
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Extensions in model-based system analysis

Permalink
https://escholarship.org/uc/item/52g4f9v1

Author
Graham, Matthew R.

Publication Date
2007
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/52g4f9v1
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO

Extensions in Model-Based System Analysis

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in

Engineering Sciences (Mechanical Engineering)

by

Matthew R. Graham

Committee in charge:

Professor Raymond de Callafon, Chair

Professor Mauricio de Oliveira, Co-Chair

Professor Robert Bitmead

Professor Miroslav Krstic

Professor J. William Helton

Professor Massimo Franceschetti

2007



Copyright

Matthew R. Graham, 2007

All rights reserved



The dissertation of Matthew R. Graham is approved, and it is

acceptable in quality and form for publication on microfilm:

Co-Chair

Chair

University of California, San Diego

2007

iii



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Curriculum Vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Chapter 1 Modeling and Analysis . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions of Dissertation . . . . . . . . . . . . . . . . . . . . . 3
1.3 Motivation for Performance Analysis Tools . . . . . . . . . . . . . . 4

1.3.1 Model-Based Control Design . . . . . . . . . . . . . . . . . . 5
1.3.2 An Iterative Scheme for Cautious Control Design . . . . . . 7

1.4 Preview of Performance Analysis Results . . . . . . . . . . . . . . . 10
1.5 Overview of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.6 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Chapter 2 Modeling via System Identification . . . . . . . . . . . . . . . . . 16
2.1 Motivation for Control Relevant Modeling . . . . . . . . . . . . . . 16
2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Access to System Measurements . . . . . . . . . . . . . . . 17
2.2.2 Access to Coprime Factors from Measurements . . . . . . . 19
2.2.3 Prediction Error Identification . . . . . . . . . . . . . . . . 22

2.3 Linear Regression Algorithm . . . . . . . . . . . . . . . . . . . . . 23
2.3.1 Structured Linear Regression Parametrization for

Coprime Factor Identification . . . . . . . . . . . . . . . . . 25
2.4 Servomechanical Example . . . . . . . . . . . . . . . . . . . . . . . 27
2.5 Description of the Limit Model . . . . . . . . . . . . . . . . . . . . 32
2.6 Frequency Domain Identification . . . . . . . . . . . . . . . . . . . 33
2.7 Uncertainty Characterizations . . . . . . . . . . . . . . . . . . . . . 35
2.8 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

iv



Chapter 3 Extending the KYP Lemma . . . . . . . . . . . . . . . . . . . . . 39
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Various Linear Matrix Inequality (LMI) Results . . . . . . . 40
3.2.2 State-Space System Representation . . . . . . . . . . . . . . 42
3.2.3 The Kalman-Yakubovich-Popov (KYP) Lemma . . . . . . . 43

3.3 The KYP Lemma on Frequency Intervals . . . . . . . . . . . . . . . 45
3.4 Robust Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.1 µ-Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5 Case Study I: Hard Drive Servo Analysis . . . . . . . . . . . . . . . 57

3.5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5.2 HDD Model Set and Controller Formulation . . . . . . . . . 59

3.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Chapter 4 Generalizations of the KYP Lemma . . . . . . . . . . . . . . . . . 66
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2 Frequency Characterization . . . . . . . . . . . . . . . . . . . . . . 67
4.3 Generalized KYP Lemma . . . . . . . . . . . . . . . . . . . . . . . 71
4.4 Revisiting the KYP Lemma on Frequency Intervals . . . . . . . . . 77
4.5 Piece-Wise Linear Coefficient Matrix . . . . . . . . . . . . . . . . . 79
4.6 An Alternative KYP Lemma . . . . . . . . . . . . . . . . . . . . . . 82
4.7 A KYP Lemma for Discrete-Time Systems . . . . . . . . . . . . . . 87
4.8 Regular Descriptor Systems . . . . . . . . . . . . . . . . . . . . . . 91
4.9 Polynomial Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.9.1 Pseudo-Polynomial Para-Hermitian Matrices . . . . . . . . . 93
4.9.2 General Polynomial System KYP Lemma . . . . . . . . . . . 95

4.10 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Chapter 5 Application of the Extended KYP Lemma for Analyzing Robustness 97
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.2.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2.3 Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3 Case Study I: Aeroservoelastic (ASE) System Analysis . . . . . . . 107
5.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.3.2 Pitch-Plunge ASE System Formulation . . . . . . . . . . . . 108
5.3.3 Robust Analysis of the Pitch-Plunge System . . . . . . . . . 113

5.4 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Chapter 6 Conclusions and Comments . . . . . . . . . . . . . . . . . . . . . 117
6.1 Achieved Contributions . . . . . . . . . . . . . . . . . . . . . . . . 117
6.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

v



Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

vi



LIST OF FIGURES

Figure 1.1 Model-based control design and analysis process diagram. . . 6
Figure 1.2 Specifications on Loop-Gain Bode Plot. . . . . . . . . . . . . . 11

Figure 2.1 General feedback configuration for system identification. . . . 18
Figure 2.2 Construction of auxiliary signal x from closed-loop data for

coprime factor identification. . . . . . . . . . . . . . . . . . . . . . . 20
Figure 2.3 Frequency response of 16 of the same servomechanism product. 29
Figure 2.4 Frequency response of a 20th order case study model (solid-line). 29
Figure 2.5 Frequency response of coprime factors computed from case-

study model (dotted-line) and from 7th order: constrained ARX
(solid-line), Prediction Error minimization with OE structure (dashed-
line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 2.6 Frequency response of case study model (dotted-line) and 7th

order constructed plant: G(θ) = N(θ)D−1(θ) (solid-line) and Pre-
diction Error minimization with OE structure (dashed-line). . . . . 31

Figure 2.7 Standard uncertain system connection. . . . . . . . . . . . . . 36
Figure 2.8 Allowable uncertainty overbound levels. . . . . . . . . . . . . 37

Figure 3.1 Hard disk drive cut-away picture. . . . . . . . . . . . . . . . . 59
Figure 3.2 Control-relevant hard disk drive model (solid-line) estimated

via frequency data (dashed-line) curve fitting. . . . . . . . . . . . . 61
Figure 3.3 Hard disk drive model multiplicative uncertainty (solid line)

overbounding frequency domain uncertainty (dashed-line). . . . . . 61
Figure 3.4 Structured singular value performance analysis of the hard

disk servo system for a single frequency interval Ω = [10, 7000]Hz.
Labels are assigned according to the method used in computing the
overbound. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 3.5 Structured singular value performance analysis of the hard disk
servo system for three frequency intervals Ω = [10, 100], [100, 1000],
and [1000, 7000]Hz. Labels are assigned according to the method
used in computing the overbound. . . . . . . . . . . . . . . . . . . . 64

Figure 4.1 Illustrating piece-wise affine Θ(ω). . . . . . . . . . . . . . . . 80
Figure 4.2 Bilinear transformation from finite segments to infinite seg-

ments of the frequency variable on the imaginary axis. . . . . . . . 84
Figure 4.3 Bilinear transformation from continuous-time to discrete-time

frequency variable. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Figure 5.1 Computation of upper bounds for µ. The curved line is the
greatest lower bound for ρ∆. Other lines are labeled according to
the method and frequency range used to compute them. . . . . . . 100

vii



Figure 5.2 Robust analysis for real structured uncertainty in Examples 2
and 3, showing the bounds computed using the results of this paper.
The labels have been defined in Tables 5.2 to 5.4. The curved solid
line is the greatest lower bound for ρ∆. . . . . . . . . . . . . . . . 104

Figure 5.3 Robust analysis for real structured uncertainty in Examples
2 and 3, comparing the bounds computed using the results of this
paper with other results in the literature (low frequency). The labels
have been defined in Tables 5.2 to 5.4. The curved solid line is the
greatest lower bound for ρ∆. . . . . . . . . . . . . . . . . . . . . . 105

Figure 5.4 Robust analysis for real structured uncertainty in Examples
2 and 3, comparing the bounds computed using the results of this
paper with other results in the literature (high frequency). The
labels have been defined in Tables 5.2 to 5.4. The curved solid line
is the greatest lower bound for ρ∆. . . . . . . . . . . . . . . . . . . 106

Figure 5.5 Isometric view of the pitch-plunge mechanism for studying
aeroservoelastic systems. . . . . . . . . . . . . . . . . . . . . . . . . 108

Figure 5.6 Pitch plunge uncertainty block diagram. . . . . . . . . . . . . 110
Figure 5.7 Robust flutter analysis with velocity feedback controller. The

curved line is the greatest lower bound for ρ∆ with dots located at
the frequency grid. Other lines are labeled according to the method
and frequency range used to compute them. . . . . . . . . . . . . . 115

viii



LIST OF TABLES

Table 3.1 Experimental Disk Drive Specifications . . . . . . . . . . . . . 59

Table 5.1 Example 1: Upper bounds for ρ∆ (complex uncertainty); ρ∆ ≥
1.821 computed on a dense grid. . . . . . . . . . . . . . . . . . . . . 99

Table 5.2 Example 2: Upper bounds for ρ∆ (real uncertainty); supw∈R
µ∆ =

0.291 (from [20]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 5.3 Example 3: Upper bounds for ρ∆ (real uncertainty); supw∈R

µ∆ =
0.291 (from [20]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Table 5.4 Example 3: Upper bounds for ρ∆ (real uncertainty); supw∈R
µ∆ =

0.291 (from [20]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

ix



ACKNOWLEDGEMENTS

On this roller coaster ride, known as ”Journey to Thesis,” there are many

people that I have been privileged to meet, work and live with.

I would first like to acknowledge the support and love of my wife Sarah, whose

encouragement drove me to the finish. My parents were always enthusiastic about

my other language, which they did not understand, but who would so generously

listen while out to dinner.

I would like to thank Raymond de Callafon for taking this young impressionable

student under his wing, organizing my thoughts, and guiding me through research.

When I first came to UCSD I was told by another graduate student, ”everything

will get better once Mauricio gets here,” and now I know they were right. I am

grateful to Mauricio de Oliveira for guiding me through theoretical research and

encouraging me to reach my full potential.

A big THANK YOU to my friends, colleagues and mentors from whom I have

learned a great deal (in no particular order): Charles Kinney, Keunmo Kang, Jeff

Butterworth, Michel Claes, Bob Bitmead, Lou Shrinkle, Joe Moore, Antranik Sir-

anosian, Marty Brenner, Bob Skelton, Chad Holcomb, Jie Yu, Bart Raeymaekers

and the list could go on. And finally, to America’s Finest City and my home town:

”Stay classy San Diego.”

- Will Ferrell (in ”Anchorman: The Legend of Ron Burgundy”)

The text of this dissertation includes the reprints of the following papers.

M.R. Graham and R.A. de Callafon, ”Performance weight adjustment for iterative

cautious control design.” In Proceedings of European Control Conference, Kos,

Greece, July 2007. (Chapter 1)

M.R. Graham and R.A. de Callafon, ”Linear regression method for estimating ap-

proximate normalized coprime plant factors.” In Proceedings of IFAC Symposium

on System Identification, Newcastle, Australia, March 2006. (Chapter 2)

x



M.R. Graham, M.C. de Oliveira, and R.A. de Callafon, ”A linear matrix inequality

for robust stability analysis with frequency-dependent multipliers.” In Proceedings

of Conference on Decision and Control, San Diego, USA, December 2006. (Chap-

ters 3 and 5)

M.R. Graham, M.C. de Oliveira, and R.A. de Callafon, ”An alternative Kalman-

Yakubovich-Popov lemma and some extensions.” IEEE Transactions on Automatic

Control, Submitted, February 2007. (Chapters 3, 4, and 5)

The dissertation author was the primary researcher and author in these works

and the co-author listed in these publications directed and supervised the research.

xi



CURRICULUM VITAE

Education

1998-2002 Bachelor of Science in Engineering (Mechanical Engineering)

Loyola Marymount University, Los Angeles, U.S.A.

2002-2004 Master of Science in Engineering (Mechanical Engineering)

University of California, San Diego, U.S.A.

2004-2007 Doctor of Philosophy in Engineering Sciences (Mechanical

Engineering) University of California, San Diego, U.S.A

Honors and Awards

2005 – 2007 NASA Graduate Student Research Program Fellowship

2004 – 2006 Focht-Powell Fellowship

2005 ASME ISPS Division Graduate Scholarship

Journal Publications

M.R. Graham, M.C. de Oliveira, R.A. de Callafon. “Robust

Analysis with Frequency-Dependent Multipliers.” Submitted

to: IEEE Transactions on Automatic Control, 2007.

M. Claes, M.R. Graham, R.A. de Callafon. “Frequency Do-

main Subspace Identification of a Tape Servo System.” Sub-

mitted to: Microsystem Technologies, 2007.

M.R. Graham and R.A. de Callafon. “Identification and Low-

Order Control of Hard Disk Drives.” IEEE Transactions on

Magnetics: INTERMAG Special Edition, 2006.

xii



M.R Graham and R.A. de Callafon. “Identification and Low-

Order Control of Hard Disk Drives.” IEEE Transactions on

Magnetics: INTERMAG Special Edition, 2006.

M.R. Graham and R.A. de Callafon.“An Iterative Learning

Design for Repeatable Runout Cancellation in Disk Drives.”

IEEE Transactions on Control System Technology, 2006.

Conference Publications

M.R. Graham and R.A. de Callafon. “Performance Weight

Adjustment in Cautious Control Design.” European Control

Conference, Kos, Greece 2007.

M.R. Graham, M.C. de Oliveira and R.A. de Callafon.“A

Linear Matrix Inequality for Robust Stability Analysis with

Frequency Dependent Multipliers.” Conference on Decision

and Control, San Diego, 2006.

M.R. Graham, R.A. de Callafon and L. Shrinkle. “An Itera-

tive Learning Controller for Reduction of Repeatable Runout

in Hard Disk Drives.” in Proc. 50th American Controls Con-

ference, Minneapolis, USA, 2006.

M.R. Graham and R.A. de Callafon. “Linear Regression

Method for Estimating Approximate Normalized Coprime

Factors.” in Proc. 14th IFAC Symposium on System Identi-

fication, Newcastle, Australia, 2006.

M.R. Graham and R.A. de Callafon.“Fixed Order PQ-control

Design Method for Dual-Stage Instrumented Suspension.” in

Proc. 16th IFAC World Congress, Czeck Republic, 2005.

xiii



Academic Experience

Graduate Research Assistant [Sept. 2004 – June 2007]

University of California, San Diego, U.S.A

Teaching Assistant [Sept. 2003 – June 2004]

University of California, San Diego, U.S.A

Industrial Experience

Mechanical Engineering Intern [June 2006 – Sept. 2006]

Western Digital Corporation, Lake Forest, CA, U.S.A.

Mechanical Engineering Intern [June 2004 – May 2005]

General Atomics Aeronautical Systems Inc.,

San Diego, CA, U.S.A.

Mechanical Engineering Co-op [May 2001 – Nov. 2001]

Honeywell/Garrett Turbochargers, Torrance, CA, U.S.A

xiv



ABSTRACT OF THE DISSERTATION

Extensions in Model-Based System Analysis

by

Matthew R. Graham

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California, San Diego, 2007

Professor Raymond de Callafon, Chair

Professor Mauricio de Oliveira, Co-Chair

Model-based system analysis techniques provide a means for determining de-

sired system performance prior to actual implementation. In addition to specifying

desired performance, model-based analysis techniques require mathematical de-

scriptions that characterize relevant behavior of the system. The developments of

this dissertation give extended formulations for control-relevant model estimation

as well as model-based analysis conditions for performance requirements specified

as frequency domain inequalities.

A model estimation algorithm is proposed on the basis of identifying approx-

imately normalized coprime factorizations from closed-loop system input-output

measurements. In the proposed method a particular model structure is chosen

such that a linear regression in the measurement data is formed, thus sanctioning

the use of numerically efficient algorithms in computing the parameter estimates.

Furthermore, methods based on closed-loop experimental data support model es-

timates that are accurate in the frequency region relevant for control design.

Specifications for performance and robustness of dynamical systems are com-

monly expressed in terms of frequency domain inequalities, which due to infinite

dimensionality are not directly tractable for analysis and design. A pair of lin-

ear matrix inequality conditions are proposed that relate to checking frequency

xv



domain inequalities over finite frequency intervals. The proposed conditions intro-

duce an alternative formulation of the Kalman-Yakubovich-Popov Lemma in that

the proposed conditions encompasses the lemma for the case when the coefficient

matrix of the frequency domain inequality does not depend on frequency. Fur-

thermore, the coefficient matrix can be made affine on the frequency variable at

no extra computational cost, which can be significant in reducing conservatism in

applications such as robustness analysis.

Extensions for the proposed conditions are developed via transformations on

the frequency variable. The extensions have many applications including positivity

analysis for matrix polynomials, robustness analysis of discrete-time linear systems,

as well as analysis conditions on finite frequency intervals that transform to infinite

intervals. Application of the alternative conditions and extensions are illustrated

with numerical examples in the analysis of robustness.
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Chapter 1

Modeling and Analysis

1.1 Introduction

Addressing the problem of designing control algorithms generally requires a

sequence of steps in order to obtain a desired closed-loop (controlled) performance

level. The first fundamental step in this problem involves the construction of a

mathematical model for the physical system based on the laws of physics or the

model’s ability to describe a set of input-output data. The second fundamental

step is the control algorithm design. Common with both of the fundamental steps

for model-based control design, is the analysis of model and controller for qualities

that enable them achieve a desired level of performance.

Models derived from the laws of physical are termed a first-principles models,

since they are based mostly on the conservation of mass, energy, and momentum.

Models derived from input-output data are termed identified or estimated models,

since parameters are specified within a dynamical characterization and identified

or estimated by fitting to the data. Interestingly, the parameters in a dynamical

model generally do not correspond to physical quantities of the system and are

merely chosen so as to provide a description of the input-output data. Although

there exist methods for deriving models with nonlinear elements, both from first-

principles and identification techniques, the results developed in this thesis will

primarily focus on the large class of systems that can be adequately characterized

with linear models.

1
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There are many challenges associated with designing feedback controllers that

make the closed-loop system stable as well as achieve a specified level of perfor-

mance. Performance is commonly specified in terms of minimizing the unavoidable

presence of external noise and disturbances that get introduced into the system

through sensors and interaction with the environment. The presence of uncer-

tainty between the physical system and the mathematical model describing it,

labeled here as model uncertainty, presents challenges for the model-based con-

trol design in actually achieving the designed performance on the actual system.

Model uncertainty is associated to the formulation of the model and can include

approximation errors brought about by limitations on the model structure, para-

metric errors or even confidence intervals associated to the parameter estimation

algorithm, and parameter perturbations inherent to the actual system.

Specifying the model and controller qualities that enable performance is largely

the result of engineering experience in specifying appropriate cost functions for the

design process. However, once a choice for the cost function has been made, the

analysis tools often introduce some degree of conservatism in determining perfor-

mance. As uncertainties limit achievable performance of the model-based con-

troller, conservative analysis tools used in the control design process report limits

on performance that are cautious with respect to actual limits on performance.

Furthermore, analysis is often a first step toward synthesis of controllers that

by construction satisfy a desired level of performance. Reducing conservatism in

the analysis is crucial for designing systems and controllers that achieve limits of

performance without intentionally adding caution into the process. The feedback

control algorithm design issue is not directly treated in this thesis, however it does

contribute to the motivation for reducing conservatism in the analysis of systems

with the intension of using these results for design purposes.

1.2 Contributions of Dissertation

The goal of this dissertation is to develop numerically efficient algorithms for

model-based analysis of system performance, stability and robustness with respect

to uncertainty induced by modeling approximations and parameter intervals. The
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developments mainly focuses on analysis tools for systems that can be represented

with linear time-invariant models. Models and associated uncertainty characteri-

zations are assumed given from identification or first-principle methods and control

algorithms are also assumed given such that an initial performance level for the

closed-loop system is satisfied. The contributions of this research include the fol-

lowing.

• Since the analysis tools are based on models, an algorithm is presented for

estimating control-relevant models of linear (possibly unstable) plant dynam-

ics. The system identification algorithm of Section 2.3 is based on the theory

of coprime factorizations and includes a particular model structure given by

Proposition 2.3 that makes the estimation numerically efficient. These mod-

els are important for many control applications, particularly those with open-

loop unstable dynamics which can occur in servomechanical and aerospace

systems.

• Tools for evaluating performance, stability, and robustness specified by fre-

quency domain inequalities are developed. The analysis tools provide con-

ditions which convert frequency domain inequality specifications to convex

inequalities which can be evaluated numerically. The convex inequalities in-

corporate a particular class of frequency-dependent multipliers and can be

limited to finite frequency intervals, features which can significantly reduce

conservatism as compared to existing conditions with similar complexity.

The main results are presented in Theorems 3.1, 3.2, 4.1, and 4.2. These de-

velopments are made general in order to accommodate the variety of linear

models, model uncertainty characterizations, and performance criteria that

can be expressed in terms of frequency domain inequalities.

• Specific extensions of the convex inequalities for system analysis are ex-

plored.Properties of the bilinear transformation are used to construct analysis

conditions that hold for finite as well as infinite frequency intervals. Addi-

tionally these extensions provide analysis conditions for different systems

characterizations including discrete-time and polynomial systems.
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• Applications of the analysis conditions are used to illustrate the numerical

properties of the algorithms in reducing conservatism. The results are used in

computing upper bound for the structured singular in order to verify stability

and performance robustness. Section 3.5 presents the first application of the

finite frequency analysis results, mainly Theorem 3.2, for hard disk drive ser-

vomechanism system with structured two-block complex uncertainty. Chap-

ter 5 presents numerical examples of the proposed extension Theorem 4.2,

particularly results which hold for infinite frequency range, and applications

of structured real-parametric uncertainty.

Before continuing with presenting the results of this dissertation, some mo-

tivation will be given to further place the important role that analysis plays in

model-based control design.

