. As shown in Figure 3.5, this model has two convolutional layers

which have a dynamic feature extraction behavior. We embed an attention mechanism

into it, which works similarly to a feature selection algorithm. The attention mechanism

essentially determines the importance of half of the features based on the other half of the
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Figure 3.5: Our customized CNN architecture.

features, which results in dynamic feature selection behavior. The last part of our customized

neural network architecture is a fully connected dense layer followed by two softmax nodes for

the classification. It is an end-to-end model, which means that while training, the optimizer

update the weights in all the layers to minimize prediction error. The model suggested in

this section eliminates the need for hand-crafted engineered features for each circuit. Hence

we call this approach a feature agnostic model.

3.3.2 Evaluation

We compare our customized convolutional neural network’s performance with the existing

deep learning models in the literature in terms of accuracy. For this evaluation, we implement

various models and train and test them on our power consumption side-channel dataset for

different HT benchmarks. The machine learning models implemented are as follows:

• Our customized convolutional neural network

• Encoder (En)
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Table 3.3: HT detection accuracy using the end-to-end classifiers.

Classifier Ours En FCN MCD MLP ResNet TWIESN CNN
AES-
T400

89.77% 89.23% 59.85% 83.47% 84.22% 71.15% 56.73% 80.93%

AES-
T500

98.00% 98.13% 98.03% 98.33% 98.05% 98.10% 95.20% 98.58%

AES-
T600

93.98% 94.18% 68.48% 92.46% 93.20% 87.10% 56.98% 90.93%

AES-
T700

100% 100% 100% 100% 100% 100% 99.93% 100%

AES-
T800

100% 100% 100% 100% 100% 100% 99.93% 100%

AES-
T1000

71.35% 70.85% 54.13% 66.93% 66.13% 54.68% 54.40% 62.65%

AES-
T1100

77.61% 78.25% 53.63% 73.50% 75.30% 53.93% 58.40% 72.13%

AES-
T1300

100% 100% 98.90% 99.98% 100% 97.55% 60.80% 99.98%

AES-
T1400

85.39% 84.60% 61.25% 80.36% 83.23% 68.45% 56.33% 78.40%

AES-
T1600

75.90% 74.20% 57.40% 69.19% 71.53% 60.28% 55.88% 67.58%

AES-
T1800

93.45% 93.13% 61.68% 90.63% 91.63% 69.05% 55.98% 86.75%

AES-
T2000

92.98% 93.00% 57.45% 84.34% 90.13% 73.30% 50.43% 87.48%

Average
Accuracy

89.87% 89.63% 72.56% 86.60% 87.78% 77.80% 66.75% 85.45%
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• Fully Convolutional Network (FCN)

• Minimum Covariance Determinant (MCD)

• Multi-Layer Perceptron (MLP)

• Residual neural network (ResNet)

• Time Warping Invariant Echo State Network (TWIESN)

• Convolutional Neural Network (CNN)

• Best Feature-Based (BFB)

The evaluation results in Table 3.3 demonstrates that our customized network outperforms

all the current deep learning methods as well as the best feature approach.

3.4 Transfer Learning Approach

Any model, which performs classification between an HT-infected circuit and its healthy

version will need samples from each one of those datasets for training. However, in reality,

access to HT free circuit, or in other terms, the golden chip may not be possible due to

fabrication cost.

In order to avoid the need for a golden chip, the concept of transfer learning is explored.

The overview of this approach is as illustrated in Figure 3.6. We construct a base model

from the side-channel dataset of HT benchmarks, and this base model learns fundamental

knowledge about the effect of Trojan activation on side-channel parameters. Despite the

previous approaches, the base model is retrained in the chip testing phase before being used

for HT detection in the run-time. This retraining process makes the model capture the

normal side-channel profile of the chip under test used along with the base knowledge of
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Trojans to recognize the anomalous disruption caused by HT activation in run-time. We

call this approach transfer learning because a base knowledge is derived from an available

dataset for known circuits, and the knowledge is transferred for a new circuit for which we

do not have both classes of labeled data.

Figure 3.6: Transfer learning HT detection approach overview.

3.4.1 Training Process

In this setting, we create an initial training dataset that includes both HT-inactive and HT-

active side-channel traces based on known hardware Trojans. Inspired by [18], we first train

the model to learn our previous knowledge about the existing HTs. Although the initial

training is not directly used, it will help the feature extraction and classification parts of our

suggested model to know what type of features they should look for when looking at similar

power traces. As it is presented in Figure 3.7, the initial model is trained. We take this

model and retrain, or in better terms, fine-tune it for the new IC which we have fabricated.
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We assume that in the functional testing phase, the HT does not get triggered. Hence, the

IC provides trusted power traces. (If it does not, we assume that other simpler HT-detection

mechanisms will be able to capture it). We use these traces to fine-tune the model by setting

the learning rate very low.