1.3 Motivation for Performance Analysis Tools

This section is largely devoted to giving perspective and motivation for system

analysis with respect to performance and robustness. First Section 1.3.2 presents

a model-based control design algorithm, slightly modified from the now common

iterative model-based robust control designs, which serves to further motivate per-

formance analysis. Section 1.4 provides some background on the performance

analysis problem.

1.3.1 Model-Based Control Design

Addressing the problem of approximate identification and model-based control

generally requires iterative schemes [78] composed of separate model estimation,

control design, and analysis steps. Many early model-based iterative schemes fo-

cused on nominal H∞ performance enhancement of a closed-loop transfer function,

denoted by T (G,K) indicating dependence on a plant model G and controller K,

while subsequent degradation of achieved performance of the controller K applied

to the plant G0 is evaluated via the triangle inequality [85]. A requirement that

performance degradation should be small places emphasis on a closed-loop relevant
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identification error and implies the need for performance robustness in both the

identification and control design [92]. Model-based iterative schemes have been

developed such that evaluation of achieved performance is bounded by the worst

possible performance of a controller K evaluated over a set of models G. Perfor-

mance robustness can then be monitored at each stage of the iteration process

such that a monotonic decrease in worst-case performance is guaranteed [17]. This

iterative process is illustrated in Fig. 1.1, the elements of which are discussed

subsequently.

Uncertainty
Characterization

Robust Control
Design

Performance
Analysis

Experiments

Nominal
Identification

data

K
G

∆

G

‖T (G, K, W )‖∞

Figure 1.1. Model-based control design and analysis process diagram.

At iteration i consider a set of models Gi parametrized by a nominal model Ĝi

along with an upper bound Ui on the modeling error

Gi(Ĝi, Ui) =
{

G | G = F (Ĝi,∆), with ‖∆Ui‖∞ < 1
}

s. t. G0 ∈ Gi, (1.1)
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whereG0 represents the unknown plant and F denotes a particular parametrization

of the model set Gi. Common choices for the parametrization of Gi with nominal

model and norm bounded uncertainty include additive, multiplicative and coprime

uncertainty descriptions [94].

The design of a controller K that satisfies performance specifications can be

achieved through an explicit parametrization of the closed-loop system T (G,K,W )

as a function of W , where W reflects the general notion of a performance weighting

function. Consider an initial controllerKi that internally stabilizes all G ∈ Gi, then

we can define a stable closed-loop transfer function T (G,Ki,W ) where W is a

stable and stably invertible weighting filter such that ‖T (G,Ki,W )‖∞ is bounded.

For a given controller Ki and weighting function W the nominal performance and

worst case performance are respectively defined by

‖T (G,Ki,W )‖∞,

and

sup
G∈Gi

‖T (G,Ki,W )‖∞.

Consequently, a weighting filter W can be chosen such that

sup
G∈Gi

‖T (G,Ki,W )‖∞ ≤ 1 (1.2)

and constitutes a robust performance condition.

1.3.2 An Iterative Scheme for Cautious Control Design

Monitoring performance robustness only entails performance improvement if

the closed-loop transfer function T (G,K,W ) is adjusted appropriately during it-

erations. One way to incorporate appropriate adjustments is through the ex-

plicit parametrization of T (G,K,W ) as a function of the performance weight

W . Obviously selecting a fixed weighting function W allows a comparison be-

tween ‖T (G0, Ki+1,W )‖∞ and ‖T (G0, Ki,W )‖∞ as a measure of performance [17],

whereas adjustment of W during subsequent identification and control design it-

erations would require a notion of performance improvement dependent on the

choice of W [36].
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For a given pair (Ki,Wi), the condition (1.1) and (1.2) constitute a modeling or

identification problem in which a set of models Gi needs to be found that satisfies

G0 ∈ Gi and sup
G∈Gi

‖T (G,Ki,W )‖∞ ≤ 1

referring to the estimation of an uncertainty set that satisfies a performance ro-

bustness condition. Once a set of models Gi is found, the pair (Ki,Wi) can be

updated via a cautious control design that emphasizes performance robustness im-

provement. Since bothKi andWi will change to (Ki+1,Wi+1) the value of the norm

function ‖T (G0, Ki+1,Wi+1)‖∞ does not suffice in characterizing performance ro-

bustness improvement. Instead the (normalized) evaluation of the performance

robustness

sup
G∈Gi

‖T (G,Ki+1,Wi+1)‖∞ ≤ 1 (1.3)

indicates that performance robustness has been satisfied for the pair (Ki+1,Wi+1)

while the adjustment of the weighting function Wi+1 (with respect to Wi) now

provides an indication of the performance improvement.

Denote a function Jpw(W ) as a pseudometric that acts on stable transfer func-

tions (on RH∞) to produce a positive real number

{Jpw(W ) : RH∞ → [0,∞)} ,

where the second argument is the origin Jpw(W ) = Γ(W, 0) or some fixed desired

performance weight Jpw(W ) = Γ(W,W∗). Since weighting functions are chosen

to reflect design objectives, the evaluation criteria Jpw should support this choice

and emphasize desired properties in the performance of the closed-loop system,

for example bandwidth and disturbance rejection. Thus this framework, although

general, still requires some level of engineering intuition to initialize the character-

ization of performance improvement in Jpw which allows the performance weight

to be progressively tuned and monitored between iterations. For example

Jpw(Wi+1) ≥ Jpw(Wi)

provides an ordering of the performance weighting functions in an iterative scheme

in which both the controller K and the weighting function W are adjusted.
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To address the trade-off between performance objectives and a tolerance to

uncertainties while utilizing available tools for robust performance control design,

the control objective function is restricted to being an H∞-norm computation

‖T (G,K,W )‖∞, although alternative objective functions are entirely possible [92].

A method for determining a controller that maximizes performance according to

a weighted objective function but subject to robust performance constraints in an

H∞ framework is formulated below. The problem formulation follows the process

diagram shown in Fig. 1.1 initialized with experiments for gathering data and

terminated with the achievement of satisfactory system performance.

Problem 1.1. Let a plant G0 form a stable feedback connection with the currently

implemented controller Ki. From data collected in closed-loop, estimate a set of

models Gi where G0 ∈ Gi and choose weighting function Wi such that

sup
G∈Gi

‖T (G,Ki,Wi)‖∞ ≤ 1 (1.4)

Subsequently evaluate the following iterative procedure.

(a) Given a set of models Gi design performance weight Wi+1 and robust con-

troller Ki+1 to satisfy

(Ki+1,Wi+1) = max
W

Jpw(W ) such that sup
G∈Gi

‖T (G,Ki+1,Wi+1)‖∞ ≤ 1,

(1.5)

where

Ki+1 = arg min
K

sup
G∈Gi

‖T (G,K,Wi+1)‖∞. (1.6)

(b) If the performance weight has improved, that is

Jpw(Wi+1) > Jpw(Wi), (1.7)

then implement the controller Ki+1 and collect (new) data from a closed-loop

experiment. Estimate a set of models Gi+1 such that G0 ∈ Gi+1 and

sup
G∈Gi+1

‖T (G,Ki+1,Wi+1)‖∞ < sup
G∈Gi

‖T (G,Ki+1,Wi+1)‖∞. (1.8)
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The iterations are terminated when the performance weight can not be improved

via control design, that is when (1.7) is not satisfied, or when newly collected data

does not provide information that enables reduction in model uncertainty (b).

In case the set of models G is characterized with a nominal model Ĝ and upper

bound on the model uncertainty U such that G0 ∈ G, the formulation of Prob-

lem 1.1 generates an iterative sequence between simultaneous model-based control

and performance weight synthesis (K,W ) and model set identification (Ĝ, U). For

the model-based control design of step (a), the condition Jpw(Wi+1) ≥ Jpw(Wi)

in (1.5) enforces performance improvement imposed by the metric acting on the

performance weighting function, while supG∈Gi
‖T (G,Ki+1,Wi+1)‖∞ ≤ 1 is a per-

formance robustness condition that guarantees ‖T (G0, Ki+1,Wi+1)‖∞ ≤ 1. Solving

the argument for Ki+1 in (1.6) is a standard H∞ robust control design problem.

For the model set identification of step (b), condition (1.8) considers closed-loop

relevant identification of Gi+1 such that G0 ∈ G and where the information con-

tained in the new model set improves the robust performance measure under the

weighting Wi+1 and new controller Ki+1 and constitutes a robust identification

problem.

The proposed iterative method in Problem 1.1 readily lends itself to the sub-

set of objectives ‖T (G,K,W )‖∞, uncertainty sets and performance weights that

are numerically tractable for which standard tools are available [94]. The works

in [16, 36] give examples that discusses the characterization of the model sets

as well as simultaneous performance weight and control design which illustrates

benefits in progressively adjusting performance weights while maintaining perfor-

mance robustness. For this dissertation, the purpose of proposing Problem 1.1

is to point out the critical step that performance analysis, that is the evaluation

of supG∈Gi
‖T (G,K,W )‖∞, plays in model-based control design, particularly with

respect to modeling uncertainties. For instance in Problem 1.1, performance anal-

ysis appears during initialization (1.4) as well as in the control design steps (1.5)

and (1.6).
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1.4 Preview of Performance Analysis Results

Classical control methods have been very effective in dealing with the design

and analysis problems, at least when restricted to single input single output (SISO)

systems. Even today, many control systems are designed and built following simple

procedures that essentially reduce the analysis to dominant second order systems

where time-domain specifications are easily translated to frequency-domain spec-

ifications, for instance cross-over frequency, gain and phase margins, and others

illustrated in Fig. 1.2. Authors such as Bode, Nyquist, and Nichols are attributed

to many of the early contributions that have led control theory to the simplicity

and insight obtained from working in the frequency domain.
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Figure 1.2. Specifications on Loop-Gain Bode Plot.

It is now common practice in systems and control to specify performance and

robustness of dynamical systems using the frequency domain. Frequency domain

plots, such as Bode plots [57, 28], Nyquist plots [28], or more recently singular value

plots [94], convey lots of information about the system under consideration and are

popular tools among the systems and control community [65]. Various important
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properties in the systems and control community can be characterized by a set of

inequality constraints in the frequency domain. For instance, specifications on the

H∞-norm such as ‖T (G,K,W )‖∞ < 1 as in (1.2) can be specified by FDI

[

T (G(jω), K(jω),W (jω))

I

]∗ [

I 0

0 −I

][

T (G(jω), K(jω),W (jω))

I

]

≺ 0,

for all frequencies ω ∈ R. The challenge in working with performance specifications

in Frequency Domain Inequality (FDI) form is of course the infinite dimensional-

ity of the problem, which must be specified for every frequency ω ∈ R. Indeed,

various engineering design problems can be formulated as model-based specifica-

tions expressed by inequality constraints in the frequency domain. Conversion of

such specifications into analytical conditions suitable to numerically tractable op-

timization problems remains an important area of research for dynamical systems

analysis and design.

In the last decades, thanks mostly to the result known as Kalman-Yakubovich-

Popov (KYP) Lemma (see [2, 72, 50] and [39] for a historical essay), FDIs became

a major tool in the analysis of dynamic systems. The KYP Lemma, introduced

formally in Section 3.2.3, establishes the equivalence between the FDI

[

(jωI − A)−1B

I

]∗

Θ

[

(jωI − A)−1B

I

]

≺ 0, for all ω ∈ R, (1.9)

where matrices A, B and the Hermitian matrix Θ of appropriate finite dimensions

are given, and the Linear Matrix Inequality (LMI)

[

A B

I 0

]∗[

0 P

P 0

][

A B

I 0

]

+ Θ ≺ 0, (1.10)

which should hold for some Hermitian matrix P . The main role of the KYP Lemma

is to convert the infinite dimensional inequality (1.9) into the finite dimensional

inequality (1.10) where appropriate choices for Θ represent the analysis of various

system properties, for example the H∞-norm computations in Section 1.3.2. Being

an LMI, the set of feasible solutions to inequality (1.10) is convex, and a suitable

P can be computed (or proved that none exists) in polynomial time using interior-

point methods [9].
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Equivalent LMI conditions characterizing FDIs over the entire frequency range

can be conservative in most practical applications where specifications of interest

are considered only over finite frequency ranges. Including appropriate weighting

functions in FDIs has demonstrated usefulness in practice for incorporating require-

ments over finite frequency intervals. However the process of selecting weights is

non-trivial especially when considering the trade off between complexity and ac-

curacy in capturing desired specifications [54], motivating the proposed iterative

algorithm in Problem 1.1. Searching simultaneously for a frequency-dependent

multiplier while satisfying the FDI over all frequencies has revealed to be a hard

problem, see for example the challenges of robust analysis via the structured sin-

gular value (µ-analysis) [24, 68] and also later discussed in Section 3.4.1. An often

used method is the reduction of the search domain by finite but sufficiently dense

frequency grid. For some problems this technique is adequate, while for others

it is unreliable, particularly in systems with narrow and high peaks in the fre-

quency domain plot since it becomes possible to miss the critical frequency and

thus under-evaluate the system response [25].

An approach that avoids both weighting functions and frequency griding is to

generalize KYP lemma such that finite frequency intervals can be treated directly.

An extension of the KYP Lemma, first proposed in [49], established the equivalence

between the FDI

[

(jωI − A)−1B

I

]∗

Θ

[

(jωI − A)−1B

I

]

≺ 0, for all ω1 ≤ ω ≤ ω2, (1.11)

which is now evaluated only on a finite frequency interval, with the LMI

[

A B

I 0

]∗[

−Q P + jωcQ

P − jωcQ −ω1ω2Q

][

A B

I 0

]

+ Θ ≺ 0, (1.12)

where ωc := (ω1 + ω2)/2. The above LMI should hold for some Hermitian matrix

P and some positive semidefinite matrix Q. The readers are referred to [46, 45, 48]

for extensive discussions of the features and applications of this result. From a

practical perspective, it allows to pose and check frequency domain specifications

within a certain frequency range which might be the most relevant to a specific
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application. Furthermore, by combining ranges one can pose frequency specifica-

tions in different ranges without augmenting the plant with frequency dependent

scalings or weights.

The LMI formulation of the KYP Lemma (1.10) provides a constant multiplier

relaxation for the FDI, see [75, 76] over the entire frequency axis ω ∈ R, that

is Θ is constant over the frequency axis. The additional matrix Q that enables

finite frequency intervals provides a conditions for constant multiplier relaxations

only on that interval. By combining ranges one obtains piecewise constant multi-

plier relaxations, where Θ are constant coefficient matrices for each interval. For

instance, a particular choice of structure for the coefficient matrix Θ in the gener-

alized KYP lemma specifies a µ-analysis problem over finite frequency range using

constant scaling matrices [49]. This particular result can also be shown through

the losslessness of the scalings used in computing upper bounds for µ [67].

The KYP Lemma has been further generalized in [48], establishing the equiv-

alence between the LMI

H∗(Φ ⊗ P + Ψ ⊗Q)H + Θ ≺ 0, (1.13)

which should hold for some Hermitian matrix P and some positive semidefinite

matrix Q, and the FDI

([

I −ξI
]

H
)∗

⊥

Θ
([

I −ξI
]

H
)

⊥

≺ 0, for all ξ ∈ Λ(Φ,Ψ),

where H ∈ C
2n×(n+m) and

Λ(Φ,Ψ) := {ξ ∈ C : σ(ξ,Φ) = 0, σ(ξ,Ψ) ≥ 0}, σ(s,Π) :=

(

s

1

)∗

Π

(

s

1

)

.

In the above, Φ,Ψ ∈ HC
2 are given matrices satisfying certain conditions (see [48]

and Section 4.2) that generalize the LMI condition of (1.12). For instance, by

setting

H =

[

A B

I 0

]

, Φ =

[

0 1

1 0

]

, Ψ =

[

−1 jωc

−jωc −ω1ω2

]

,

one recovers the LMI (1.12).
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The formulation (1.13) is a generalization of (1.12) in the sense that the fre-

quency variable has been generalized to allow any curve that can be characterized

by Λ(Φ,Ψ). However, the coefficient matrix Θ in both (1.12) and (1.13) provide

similar constant multiplier relaxations over the finite frequency interval.

1.5 Overview of this thesis

The text of Chapter 2, is mostly a reprint of the material as it appears in [35].

A system identification algorithm is proposed based on a linear regression model

parametrization for estimating approximately normalized coprime factorizations.

The benefits for this algorithm include the possibility of estimating unstable open-

loop plant models operating in stable closed-loop configurations, from which there

is a link between modeling and control design objectives. Addition the numeri-

cal efficiency of linear regression form in estimating parameters is compared with

existing methods. Alternative identification techniques are discussed along with a

characterization of model uncertainty for use in model-based system analysis.

The text of Chapters 3 and 4, are mostly a reprint of the material as it appears

in [38]. The proposed theory deals with system requirements that are specified

in terms of frequency domain inequalities over possibly finite frequency regions.

These chapters introduce an alternative formulation for the linear matrix inequality

conditions of KYP Lemma, which relates an infinite dimensional frequency domain

inequality with a pair of finite dimensional linear matrix inequalities. It is shown

that this new formulation encompasses previous generalizations of the KYP Lemma

for the case when the coefficient matrix of the frequency domain inequality does not

depend on frequency. In addition, it allows the coefficient matrix of the frequency

domain inequality to vary affinely with the frequency parameter.

The text of Chapter 5, in part is a reprint of the material as it appears in [37, 38]

as well as some material that is not yet published. Here application of the results of

Chapters 3 and 4 are discussed, such as stability analysis of continuous-time linear

systems on finite as well as infinite frequency intervals, including a new way to allow

for frequency-dependent scalings in computing upper bounds to the structured

singular value. These applications demonstrate possible reduced conservatism in
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the analysis, which is then illustrated with numerical examples.

1.6 Notation

The following notation will be used throughout this thesis. The scalar j =
√
−1.

We denote by C
m×n (Rm×n) the space of rectangular complex (real) matrices of

dimension m×n, and by HC
n (Sn) the space of C

n×n Hermitian (Rn×n symmetric)

matrices. For a matrix X ∈ C
n×n: X−1 is the inverse. For a matrix X ∈ C

m×n: X,

X∗, X⊥ are, respectively, the complex-conjugate, the complex-conjugate transpose,

and a basis for the null space of X, i.e., a full column rank matrix such that

XX⊥ = 0 and
[

XT X⊥

]

has also full column rank. He{X} is short-hand notation

for X + X∗. We use the symbol X ≻ 0 (X � 0) to denote that X ∈ HC
n is

positive (semi)definite and X ≺ 0 (X � 0) to denote that X ∈ HC
n is negative

(semi)definite. The notation X ⊗ Y indicates the Kronecker product of X and Y .



Chapter 2

Modeling via System

Identification

2.1 Motivation for Control Relevant Modeling

The interconnection between system identification and model-based control de-

sign has motivated contributions in the area of ”identification for control,” whereby

identification algorithms are tuned toward the intended purpose of the resulting

model i.e. control design. The link between modeling and control is established by

considering the difference between the designed performance ‖T (G,K,W )‖∞ and

the achieved performance of the controller implemented on the real system [85].

Typically models useful for control design are of low-order, capturing essential

closed-loop dynamic behavior. In addition to safety and production requirements

common in industrial applications, closed-loop experimental data supports the

identification of models accurate in the frequency region relevant for control de-

sign [43].

Difficulties in closed-loop identification, mainly due to the correlation between

disturbances and control signals in the feedback loop, have inspired numerous

methods which can be classified into direct, indirect and joint input-output ap-

proaches [63]. Particular to control relevant identification are two-stage, dual-

Youla and coprime factor methods where model quality depends upon the com-

pensator used during the experiment. This suggests that control design on the

16
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basis of identified models requires an iterative procedure [82, 78], for which several

schemes have been studied, see [17, 53, 16] and [42] for an overview.

Since the focus of this dissertation is on model-based analysis techniques, it

seems fitting to include a discussion on the modeling of systems. A formulation of

the problem discussed in this chapter is as follows.

Problem 2.1. Given input-output measurement data obtained from a (possibly un-

stable) system operating under stable closed-loop (feedback controlled) conditions,

estimate models that approximate the plant dynamics. In addition, the model pa-

rameters should be determined using computationally efficient model parametriza-

tion and identification algorithms.

The aim of this chapter is to provide tools for the identification step in iterative

schemes, such as Problem 1.1 for instance, which utilize the coprime factor rep-

resentation for systems modeling and control design. Additionally under certain

circumstances, for example in highly complex systems, employing simple linear

(regression) identification algorithms may be computationally attractive. Here a

control relevant coprime factor identification algorithm is presented that relies on

a linear regression form, whereby the resulting coprime factors are restricted to be

normalized. The algorithm used for estimating approximately normalized coprime

factors was introduced in [86]. The proposed linear (regression) identification al-

gorithm is an extension of that work.

2.2 Preliminaries

2.2.1 Access to System Measurements

The closed-loop system considered in this study is shown in Fig. 2.1 where C is

a feedback controller that stabilizes the (possibly unstable) Linear Time Invariant

(LTI) plant G0, u is the plant input, y is the plant output, v is an additive dis-

turbance represented at white noise e0 filtered through a stable, monic and stably

invertible H0, r1 and r2 are the possible reference signals available. For convenience
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define the general reference signal

r(t) := r1(t) + C(q)r0(t)

as the overall reference to the system, where q denotes the shift operator defined

as qr(t) := r(t + 1). Note that the signals r1 and r0 can also be considered as

unmeasurable disturbances if one assumes measurability of u and y and knowledge

of the controller C since

r(t) = u(t) + C(q)y(t). (2.1)

From Fig. 2.1, the system equations can be written as

y(t) = G0(q)S0(q)r(t) +W0(q)H0(q)e0(t) (2.2)

u(t) = S0(q)r(t) − C(q)W0(q)H0(q)e0(t) (2.3)

where S0 = [1 + CG0]
−1 and W0 = [1 +G0C]−1. For brevity the dependency on

the delay operator q will be dropped whenever it is clear.

P

r1

r0

+
-

+
+ +

+u
v

e0

yC

H0

Figure 2.1. General feedback configuration for system identification.

Let the map from inputs col(r0, r1) to outputs col(y, u) be defined as

T (G0, C) :=

[

G0

I

]

(I + CG0)
−1
[

C I
]

,

such that T (G0, C) describes the feedback system given by (2.2), (2.3) in con-

nection with (2.1). The feedback connection T (G0, C) is stable if and only if

T (G0, C) ∈ RH∞, where RH∞ indicates the space of all proper, real rational and

stable transfer functions [27].
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2.2.2 Access to Coprime Factors from Measurements

Any system G has a right coprime factorization (r.c.f) (N,D) over RH∞ if

there exist X,Y,N,D ∈ RH∞ such that [88]

G(z) = N(z)D−1(z); XN + Y D = I (2.4)

Dual definitions exist for left coprime factorizations and are denoted by (Ñ , D̃).

Normalized coprime factors are defined such that

NT (z−1)N(z) +DT (z−1)D(z) = I. (2.5)

Numerically efficient algorithms for computing continuous-time and discrete-time

normalized coprime plant factors can be found in [87], but the problem basically

involves solving an appropriate Riccati equation.

The general framework for identification of coprime factors from closed-loop

data is well established [79] and allows the flexibility of consistently estimating

models from possibly unstable and/or non-minimum phase plants. The method

has developed from the dual-Youla system formulation, parametrizing all plants

stabilized by a given controller. Consider a stable filter F that generates an aux-

iliary signal

x(t) = F (q)r(t) = F (q)[u(t) + C(q)y(t)]. (2.6)

According to Fig. 2.2 then (2.2),(2.3) can be written as

y(t) = N0(q)x(t) +W0(q)H0(q)e0(t) (2.7)

u(t) = D0(q)x(t) − C(q)W0(q)H0(q)e0(t) (2.8)

where N0 = G0S0F
−1 and D0 = S0F

−1.

The signal x is uncorrelated with the noise e0 provided that r1, r2 are uncorre-

lated with e0 thus the identification from x to (y, u)T is an open-loop identification

of the factors (N0, D0) where the plant is constructed as G0 = N0D
−1
0 . For stable

(N0, D0) and bounded x, the limited freedom in choosing F is summarized by the

following proposition.

Proposition 2.1 ([86]). Consider the filter

F = (Dx + CNx)
−1 (2.9)
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Figure 2.2. Construction of auxiliary signal x from closed-loop data for coprime

factor identification.

where (Nx, Dx) are r.c.f. of an auxiliary system Gx, then F provides a stable

mapping (y, u)T → x and x → (y, u)T if and only if the auxiliary system Gx is

stabilized by C. For all such F the plant factors induced from closed-loop data

satisfy
[

N0

D0

]

=

[

G0 (I + CG0)
−1 (I + CGx)Dx

(I + CG0)
−1 (I + CGx)Dx

]

(2.10)

where G0 = N0D
−1
0 is also a right coprime factorization.

The above proposition shows an obvious connection to the well-known dual-

Youla parametrization. Since the feedback connection of the auxiliary model Gx

with r.c.f. (Nx, Dx) and a controller C with r.c.f. (Nc, Dc) is stable then a system

G0 with r.c.f. (N0, D0) that is stabilized in feedback with C can be described by

[79]
[

N0

D0

]

=

[

Nx +DcR0

Dx −NcR0

]

(2.11)

if and only if there exists a stable transfer matrix R0. Additionally the R0 that

satisfies (2.11) is uniquely determined by

R0 = D−1
c (I + CG0)

−1(G0 −Gx)Dx. (2.12)
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In fact the dual-Youla parametrization provides all auxiliary models Gx sta-

bilized by C. The freedom in choosing the filter F outlined in Proposition 2.1

suggests that access to the dual-Youla parameter may also be viewed as a nat-

ural method for tuning the auxiliary model Gx such that desired coprime factor

representations in (2.10) are attained. Before further discussing how this may be

used to tune the estimation of coprime factors through exploiting the freedom in

choosing F , a brief overview of dual-Youla parameter identification is provided.

Proposition 2.2 ([85]). Consider the data generating plant G0 with r.c.f. (N0, D0)

and an auxiliary model Gx with r.c.f. (Nx, Dx) such that both are internally stabi-

lized by controller C with r.c.f. (Nc, Dc). Define the intermediate signal x as given

by (2.6),(2.9) and the dual-Youla signal ξ as

ξ(t) = (Dc(q) +Gx(q)Nc(q))
−1[I −Gx(q)]

[

y(t)

u(t)

]

(2.13)

then the identification of the dual-Youla parameter R0 is given by

ξ(t) = R0(q)x(t) + H̄(q)e(t) (2.14)

where the signal x is uncorrelated with e since r in (2.6) is assumed uncorrelated

with e and the transfer matrix R0 is given by (2.12).

Thus the estimation of the dual-Youla parameter is an open-loop identification

from the signals x and ξ, which can be constructed from known data filters and

solved via standard identification techniques. The disadvantage in applying the

dual-Youla parametrization, however, lies in the inability to directly control the

order of the resulting model computed via (2.12) [3]. A way to circumvent this

problem is a direct estimation of the coprime factors.

2.2.3 Prediction Error Identification

Consider, for the moment, the data generating system depicted in Fig. 2.1

operating in an open-loop configuration, that is the controller C = 0, reducing the

system equations to

y(t) = G0(q)u(t) +H0(q)e0(t) (2.15)
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where u(t) = r1(t) simply. Note that in this configuration the plant G0 is required

stable for boundedness of y(t). Consider a model G(q, θ) for G0(q) and H(q, θ) for

H0(q), then the one-step-ahead prediction of the output is given as [63]

y(t|t− 1, θ) = H−1(q, θ)G(q, θ)u(t) +H−1(q, θ)[H(q, θ) − 1]y(t),

which is used to obtain the one-step-ahead prediction error as

ε(t, θ) := y(t) − y(t|t− 1, θ) = H−1(q, θ) [y(t) −G(q, θ)u(t)] .

Substituting (2.15) into the above yields the prediction error equation specified in

terms of plant and noise model mismatch.

ε(t, θ) = H−1(q, θ) [(G0(q) −G(q, θ))u(t) + (H0(q) −H(q, θ))e(t)] + e(t).

Given data up to time t = N , the least squares prediction error estimate is

obtained by minimizing the square of the filtered prediction error

θ̂N = arg min
θ

1

N

N
∑

t=1

εT
F (t, θ)εF (t, θ),

where εF (t, θ) = L(q)ε(t, θ) is a stable and monic filter. In subsequent sections

motivation for filtered prediction errors will be discussed further in application,

but for now L(q) = 1 is assumed for simplicity. Parseval’s relation [63], gives the

following frequency domain expression

θ̂N = arg min
θ

1

2π

∫ π

−π

Φε,ε(ω, θ)dω, (2.16)

where Φε,ε(ω, θ) denotes the (auto) spectrum of the prediction error defined as

Φε,ε(ω, θ) :=
∞
∑

τ=−∞

E {ε(t, θ)ε(t− τ, θ)} e−jτω.

Note that for a simplified system y(t) = G(q)u(t) the output spectrum can be

written in terms of the input spectrum [63]

Φy,y = |G(ejω)|2Φu,u.
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According to this, the spectrum of the prediction error can be written in terms of

the input u(t) and the white noise e(t) as

Φε,ε(ω, θ) = |H−1(ejω, θ)|2|G0(e
jω) −G(ejω, θ) +Bθ(e

jω)|2Φu,u+

|H−1(ejω, θ)|2|H0(e
jω) −H(ejω, θ)|2

(

λ− Φu,e(e
jω)

Φu,u(ejω)

)

,

where λ is the variance of the white noise e(t) and

Bθ(e
jω) =

(

H0(e
jω) −H(ejω, θ)

) Φu,e(e
jω)

Φu,u(ejω)
.

Note that in case the identification is performed with data generated in open-loop,

the above simplifies greatly since the input is not correlated with the noise, that

is Φu,e = 0. In this case, the parameter estimate can be represented as

θ̂ = arg min
θ

∫ π

−π

|H−1(ejω, θ)|2|G0(e
jω) −G(ejω, θ)|2Φu,u(e

jω)+

|H−1(ejω, θ)|2|H0(e
jω) −H(ejω, θ)|2λ. (2.17)

2.3 Linear Regression Algorithm

The estimation of approximately normalized coprime factors in [86] came from

the observation that the factors available in (2.10) can be shaped according to

the choice of auxiliary model Gx. Stability restrictions on the auxiliary model

Gx suggest a dual-Youla parametrization, however instead the estimate R0 can

be used as an initialization step in a direct coprime factor estimation, providing

control over the order of the model being estimated. For example, servomechanisms

typically have double integrator which would naturally be incorporated into an

initial auxiliary model. This leads to the following algorithm similar to [86] with

the main difference of using a structured linear regression model to allow for an

affine optimization during the estimation of the coprime factors.

(1) Initialization:

(a) Start with an auxiliary model Gx stabilized by C with (normalized) co-

prime factors (Nx, Dx). Simulate auxiliary input x (2.6) with data filter
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(2.9) and dual-Youla signal ξ according to (2.13) then accurately iden-

tify (possibly high order) dual-Youla parameter R̂0 (2.14) using linear

regression methods.

(b) Update estimated (high order) coprime factors (N̂0, D̂0) (2.11) and let

Ĝ = N̂0D̂
−1
0 . Then compute a normalized coprime factorization of the

high-order plant (Nx, Dx) such that Ĝ = NxD
−1
x and re-simulate auxil-

iary signal x (2.6) with the updated filter (2.9).

(2) Identification:

(a) Use signals [y, u]T and x in least squares multi-variable identification

minimizing the prediction error

ε(t, θ) = A(q, θ)

[

y(t)

u(t)

]

−B(q, θ)x(t) (2.18)

where
A(q, θ) = I + A1q

−1 + ...+ Ana
q−na

B(q, θ) = B0 +B1q
−1 + ...+Bnb

q−nb

(2.19)

are matrix polynomials in q−1 and B(q, θ) can be written with the par-

tition B =
[

BT
N , B

T
D

]T
.

(b) Compute the coprime factor estimate via

[

N(θ)

D(θ)

]

= A−1(q, θ)

[

BN(q, θ)

BD(q, θ)

]

. (2.20)

Obviously a general matrix polynomial A(q, θ) in an ARX model structure

does not provide a common left divisor in the coprime factorization, thus the

McMillan degree of the constructed model G(θ) = N(θ)D−1(θ) is not the same as

the McMillan degree of BN(q, θ) or BD(q, θ). Additional structure on the matrix

polynomial may be imposed such that A(q, θ) is a common left divisor preserving

the McMillan degree of the individual coprime factors in the constructed model.
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2.3.1 Structured Linear Regression Parametrization for

Coprime Factor Identification

As a special case of prediction-error identification methods (PEM), the well-

known least squares minimization criteria is a standard choice for its convenience

in both computation and analysis [63]. Consider the multi-variable ARX model

structure (2.18). Then the system description is given by
[

y(t)

u(t)

]

= G(q, θ)x(t) +H(q, θ)e(t) (2.21)

with

G(q, θ) = A−1(q, θ)B(q, θ), H(q, θ) = A−1(q, θ).

Recall that (2.18) can be parametrized by a linear regression with prediction error

given by

ε(t, θ) =

[

y(t)

u(t)

]

− ϕT (t)θ (2.22)

where additional structure may be imposed on the parametrization such that a

d-dimensional column vector θ and a corresponding ny + nu × d matrix ϕT (t)

containing past input, output and auxiliary signals are used in the least squares

minimization. Employing the linear regression prediction error (2.22), the least

squares criterion is given by

VN(θ, ZN) =
1

N

N
∑

t=1

εT
f (t, θ)εf (t, θ) (2.23)

where εf (t, θ) = L(q)ε(t, θ) with L = diag(Ly, Lu) and L ∈ RH∞. Filtering the

prediction error can be made equivalent to filtering the identification input-output

data, however in the multivariable case all signals must be subject to the same

filter, i.e. Ly and Lu must be multiples of the identity matrix [63]. Different

prefilters Ly and Lu account for the difference between the noise models made

available from data (2.7), (2.8) where knowledge of the controller can be included

into Lu. Prefiltering the input-output data, (2.23) remains quadratic in θ and can

be minimized analytically giving

θ̂LS
N =

[

1

N

N
∑

t=1

ϕ(t)ϕT (t)

]−1

1

N

N
∑

t=1

ϕ(t)

[

y(t)

u(t)

]

. (2.24)
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Additional structure imposed on the parametrization of the matrix polynomial

A(q, θ) provides a common left divisor and preserves the McMillan degree of the

constructed coprime factors in the constructed model (2.18)-(2.20).

Proposition 2.3. Consider minimizing the least squares identification criterion

(2.23) with the prediction error ε(t, θ) in (2.18). Let the matrix polynomial A(q, θ)

be parametrized by

Ai = aiIny+nu
(2.25)

for i = 1, ..., na. Then the prediction error can be written into linear regression

form (2.22) with

θT =
[

a1...ana
col(B1)

T ...col(Bnb
)T
]

(2.26)

ϕT (t) =

[

−y(t− 1)...− y(t− na)

−u(t− 1)...− u(t− na)
(2.27)

xT (t− 1) ⊗ Iny
...xT (t− nb) ⊗ Iny

]

,

where the col operator stacks the columns of a matrix.

The parameter estimate θ̂LS
N from (2.24) with (2.28) can be computed using

numerically efficient algorithms for solving equations of the form z = Y x, for

instance recursive QR-algorithms [34]. Furthermore, increasing the order of A(q, θ)

does not sacrifice the order of the model being estimated. Thus estimating a high

orderA(q, θ) which incorporates the noise filter into the estimation and can improve

the fit of the coprime factors (see for instance [63] for a discussion on identifying

the noise filter). As a result the least squares solution (2.24) provides an estimate

of the coprime factorization (2.20) such that A(q, θ) preserves the McMillan degree

of the coprime factors in the constructed model G(q, θ) = N(θ)D(θ)−1. For SISO

systems the above proposition results in a parametrization

N(θ) = a−1(q)bN(q)

D(θ) = a−1(q)bD(q)
(2.28)

where a, bN and bD are (matrix) polynomials of specified degree with coefficients

collected in the parameter vector θ. For MIMO the diagonal form of A(q, θ) is

equivalent to a common denominator parametrization. By imposing the structure
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(2.25), the factorization (N(θ), D(θ)) has a common denominator which guaran-

tees the McMillan degree of the coprime factorization is the same for the con-

structed model. Similar results are obtained when performing the least squares

identification using an output error model structure [86], however one looses the

computational benefits and unique analytic solution (2.24) provided by the linear

regression.

2.4 Servomechanical Example

The development of high performance controllers of industrial servomechanical

systems with significant product variations may require accurate modeling of each

product on the basis of its own closed-loop experiment. Consider the frequency

responses of several of the same servomechanism product presented in Fig. 2.3. The

product variation between the servomechanisms would require too conservative a

controller satisfying stability over all plants. The results presented in this section

illustrate the proposed identification method applied to one test bench, see Fig. 2.4,

with the intension of using the model in future work to design a high performance

model based controller. Typically servomechanisms contains a double integrator,

which makes it open-loop unstable. The current feedback loop is stabilized via

a proportional integral derivative (PID) controller however the large resonance

modes of the plant limit the bandwidth of the closed-loop system.

As a case study to illustrate the proposed identification method consider the

frequency response presented in Fig. 2.4. Time series data u(t) and y(t) were

obtained via simulation of a 20th order model fitted to the frequency response with

input signals r0 and r1 chosen as zero mean white noise each with a variance of

1. The measurement noise that enters the system v = H0e0 was modeled as zero

mean white noise with variance 0.1.

The identification algorithm outlined in Section 2.3 is used to estimate normal-

ized coprime plant factors. Results from the last step are presented in Fig. 2.5,

where approximately normalized coprime factor estimates (N(θ), D(θ)) are ob-

tained from a constrained ARX least squares linear regression identification. Be-

cause of the implicit high frequency weighting which results from using an ARX
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Figure 2.3. Frequency response of 16 of the same servomechanism product.
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Figure 2.4. Frequency response of a 20th order case study model (solid-line).
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model structure, the prediction error prefilter L(q) is initially chosen as a 4th order

low-pass butterworth filter with a cut-off at around half the sampling frequency.

To improve the quality of the estimated factors the linear regression identification

is performed a second time with prefilter chosen according to the Steiglitz-McBride

method, L(q) = A(q, θ), where the prefilter is applied to the original data set. The

resulting model constructed from the approximately normalized coprime factors

G(θ) = N(θ)D−1(θ) is presented in Fig. 2.6. The computational complexity in-

volved in linear filtering and computing the linear regression identification is less

than a non-linear optimization identification of the same order, yet these results

show that for this experimental set-up and for sufficiently chosen order the re-

sulting model is comparable. Additional benefits of linear regression identification

come from the vast body of research available, i.e. so-called ”fast algorithms” and

the ability to compute estimates of multiple (high) orders [63].

2.5 Description of the Limit Model

Observe the filtered prediction error under the constrained ARX model struc-

ture

εf (t, θ) = L(q)A(q, θ)

[

y(t) −N(q, θ)x(t)

u(t) −D(q, θ)x(t)

]

. (2.29)

With fixed noise model given in (2.3.1), the asymptotic parameter estimate defined

as θ∗ := limN→∞ θ̂LS
N is characterized by

θ∗ = arg min
θ

∫ π

−π

|L(ejω)|2|A(ejω)|2 ×
{

|N0(e
jω) −N(ejω, θ)|2

+|D0(e
jω) −D(ejω, θ)|2

}

Φx(ω)dω,

where Φx(ω) is the frequency spectrum of the auxiliary input signal (2.6). As

a result of the ARX model structure chosen the asymptotic parameter estimate

includes an implicit high-frequency weighting by |A(ejω)|2. To enhance the model

fit in the desired frequency range the prediction error is filtered through a low-pass

filter L(q). If a reasonable assumption is that the measurement errors are white

this may also suggest the Steiglitz-McBride method for improving the estimate

with a θ-dependent prefilter [63].
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(dotted-line) and from 7th order: constrained ARX (solid-line), Prediction Error

minimization with OE structure (dashed-line).
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Note that the identification presented in Section 2.3 assumes linear regression

models parametrized in discrete-time. Indeed most identification algorithms using

time-domain measurement data have this characteristic [63], although some liter-

ature exists for directly estimating continuous-time models [11, 81]. Additionally

the algorithm is limited by the imposed structure of the matrix polynomial A(q)

in (2.25). These limitations can be overcome through identification directly on fre-

quency domain data, where model parametrizations G(θ) = B(q, θ)A−1(q, θ) are

possible in the least squares framework. Indeed frequency domain identification

techniques provide a flexible framework for computing model estimates directly

from frequency response (spectral analysis) data.

2.6 Frequency Domain Identification

A link between modeling and control can be established by considering the

difference between the designed performance ‖T (G,K,W )‖∞ and the achieved

performance of the controller implemented on the real system. In order to design

an enhanced performing robust controller, it is preferable to estimate a set of

models G for which this difference is minimized with respect to the nominal model

G in the cost equation

‖T (G0, K,W ) − T (G,K,W )‖∞, (2.30)

where it is assumed that appropriate signals from the closed-loop system T (G0, K)

are available for measurement. For most weighted closed-loop system characteriza-

tions T (G,K,W ), the identification of a model G from the control-relevant criteria

(2.30) can be written into a weighted additive difference between the actual dy-

namics G0 and the nominal model G via

‖(G0 −G)W̃‖2 (2.31)

motivated by the fact that L2 approximation tends to L∞ approximation [10]. The

identification weight W̃ includes the weighting function W as well as closed-loop

dynamics from T (G,K).
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The weighted additive difference between G0 and the nominal model G in (2.31)

can be written in terms of frequency domain criterion. Frequency domain data

(measurements) of various transfer functions can be obtained via spectral analy-

sis [63]. When using experimental frequency domain data G0(ωk), where ωk, k =

1, 2, . . . , N refers to a frequency domain grid, the two-norm criterion in (2.31) can

be approximated by

N
∑

k=1

|(G0(ωk) −G(ωk))W̃ (ωk)|2. (2.32)

For example, consider a control-relevant identification criteria for disturbance

rejection, that is in terms of a weighted sensitivity objective function,

‖WSS0 −WSS‖∞ = ‖WS(1 +G0K)−1 −WS(1 +GK)−1‖∞

such that the achieved closed-loop performance of the plant G0 with the controller

K is close to the designed closed-loop performance of the model G with controller

K. Identification of a model G from the control-relevant criteria above can be

written into a weighted additive difference between G0 and G via

‖WS(1 +G0K)−1(G0 −G)K(1 +GK)−1‖2.

Note that the above identification criteria can be used in frequency domain iden-

tification algorithms with (2.32) where the frequency weighting W (ωk) given by

W̃ (ωk) =
WS(ωk)

1 +K(ωk)G0(ωk)
· K(ωk)

1 +K(ωk)G(ωk)
.