Figure 3.7: Two steps of training and fine tuning the model based on transfer learning.

3.4.2 HTnet Model

The transfer learning approach with our side-channel dataset is deeply investigated in our

paper [6] and as a result, a golden chip free HT detection model called HTnet is generated

which leverages the concept of self-referencing and transfer learning to eliminate the need

for a golden chip.

To design a virtually perfect neural network structure for the detection of triggered HTs, we

perform an exhaustive search on the available state-of-the-art architectures for CNNs to find

the best design for classifying the collected signal into Trojan triggered and inactive classes.

Figure 3.8 represents HTnet that is the result of this exhaustive search with fine-tuned
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Figure 3.8: HTnet architecture used as side-channel signals classifier.

hyperparameters. HTnet consists of two Convolutional Layers (CL) with ReLU activations,

each immediately followed by a dropout and max-pooling mechanisms to avoid overfitting.

The output of these CLs is a preliminary discriminative set of features from the input signal.

To further purify the extracted features, an attention mechanism is implemented after CLs.

We divide the output of the second CL into half, apply a softmax on half of the features and

multiply it to the other half. Afterward, a CL with a small number of filters followed by a

dense layer with a small number of nodes is added to the network to compress the extracted

features. For the rest of this paper, these compressed features will be referred to as latent

features. In the end, there is one more dense layer with a softmax activation function for

the classification purpose.

3.4.3 Knowledge Transfer for One-class Feature Learning

Once an IC is manufactured, we can only acquire unlabeled side-channel signals from the

chip. In the case of HTs with a trigger mechanism, it is often assumed that they will not

get triggered during the chip test phase otherwise they would be detected. This means that

during this phase we can assume that we have access to a number of side-channel signals that

are mostly likely labeled as HT-inactive. Based on this assumption, we construct a model

that learns to extract features for only one class of available data which is HT-inactive during
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Figure 3.9: Training reference and target networks.

the chip testing phase.

As shown in Figure 3.9, we discard the last dense layer in H, call it H ′, and create two new

models: a reference model Hr and a target model Ht. Hr consists of H ′ followed by a new

softmax dense layer. Ht consists of only H ′ which shares the same weights with H ′ part of

the reference model and is responsible for one-class feature extraction. To train Hr and Ht

we use a reference dataset, and a target dataset.

3.4.4 Feature Extraction Evaluation

HTnet uses Stochastic Gradient Descent (SGD) optimizer with learning rate of 0.001 for

training H and learning rate of 0.000001 for Hr and Ht. Figure 3.10 shows the outputs

of Ht for some of the HT-inactive and the HT-triggered samples. As shown in this figure,
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Figure 3.10: Extracted features for four HT-inactive and HT-triggered samples from AES-
500 benchmark.

each sample input (EM concatenated with power) is converted to a compact form of 32

features. In this feature space, all the HT-inactive samples posses a similar set of features

while multiple features of HT-triggered samples vary from the HT-inactive samples. These

variations can be used for reporting the sample as a HT-triggered case using an anomaly

detection mechanism.
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Table 3.4: HTnet comparison with the methods in [9] to classify power side-channel signals.

Benchmark SVM Naive Bayes Random Forest HTnet
AES-T400 0.6646 0.7400 0.7012 0.8975
AES-T500 0.9967 0.9971 0.9900 0.9793
AES-T600 0.6738 0.7321 0.7175 1
AES-T700 1 1 1 1
AES-T800 1 1 1 1
AES-T1000 0.6800 0.7213 0.6925 0.7135
AES-T1100 0.6783 0.7371 0.6929 0.7758
AES-T1300 0.6746 0.9833 0.9721 1
AES-T1400 0.6738 0.7392 0.6704 0.8525
AES-T1600 0.6629 0.7421 0.7008 0.7570
AES-T1800 0.6596 0.7379 0.7204 0.9345
AES-T2000 0.6575 0.7267 0.7225 0.9295