Observed that the frequency weighting W̃ (ωk) requires information of the actual

sensitivity function (1 + KG0)
−1 and the sensitivity function (1 + KG)−1 based

on the model to be estimated. Data of the actual sensitivity (1 + KG0)
−1 is

easily constructed from closed-loop experiments using the controller K or can be

computed from the open-loop frequency response data G0(ωk) and the controller

frequency response K(ωk). The weighting (1+KG)−1 can only be computed once

the frequency response of a model G(ωk) is available. However, an iterative update

of the frequency weighting can be used to update the weighting (1 + KGi)
−1 on

the basis of a model Gi.
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A discrete-time model G(q, θ) can be found by through the least squares mini-

mization [18]

θ̂i = min
θ

N
∑

k=1

Ei(ωk, θi)
∗Ei−1(ωk, θi) (2.33)

in which the curve fit error

Ei−1(ωk, θi) = (G0(ωk) −G(ωk, θi))W̃i−1(ωk),

is being minimized. Computation of a finite order discrete-time model Ĝ(q) =

G(q, θ̂i) using the above weighting function iteration is done with the (non-linear)

least squares optimization techniques available in [18]. Note that algebraic model

realization techniques for parameter estimation are available through subspace

identification algorithms [66], which have also included control-relevant weight-

ings [29, 15].

2.7 Uncertainty Characterizations

Often models of system dynamics are provided with some measure of uncer-

tainty associated to the difference between the behavior of the model and the real

system. Representations of uncertainty reflect the physical mechanisms that cause

these differences and are constructed to facilitate convenient manipulation [94].

Furthermore, models developed from measurement data and subsequent system

identification methods lack accurate information in some frequency ranges, and

in particular, ranges that are not relevant for control design one does not require

accurate models [33].

Consider a LTI closed-loop system subject to parametric uncertainty and ne-

glected dynamics given by the interconnected structure of Fig. 2.7, where the

transfer matrix M(s) contains the nominal closed-loop dynamics (i.e. without

uncertainty) as well as the locations that the model perturbations ∆ enter the

system. By choosing the number, size, and dynamic nature of the blocks of ∆, a

variety of uncertainty structures can be translated into this standard form (see for

instance [94]). The interconnection structure depicted in Fig. 2.7 forms a Linear
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Fractional Transformation (LFT) feedback connection of the nominal model M

and the uncertainty description ∆. The transfer function from w to z is denoted

by

Fu(M,∆) = M22 +M21∆(I −M11∆)−1M12

where M has been partitioned appropriately.

∆

M
w z

Figure 2.7. Standard uncertain system connection.

The actual construction of model sets for general uncertainty structure can

be quite difficult and in general model sets are constructed to allow for plant

dynamics that are not explicitly parametrized in the model structure. For example,

a useful measure of uncertainty is to provide frequency domain bounds on the power

spectrum of signal deviation from the nominal response to describe a model set.

This gives a less structured representation of an uncertain transfer matrix ∆(s) of

the neglected dynamics where it is only known to satisfy the H∞ inequality

‖∆(s)‖∞ = σ(∆(jω)) ≤ η, for all ω ∈ R, (2.34)

where σ indicates the maximum singular value [44]. The above norm-bounded

uncertainty can be normalized (η = 1) by including stable and stably invertible

weighting functions W (s) so as to incorporate knowledge of the uncertainty in

plant dynamics. For example consider for the moment a simple single block of

neglected dynamics ∆(s) for taking into account the model uncertainty in the
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additive model set representation G = {G | G = G0 +W∆, ‖∆‖∞ ≤ 1}. Then

a weighting function can be chosen to satisfy the frequency domain inequality

W (jω) ≥ σ(G0(jω) −G(jω)).

Spectral overbounding algorithms can be used to construct the above weighting

function W (s) that overbound the frequency dependent uncertainty [5, 6], which

can also be made control-relevant [51].

Assuming that the nominal closed-loop (∆(s) = 0) is stable, the core issue is to

determine the maximal amount of uncertainty for which the closed-loop remains

stable. A simple solution is provided by the small gain theorem, which gives a

necessary and sufficient condition for stability of the closed-loop

‖∆(s)‖∞ < ‖M(s)‖−1
∞ , σ(∆(jω)) < σ(M(jω))−1.

As an alternative to determining weighting functions W that overbound uncer-

tainty, one can simply evaluate the limits on allowable uncertainty (2.34) using

the small gain theorem and σ(M(jω)) = η−1 for all frequencies ω ∈ R. Further-

more, levels of allowable uncertainty can be characterized over finite frequency

intervals ω1 ≤ ω ≤ ω2, as depicted in Fig. 2.8, which generally allows for reduced

conservatism in structured uncertainty representations ∆.

ω1=0 ω2=ω3
...ω4=ω5 ω2N-2=ω2Ν-1 ω2N

Figure 2.8. Allowable uncertainty overbound levels.

Note that determining allowable uncertainty levels can be posed as a FDI of

the form (1.11) over finite frequency interval. With respect to Problem 1.1 this
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corresponds to piece-wise performance weighting functions Wi as well as model

uncertainty levels Ui that form the model set Gi. Also note that although ra-

tional weighting functions U and W are required for standard H∞ controller

synthesis algorithms, the analysis problem of computing U and W such that

supG∈Gi
‖T (G,K,W )‖∞ < 1 does not. The developments of subsequent chapters

are devoted toward developing tools for model based analysis posed as FDI prob-

lems over finite frequency intervals. Evidence of reduced conservatism is illustrated

through numerical examples.
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Chapter 3

Extending the KYP Lemma

3.1 Motivation

With identification algorithms tuned toward the intended purpose of the re-

sulting model, as discussed in the previous chapters, it seems logical that any

model-based analysis should also be tailored for this purpose. That is, the model-

based analysis conditions should be least conservative on the frequency range that

is most important for the intended application. Keeping in mind that models

contain limited information regarding system dynamics, the following problems

formulate an outline for developing model-based analysis techniques.

Problem 3.1. Given a model and performance specifications expressed as FDIs

formulate conditions suitable to numerically tractable optimization for checking

feasibility of the FDI over finite frequency range. Propose alternative performance

specifications that allow for the coefficient matrix of the FDI to depend linearly on

the frequency variable.

This chapter will be devoted to the development of such analysis conditions that

can be specified over finite frequency ranges, which will also be shown through

an example to have significant impact on reducing conservatism in analysis of

robustness.

38
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3.2 Preliminaries

3.2.1 Various Linear Matrix Inequality (LMI) Results

A Linear Matrix Inequality (LMI) has the form

F (x) := F0 +
m
∑

i=1

xiFi ≺ 0, (3.1)

where F = F T ∈ R
n×n and i = 1, . . . ,m are given. Considering strict LMIs in the

subsequent sections is nonrestrictive since feasibility of nonstrict inequalities can

be transformed to feasibility of strict inequalities [9]. It is easy to show that LMIs

are convex [8], in fact they are affine functions composed of linear functions and

a constant, therefor operations that preserve convexity can be exploited to pose

new problems that remain convex which have other desirable properties. Perhaps

the simplest example of this, which also plays a central role in the main results of

this dissertation, is the convex combination of convex functions remains convex.

That is, suppose a pair of LMIs F (x) and G(x) of the form (3.1) are given then

the convex combination

λF (x) + (1 − λ)G(x) ≺ 0,

is also convex. Often, nonlinear convex inequalities can be converted to LMI form

using Schur complements, which provides conditions for the positive definiteness

of a partitioned matrix in term of its submatrices. That is the nonlinear inequality

R(x) ≻ 0, Q(x) − S(x)R−1(x)S∗(x) ≻ 0,

is equivalent to the LMI
[

Q(x) S(x)

S∗(x) R(x)

]

≻ 0, with Q(x) = Q∗(x), R(x) = R∗(x).

The advantage of working with the above higher dimensional form is the fact

that the matrices Q, S, and R appear linearly, which is not true for the former

inequality.

Often times, working with a higher dimensional form requires the introduction

of extra variables in the search space. While this may appear disadvantageous, ex-

tending the search space for linear systems analysis often provides mathematically
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more tractable problems. One such result plays a central role in the results of this

dissertation, which is also used commonly in systems and control theory but first

attributed to [26], and is known as Finsler’s Lemma.

Lemma 3.1 (Finsler’s Lemma). Let x ∈ C
n, Q ∈ HC

n and B ∈ C
m×n such that

rank(B) < n be given. The following statements are equivalent:

(i) x∗Qx < 0, for all Bx = 0, x 6= 0.

(ii) B∗
⊥QB⊥ ≺ 0.

(iii) There exists a µ ∈ C: Q− µB∗B ≺ 0.

(iv) There exists an F ∈ C
n×m: Q + FB + B∗F∗ ≺ 0.

Many additional sources for the proof are available, see [83, 22, 8] for instance.

Since Finsler’s Lemma plays an important role in the results of this dissertation a

proof is provided here for completeness.

Proof: Note that any x such that Bx = 0 can be written as x = B⊥y for some

y. Then (i) can be written as y∗B∗
⊥QB⊥y ≺ 0, for all y 6= 0, which implies (ii).

Assuming that (ii) holds, multiply on the right hand side by y 6= 0 and the left

hand side by its conjugate transpose, which implies (i) after defining x = B⊥y.

Assume (iii) or (iv) holds, multiply on the right hand side by B⊥ and on the

left hand side by the conjugate transpose to get (ii). Now assume (ii) holds and

partition B into full rank factors B = BlBr. Define D := B∗
r(BrB∗

r)
−1(B∗

l Bl)
1/2 and

apply the congruent transformation

[

D
B∗
⊥

]

(Q− µB∗B)
[

D B∗
⊥

]

=

[

D∗QD D∗QB⊥

B∗
⊥QD B∗

⊥QB∗
⊥

]

≺ 0.

By assumption the second diagonal block is negative definite, therefor there exists

a sufficiently large µ that makes the entire matrix negative definite, which implies

(iii). Now choose F = −(µ/2)B∗ to make the final implication (iv).

Statement (i) is a constrained quadratic form, where a vector x ∈ C
n is confined

to lie in the null-space of B. Statement (ii) is an unconstrained quadratic form
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that results from parametrizing the vector x as x = B⊥y for y 6= 0. Statements

(iii) and (iv) give equivalent unconstrained quadratic forms where the constraint is

accounted for by introducing an extra multiplier variable, µ in statement (iii) and

the matrix F in statement (iv). Statement (iii) has the additional interpretation

of a Lagrange multiplier (µ) for including constraints into optimization [40]. The

methods of this dissertation will focus primarily on generating statement (iv) from

unconstrained quadratic form (ii).

Finsler’s Lemma has also been directly used to eliminate variables in matrix

inequalities that appear commonly in systems and control literature, see for ex-

ample [70, 7] where the result is referred to as the Elimination Lemma. In this

context, applications move from statement (iv) to statement (ii) eliminating the

matrix variable F .

3.2.2 State-Space System Representation

The previous section presented various LMI results for constant matrices. Per-

haps more interesting are results can be given for linear time invariant (LTI) dy-

namical systems represented in state-space form

δx(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t) (3.2)

where δ indicates the differential operator δx = dx/dt in continuous-time or the

forward step operator δx(t) = x(t + 1) in discrete-time. The above state-space

representation forms a general class of models, which contains for example the lin-

ear models identified using the techniques in Chapter 2, and can be used in model

based analysis for determining system properties such as robustness and perfor-

mance. The LTI system of the form (3.2), gives a transfer matrix representation

M(ξ) = C(ξI − A)−1B +D,

for ξ ∈ C. Note that the transfer matrix above can also be written as

M(ξ) =
[

C D
]

[

(ξI − A)−1B

I

]

. (3.3)

Since matrices C and D do not depend on the frequency variable ξ, the results

presented in future sections generally do not include these matrices explicitly.
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3.2.3 The Kalman-Yakubovich-Popov (KYP) Lemma

Specifications for performance and robustness of dynamical systems are com-

monly described in terms of frequency domain inequalities (FDIs) on transfer ma-

trices of the form (3.3), which due to infinite dimensionality of the frequency vari-

able ξ are not directly tractable in analysis and design. As one of the fundamental

results in dynamic systems analysis [39], the Kalman-Yakubovich-Popov (KYP)

lemma establishes equivalence between FDIs for a transfer matrices and an LMI

for its state space realization [2, 90, 72].

Lemma 3.2 (Kalman-Yakubovich-Popov Lemma). Let A ∈ C
n×n with no eigen-

values on the imaginary axis, B ∈ C
n×m and Θ ∈ HC

n+m be given. The following

statements are equivalent:

(i) The FDI holds

[

(jωI − A)−1B

I

]∗

Θ

[

(jωI − A)−1B

I

]

≺ 0, for all ω ∈ R, (3.4)

(ii) There exists a matrix P ∈ HC
n such that

[

A B

I 0

]∗[

0 P

P 0

][

A B

I 0

]

+ Θ ≺ 0. (3.5)

Proof: See for instance [72]. An outline for the this proof will be omitted here

since generalizations of this result will be provided in the next sections.

Many problems in systems and control theory can be posed in the form (3.4)

where appropriate choices for Θ represent the analysis of various system properties.

For example, positive realness of the transfer matrix M(jω) = (jωI − A)−1B, i.e.

M(jω) +M∗(jω) ≻ 0, for all ω > 0,

can be specified in the LMI (3.5) with

Θ =

[

0 −I
−I 0

]

. (3.6)
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For single input single output (SISO) systems, this condition can be checked graph-

ically, by plotting the curve given by the real and imaginary parts of M(jω) for all

ω ∈ R (called the Nyquist contour). Graphical methods became very popular in

the systems and control work of the 1960’s and 1970’s, which is why Lemma 3.2

with (3.6) is sometimes referred to the Positive Real Lemma. In another common

form, bounded realness of the transfer matrix M(jω), i.e.

M(jω)∗M(jω) ≺ I, for all ω > 0,

can be specified in the LMI (3.5) with

Θ =

[

I 0

0 −I

]

.

Additionally, since the matrix Θ appears affinely in the LMI (3.5), it can also

contain matrix variables that are included in the search for feasible solutions. For

example, consider the matrix Θ given by

Θ =

[

X Y

Y ∗ Z

]

,

whereX ∈ HC
n, Y ∈ C

n×m, and Z ∈ HC
m are matrix variables. At this point, it is

not obvious why (3.5) with the above form for Θ is important, but in Section 3.4.1

it lends itself to the analysis of robustness via the search for scalings X,Y , and Z

that provide upper bounds for the structured singular value.

3.3 The KYP Lemma on Frequency Intervals

In order to gain an understanding of the methods used in this dissertation

for generalizing the KYP Lemma, this section presents an extension on the finite

frequency KYP Lemma [49, 48]. A finite frequency KYP Lemma, first introduced

in a continuous-time framework [49], was developed by establishing conditions for

which the classic S-procedure is nonconservative, i.e. necessary and sufficient. The

S-procedure [91] replaces inequalities of the form

x∗Θx < 0, for all x ∈ X , (3.7)
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where

X := {x ∈ C
p : x∗Sx ≥ 0, x 6= 0, for all S ∈ S}

S :=

{

k
∑

i=1

τiSi : τi ≥ 0, ∀ i = 1, ..., k

}

(3.8)

and Θ, Si ∈ HC
p are given by a single inequality given by the existence of S ∈ S

such that Θ + S ≺ 0. The results in [49] give conditions on the set of matrices

S under which the S-procedure is nonconservative, that is when the sufficient

condition shown above also becomes necessary. Such sets S are termed lossless.

Definition 3.3.1 (Losslessness). A subset S is lossless if it has the following prop-

erties

(i) S is convex.

(ii) S ∈ S implies τS ∈ S for all τ ≥ 0.

(iii) For positive semidefinite matrix X ∈ HC
p such that

tr(SX) ≥ 0, for all S ∈ S,

there exist xi ∈ C
p such that

X =
r
∑

i=1

xx∗, x∗Sx ≥ 0, for all S ∈ S,

where r is the rank of X.

The nonconservative S-procedure is summarized in the following lemma.

Lemma 3.3 (Generalized S-Procedure). Let Θ ∈ HC
p and lossless set S of Her-

mitian matrices be given. The following are equivalent.

(i) x∗Θx < 0 for all x ∈ X where X is defined in (3.8).

(ii) There exists S ∈ S such that Θ + S ≺ 0.
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Proof: See also [49]. The direction (ii) to (i) comes from Definition 3.3.1 property

(ii) with τ = 0. To show (i) implies (ii), suppose that (ii) does not hold. That

is there exists no S ∈ S such that Θ + S ≺ 0, then from separating hyper-plane

theorem arguments [64, 67] there exists a nonzero matrix K ∈ HC, with K � 0

such that

tr{(Θ + S)K} ≥ 0, for all S ∈ S.

Since S is lossless, from Definition 3.3.1 property (ii) the implication holds

tr{SK} ≥ 0, for all S ∈ S ⇒ tr{ΘK} ≥ 0.

From Definition 3.3.1 property (iii), the first condition also implies the existence

of vectors xi such that the second condition becomes

tr{ΘK} =
r
∑

i=1

x∗i Θxi ≥ 0.

Then there exists an xi ∈ X such that x∗i Θxi ≥ 0, which contradicts the original

assumption.

The following finite frequency KYP Lemma is developed from the nonconser-

vative S-procedure above. It gives necessary and sufficient conditions for replac-

ing the infinite dimensional FDI constraints (3.4) over finite frequency interval

ω1 ≤ ω ≤ ω2 with a single inequality by incorporating a multiplier matrix that is

lossless in characterizing finite frequency intervals.

Lemma 3.4 (Finite Frequency KYP Lemma [49]). Let matrices A ∈ C
n×n with

no eigenvalues on the imaginary axis, B ∈ C
n×m and a matrix Θ ∈ HC

n+m be

given. Let scalars ω1 ≤ ω2, then the following statements are equivalent.

(i) The finite FDI

[

(jωI − A)−1B

I

]∗

Θ

[

(jωI − A)−1B

I

]

≺ 0, (3.9)

holds for all ω1 ≤ ω ≤ ω2.
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(ii) There exist matrices P,Q ∈ HC
n such that Q � 0 and

[

A B

I 0

]∗ [

−Q P + jωcQ

P − jωcQ −ω1ω2Q

][

A B

I 0

]

+ Θ ≺ 0, ωc := (ω1 + ω2)/2.

(3.10)

Proof (Outline): From Finsler’s Lemma (Lemma 3.1), the FDI (3.9) holds if and

only if

x∗Θx < 0, for all x ∈ X ,

where

X :=

{

x ∈ C
n+m :

[

I −jωI
]

[

A B

I 0

]

x = 0, x 6= 0, ω1 ≤ ω ≤ ω2

}

.

Let y1 = Ax1 + Bx2, y2 = x1 where x is partitioned appropriately x1 ∈ C
n,

x2 ∈ C
m. Note that from the set X , y1 = jωy2 holds for all ω1 ≤ ω ≤ ω2 and that

y∗

[

−Q P + jωcQ

P − jωcQ −ω1ω2Q

]

y = [−ω2 + 2ωcω − ω1ω2] y
∗
2 Qy2

= [(ω − ω1)(ω2 − ω)] y∗2 Qy2.

From the last equality, since Q � 0 and (ω − ω1)(ω2 − ω) ≥ 0 for all ω1 ≤ ω ≤ ω

the following holds

y∗

[

−Q P + jωcQ

P − jωcQ −ω1ω2Q

]

y ≥ 0, for all P,Q ∈ HC
n, Q � 0,

so that the set X can be replaced by

X =
{

x ∈ C
n+m : x∗Sx ≥ 0, x 6= 0, for all S ∈ S

}

where S is given as

S =







S =

[

A B

I 0

]∗ [

−Q P + jωcQ

P − jωcQ −ω1ω2Q

][

A B

I 0

]

:

for all P,Q ∈ HC
n, Q � 0, ω1 < ω2} .
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It is easy to verify that S satisfies properties (i) and (ii) in Definition 3.3.1. Prop-

erty (iii) has been shown in [49] to establish losslessness, leading to the nonconser-

vative S-procedure Lemma 3.3.

The previous lemma established the equivalence between the finite FDI (3.9)

and the single LMI (3.10), hence it has been named the finite frequency KYP

Lemma. From a practical perspective, it allows to pose and check frequency do-

main specifications within a certain frequency range which might be the most

relevant to a specific application. Furthermore, by combining ranges one can pose

frequency specifications in different ranges without augmenting the plant with

frequency dependent scalings or weights. The next theorem establishes the equiv-

alence between the finite frequency KYP Lemma 3.4, and an extended condition

based on the of the work [22]. The extended condition is posed as a pair of LMI

containing extra variables, which can bring about significant advantages and lead

to mathematically more tractable problems, see [22] and as well as [21, 32, 74].

Theorem 3.1. Let matrices A ∈ C
n×n with no eigenvalues on the imaginary axis,

B ∈ C
n×m and Θ ∈ HC

n+m be given. The following statements are equivalent.

(i) The finite FDI
[

(jωI − A)−1B

I

]∗

Θ

[

(jωI − A)−1B

I

]

≺ 0, (3.11)

holds for all ω1 ≤ ω ≤ ω2.

(ii) There exist matrices F ∈ C
n×n and G ∈ C

m×n such that the pair of LMI

holds

He

{[

F

G

]

[

I −jωiI
]

[

A B

I 0

]}

+ Θ ≺ 0, i = {1, 2}. (3.12)

Proof: To show that (ii) implies (i), assume the pair of inequalities (3.12) have

feasible solutions. The sum of (3.12) for i = 1 multiplied by λ(ω) := (ω2−ω)/(ω2−
ω1) ∈ [0, 1] and of (3.12) for i = 2 multiplied by (1 − λ(ω)) implies that

He

{[

F

G

]

[

I −jωI
]

[

A B

I 0

]}

+ Θ ≺ 0
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is feasible for all ω1 ≤ ω ≤ ω2. Set

N(ω) :=

[

(jωI − A)−1B

I

]

(3.13)

which is a well defined matrix for all ω ∈ R due to the assumption that A has no

eigenvalue on the imaginary axis. Multiply the above inequality by N(ω) on the

right and by its transpose conjugate on the left to obtain

N∗(ω) ΘN(ω) =

[

(jωI − A)−1B

I

]∗

Θ

[

(jωI − A)−1B

I

]

≺ 0,

which is the FDI in (i).

To show that (i) implies (ii), assume that (3.11) holds for all ω1 ≤ ω ≤ ω2.

From Lemma 3.4 there exist matrices P,Q ∈ HC
n, Q � 0 such that (3.10) holds.

Define the matrix

X(ω) :=

[

1 −jω
jω ω̂2 + 2ω ωc − ω2

c

]

⊗Q, (3.14)

where ω̂ = (ω2 − ω1)/2 and ωc = (ω1 + ω2)/2. Because Q � 0 one can establish

the equivalence

[

1 −jω
jω ω̂2 + 2ω ωc − ω2

c

]

⊗Q � 0 ⇔ ω̂2 − (ω − ωc)
2 ≥ 0,

where the last expression comes from using Schur complement. Note that

ω̂2 − (ω − ωc)
2 = (ω − ω1)(ω2 − ω) ≥ 0,

which establishes the positive semidefiniteness of X(ω) for all ω1 ≤ ω ≤ ω2. Now

add the matrix
[

A B

I 0

]∗

X(ω)

[

A B

I 0

]

� 0, ω1 ≤ ω ≤ ω2,

to the right hand side of (3.10) so that

Θ ≺
[

A B

I 0

]∗

Υ

[

A B

I 0

]

,
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where

Υ :=

[

Q −P − jωcQ

−P + jωcQ ω1ω2Q

]

+

[

Q −jωQ
jωQ (ω̂2 + 2ω ωc − ω2

c )Q

]

.

Note that

Υ =

[

2Q −P − j(ω + ωc)Q

−P + j(ω + ωc)Q 2ω ωcQ

]

=

[

Q

−P + jωcQ

]

[

I −jωI
]

+

[

I

jωI

]

[

Q −P − jωcQ
]

,

which implies that

[

A B

I 0

]∗([

Q

−P + jωcQ

]

[

I −jωI
]

+

[

I

jωI

]

[

Q −P − jωcQ
]

)[

A B

I 0

]

+ Θ ≺ 0.

Now choose
[

F

G

]

=

[

A B

I 0

]∗ [

−Q
P − jωcQ

]

(3.15)

so that

He

{[

F

G

]

[

I −jωI
]

[

A B

I 0

]}

+ Θ ≺ 0

for any ω1 ≤ ω ≤ ω2, in particular for ω = ω1 and ω = ω2, which imply that the

pair of inequalities (3.12) are feasible, therefore that (ii) should hold.

Remark 3.3.1. The assumption that A has no eigenvalue on the imaginary axis

can be relaxed to the absence of eigenvalues of A within the segment of the imag-

inary axis j[ω1, ω2]. Assumptions made in the following sections regarding the

eigenvalues of A can also be relaxed in a similar manner.

Remark 3.3.2. The importance of the above result is in reducing the infinite

number of inequalities to be checked in the FDI (3.9) to one, as in (3.10), or two,

as in (3.12), finite dimensional inequalities in two variables, P and Q, or F and

G, respectively. Furthermore, these finite dimensional inequalities are LMIs that

can be efficiently solved to global optimality using Convex Programming [9].
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Remark 3.3.3. The inequality (3.10) has 2n2 optimization variables in the ma-

trices P,Q ∈ HC
n. In contrast, the inequality (3.12) has 2n(n +m) optimization

variables in the matrices F ∈ C
n×n and G ∈ C

m×n.

The above theorem presents the case where Θ is constant. This case can be

extended to incorporate a particular class of frequency-dependent Θ without incur-

ring extra computational cost in solving the LMI (3.12). One can recognize that

in proving the theorem above, the forming of the parameter λ(ω) ∈ [0, 1] for all

ω1 ≤ ω ≤ ω2 introduces concepts from the analysis of polytopic systems [22] treat-

ing the frequency an real uncertain parameter. Indeed, it is possible to use form

(ii) of the above theorem to handle the particular form of a frequency-dependent

matrix Θ

Θ(ω) = λ(ω)Θ1 + (1 − λ(ω))Θ2, (3.16)

where Θ1,Θ2 ∈ HC
n+m and

λ(ω) :=
ω2 − ω

ω2 − ω1

∈ [0, 1], ω1 ≤ ω ≤ ω2. (3.17)

Note that Θ(ω) is not a proper rational function of ω

Θ(ω) =
ω2 − ω

ω2 − ω1

Θ1 +
ω − ω1

ω2 − ω1

Θ2, ω1 ≤ ω ≤ ω2,

which means that Θ(ω) cannot be realized as a proper rational transfer function

of ω. The affine function Θ(ω) considered in this section is restricted to a single

interval only for simplicity of the exposition and will be extended in Section 4.5

to more general piecewise affine functions. The following theorem is obtained by

constraining Θ(ω) as in (3.16).

Theorem 3.2. Let matrices A ∈ C
n×n with no eigenvalues on the imaginary axis,

B ∈ C
n×m and Θ1,Θ2 ∈ HC

n+m be given. If there exist matrices F ∈ C
n×n and

G ∈ C
m×n such that

He

{[

F

G

]

[

I −jωiI
]

[

A B

I 0

]}

+ Θi ≺ 0, i = {1, 2} (3.18)

then the FDI
[

(jωI − A)−1B

I

]∗

Θ(ω)

[

(jωI − A)−1B

I

]

≺ 0 (3.19)

holds for all ω1 ≤ ω ≤ ω2 with Θ(ω) as given in (3.16).
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Proof: Repeat the initial steps of proof of the implication from (ii) to (i) in the

previous theorem replacing (3.12) by (3.18) and using (3.16) to conclude that

He

{[

F

G

]

[

I −jωI
]

[

A B

I 0

]}

+ Θ(ω) ≺ 0 (3.20)

is feasible for all ω1 ≤ ω ≤ ω2 where Θ(ω) is given in (3.16). Multiplication by the

same matrix N(ω) on the right and by its transpose conjugate on the left produce

N∗(ω) Θ(ω)N(ω) =

[

(jωI − A)−1B

I

]∗

Θ(ω)

[

(jωI − A)−1B

I

]

≺ 0.

which is the FDI (3.19).

Theorems 3.1 and 3.2 reduce the infinite number of FDIs (3.11) to be checked to

only two. Furthermore, Theorem 3.1 is a generalization of Lemma 3.4 in the sense

that the pair of inequalities (3.12) are feasible whenever the inequality (3.10) has

feasible solution. The significance of Theorem 3.2 is indicated by the sufficiency

direction of the result. Allowing for frequency dependent coefficient matrices Θ

can significantly reduce conservatism in applications that include searching over

variables in Θ. Formal proof for the necessity of the conditions in Theorem 3.2

will not be included in the contents of this dissertation, however this topic will

be further discussed in future work Section 6.2. The next sections will make

the connection between Theorems 3.1 and 3.2 and the motivation in Chapters 1

and 2 through a presentation of results for robustness analysis via the structured

singular value along with an application in performance analysis of disk drive

servomechanisms.

3.4 Robust Stability Analysis

The structured singular value, often referred as µ and introduced in [23], has

been a popular analytical tool for analyzing stability and performance robustness

of linear systems with parametric and dynamic uncertainties. Despite the fact

that computing µ, or even finding tight bounds for µ, has proved an extremely
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hard problem, the use of the µ terminology and methodology in robust control is

widespread.

A number of algorithms have been developed to compute the maximum of the

structured singular value over a specific frequency interval. Many popular meth-

ods make use of the concept of frequency-dependent multipliers [68]. Searching

simultaneously for a frequency-dependent multiplier and the maximum µ over all

frequencies has also revealed to be a hard problem. An often used device is the

reduction of the search domain by using finite yet sufficiently dense frequency grid.

Search algorithms have been proposed for determining the maximum µ over fre-

quency interval [58, 25] avoiding unnecessarily dense grids. Other approaches have

considered the frequency itself as uncertain parameter augmented to the original

system [80] eliminating difficulties associated with griding methods. For improved

accuracy finite frequency intervals can be considered via linear fractional transfor-

mation mapping of the real frequency parameter [41].

The KYP Lemma (Lemma 3.2) establishes equivalence between frequency do-

main inequalities on the system transfer function (3.4) and the LMI (3.5). Gener-

alization of the KYP Lemma allows for treatment of finite frequency ranges [48].

This result is closely related with standard µ-analysis [49], and can be proved from

results on the losslessness of scalings for mixed-µ [67]. Recent results show the

connection of these methods and propose generalizations in the context of pow-

erful relaxation techniques [75, 77] for which robust analysis tests that approach

exactness can be derived in a systematic way at the expense of increasing the large

size of the problem to be solved and number of optimization variables.

The results presented in this chapter provide new robust stability conditions

with a complexity that is comparable to the generalized KYP lemma [48]. The

tests are expressed as a pair of LMI that, if solvable, provide an upper bound to µ

over some specified and possibly finite frequency interval along with a particular

frequency-dependent multiplier that is used to prove robust stability. The ideas are

borrowed from robust analysis of uncertain polytopic systems [22] in the treatment

of frequency as a real uncertain parameter to formulate the results in this paper.
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3.4.1 µ-Analysis

Consider the standard LFT setup for robustness and performance µ analysis as

depicted in Fig. 2.7. The nominal map M(s) is assumed to be a rational function

of the complex variable s, being a proper and square matrix that is analytic in the

closed right-half plane. The unknown uncertainty is assumed to have the following

structure

∆ := {diag[φ1Is1 , · · · , φrIsr
, δ1Is1 , · · · , δcIsc

,∆1, · · · ,∆F ] :

φi ∈ R, δi ∈ C,∆j ∈ C
mj×mj

}

. (3.21)

Let T (∆) denote the set of all block diagonal and stable rational transfer function

matrices that have block structures such as ∆

T (∆) := {∆(·) ∈ RH∞ : ∆(s0) ∈ ∆ ∀ s0 ∈ C+} (3.22)

The feedback connection of (M,∆) is well-posed and internally stable for all ∆ ∈
T (∆) with ‖∆‖∞ < β−1 if and only if [94]

sup
ω∈R

µ∆(M(jω)) ≤ β, (3.23)

where µ∆ denotes the structured singular value of a matrix, which is defined as

µ∆(M) :=

(

inf
∆∈∆

{‖∆‖ : det(I −M∆) = 0}
)−1

.

In case no ∆ ∈ ∆ makes (I −M∆) singular µ∆(M) := 0.

Note that one can consider robust performance of the feedback connection of

(M,∆) in Fig. 2.7 by considering an augmented uncertainty structure

∆P =

{[

∆ 0

0 ∆f

]

: ∆ ∈ ∆, ∆f ∈ C
q×p

}

,

where ∆f is a fictitious uncertainty block of the same dimension as the input w

and output z, respectively q and p. Such a test indicates the worst-case level of

performance degradation associated with a given level of perturbations. That is,

for all ∆ ∈ T (∆) with ‖∆‖∞ < β−1, the feedback connection (M,∆) is well-posed,

internally stable, and ‖Fu(M,∆)‖∞ ≤ β if and only if

sup
ω∈R

µ∆P
(M(jω)) ≤ β.
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Checking for performance robustness with structured uncertainty ∆P is precisely

the analysis problem specified in Problem 1.1.

In general, the structured singular value µ∆ cannot be computed in polynomial

time, being a problem for which no algorithm exists (NP-hard) [84]. In practice,

the introduction of appropriate scalings or multipliers using duality theory is com-

monly used to provide computable upper bounds for µ∆.

For instance, define the set of scaling matrices

Z := {diag[Z1, · · · , Zsr+sc
, z1Im1 , · · · , zF ImF

] :

Zi ∈ C
si×si , Zi = Z∗

i > 0, zj ∈ R, zj > 0
}

, (3.24)

and

Y := {diag[Y1, · · · , Ysr
, 0, · · · , 0] : Yi = Y ∗

i ∈ C
si×si}. (3.25)

Note that Z and Y commute with the matrices in ∆. Now define the matrix

valued function

Γβ(M,Z, Y ) := M∗ZM − j (M∗Y − YM) − β2Z, (3.26)

and the optimization problem

ρ∆(M) := inf
β∈R,Z∈Z,Y ∈Y

sup
ω∈Ω

{β : Γβ(M(jω), Z(ω), Y (ω)) ≺ 0} . (3.27)

It follows from duality theory [24] that

sup
ω∈Ω

µ∆(M(jω)) ≤ ρ∆(M). (3.28)

The problem on the right hand side of the above inequality is, in some sense,

simpler than the original problem (3.23). Yet it cannot be easily solved as well.

The following are commonly found strategies for approaching this problem:

(i) Constant multipliers on Ω = R: When Ω = R and Z and Y are assumed

to be constant, i.e., Z(ω) = Z and Y (ω) = Y ∀ω ∈ R, then problem (3.27)

can be converted into an LMI using the KYP Lemma. The particular case

Z = I, Y = 0 reduces to the well known BRL (Bounded-Real Lemma). This

approach produces upper bounds for ρ∆.
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(ii) Constant multipliers on Ω ⊂ R: When Ω = [ω1, ω2] ⊂ R and Z and Y

are assumed to be constant, i.e., Z(ω) = Z and Y (ω) = Y ∀ |ω| ∈ [ω1, ω2],

then problem (3.27) can be converted into an LMI using the Generalized KYP

results of [48]. This approach produces upper bounds for ρ∆ with tight upper

bounds obtained by splitting Ω in N segments Ωi = [ωi, ωi+1], i = 1, . . . , N

such that Ω = ∪iΩi.

(iii) Constant multipliers on Ω = {w1}: For a single frequency ω1, i.e., Ω =

{ω1} problem (3.27) is an LMI. Lower bounds for ρ∆ can be obtained by

solving this LMI on a finite grid Ω = ∪i{ωi}. In most cases, to achieve a

reasonable approximation for ρ∆ a very dense grid must be used.

Theorem 3.2 can be used to produce upper bounds to ρ∆ which has as its main

advantage the fact that scaling matrices Z and Y are allowed to be affine functions

of ω. The following corollary was presented by the authors in [37].

Corollary 3.1. Let A ∈ R
n×n with no eigenvalues on the imaginary axis, B ∈

R
n×m, C ∈ R

m×n, and D ∈ R
m×m be given. If there exist matrices Z1, Z2 ∈ Z,

Y1, Y2 ∈ Y, F ∈ C
n×n, and G ∈ C

m×n such that

He

{[

F

G

]

[

I −jωiI
]

[

A B

I 0

]}

+

[

C D

0 I

]∗ [

Zi −jYi

jYi −β2Zi

][

C D

0 I

]

≺ 0, i = {1, 2}

(3.29)

has feasible solutions then ρ∆(C(jωI−A)−1B+D,Ω) ≤ β for all |ω| ∈ Ω = [ω1, ω2].

Proof: Follows from Corollary 4.2 noting that

Θi =

[

C D

0 I

]∗ [

Zi −jYi

jYi −β2Zi

][

C D

0 I

]

, i = {1, 2}, (3.30)

and that the matrix variables Zi, Yi appear linearly in (3.29). Feasibility of (3.29)

directly implies that ρ∆(C(jωI − A)−1B +D,Ω) ≤ β for all ω1 ≤ |ω| ≤ ω2.

The proposed method for computing upper bounds on the structured singular

value over finite frequency grid is demonstrated in the following section with a case

study on hard disk drive servo performance analysis.
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3.5 Case Study I: Hard Drive Servo Analysis

3.5.1 Motivation

As storage capacity of hard disk drives (HDDs) increases, the requirements

for position control of the read/write head becomes more challenging to satisfy

[13], especially for control firmware that is required to operate in the presence of

product variability. Performance considerations under product variability are well

suited under the worst-case H∞-norm based optimal control which allows robust-

ness issues to be incorporated into the servo design [19] in the form of uncertainty

models [73]. Uncertainty models, as well as restrictions on the complexity of the

controller to be used, make the design of a feedback control law for disk drive servo

systems a challenging task.

This case study incorporates product variability based on model uncertainty in

the performance analysis of low-order controllers designed using control-relevant

model estimates. The controller is assumed given and the methods of Chapter 2

motivate control-relevant identification for determining the model used in the anal-

ysis. The method requires an upper bound on the characterization of model uncer-

tainty, for instance the damping and frequency of flexible modes of the suspension,

which can be achieved with uncertain but norm-bounded transfer matrix. Perfor-

mance specifications can be characterized similarly, utilizing appropriate weighting

functions that bound relevant closed-loop transfer functions, and can be combined

with model uncertainty in an augmented structured uncertain transfer matrix.

Subsequently satisfactory performance is determined via structured singular value

analysis.

Alternatively, the performance analysis given in this section determines levels of

possible performance taking into consideration model uncertainty. This problem is

formulated similarly with performance robustness problems, however without the

appropriate weighting functions on the performance channel for normalizing the

acceptable bound to unity. Rather piece-wise performance levels are determined

that overbound the structured singular values that indicate robust stability and

an unweighted closed-loop transfer functions that are directly related to relevant
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performance channels. The approach is demonstrated via implementation on a

production disk drive servo system similar to that illustrated in Fig. 3.1. Specifi-

cations for the drive are given in Table 3.1.

Voice Coil Motor
(VCM) Actuator

Magnetic Hard Disk
(Platter)

Suspension

Read/Write
Element

Figure 3.1. Hard disk drive cut-away picture.

Table 3.1. Experimental Disk Drive Specifications

Spindle motor speed 7200rpm(120Hz)

Number of data sectors, N 128

Servo sampling frequency, fs 15.36KHz

3.5.2 HDD Model Set and Controller Formulation

For improved track following performance the bandwidth of the servo system

should be increased, however this is limited by sampling frequency and mechanical

resonances of the head/disk assembly. Bandwidth and disturbance rejection are

characterized by the sensitivity function

S = (1 +GK)−1

where G denotes a dynamical model of the voice coil motor (VCM) with flexibilities

of the E-block and suspension and K denotes the VCM servo controller. The
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feedback control law for the experimental drive is given by the discrete-time PID

controller

u(t) = kpe(t) + ki

t
∑

i=0

e(i) + kd[e(t) − e(t− 1)].

which was tuned to give a servo bandwidth of 1KHz as shown in Fig. 1.2.

For disk drive actuator dynamics, models G are commonly obtained from an

intuitive modeling of a flexible structure as

G(s) = KV CM
ω2

l

s2 + ζlωl + ω2
l

· ω2
h

s2 + ζhωh + ω2
h

where low-frequency parameters, (KV CM , ζl, ωl) modeling effects of the VCM mo-

tor, and high-frequency parameters, (ζh, ωh) modeling flexibility in the suspension,

are tuned to provide reasonable representation of the HDD dynamics. Motivated

by the discussion in Section 2.6 the closed-loop performance analysis should incor-

porate a set of models G for which the difference between designed performance

and achieved performance is minimized. This link between modeling and control

is made explicit through the estimation criteria

‖S0 − S‖2 = ‖(1 +G0K)−1 − (1 +GK)−1‖2,

which can also be written as

‖(G0 −G)K(1 +G0K)−1(1 +GK)−1‖2,

where (1 + G0K)−1 comes directly from closed-loop frequency response measure-

ments of the controller implemented on the real system. A 2nd order model estimate

obtained through least squares minimization (2.33) is presented in Fig. 3.2.

An upper bound on model uncertainty can account for low-frequency effects

such as friction as well as neglected high-frequency dynamics within product vari-

ation in flexible HDD suspensions. Consider a set of models G consisting of the

nominal model G along with an upper bound allowable multiplicative model per-

turbation WM

G =
{

G | (I + ∆WM)G, ‖∆‖∞ ≤ β−1
}

, (3.31)

such that the real system, represented by G0, is contained in the model set G0 ∈ G.

A 3rd order uncertainty overbound is presented in Fig. 3.3. An upperbound on the
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allowable perturbation level β can be normalized to unity [94], however to simplify

the problem setup β will be determined during the analysis.

Performance analysis of the disk drive servo system characterized by the model

set (3.31) is achieved through the construction of the generalized plant
(

z

y

)

= M

(

w

v

)

, M =

[

WMGK(I +GK)−1 WMK(I +GK)−1

G(I +GK)−1 (I +GK)−1

]

,

with respect to the structured uncertainty

∆T = diag[∆,∆P ], ‖∆‖∞ < β−1, ‖∆P‖∞ ≤ β−1.

Subsequently, structured singular value µ analysis is performed with respect to the

structured uncertainty ∆T .

A line search for the minimum β in Ω = [10, 73]Hz for which M is robustly

stable using four different methods. The results are presented in Fig. 3.4. The

four methods shown in Fig. 3.4 are: a) solving problem (3.27) on a dense but finite

frequency grid with 100 logarithmically spaced frequencies (solid line with data

markers) b) solving the pair of LMIs in Theorem 3.2 (solid lines) with Θi given

in (3.30), c) solving the Lemma 3.4 (dashed lines) with constant Θ given by

Θ =

[

C D

0 I

]∗ [

Zi −jYi

jYi −β2Zi

][

C D

0 I

]

,

and d) minimizing β using Lemma 3.2 (solid line) with constant Θ given above.

Note that for this example the uncertainty structure is such that µ∆ = ρ∆ at each

frequency ω. The extra freedom provided by the frequency-dependent multipli-

ers in (3.18) allow for a much less conservative upper bound ρ∆ when compared

to Lemma 3.2.

The process is now repeated by further subdividing Ω = ∪3
i=1Ωi into three

frequency ranges Ω1 = [10, 102], Ω2 = [102, 103], Ω3 = [103, 7 · 103]. The prob-

lem is solved on each range using Lemma 3.4 and by solving the pair of LMIs

in Theorem 3.2. The results are shown in Fig. 3.5. Note that for frequency ranges

below ω1 < 1KHz Lemma 3.4 provides an upper bound similar to the method

of Theorem 3.2, however for ω1 > 1KHz Lemma 3.4 provides a conservative up-

per bound. Note that smaller frequency intervals in general reduce the overall

amount of conservatism for both methods.
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Figure 3.2. Control-relevant hard disk drive model (solid-line) estimated via fre-

quency data (dashed-line) curve fitting.