Mean 0.7518 0.8214 0.7984 0.9033

3.4.5 Golden Chip-Dependent HT Detection Evaluation

Given that our side-channel dataset includes both HT-inactive and HT active samples for

each benchmark, [6] first evaluate the performance of HTnet to classify these two types of

samples for each benchmark. Note that in this scenario, access to a golden chip is guaranteed

and the purpose of this evaluation is to compare HTnet to the other methods available in

the literature. Table 3.4 compares the performance of HTnet to the methods proposed in

one of the latest works in the literature [9] (2020). This table shows the accuracy of each

method using only power side-channel signals. To improve the accuracy of each of the rival

methods, HTnet first extracts and selects the best set of features using [3] and report their

best performance. The results show that HTnet outperforms any of these methods over AES

benchmarks even when the best type of features are extracted for them.
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Table 3.5: Accuracy of various anomaly detection algorithms over concatenated EM and
Power side-channel signals.

KNN LOF OC-SVM
Model Input HTnet Raw HTnet Raw HTnet Raw
AES-T500 0.936 0.895 0.928 0.858 0.928 0.919
AES-T700 0.986 0.927 0.975 0.901 0.972 0.946
AES-T800 0.983 0.937 0.961 0.941 0.981 0.916
AES-T1000 0.972 0.914 0.975 0.953 0.983 0.962
AES-T1100 0.803 0.798 0.656 0.491 0.822 0.478
Mean 0.936 0.894 0.899 0.829 0.937 0.844

3.4.6 Golden Chip-Free HT Detection Evaluation

Various off-the-shelf anomaly detection mechanisms from [22] are incorporateed in the paper

to evaluate the effectiveness of extracted set of features from EM and power side-channel

signals for HT detection. As shown in Table 3.5, the proposed methodology for extracting

relevant features can increase the accuracy of anomaly detection methods in most of the

cases. Particularly, LOF and OC-SVM cannot detect any anomalous behavior in side-channel

signals without using our feature extraction mechanism for AES-1100 benchmark. Note

that collecting EM side-channel signals highly depends on the probe placement over chip.

Thereby, evaluations is only provided for benchmarks with reliable EM traces. As shown in

3.5, EM and power side-channel signals fusion can boost the accuracy of our golden chip-free

approach to pass the results presented in Table 3.4 in some cases.
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Appendix A

Hardware Trojan Benchmarks

I used the hardware Trojan benchmarks from Trust Hub [20] and implemented them on the

FPGA for collecting side-channel signals. In the following, each benchmarks description is

provided.

A.0.1 AES-T1000 Benchmark

Whenever a predefined input plaintext is observed, the Trojan leaks the secret key from

a cryptographic chip running the AES algorithm through a covert channel. The channel

adapts the concepts from spread spectrum communications (also known as Code-Division

Multiple Access (CDMA)) to distribute the leakage of single bits over many clock cycles. The

Trojan employs this method by using a pseudo-random number generator (PRNG) to create

a CDMA code sequence; the PRNG initialized to the input plaintext. The code sequence

is then used to XOR modulate the secret information bits. The modulated sequence is

forwarded to a leakage circuit (LC) to set up a covert CDMA channel in the power side-

channel. The LC is realized by connecting eight identical flip-flop elements to the single

output of the XOR gate to mimic a large capacitance.
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Table A.1: Trojan Taxonomy of AES-T1000 Benchmark.

Hardware Trojan Taxonomy
Insertion Phase Design
Abstraction Level Register Transfer Level
Activation Mechanism Triggered Internally
Malicious Effect Leak Information
Location Processor
Physical Characteristics Functional

A.0.2 AES-T1100 Benchmark

Once a predefined sequence of input plaintext is observed, the Trojan leaks the secret key

from a cryptographic chip running the AES algorithm through a covert channel. The channel

adapts the concepts from spread spectrum communications (also known as Code-Division

Multiple Access (CDMA)) to distribute the leakage of single bits over many clock cycles. The

Trojan employs this method by using a pseudo-random number generator (PRNG) to create

a CDMA code sequence, the PRNG initialized to the input plaintext. The code sequence

is then used to XOR modulate the secret information bits. The modulated sequence is

forwarded to a leakage circuit (LC) to set up a covert CDMA channel in the power side-

channel. The LC is realized by connecting eight identical flip-flop elements to the single

output of the XOR gate to mimic a large capacitance.