10
2

10
3

10
−2

10
−1

10
0

10
1

Frequency [Hz]

M
ag

n
it

u
d
e

Figure 3.3. Hard disk drive model multiplicative uncertainty (solid line) over-

bounding frequency domain uncertainty (dashed-line).
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Figure 3.4. Structured singular value performance analysis of the hard disk servo

system for a single frequency interval Ω = [10, 7000]Hz. Labels are assigned ac-

cording to the method used in computing the overbound.
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Figure 3.5. Structured singular value performance analysis of the hard disk servo

system for three frequency intervals Ω = [10, 100], [100, 1000], and [1000, 7000]Hz.

Labels are assigned according to the method used in computing the overbound.
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Chapter 4

Generalizations of the KYP

Lemma

4.1 Motivation

Most system identification algorithms estimate models in a discrete-time frame-

work, while the analysis conditions proposed in Chapter 3 are based on continuous-

time system descriptions. Although discrete-time models are easily converted to

continuous-time (and vise versa) through the well-known bilinear transformation,

the quality of the resulting models for analysis depend upon the approximation

method, i.e. zero-order-hold, Tustin or pole-matched algorithms. It is preferable

to develop analysis conditions directly in the various systems descriptions so as to

not introduce unnecessary model uncertainty.

Problem 4.1. Investigate generalizations and specific extensions for the analysis

conditions proposed in Chapter 3, such as stability analysis of continuous-time,

discrete-time and polynomial systems.

The technical developments of this chapter are devoted to constructing gener-

alized versions of Theorem 3.1 and Theorem 3.2.

64
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4.2 Frequency Characterization

One of the key developments in generalizing the original formulation of the

KYP Lemma, that is Lemma 3.2, is the possibility of characterizing finite frequency

ranges under a unified framework. A frequency range can be visualized as a curve

(or curves) on the complex plane. For instance, a finite frequency interval in

continuous-time is a segment of the imaginary axis while in discrete-time it is an

arc on the unit circle. This section is focused on presenting the general framework

for representing (possibly finite) frequency ranges as developed in [46, 47, 48]. The

frequency ranges considered can all be characterized from a certain class of curves

on the complex plane.

Let s ∈ C and Σ ∈ HC
2 be given and define the function

σ(s,Σ) :=

(

s

1

)∗

Σ

(

s

1

)

.

Consider the class of curves on the complex plane that can be parametrized by

sets of the form

Λ(Φ,Ψ) := {s ∈ C : σ(s,Φ) = 0, σ(s,Ψ) ≥ 0}. (4.1)

where Φ,Ψ ∈ HC
2 are given. In [48], conditions on Φ and Ψ have been presented

for which the above set represents a curve. Some of these results will be presented

here, since they play a central role in providing extensions of the original KYP

Lemma. First a necessary and sufficient condition for Λ(Φ,Ψ) to characterize

curves is presented through a common congruence transformation of the matrices

Φ and Ψ. The result, is proved in [47, 48] and also shown here for completeness,

is based on simultaneous matrix factorization.

Lemma 4.1. (Simultaneous Matrix Factorization [47]) Let Φ,Ψ ∈ HC
2 be given.

Suppose det(Φ) < 0. Then there exists a common congruence transformation

T ∈ C
2×2 such that Φ = T ∗Φ0T , Ψ = T ∗Ψ0T where

Φ0 :=

[

0 1

1 0

]

, Ψ0 :=

[

α β

β γ

]

, (4.2)

and α, β, γ ∈ R and α ≤ γ.
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Proof: Since det(Φ) < 0, there exists a nonsingular matrix K such that

Φ = K∗

[

0 1

1 0

]

K.

Define the matrix Υ := K−∗ΨK−1 ∈ HC
2 and let the entries of Υ be defined as

Υ =

[

x β + jy

β − jy z

]

, β, x, y, z ∈ R,

then

Υ0 :=

[

x y

y z

]

= J

(

Υ −
[

0 β

β 0

])

J∗, J :=

[

1 0

0 j

]

(4.3)

One can compute the spectral factorization of Υ0 ∈ S
2 which gives

Υ0 = UT

[

α 0

0 γ

]

U, (4.4)

where the columns of UT are the eigenvectors and α and γ are the eigenvalues.

Since Υ0 ∈ S
2, α, γ ∈ R and U ∈ R

2×2 can be chosen to satisfy det(U) = 1. Define

the set of matrices

L :=
{

J∗UJ : U ∈ R
2×2, det(U) = 1

}

,

and set (4.3) equal to (4.4) to get

Υ = L∗

[

α 0

0 γ

]

L+ β

[

0 1

1 0

]

, L = J∗UJ.

Notice that for any L ∈ L

L∗

[

0 1

1 0

]

L =

[

0 1

1 0

]

,

so that plugging into the previous expression results in the factorization

Υ = L∗

[

α β

β γ

]

L,

where α, β, γ ∈ R. Finally defining T := LK yields the desired simultaneous

factorization Φ = T ∗Φ0T and Ψ = T ∗Ψ0T .



67

The above lemma states that for any Φ,Ψ ∈ HC
2 with det(Φ) < 0 there

exists a common congruence transformation that relates them back to Φ0,Ψ0. In

terms of frequency range characterization, this translates to the statement that the

set Λ(Φ,Ψ) characterizes curves on the complex plane if the set Λ(Φ0,Ψ0) does.

This is stated formally in the following proposition that characterizes all curves

parametrized by Λ(Φ,Ψ).

Proposition 4.1. Let Φ,Ψ ∈ HC
2 be given and define the set Λ(Φ,Ψ) by (4.1).

Then Λ(Φ,Ψ) represents curves on the complex plane if and only if det(Φ) < 0

and either 0 ≤ α ≤ γ or α < 0 < γ, where α and γ are defined by the factoriza-

tion (4.2).

Proof (Outline): A formal proof can be found in [47], however only general ar-

guments shall be presented here to convince the reader of this proposition. Note

that σ(s,Φ0) = s∗+s = 0 which implies that s = jω for any ω ∈ R, and as a result

σ(jω,Ψ0) = αω2 +γ ≥ 0. In case 0 ≤ α < γ, the inequality σ(jω,Ψ) ≥ 0 holds for

all ω ∈ R, thus parametrizing the entire imaginary axis. In case α < 0 < γ, the

inequality σ(jω,Ψ) ≥ 0 holds for −|α/γ|1/2 ≤ ω ≤ |α/γ|1/2, thus parametrizing a

symmetric segment of the imaginary axis. Now the use of Lemma 4.1 states that

all curves parametrized by (4.1) are equivalent to the curve

Λ(Φ0,Ψ0) := {s = jω, ω ∈ R : αω2 + γ ≥ 0}, (4.5)

through a congruent transformation.

The previous proposition establishes a relationship between the curves speci-

fied by Λ(Φ0,Ψ0) and Λ(Φ,Ψ) through their common congruent transformation.

This relationship can be made more precise through the linear fractional transfor-

mation1, which provides a one-to-one mapping of (possibly infinite) curves on the

complex plane to other curves on the complex plain. The following lemma was

presented in [46, 48] and the proof will be shown here as well for completeness.

1Also known as the bilinear transformation in standard complex analysis textbooks [14].
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Lemma 4.2. (Bilinear Transformation) Let Φ0,Ψ0 in (4.2) and a nonsingular

matrix

T =

[

a b

c d

]

∈ C
2×2 (4.6)

be given. Define the linear-fractional transformation

ψ : C → C, ψ(s) =
b− d s

c s− a
. (4.7)

Then the following is true

{ξ ∈ C : ξ ∈ Λ(T ∗Φ0T, T
∗Ψ0T ), c ξ + d 6= 0} =

{ψ(s) ∈ C : s ∈ Λ(Φ0,Ψ0), c s 6= a}. (4.8)

Proof: To show the direction ⇒, let ξ ∈ Λ(T ∗Φ0T, T
∗Ψ0T ) with cξ + d 6= 0 so

that σ(ξ, T ∗Φ0T ) = 0 and σ(ξ, T ∗Ψ0T ) ≥ 0 and let ξ = ψ(s). Note that the inverse

of the linear-fractional transformation gives

s =
aξ + b

cξ + d
,

and the following identity holds

σ(ψ(s), T ∗ΣT ) =

(

b−ds
cs−a

1

)∗ [

a b

c d

]∗

Σ

[

a b

c d

](

b−ds
cs−a

1

)

,

=
(

s∗(c∗b∗−d∗a∗)
s∗c∗−a∗

c∗b∗−d∗a∗

s∗c∗−a∗

)

Σ

(

(bc−ad)s
cs−a

bc−ad
cs−a

)

,

=

∣

∣

∣

∣

bc− ad

cs− a

∣

∣

∣

∣

2

σ(s,Σ).

It follows that σ(s,Φ0) = 0, σ(s,Ψ0) ≥ 0 and from the nonsingularity of T

cs− a =
bc− ad

cξ + d
6= 0.

The direction ⇐ immediately follows from the identity above, where letting

s ∈ Λ(Φ0,Ψ0) with cs 6= a implies that σ(ξ, T ∗Φ0T ) = 0, σ(ξ, T ∗Ψ0T ) ≥ 0 and

cξ + d =
bc− ad

cs− a
6= 0.
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In the context of future developments, a slightly modified version of Lemma 4.2,

based on the inverse linear transformation introduced in its proof, is also enlight-

ening. It is given as the next corollary, whose proof is omitted for brevity.

Corollary 4.1. Let Φ0,Ψ0 in (4.2) and a nonsingular matrix T as in (4.6) be

given. Define the inverse linear-fractional transformation

ψ−1 : C → C, ψ−1(ξ) =
a ξ + b

c ξ + d
. (4.9)

The following is true

{ω ∈ R : jω ∈ Λ(Φ0,Ψ0), jc ω 6= a} =

{ψ−1(ξ) ∈ jR : ξ ∈ Λ(T ∗Φ0T, T
∗Ψ0T ), c ξ + d 6= 0}. (4.10)

Lemma 4.2 and Corollary 4.1 are completely equivalent, however, (4.10) high-

lights the fact that any curve given by sets Λ(Φ,Ψ) can be indeed parametrized

by a transformation of a segment of or the entire imaginary axis. Notice that non-

singularity of T , i.e. ad 6= bc, excludes the possibility of the image of the mapping

ψ be reduced to a single point in {−d/c,−jb/a,∞,−∞}, depending on whether

the letters a, b, c and d are not zero. Conversely, nonsingularity of T excludes

the possibility of the image of the mapping ψ−1 be reduced to a single point in

{−jb/d,−ja/c, j∞,−j∞}.

4.3 Generalized KYP Lemma

The following generalized KYP Lemma is developed from the nonconservative

S-procedure that was discussed Section 3.3. It gives necessary and sufficient con-

ditions for replacing the infinite dimensional FDI constraints, where the frequency

variable is specified by general curves on the complex plain, with a single inequal-

ity. Indicated by the discussion in the previous section, the bilinear transformation

is used to map the general frequency curve to a finite (or semi-infinite) segment

imaginary axis where the methods of Section 3.3 can be used to convert the in-

equality conditions. The following lemma gives the general KYP Lemma. A formal

proof can be found in [48], which includes very many technical details and includes
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derivation of generalized multiplier matrices that are lossless in characterizing gen-

eralized finite (semi-infinite) frequency intervals. Avoiding such repetition, only a

general outline for the proof will be presented here.

Lemma 4.3 (Generalized KYP Lemma [48]). Let a, b, c, d ∈ C with ad 6= bc,

T ∈ C
2×2 as in (4.6), the inverse linear-fractional mapping ψ−1 : C → C be

given as in (4.9), and Φ0, Ψ0 be given by (4.2) and define Φ := T ∗Φ0T and

Ψ := T ∗Ψ0T . Let matrices H ∈ C
2n×(n+m) and Θ ∈ HC

n+m be also given. Assume

that α < 0 < γ < ∞ and that jc ω̃ 6= a for all ω̃1 ≤ ω̃ ≤ ω̃2. The following

statements are equivalent.

(i) The FDI

([

I −ξI
]

H
)∗

⊥

Θ
([

I −ξI
]

H
)

⊥

≺ 0, (4.11)

holds for all ξ ∈ Λ(Φ,Ψ).

(ii) There exist matrices P,Q ∈ HC
n such that Q � 0 and

H∗ (Φ ⊗ P + Ψ ⊗Q)H + Θ ≺ 0. (4.12)

Proof (Outline): From Finsler’s Lemma (Lemma 3.1), the FDI (4.11) holds if

and only if

x∗Θx < 0, for all x ∈ X ,

where

X :=
{

x ∈ C
n+m :

[

I −ξI
]

Hx = 0, x 6= 0, ξ ∈ Λ(Φ,Ψ)
}

.

Note that for any s ∈ C such that cs 6= a we have

[

I −sI
]

(T ⊗ I)H = (a− cs)

[

I −b− ds

cs− a
I

]

H = (a− cs)
[

I −ψ(s)I
]

H,

(4.13)

so that the set X is equivalent to

X =
{

x ∈ C
n+m :

[

I −sI
]

(T ⊗ I)Hx = 0, x 6= 0, s ∈ Λ(Φ0,Ψ0)
}

.
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Let y := (T ⊗ I)Hx ∈ C
2n, where y is partitioned as y∗ = [y∗1 y

∗
2], yi ∈ C

n. Note

that from the set X , y1 = jωy2 holds for some ω ∈ R such that αω2 + γ ≥ 0 and

y∗ (Φ0 ⊗ P + Ψ0 ⊗Q) y = [αω2 + γ] y∗2Qy2.

Since, Q � 0 for all ω ∈ R such that αω2+γ ≥ 0 the following holds (see Lemma 3.4

or [49], Lemma 2)

y∗ (Φ0 ⊗ P + Ψ0 ⊗Q) y ≥ 0, for all P,Q ∈ HC
n, Q � 0,

so that the set X can equivalently be written as

X = {x ∈ C
n : x∗Sx ≥ 0, x 6= 0, S ∈ S} , (4.14)

where

S = {S = H∗ (Φ ⊗ P + Ψ ⊗Q)H : P,Q ∈ HC
n, Q � 0} .

It is easy to verify that S satisfies properties (i) and (ii) in Definition 3.3.1. The

property (iii) has been shown in [48] which leads to a nonconservative version of

the S-procedure Lemma 3.3.

Note that the only case included in the Generalized KYP Lemma of [48] that is

not presented in Lemma 4.3 is the case when Ψ0 is such that 0 ≤ α ≤ γ. However,

as noticed in [48], this implies Ψ0 � 0 which means that Q can be set to zero

in (4.12), reducing the Generalized KYP Lemma to a standard frequency indepen-

dent KYP Lemma. Indeed, for any choice of 0 ≤ α ≤ γ, the curve associated to

Λ(Φ0,Ψ0) is the entire imaginary axis. For this reason, there is no need to treat

such a case separately.

The previous lemma generalized the finite frequency KYP Lemma 3.4 for curves

that can be characterized by the set Λ(Φ,Ψ). From a practical perspective, it al-

lows to pose and check frequency domain specifications other than on the imaginary

axis, which is relevant for specific applications and will be explored in Chapter 4.

Working similar to the developments in Section 3.3, the next theorem establishes

the equivalence between the previous lemma, that is with the general FDI (4.11)

and LMI (4.12), and an extended condition based on the work [22].
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Theorem 4.1. Let a, b, c, d ∈ C with ad 6= bc, T ∈ C
2×2 as in (4.6), the inverse

linear-fractional mapping ψ−1 : C → C be given as in (4.9), and Φ0, Ψ0 be given

by (4.2) and define Φ := T ∗Φ0T and Ψ := T ∗Ψ0T . Let matrices H ∈ C
2n×(n+m)

and Θ ∈ HC
n+m be also given. Assume that α < 0 < γ <∞ and define

ω̃1 = −|γ/α|1/2, ω̃2 = |γ/α|1/2. (4.15)

Assume that jc ω̃ 6= a for all ω̃1 ≤ ω̃ ≤ ω̃2. The following statements are equivalent.

(i) The FDI

([

I −ξI
]

H
)∗

⊥

Θ
([

I −ξI
]

H
)

⊥

≺ 0,

holds for all ξ ∈ Λ(Φ,Ψ).

(ii) There exist matrices F ∈ C
n×n, G ∈ C

m×n such that the pair of LMI

He

{[

F

G

]

[

I −jω̃iI
]

(T ⊗ I)H

}

+ Θ ≺ 0, i = {1, 2} (4.16)

Proof: To show sufficiency of (ii), i.e. the direction (ii) ⇒ (i), assume that the

pair of inequalities (4.16) have feasible solutions. The sum of (4.16) for i = 1

multiplied by λ(ω̃) = (ω̃2 − ω̃)/(ω̃2 − ω̃1) ∈ [0, 1] and of (4.16) for i = 2 multiplied

by (1 − λ(ω̃)) produces

He

{[

F

G

]

[

I −jω̃I
]

(T ⊗ I)H

}

+ Θ ≺ 0, for all ω̃1 ≤ ω̃ ≤ ω̃2.

Recall that for any s ∈ C with cs 6= a the relation (4.13) holds. Since a 6= jc ω̃ for

all ω̃1 ≤ ω̃ ≤ ω̃2, multiply the inequality above on the right by

Ñ(ω̃) :=
([

I −jω̃I
]

(T ⊗ I)H
)

⊥

=
([

I −ψ(jω̃)I
]

H
)

⊥

(4.17)

and on the left by its transpose conjugate to obtain the frequency domain inequality

([

I −ψ(jω̃)I
]

H
)∗

⊥

Θ
([

I −ψ(jω̃)I
]

H
)

⊥

≺ 0,

which should hold for all ω̃1 ≤ ω̃ ≤ ω̃2. Since α < 0 < γ < ∞ the set {s =

jω̃, ω̃ ∈ R : ω̃1 ≤ ω̃ ≤ ω̃2} with (4.15) is equivalent to Λ(Φ0,Ψ0) as given

in (4.5). Therefore, we can use Lemma 4.2 to establish (4.11) for all ξ ∈ Λ(Φ,Ψ).
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To show necessity of item (ii), i.e. the direction (i) ⇒ (ii), assume the FDI (4.11)

holds for all ξ ∈ Λ(Φ,Ψ). Then from Lemma 4.3 there exists some P , Q � 0

satisfying (4.12). Define the matrix

X̃(ω̃) :=

[

−αQ jω̃αQ

−jω̃αQ γQ

]

=

[

−α jω̃α

−jω̃α γ

]

⊗Q.

Note that since α < 0, then X̃(ω̃) � 0 for all s = jω̃ ∈ Λ(Φ0,Ψ0) because using

Schur complement

Q � 0, αω̃2 + γ ≥ 0, α < 0, =⇒ X̃(ω̃) � 0

Now add the matrix

H∗(T ⊗ I)∗X̃(ω̃)(T ⊗ I)H � 0, for all s = jω̃ ∈ Λ(Φ0,Ψ0)

to the right hand side of (4.12) so that for all s = jω̃ ∈ Λ(Φ0,Ψ0) we have

Θ ≺ H∗(T ⊗ I)∗
[

−Φ0 ⊗ P − Ψ0 ⊗Q+ X̃(ω̃)
]

(T ⊗ I)H,

= H∗(T ⊗ I)∗

([

−2αQ −(P + βQ) + jω̃αQ

−(P + βQ) − jω̃αQ 0

])

(T ⊗ I)H,

which can then be written as

H∗(T ⊗ I)∗

([

αQ

P + βQ

]

[

I −jω̃I
]

+

[

I

jω̃I

]

[

αQ P + βQ
]

)

(T ⊗ I)H + Θ ≺ 0.

Now choose
[

F

G

]

= H∗(T ⊗ I)∗

[

αQ

P + βQ

]

(4.18)

so that

He

{[

F

G

]

[

I −jω̃I
]

(T ⊗ I)H

}

+ Θ ≺ 0

for any ω̃1 ≤ ω̃ ≤ ω̃2, where ω̃1 and ω̃2 are given by (4.15), in particular, for ω̃ = ω̃1

and ω̃ = ω̃2 which imply that the pair of inequalities (4.16) are feasible.
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Similar to the developments of Theorem 3.2, the case of constant Θ can be

extended to incorporate a particular class of frequency-dependent Θ without in-

curring extra computational cost in solving the LMI (4.16). In the current context

of the generalized KYP Lemma, consider the same class of functions (3.16) affine

on the transformed frequency variable ω̃, that is

Θ(ω̃) =
ω̃2 − ω̃

ω̃2 − ω̃1

Θ1 +
ω̃ − ω̃1

ω̃2 − ω̃1

Θ2, −|γ/α|1/2 ≤ ω̃ ≤ |γ/α|1/2. (4.19)

The following theorem is a version of Theorem 3.2 in the context of the generalized

FDI (4.11), allowing Θ to depend affinely on frequency.

Theorem 4.2. Let a, b, c, d ∈ C with ad 6= bc, T ∈ C
2×2 as in (4.6), the inverse

linear-fractional mapping ψ−1 : C → C be given as in (4.9), and Φ0, Ψ0 be given

by (4.2). Let matrices H ∈ C
2n×(n+m) and Θ1, Θ2 ∈ HC

n+m be also given. Assume

that α < 0 < γ <∞ and define

ω̃1 = −|γ/α|1/2, ω̃2 = |γ/α|1/2.

Assume that jc ω̃ 6= a for all ω̃1 ≤ ω̃ ≤ ω̃2. If there exist matrices F ∈ C
n×n,

G ∈ C
m×n such that the pair of LMI

He

{[

F

G

]

[

I −jω̃iI
]

(T ⊗ I)H

}

+ Θi ≺ 0, i = {1, 2} (4.20)

have feasible solution then the FDI

([

I −ξI
]

H
)∗

⊥

Θ(−jψ−1(ξ))
([

I −ξI
]

H
)

⊥

≺ 0, (4.21)

holds for all ξ ∈ Λ(T ∗Φ0T, T
∗Ψ0T ) with Θ(ω̃) given by (4.19).

Proof: Following the initial steps in the proof of Theorem 4.1, the sum of (4.20)

for i = 1 multiplied by λ(ω̃) = (ω̃2 − ω̃)/(ω̃2 − ω̃1) ∈ [0, 1] and of (4.20) for i = 2

multiplied by (1 − λ(ω̃)) produces

He

{[

F

G

]

[

I −jω̃I
]

(T ⊗ I)H

}

+ Θ(ω̃) ≺ 0, for all ω̃1 ≤ ω̃ ≤ ω̃2 (4.22)
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where Θ(ω̃) is given in (4.19). Multiply the inequality above on the right by (4.17)

and on the left by its transpose conjugate to obtain the frequency domain inequality

([

I −ψ(jω̃)I
]

H
)∗

⊥

Θ(ω̃)
([

I −ψ(jω̃)I
]

H
)

⊥

≺ 0,

which should hold for all ω̃1 ≤ ω̃ ≤ ω̃2. Since α < 0 < γ < ∞ the finite

frequency set {s = jω̃, ω̃ ∈ R : ω̃1 ≤ ω̃ ≤ ω̃2} with (4.15) is equivalent to

Λ(Φ0,Ψ0) as given in (4.5). Therefore, we can use Lemma 4.2, Corollary 4.1 and

the correspondences

ξ = ψ(jω̃), ω̃ = −jψ−1(ξ),

which hold for all ξ ∈ Λ(T ∗Φ0T, T
∗Ψ0T ) to establish (4.21).

As with Lemma 4.3, the case when Ψ0 is such that 0 ≤ α ≤ γ is not explicitly

treated in Theorem 4.2 since this implies that Ψ0 � 0 and the curve associated

to Λ(Φ0,Ψ0) is the entire imaginary axis. However we note that by exploring

properties of linear-fractional mappings we are able to derive conditions that hold

for the entire imaginary axis in which the associated matrix Ψ0 is not positive

semidefinite. As will be shown in Section 4.6, such conditions do not reduce to the

standard KYP Lemma.

4.4 Revisiting the KYP Lemma on Frequency

Intervals

Theorems 3.1 and 3.2 will be revisited in this section, where we illustrate how

the results of Section 4.3 can be applied in the particular context of FDI analysis

within finite frequency intervals. First note that the segment of the imaginary axis

j[ω1, ω2] can be described by the set Λ(Φ,Ψ) with the choices (see [46, 48])

Φ =

[

0 1

1 0

]

, Ψ =

[

−1 jωc

−jωc −ω1ω2

]

.

Recall that ωc := (ω1 + ω2)/2. From Lemma 4.1, there should exists a nonsingu-

lar transformation matrix T ∈ C
2×2 such that this curve can be represented by
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Λ(T ∗Φ0T, T
∗Ψ0T ), where Φ0 and Ψ0 are given in the form (4.2). Note that the set

Λ(Φ0,Ψ0) is (a segment of) the imaginary axis, in which case results for constant

Θ exist [72, 4, 48]. One can verify that such transformation and the corresponding

matrices Φ0 and Ψ0 are

T =

[

1 −jωc

0 1

]

, Φ0 =

[

0 1

1 0

]

, Ψ0 =

[

−1 0

0 ω̂2

]

. (4.23)

where ω̂ := (ω2 − ω1)/2. Note that −1 = α < 0 < γ = ω̂2 for any ω1 6= ω2 so that

the proof of Theorems 4.1 and 4.2 applied with

H =

[

A B

I 0

]

, ω̃1 = −|ω̂| = (ω1 − ω2)/2, ω̃2 = |ω̂| = (ω2 − ω1)/2, (4.24)

implies feasibility of the FDIs (4.11) and (4.21) respectively. Furthermore, the case

of Theorem 4.1 with (4.23) and (4.24) implies the existence of a solution F and G

as in (4.18)

[

F

G

]

=

[

A B

I 0

]∗




[

1 −jωc

0 1

]∗

⊗ I





[

−Q
P

]

=

[

A B

I 0

]∗ [

−Q
P − jωcQ

]

,

which proves feasibility of the pair of inequalities (4.16) in the case Θ is constant.

This is precisely the choice (3.15).

Finally, from both Theorems 4.1 and 4.2, note that

[

I −jω̃iI
]

(T ⊗ I) =
[

I −jωiI
]

, X(ω) = (T ⊗ I)∗X̃(ω̃)(T ⊗ I),

after performing the change-of-variables

ω := ω̃ + ωc, ω1 = ω̃1 + ωc ≤ ω ≤ ω̃2 + ωc = ω2,

and where X(ω) was given in (3.14).

Another way to look at the change-of-variables introduced above is to note that

the matrix T in (4.23) is associated with the transformation

ψ(s) = s+ jωc,

which could have been used to define the transformed frequency variable

jw = j(ω̃ + ωc).
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In revisiting the results of Section 3.3 and from the context of the generalized

Theorems 4.1 and 4.2, it should be clear that transformations of the frequency

variable are what is at the root of the discussion in Section 4.3.

4.5 Piece-Wise Linear Coefficient Matrix

The results presented in previous sections can be extended to cope with piece-

wise affine frequency-dependent matrices Θ(ω) of the form

Θ(ω) :=







































ω2 − ω

ω2 − ω1

Θ1 +
ω − ω1

ω2 − ω1

Θ2, ω1 ≤ ω ≤ ω2,

ω4 − ω

ω4 − ω3

Θ3 +
ω − ω3

ω4 − ω3

Θ4, ω3 ≤ ω ≤ ω4,

...

ω2N − ω

ω2N − ω2N−1

Θ2N−1 +
ω − ω2N−1

ω2N − ω2N−1

Θ2N , ω2N−1 ≤ ω ≤ ω2N ,

(4.25)

where N is any integer and Θi ∈ HC
n+m for i = 1, . . . , 2N , by simply solving

the pair of inequalities (3.18) or (4.20) for each sub-interval ω2ℓ−1 ≤ ω ≤ ω2ℓ,

ℓ = 1, . . . , N . The resulting LMI expressions from Theorem 3.2 are given by

He

{[

F

G

]

[

I −jωiI
]

[

A B

I 0

]}

+ Θi ≺ 0, i = 1, 2,

He

{[

F

G

]

[

I −jωiI
]

[

A B

I 0

]}

+ Θi ≺ 0, i = 3, 4,

...
...

He

{[

F

G

]

[

I −jωiI
]

[

A B

I 0

]}

+ Θi ≺ 0, i = 2N − 1, 2N,

Recall that Θ(ω) is not a proper rational function of ω, and note that the piece-

wise affine Θ(ω) might not even be a continuous function of ω, or be defined on

a contiguous interval. When the sub-intervals are contiguous, that is ω2ℓ = ω2ℓ+1,

continuity of Θ(ω) can be achieved by imposing Θ2ℓ = Θ2ℓ+1 for some or all

1 ≤ ℓ < N . Nevertheless, rational or other types of bounded functions of ω can

be approximated by piecewise affine functions of ω, specially on finite frequency

intervals. Fig. 4.1 illustrates a possible use of piece-wise affine Θ(ω). Similar results
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can be obtained for piece-wise Θ(ω̃) for intervals on the transformed frequency

variable.

ω1=0 ω2=ω3
...ω4=ω5 ω2N-2=ω2Ν-1 ω2N

Figure 4.1. Illustrating piece-wise affine Θ(ω).

One interesting application of piecewise affine matrices Θ(ω) is to handle real

valued matrices A and B in Theorem 3.2, or real valued H in Theorem 4.2. In such

cases, as will be shown by the next lemma in the context of Theorem 4.2, there

exists a piecewise affine matrix Θ(ω) so that feasibility of the proposed test on the

interval ω1 ≤ ω ≤ ω2 also implies feasibility of the frequency domain inequality on

the symmetric interval −ω2 ≤ ω ≤ −ω1.

Theorem 4.3. Let a, b, c, d ∈ R with ad 6= bc, T ∈ C
2×2 as in (4.6), the inverse

linear-fractional mapping ψ−1 : C → C be given as in (4.9), and Φ0, Ψ0 be given

by (4.2). Let matrices H ∈ R
2n×(n+m) and Θ1, Θ2 ∈ HC

n+m be also given. Assume

that α < 0 < γ < ∞ and define ω̃1, ω̃2 as in (4.15). If there exist matrices

F ∈ C
n×n, G ∈ C

m×n such that the pair of LMI (4.20) have feasible solutions then

the FDI (4.21) holds for all |ξ| ∈ Λ(T ∗Φ0T, T
∗Ψ0T ) with

Θ(−jψ(ξ)) :=











ω̃2 + ω̃

ω̃2 − ω̃1

Θ1 −
ω̃1 + ω̃

ω̃2 − ω̃1

Θ2, −ω̃2 ≤ ω̃ ≤ −ω̃1,

ω̃2 − ω̃

ω̃2 − ω̃1

Θ1 +
ω̃ − ω̃1

ω̃2 − ω̃1

Θ2, ω̃1 ≤ ω̃ ≤ ω̃2,
(4.26)

where ω̃ = −jψ−1(ξ).

Proof: Following the proof of Theorem 4.2 one can conclude on the feasibility
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of (4.22) for all ω̃1 ≤ ω̃ ≤ ω̃2. Now take the complex conjugate of (3.20), i.e.

He

{[

F

G

]

[

I −jω̃I
]

(

T ⊗ I
)

H

}

+ Θ(ω̃) ≺ 0, for all − ω̃2 ≤ ω̃ ≤ −ω̃1,

which should also hold with Θ(−jψ−1(ξ)) = Θ(ω̃) as given in (4.26). Note that ω̃i,

i = {1, 2} in (4.15) form a symmetric interval so that ω̃1 = −ω̃2 and from (4.13)

the relationship

[

I jω̃
]

(

T ⊗ I
)

= (a+ jcω̃)

[

I

(

b+ jdω̃

jcω̃ + a

)

I

]

= (a+ jcω̃)
[

I −ψ(jω̃)I
]

holds for all ω̃1 ≤ ω̃ ≤ ω̃2. Multiply the inequality above on the right by
([

I −ψ(jω̃)
]

H
)

⊥

and on the left by its transpose conjugate to conclude feasibility of (4.21) for all

|ξ| ∈ Λ(T ∗Φ0T, T
∗Ψ0T ).

Interestingly the transformation matrix T is not required to be real. To make

this more clear, consider the above lemma in the context of Theorem 3.2, that is

for s = jω where ω1 ≤ ω ≤ ω2.

Corollary 4.2. Let matrices A ∈ R
n×n with no eigenvalues on the imaginary axis,

B ∈ R
n×m and Θ1,Θ2 ∈ HC

n+m be given. If there exist matrices F ∈ C
n×n, G ∈

C
m×n such that the pair of LMI (3.18) have feasible solutions then the frequency

domain inequality (3.19) holds for all ω1 ≤ |ω| ≤ ω2 with

Θ(ω) :=











ω2 + ω

ω2 − ω1

Θ1 −
ω1 + ω

ω2 − ω1

Θ2, −ω2 ≤ ω ≤ −ω1,

ω2 − ω

ω2 − ω1

Θ1 +
ω − ω1

ω2 − ω1

Θ2, ω1 ≤ ω ≤ ω2,
(4.27)

being piecewise affine.

Proof: Follows from application of Theorem 4.3 with (4.23) and (4.24).

Alternatively, one can prove the result directly noting that from the proof

of Theorem 3.2 one can conclude on the feasibility of (3.20) for all ω1 ≤ ω ≤ ω2.

Now take the complex conjugate of (3.20), i.e.

He

{[

F

G

]

[

I −jω
]

[

A B

I 0

]}

+ Θ(ω) ≺ 0, for all − ω2 ≤ ω ≤ −ω1,
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which should also hold with Θ(ω) as given in (4.27). Feasibility of (3.19) can be

concluded for all ω1 ≤ |ω| ≤ ω2.

The previous corollary highlights the case when ω1 = 0. Note that Θ(ω) defined

in (4.27) may be discontinuous at ω = 0. However, the above proof implies that

the FDI (3.19) is satisfied at ω = 0 for both Θ(0) = Θ1 or Θ(0) = Θ1. The

arguments used above do not require continuity of Θ(ω) at ω = 0 in order to

conclude feasibility.

4.6 An Alternative KYP Lemma

Theorem 3.2 has difficulties in handling unbounded frequency ranges. For in-

stance, in the case ω2 → ∞, one could conceptually search for limits on the problem

variables as ω2 increases by solving a sequence of pairs of inequalities (3.18). A

more elegant solution is to transform the frequency variable and solve a modified

problem on the transformed frequency that now has a finite limit.

Consider the high-frequency condition |ω| ≥ |z|. This inequality can be de-

scribed by the curve Λ(Φ,Ψ) with

Φ =

[

0 1

1 0

]

, Ψ =

[

1 0

0 −z2

]

.

One can verify that this curve is associated with

T =

[

0 1

1 0

]

, Φ0 =

[

0 1

1 0

]

, Ψ0 =

[

−z2 0

0 1

]

,

with which application of Theorem 4.2 yields the pair of inequalities

He

{[

F

G

]

[

−jω̃iI I
]

[

A B

I 0

]}

+ Θi ≺ 0, i = {1, 2},

where

ω̃1 = −|1/z|, ω̃2 = |1/z|. (4.28)
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The above approach, which corresponds to the linear-fractional transformation

ψ(s) = s−1, handles the limit ω → ∞ at the expense of a creating a singular-

ity at ω = 0. In this way, it cannot be used to construct a generalization of

the KYP Lemma, that is, a condition that holds for all frequencies, since the ex-

treme points (4.28) tend to infinity as z → 0. This problem can be overcome by

alternatively considering the linear-fractional mapping

ψ : C → C, ψ(s) = jz +
jy (s− jx)

(y − x)(jy − s)
, x, y, z ∈ R, x < y, y > 0,

(4.29)

which maps the finite segment of the imaginary axis s ∈ j[x, y) onto the infinite

segment of the imaginary axis ξ ∈ j[z,∞), see illustration provided in Fig. 4.2.

Note that the inverse transformation is given by��������Im

Re

Im

Re

x

y

-x

-y ��z

-z

Figure 4.2. Bilinear transformation from finite segments to infinite segments of

the frequency variable on the imaginary axis.

ψ−1 : C → C, ψ−1(ξ) =
y(y − x)ξ + jy[x+ z(x− y)]

j(x− y)ξ + z(x− y) + y
,

which maps the infinite segment of the imaginary axis s ∈ j[z,∞) onto the fi-

nite segment of the imaginary axis ξ ∈ j[x, y]. The mapping (4.29) can be used

in Theorem 4.2 by constructing the transformation matrix

T =

[

1 j(x− y)/2

0 1

][

y(y − x) jy[x+ z(x− y)]

j(x− y) z(x− y) + y

]

. (4.30)
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We will not proceed with this general form, but rather focus on a particular choice

in order to simplify the exposition. The next corollary is an alternative version

of Theorem 3.2 that can handle limits of the extreme frequencies at both ends. It

is obtained by specializing the above transformation ψ to cover the segment of the

imaginary axis s ∈ j[0, 1].

Corollary 4.3. Let matrices A ∈ C
n×n with no eigenvalues on the imaginary axis,

B ∈ C
n×m, and Θ1,Θ2 ∈ HC

m+n be given. Let z ∈ R be also given. If there exists

matrices F ∈ C
n×n, G ∈ C

m×n such that

He

{[

F

G

]

[

(1 − ωi)I −j[z + ωi(1 − z)]I
]

[

A B

I 0

]}

+ Θi ≺ 0, i = {1, 2}

(4.31)

where

ω1 = 0, ω2 = 1,

then the following frequency domain inequality holds

[

(jηI − A)−1B

I

]∗

Θ

(

η − z

1 − z + η

)

[

(jηI − A)−1B

I

]

≺ 0 (4.32)

for all z ≤ η <∞.

Proof: Setting x = 0 and y = 1 in (4.30) we obtain

T =

[

1 −j/2
0 1

][

1 −jz
−j 1 − z

]

, Φ0 =

[

0 1

1 0

]

, Ψ0 =

[

−1 0

0 1/4

]

.

Invoking Theorem 4.2 with (4.24) we obtain the pair of inequalities

He

{[

F

G

]

[

I −jω̃iI
]

([

1 −j/2
0 1

][

1 −jz
−j 1 − z

]

⊗ I

)[

A B

I 0

]}

+ Θi ≺ 0,

i = {1, 2}.
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Inequalities (4.31) come from noticing that

[

I −jω̃iI
]

([

1 −j/2
0 1

][

1 −jz
−j 1 − z

]

⊗ I

)

=
[

I −j(ω̃ + 1/2)I
]

([

1 −jz
−j 1 − z

]

⊗ I

)

,

=
[

(1 − ω)I −j[z + ω(1 − z)]I
]

,

where we have performed the change of variables ω = ω̃ + 1/2 as discussed in

previous sections.

Note that

ψ−1 : C → C, ψ−1(ξ) =
ξ − jz

1 − z − jξ
,

so that for ξ = jη we have the relationship

ω = −jψ−1(ξ) =
η − z

1 − z + η
,

which appear in the frequency domain inequality (4.32).

The above corollary handles the case η < ∞ by noting that (4.30) attains a

finite limit as ω2 → y = 1, so that the resulting pair of inequalities can be solved

without facing any numerical complications. In fact, inequalities (4.31) involve only

finite coefficients as long as z is finite, including zero. Combining Corollary 4.2

with Corollary 4.3 one obtains an interesting extension of the KYP Lemma, that

is, an LMI condition that establishes an FDI for all η ∈ R, while still allowing for

a frequency dependent Θ(ω). The particular pair of inequalities (4.31) associated

with this case z = 0 are given by

He

{[

F

G

]

[

(1 + ωi)I −jωiI
]

[

A B

I 0

]}

+ Θi ≺ 0, ω1 = 0, ω2 = 1. (4.33)

The conditions of Corollary 4.3, in the general case z is arbitrary, are associated

with the curve Λ(Φ,Ψ) where

Φ =

[

0 1

1 0

]

, Ψ =

[

0 j/2

−j/2 −z

]

,
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which is simply {s ∈ C : s = jω, j(s∗ − s)/2 ≥ z} = {ω ∈ R : ω ≥ z}.
It is interesting to note that in the particular case z = 0 the matrix Ψ is not

positive semidefinite, which implies that one cannot set Q = 0, F = P , G = 0,

in order to reduce these conditions to the original KYP Lemma for constant Θ.

Application of (4.33) compared to the standard KYP Lemma will be illustrated in

the numerical examples.

In the case z = 0, the transformation (4.29) with x = 0 and y = 1 implies that

ω = −jψ−1(jη) =
η

1 + η

which, evaluated at the limits of the interval η ∈ [0,∞), yields the approximation

ω ≈ η, for η ≈ 0, ω → 1, for η → ∞.

This means that the frequency dependent scaling Θ should behave as

Θ(ω) ≈ Θ(η), for η ≈ 0, Θ(ω) → Θ(1), for η → ∞.

That is, Θ is a linear function of η near the origin and it approaches a constant

as η → ∞. One could have arrived at the opposite scenario by choosing different

constants on the linear-fractional mapping (4.29).

Finally note that Theorem 3.2 and Corollary 4.3 are not equivalent and, in

fact, they may produce different results for the very same frequency range. As

seen above, the multiplier Θ is affine on ω = −jψ−1(jη), according to (3.16), but

it is nonlinear on η.

4.7 A KYP Lemma for Discrete-Time Systems

A particular case of the Generalized KYP Lemma which might have some

interest on its own is a version of the KYP lemma on finite frequency ranges for

discrete-time systems. We start by examining the particular case of the linear-

fractional mapping

ψ : C → C, ψ(s) =
1 + s

1 − s
. (4.34)

The above transformation maps the imaginary axis (−j∞, j∞) onto the unit disk

ejθ : θ ∈ (−π, π), see illustration provided in Fig. 4.3.
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Figure 4.3. Bilinear transformation from continuous-time to discrete-time fre-

quency variable.

Indeed, for any s = jω ∈ jR there exists one θ ∈ (−π, π) such that

ejθ =
1 + jω

1 − jω
, (4.35)

namely θ = 2 arctan(ω). Conversely ω = tan(θ/2). The next corollary is obtained

after applying the above transformation ψ on the segment of the imaginary axis

j[ω1, ω2].

Corollary 4.4. Let matrices A ∈ C
n×n with no eigenvalues on the unit circle,

B ∈ C
n×m, and Θ1,Θ2 ∈ HC

m+n be given. If there exists multiplier matrices

F ∈ C
n×n, G ∈ C

m×n such that

He

{[

F

G

]

[

I −jωiI
]

[

A− I B

A+ I B

]}

+ Θi ≺ 0, i = {1, 2} (4.36)

where

ω1 = tan(θ1/2), ω2 = tan(θ2/2),

then the following frequency domain inequality holds

[

(ejθI − A)−1B

I

]∗

Θ(tan(θ/2))

[

(ejθI − A)−1B

I

]

≺ 0, (4.37)

for all −π ≤ θ1 ≤ θ ≤ θ2 ≤ π.
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Proof: Composing the transformation (4.34) with (4.23) discussed in the previous

section we obtain

T =

[

1 −jωc

0 1

][

1 −1

1 1

]

, Φ0 =

[

0 1

1 0

]

, Ψ0 =

[

−1 0

0 ω̂2

]

,

where ωc = (ω1 + ω2)/2, and ω̂ = (ω2 − ω1)/2, so that invoking Theorem 4.2 for

the above choices of matrices and (4.24) one obtains the pair of inequalities

He

{[

F

G

]

[

I −jω̃iI
]

([

1 −jωc

0 1

][

1 −1

1 1

]

⊗ I

)[

A B

I 0

]}

+ Θi ≺ 0,

for i = {1, 2}. Inequalities (4.36) come after noticing that

[

I −jω̃iI
]

([

1 −jωc

0 1

][

1 −1

1 1

]

⊗ I

)[

A B

I 0

]

=

[

I −j(ω̃i + ωc)I
]

[

A− I B

A+ I B

]

,

and performing the change of variables ω = ω̃ + ωc as discussed in the previous

section. The FDI (4.37) comes after defining θ as in (4.35) and from noticing that

ω = −jψ−1(ejθ) = tan(θ/2).