Table A.2: Trojan Taxonomy of AES-T1100 Benchmark

Hardware Trojan Taxonomy
Insertion Phase Design
Abstraction Level Register Transfer Level
Activation Mechanism Triggered Internally
Malicious Effect Leak Information
Location Processor
Physical Characteristics Functional
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A.0.3 AES-T700 Benchmark

Whenever a predefined input plaintext is observed, the Trojan leaks the secret key from

a cryptographic chip running the AES algorithm through a covert channel. The channel

adapts the concepts from spread spectrum communications (also known as Code-Division

Multiple Access (CDMA)) to distribute the leakage of single bits over many clock cycles. The

Trojan employs this method by using a pseudo-random number generator (PRNG) to create

a CDMA code sequence; the PRNG initialized to a predefined value. The code sequence

is then used to XOR modulate the secret information bits. The modulated sequence is

forwarded to a leakage circuit (LC) to set up a covert CDMA channel in the power side-

channel. The LC is realized by connecting eight identical flip-flop elements to the single

output of the XOR gate to mimic a large capacitance.

Table A.3: Trojan Taxonomy of AES-T700 Benchmark

Hardware Trojan Taxonomy
Insertion Phase Design
Abstraction Level Register Transfer Level
Activation Mechanism Triggered Internally
Malicious Effect Leak Information
Location Processor
Physical Characteristics Functional

A.0.4 AES-T800 Benchmark

Once a predefined sequence of input plaintext is observed, the Trojan leaks the secret key

from a cryptographic chip running the AES algorithm through a covert channel. The channel

adopts the concepts from spread spectrum communications (also known as Code-Division

Multiple Access (CDMA)) to distribute the leakage of single bits over many clock cycles. The

Trojan employs this method by using a pseudo-random number generator (PRNG) to create

a CDMA code sequence; the PRNG initialized to a predefined value. The code sequence
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is then used to XOR modulate the secret information bits. The modulated sequence is

forwarded to a leakage circuit (LC) to set up a covert CDMA channel in the power side-

channel. The LC is realized by connecting eight identical flip-flop elements to the single

output of the XOR gate to mimic a large capacitance.

Table A.4: Trojan Taxonomy of AES-T800 Benchmark

Hardware Trojan Taxonomy
Insertion Phase Design
Abstraction Level Register Transfer Level
Activation Mechanism Triggered Internally
Malicious Effect Leak Information
Location Processor
Physical Characteristics Functional

A.0.5 AES-T1300 Benchmark

Whenever a predefined input plaintext is observed, the Trojan demonstrates an attack on

the AES-128 block-cipher and its corresponding key schedule. The idea is to artificially

introduce leaking intermediate states in the key schedule that depend on known input bits

and key bits, but that naturally would not occur during regular processing of the cipher.

The Trojan uses AND conjunctions to pairwise combine each key bit with another input

bit. The output of the AND gates are then combined to the leaked intermediate value by

XORing all of them. The Trojan leaks one byte of the AES round key for each round of the

key schedule. The leakage circuit (LC) is a 16-bit shift register and loaded it with an initial

alternating sequence of zeros and ones. The shift register is only enabled in case the input

to the leakage circuit is one, which results in additional dynamic power consumption.
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Table A.5: Trojan Taxonomy of AES-T1300 Benchmark

Hardware Trojan Taxonomy
Insertion Phase Design
Abstraction Level Register Transfer Level
Activation Mechanism Triggered Internally
Malicious Effect Leak Information
Location Processor
Physical Characteristics Functional

A.0.6 AES-T1400 Benchmark

Once a predefined sequence of input plaintext is observed, the Trojan demonstrates an attack

on the AES-128 block-cipher and its corresponding key schedule. The idea is to artificially

introduce leaking intermediate states in the key schedule that depend on known input bits

and key bits, but that naturally would not occur during regular processing of the cipher.

The Trojan uses AND conjunctions to pairwise combine each key bit with another input

bit. The output of the AND gates are then combined to the leaked intermediate value by

XORing all of them. The Trojan leaks one byte of the AES round key for each round of the

key schedule. The leakage circuit (LC) is a 16-bit shift register and loaded it with an initial

alternating sequence of zeros and ones. The shift register is only enabled in case the input

to the leakage circuit is one, which results in additional dynamic power consumption.

Table A.6: Trojan Taxonomy of AES-T1400 Benchmark

Hardware Trojan Taxonomy
Insertion Phase Design
Abstraction Level Register Transfer Level
Activation Mechanism Triggered Internally
Malicious Effect Leak Information
Location Processor
Physical Characteristics Functional
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A.0.7 AES-T400 Benchmark

Modulating an (unused) pin on a chip generates an RF signal. This signal can be used to

transmit the key bits. This attack is performed at 1560KHz and can be received with an

ordinary AM radio. The data carried by the AM signal needs to be easily interpreted by

a human. A beep scheme is utilized where a single beep followed by a pause represents

a ‘0’ and a double beep followed by a pause represents a ‘1’. A description of the detail

implementation of AM transmission can be found at [6]. In this implementation, the Trojan

gets activated when a predefined input plaintext is observed.

Table A.7: Trojan Taxonomy of AES-T400 Benchmark

Hardware Trojan Taxonomy
Insertion Phase Design
Abstraction Level Register Transfer Level
Activation Mechanism Triggered Internally
Malicious Effect Leak Information
Location Processor
Physical Characteristics Functional

A.0.8 AES-T1600 Benchmark

Modulating an (unused) pin on a chip generates an RF signal. This signal can be used to

transmit the key bits. This attack is performed at 1560KHz and can be received with an

ordinary AM radio. The data carried by the AM signal needs to be easily interpreted by a

human. A beep scheme is utilized where a single beep followed by a pause represents a ‘0’ and

a double beep followed by a pause represents a ‘1’. A description on detail implementation

of AM transmission can be found at [6]. In this implementation, the Trojan gets activated

when a predefined sequence of input plaintext is observed.
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Table A.8: Trojan Taxonomy of AES-T1600 Benchmark

Hardware Trojan Taxonomy
Insertion Phase Design
Abstraction Level Register Transfer Level
Activation Mechanism Triggered Internally
Malicious Effect Leak Information
Location Processor
Physical Characteristics Functional

A.0.9 AES-T1800 Benchmark

At the core of lightweight applications, such as medical implant devices, are the batteries

that power them, and the success of the device rests heavily on them. This Trojan drains the

battery once it gets activated. The Trojan gets activated after observing a predefined input

plaintext. The Trojan payload is a shift register which continuously rotates after Trojan

activation. The Trojan increases the power consumption and hence decreases the expected

lifetime of the battery.

Table A.9: Trojan Taxonomy of AES-T1800 Benchmark

Hardware Trojan Taxonomy
Insertion Phase Design
Abstraction Level Register Transfer Level
Activation Mechanism Triggered Internally
Malicious Effect Denial of Service
Location Processor
Physical Characteristics Functional

A.0.10 AES-T500 Benchmark

At the core of lightweight applications, such as medical implant devices, are the batteries

that power them, and the success of the device rests heavily on them. This Trojan drains the

battery once it gets activated. The Trojan gets activated after observing a specific sequence

of the input plaintext. The Trojan payload is a shift register which continuously rotates
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after Trojan activation. The Trojan increases the power consumption and hence decreases

the expected lifetime of the battery.

Table A.10: Trojan Taxonomy of AES-T500 Benchmark

Hardware Trojan Taxonomy
Insertion Phase Design
Abstraction Level Register Transfer Level
Activation Mechanism Triggered Internally
Malicious Effect Denial of Service
Location Processor
Physical Characteristics Functional

A.0.11 AES-T600 Benchmark

After detecting a specific input plaintext, the Trojan leaks the secret key of AES-128 through

the leakage current. The leakage circuit (LC) consists of a shift register holding the secret

key and two inverters. The least significant bit is connected to one inverter whose output

connected to the input of the other inverter. Whenever the least significant bit of the shift

register is ’0’, a direct path between power and ground composed by the PMOS of the first

inverter and the NMOS of the second inverter is created for a limited time. Therefore, the

secret key can be retrieved by measuring the leakage current.

Table A.11: Trojan Taxonomy of AES-T600 Benchmark

Hardware Trojan Taxonomy
Insertion Phase Design
Abstraction Level Register Transfer Level
Activation Mechanism Triggered Internally
Malicious Effect Leak Information
Location Processor
Physical Characteristics Functional
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A.0.12 AES-T2000 Benchmark

After detecting a specific sequence of input plaintext, the Trojan leaks the secret key of AES-

128 through the leakage current. The leakage circuit (LC) consists of a shift register holding

the secret key and two inverters. The least significant bit is connected to one inverter whose

output connected to the input of the other inverter. Whenever the least significant bit of the

shift register is ’0’, a direct path between power and ground composed by the PMOS of the

first inverter and the NMOS of the second inverter is created for a limited time. Therefore,

the secret key can be retrieved by measuring the leakage current.

Table A.12: Trojan taxonomy of AES-T2000 benchmark.

Hardware Trojan Taxonomy
Insertion Phase Design
Abstraction Level Register Transfer Level
Activation Mechanism Triggered Internally
Malicious Effect Leak Information
Location Processor
Physical Characteristics Functional
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