The approach taken in [45, 48] may seem slightly different as the segment of

the unit disk ejθ : θ ∈ (θ1, θ2) is alternatively parametrized by

|θ − θc| ≤ θ̂ ⇔ cos(θ − θc) ≥ 2 cos θ̂,

⇔ {ξ ∈ C : ξ∗ξ = 1, ξe−jθc + ξ∗ejθc ≥ 2 cos θ̂},

where θc := (θ1 + θ2)/2 and θ̂ := (θ2 − θ1)/2. The above describes a curve Λ(Φ,Ψ)

with

Φ =

[

1 0

0 −1

]

, Ψ =

[

0 ejθc

e−jθc −2 cos θ̂

]

.

One can verify that this curve is associated with

T =

[

1 −ejθc

1 ejθc

]

, Φ0 =

[

0 1

1 0

]

, Ψ0 =

[

−1 − cos θ̂ cos θ̂

cos θ̂ 1 − cos θ̂

]

,
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with which application of Theorem 4.2 yields the pair of inequalities

He

{[

F

G

]

[

I −jω̃iI
]

[

A− ejθcI B

A+ ejθcI B

]}

+ Θi ≺ 0, i = {1, 2}, (4.38)

where

ω̃1 = tan(−θ̂/2), ω̃2 = tan(θ̂/2).

The above extreme frequencies were obtained using the trigonometric identity

tan2(θ̂/2) = (1 − cos θ̂)/(1 + cos θ̂).

Note that in the particular case θc = 0 inequalities (4.36) and (4.38) are iden-

tical. However, when θc 6= 0 they are not the same. Indeed, the inverse linear-

fractional transformation associated with the form used in [45, 48] is

ψ−1 : C → C, ψ−1(ξ) =
ξ − ejθc

ξ + ejθc
, ⇒ ω̃ = −jψ−1(ejθ) = tan[(θ − θc)/2].

Note that when θc 6= 0, it is not possible to find a constant ωc, i.e. independent of

θ, such that

ωc = tan(θ/2) − tan[(θ − θc)/2], ω = tan(θ/2).

In fact, inequalities (4.36) and (4.38) are related through a rotation ejθc of the

system matrices (A,B). That is, if we apply inequalities (4.38) for the system

matrices (ejθcA, ejθcB)

0 ≻ He

{[

F

G

]

[

I −jω̃iI
]

[

ejθcA− ejθcI ejθcB

ejθcA+ ejθcI ejθcB

]}

+ Θi,

= He

{[

ejθcF

ejθcG

]

[

I −jω̃iI
]

[

A− I B

A+ I B

]}

+ Θi,

for i = {1, 2}, which are precisely inequalities (4.36) with shifted matrices F and

G. From Corollary 4.4, feasibility of the above inequalities implies that

0 ≻
[

(ejθI − ejθcA)−1ejθcB

I

]∗

Θ(tan(θ/2))

[

(ejθI − ejθcA)−1ejθcB

I

]

,

=

[

(ej(θ−θc)I − A)−1B

I

]∗

Θ(tan(θ/2))

[

(ej(θ−θc)I − A)−1B

I

]

,

for all |θ − θc| ≤ θ̂.
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4.8 Regular Descriptor Systems

The frequency variable transformations discussed in the previous sections can

be put into a regular descriptor system representation given by

M(jω) = (jωE − A)−1 (B − jωH) . (4.39)

Consider, for instance, the frequency variable transformation (4.29) with x = 0

and y = 1. Note that

(ξI − A)−1B =

((

jω

1 − ω
+ jz

)

I − A

)−1

B,

= (jωI + jzI − jzωI − A+ ωA)−1 (1 − ω)B,

= (jω(I − zI − jA) − (A− jzI))−1(B − jω(jB)),

which is represented in the form (4.39) with

A = A− jzI, B = B, E = I − zI − jA, H = jB.

Similarly the discrete time transformation (4.34) can be put into regular descriptor

form, where it can be verified that

A = A− I, B = H = B, E = A+ I.

In addition to these specific transformations, the descriptor form is useful in de-

scribing non-rational systems with general A, B, E and H matrices. This motivates

the presentation of a corollary of Theorem 4.2 for a class of regular descriptor sys-

tems.

Corollary 4.5. Let matrix A ∈ C
n×n and E ∈ C

n×n be given such that the

det(jωE − A) 6= 0 for all ω ∈ R. Let matrices B ∈ C
n×m, H ∈ C

n×m and

Θ1,Θ2 ∈ HC
n+m and ω1, ω2 ∈ R be also given. If there exist matrices F ∈ C

n×n

and G ∈ C
m×n such that

He

{[

F

G

]

[

I −jωiI
]

[

A B
E H

]}

+ Θi ≺ 0, i = {1, 2} (4.40)

then the FDI
[

(jωE − A)−1(B − jωH)

I

]∗

Θ(ψ)

[

(jωE − A)−1(B − jωH)

I

]

≺ 0, (4.41)

holds for all ω1 ≤ ω ≤ ω2 with Θ(·) as given in (3.16).
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Proof: Follows from application of Theorem 4.2 with (4.23) and

H =

[

A B
E H

]

,

and noting that

(

[

I −jωI
]

[

A B
E H

])

⊥

=
([

−(jωE − A) B − jωH
])

⊥

,

=

[

(jωE − A)−1(B − jωH)

I

]

.

Note that the assumption det(jωE − A) can be relaxed to the existence of

(

[

I −jωI
]

[

A B
E H

])

⊥

,

for all ω1 ≤ ω ≤ ω2, where in such a case the FDI (4.41) becomes

(

[

I −jωI
]

[

A B
E H

])∗

⊥

Θ(ψ)

(

[

I −jωI
]

[

A B
E H

])

⊥

.

4.9 Polynomial Systems

As a final note in this chapter, it is important to discuss the role played by

the low complexity of the conditions (3.18) and (4.20), since recently developed

polynomial techniques can be used to produce robust stability tests with little or no

conservatism (see [56, 69, 76, 75, 12]). Indeed, arbitrary polynomial dependence of

Θ on ω could be obtained, of course, at the expense of an exponential growth in the

number of variables and size of inequalities. A remarkable feature of our results is

that there is absolutely no extra cost associated with solving the inequalities (3.18)

as compared with (3.12) while still enlarging the class of matrices Θ(ω) being tested

from constant to affine in ω.

The previous sections give specific extensions that pertain to general state-

space system descriptions. Indeed, using the results of [30], the results of this
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chapter can provide an alternative characterization of positive pseudo-polynomial

matrices on finite frequency intervals, a reformulation that might be useful on its

own and will be explored in Section 4.9. Last but not least, being close in form

and structure to the KYP Lemma may prove useful in developing control design

methods for limited frequency ranges, a problem which seems to be hard in the

context of polynomial techniques.

4.9.1 Pseudo-Polynomial Para-Hermitian Matrices

Pseudo-polynomial matrices have entries that depend polynomially on a single

variable s ∈ C and admit a finite expansion in positive and negative powers of

s. The work [31, 30] provides conditions under which certain pseudo-polynomial

matrices are positive (nonnegative) on specific curves in the complex plane, namely

the entire imaginary axis, the entire real axis and the unit circle. Using the con-

ditions of this paper one can rewrite these conditions for any curve s ∈ Λ(Φ,Ψ)

as discussed in Section 4.3. First consider the case Λ(Φ,Ψ) = {s = jω, ω1 ≤ ω ≤
ω2, ω ∈ R}, i.e. segments of the imaginary axis, through application of Theo-

rem 3.1.

Any para-Hermitian pseudo-polynomial matrix can be written in the form

Ξ(s) =
2t
∑

k=0

sk Ξk, Ξk = (−1)kΞ∗
k, (4.42)

The task is to find whether

Ξ(s) ≻ 0, for all s = jω, ω1 ≤ ω ≤ ω2.

In the sequel we assume ω1 > 0 to avoid technical complications. This assumption

can be removed by transforming s as done in Section 4.6. Following [30], the above

para-Hermitian pseudo-polynomial matrix Ξ(s) can be rewritten in the form

Ξ(s) =

[

(sItn − A)−1B

In

]∗

Θ

[

(sItn − A)−1B

In

]

(4.43)
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where A ∈ R
tn×tn, B ∈ R

tn×n are given by

A =















0 In

0
. . .

. . . In

0















, B =















0
...

0

In















, (4.44)

and Θ ∈ HC
tn is given by

Θ =















Ξ0
−j
2

Ξ1 0

j
2
Ξ1 Ξ2

. . .

. . . . . . −j
2

Ξ2t−1

0 j
2
Ξ2t−1 Ξ2t















.

Positivity of the Ξ(s) in Λ(Φ,Ψ) = {s = jω, 0 < ω1 ≤ ω ≤ ω2, ω ∈ R} can be

checked by applying Theorem 3.1 with the above matrices A, B and −Θ.

Similar developments can be obtained for more general Λ(Φ,Ψ) by apply-

ing Theorem 4.2 and the methods of [30]. For instance consider the para-Hermitian

discrete-time transfer function given by the pseudo-polynomial expansion

Ξ(z) =
t
∑

k=−t

zk Ξk, Ξ−k = Ξ∗
k,

again with the intent of finding whether

Ξ(z) ≻ 0, for all z = ejθ, θ1 ≤ θ ≤ θ2,

with the unrestrictive assumption that θ > 0. Following [30], the above para-

Hermitian pseudo-polynomial matrix Ξ(z) can be rewritten in the form

Ξ(z) =

[

(zItn − A)−1B

In

]∗

Θ

[

(zItn − A)−1B

In

]

where A ∈ R
tn×tn, B ∈ R

tn×n are given in (4.44) and Θ ∈ HC
tn is given by

Θ =











Ξ0 Ξ1 · · · Ξt

Ξ−1 0
... 0

...
...

...
Ξ−t 0 · · · 0











. (4.45)

Positivity of Ξ(z) in Λ(Φ,Ψ) = {z = ejθ, 0 < θ1 ≤ θ ≤ θ2, θ ∈ R} can be checked

by applying Theorem 4.2 with the matrices A, B given in (4.44) and −Θ given

in (4.45).
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4.9.2 General Polynomial System KYP Lemma

In the previous section, the coefficient matrix was specified in such a way as

to give a polynomial matrix with respect to the desired variable. Consider a

polynomial expansion in powers of a general frequency variable ξ parametrized by

the curve Λ(Φ,Ψ)

Ξ(ξ) =
t
∑

k=0

ξkΞk,

where Ξk ∈ C
p×m. Rather than simply checking for positivity of the above poly-

nomial expansion, one might be concerned with more general properties that can

be posed in terms of the quadratic form
[

Ξ(ξ)

I

]∗

Π

[

Ξ(ξ)

I

]

≺ 0, ξ ∈ Λ(Φ,Ψ),

where Π ∈ HCp+m. Feasibility of the above FDI can be checked by applying The-

orem 4.2 with the matrices A, B given in (4.44) and Θ as given by

Θ =

[

Ξ0 Ξ1 · · · ΞN

I 0 · · · 0

]∗

Π

[

Ξ0 Ξ1 · · · ΞN

I 0 · · · 0

]

.

Various polynomial system properties can be checked with the coefficient matrix

form above, which depends on the choice of Π. For instance, to check positivity of

discrete time polynomial system let

Π =

[

0 −I
−I 0

]

,

with Ξk = (−1)kΞk and Π ∈ HC
n,which gives (4.45). Although this matrix coef-

ficient form seems general enough to cover the presentation in Section 4.9.1, this

coefficient matrix form does admit realizations for checking some important system

properties. For instance positivity of continuous-time polynomial systems can not

be checked with any choice for Π ∈ HC
n.
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Chapter 5

Application of the Extended KYP

Lemma for Analyzing Robustness

5.1 Motivation

Conceptually the work proposed here is similar to techniques used in µ-analysis

for avoiding frequency griding by considering the frequency itself as a real para-

metric uncertainty [80, 41]. The method in this paper however borrows ideas from

robust analysis of uncertain polytopic systems [22] in the treatment of frequency

as a real uncertain parameter.

Problem 5.1. Relate the extensions proposed in Chapter 4 to standard µ-analysis

results, allowing for frequency-dependent scalings in computing upper bounds to the

structured singular value.

This chapter is dedicated to presenting numerical examples that demonstrate

the theoretical developments of previous chapters to the application of robustness

analysis.

5.2 Numerical Examples

In this section, Corollary 4.3 and Corollary 3.1 are used to illustrate the possi-

ble reduction in conservativeness when using the generalization proposed by Theo-

94
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rem 3.2 in the context of µ-analysis. The examples explore the fact that Θ appears

affinely in the LMIs to synthesize frequency dependent multipliers appearing in

Θ(ω).

5.2.1 Example 1

The first example is taken from [37, 55]. Consider the nominal plant model,

uncertainty weight, and controller are respectively given by

P =
10

s (s+ 10)
, W =

10 (s+ 5)

(s+ 100)
, C = 5 +

1

10 s
+

5 s

10 + s
.

The dependence on s is omitted for simplicity. The feedback connection with

the uncertainty is as in Fig. 2.7 where the generalized plant and the associated

uncertainty structure are

M =
1

1 + CP

[

WCP WC

P 1

]

, ∆ = {diag[δ1, δ2] : δi ∈ C, i = {1, 2}}.

We first used the KYP Lemma (3.5) to compute an upper bound for ρ∆ over

all frequencies using Θ as in (3.30) with the constant scalings

Z ∈ Z, Y = 0 (5.1)

to account for the complex uncertainty. We searched for the smallest value of

β > 0 for which the LMI (3.5) has a feasible solution. This same procedure was

used in the methods we will describe in the sequel. We then used the Generalized

KYP Lemma (3.10) with scalings of same structure as (5.1) within the frequency

range

ω1 = 10−1, ω2 = 103. (5.2)

Next we tested the inequalities in Corollary 4.3 with

x = z = 0, y = 1 (5.3)

and multipliers

Zi ∈ Z, Yi = 0, i = {1, 2}. (5.4)



96

Table 5.1. Example 1: Upper bounds for ρ∆ (complex uncertainty); ρ∆ ≥ 1.821

computed on a dense grid.

Method Upper bound (ρ∆) Frequency range

KYP Lemma 3.2 4.535 0 ≤ |ω| ≤ ∞
Generalized KYP Lemma 3.4 4.524 10−1 ≤ |ω| ≤ 103

Corollary 4.3 1.835 0 ≤ |ω| ≤ ∞
Corollary 3.1 1.826 10−1 ≤ |ω| ≤ 103

to find an upper bound for ρ∆ over all frequencies. Finally we tested the inequal-

ities in Corollary 3.1 with the scalings (5.4) over the frequency range (5.2). The

smallest upper bounds found by each method are listed in Table 5.1. These values

should be compared against the greatest lower bound for ρ∆ of 1.821 found with

a dense frequency grid.

All comparisons are shown in Fig. 5.1. For this example, the proposed alter-

native conditions for the KYP Lemma significantly reduce the conservatism in

computing the µ upper bound when evaluated over the entire imaginary axis as

well as over semi-infinite and finite frequency ranges.

5.2.2 Example 2

The second example is taken from [20, 41]. Consider the feedback connection

depicted in Fig. 2.7 where the generalized plant is

M =
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range used to compute them.
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Table 5.2. Example 2: Upper bounds for ρ∆ (real uncertainty); supw∈R
µ∆ = 0.291

(from [20]).

Method Upper bound (ρ∆) Frequency range

KYP Lemma 3.2 β∞ = 0.458 0 ≤ |ω| ≤ ∞
Generalized KYP Lemma 3.4 β0 = 0.293 10−1 ≤ |ω| ≤ 102

Corollary 4.3 η∞ = 0.293 0 ≤ |ω| ≤ ∞
Corollary 3.1 η0 = 0.293 10−1 ≤ |ω| ≤ 102

and the uncertainty structure is

∆ = {diag[φ1, φ2, φ3] : φi ∈ R, i = {1, 2, 3}}.

We have used the same methods as in Example 1 with the constant scalings

Z ∈ Z, Y ∈ Y

used for the KYP Lemma and the Generalized KYP Lemma. Note the presence

of the Y associated with the real uncertainty. We used

Zi ∈ Z, Yi ∈ Y, i = {1, 2}

to search for frequency dependent scalings using Corollary 4.3 and Corollary 3.1.

The smallest upper bounds found by each method are listed in Table 5.2. These

values should be compared against the exact value for supw∈R
µ∆ with real uncer-

tainty which in this case is known to be 0.291 (see [20]).

5.2.3 Example 3

Example 3 uses the same data as Example 2 [20, 41]. A rough comparison with

the results of [41] is now attempted, where tighter bounds for ρ∆ are produced

by successively bisecting the frequency range into smaller intervals. Each iteration

produces one more real uncertainty parameter to which a new (constant) multiplier

must be computed. In order to compare the results developed in this dissertation

with this approach we take only two steps in the algorithm of [41], splitting the
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Table 5.3. Example 3: Upper bounds for ρ∆ (real uncertainty); supw∈R
µ∆ = 0.291

(from [20]).

Upper bound (ρ∆)

Method 0 ≤ |ω| ≤ 1 1 ≤ |ω| ≤ ∞
Method of [41]1 γ1 = 0.111 γ2 = 0.509

Generalized KYP Lemma [48] β1 = 0.115 β2 = 0.458

Corollary 3.1 / Corollary 4.3 η1 = 0.102 η2 = 0.293

positive frequencies into two intervals {0 ≤ ω ≤ 1} ∪ {1 ≤ ω ≤ ∞}. The results

of [41] are given in the first row of Table 5.3. Note that the values shown are taken

directly from [41], where they have been computed using the Matlab µ-toolbox.

Constant scalings Z and Y are used in the Generalized KYP Lemma (3.10)

with ω1 = −ω2 = 1 to compute the first bound shown in the second column and

second row of Table 5.3. In order to compute the “high-frequency” bound on the

third column of the second row, the high-frequency version of the Generalized KYP

Lemma from [48] is used with a search for constant scalings. The values on the

third row of Table 5.3 have been computed using Corollary 3.1 (second column)

and Corollary 4.3 (third column) with

x = 0, y = z = 1.

Additionally we solved the same problem limiting the lowest and highest fre-

quencies to be 0.1 and 100, respectively. The upper bounds, shown in Table 5.4,

have been computed using the Generalized KYP Lemma and Corollary 3.1 as

before.

The upper bounds from Table 5.3 and Table 5.4 are compared with the greatest

lower bound for ρ∆ obtained on a dense grid in Figures 5.2 to 5.4. It is worth

noticing that the largest peak on the plot is very sharp, and that the max value

of ρ∆ obtained with 100 logarithmically spaced frequency points between 10−1

and 102 was only 0.223. In Figures 5.2 and 5.4, the known critical frequency

1Computed using mu command from Matlab µ-toolbox
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Table 5.4. Example 3: Upper bounds for ρ∆ (real uncertainty); supw∈R
µ∆ = 0.291

(from [20]).

Upper bound (ρ∆)

Method 0.1 ≤ |ω| ≤ 1 1 ≤ |ω| ≤ 102

Generalized KYP Lemma 3.4 β3 = 0.104 β4 = 0.293

Corollary 3.1 η3 = 0.071 η4 = 0.293

ω = 8.22 (see [20]) was added to this grid in order to obtain the exact value of

ρ∆ = µ∆ = 0.291. Also note the sharp variations occurring in the lower frequency

range shown in Figure 5.2 and zoomed in Figure 5.3. Surprisingly, the upper bound

η∞ computed for the range ω ∈ [0,∞) using Corollary 4.3 matches the best bounds

obtained for all other finite frequency results.
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for ρ∆.
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5.3 Case Study I: Aeroservoelastic (ASE) Sys-

tem Analysis

5.3.1 Motivation

Modern aerostructural design emphasize a progression toward flexible and mul-

tifunctional wing structures, which increase the likelihood of dynamic instabili-

ties [89] and require extensive testing and analysis to safely explore the boundary

of the flight envelope. In case aerodynamic instabilities are experienced during

flight-testing active structural servo control strategies can be used to stabilize and

expand the boundary of the flight envelope. Aeroservoelastic (ASE) models provide

a means for analyzing stability and performance [61], possibly online monitoring

of aerodynamic instabilities [60], as well as for designing active structural control

systems.

Aeroservoelastic models can be formulated by considering a nominal (non-

linear) model with unknown but bounded perturbations. The nominal ASE model

captures the inherent dynamic interaction between structural elasticity and aero-

dynamic loads and contains the effects of actuator bandwidth, major structural

modes and sensor locations. The unknown but bounded model perturbation is used

to account for uncertainties such as variations in flight conditions, unmodeled (high

frequency) elastic modes and actuator nonlinearity. Nominal flight behavior and

perturbations can be estimated by identification of possibly non-linear dynamics

within a feedback control framework for an ASE system [62] or derived from first

principles modeling [1].

Of concern in the context of this dissertation is the analysis of aeroservoelas-

tic systems and reducing the conservatism with which stability and performance

is guaranteed without significantly increasing the computational effort. The the-

oretical developments for robust aeroservoelastic stability analysis can be found

in [61], while the computation method used in evaluating the analysis consists of

the methods discussed in the previous chapters.
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5.3.2 Pitch-Plunge ASE System Formulation

In order to demonstrate the model-based robust aeroservoelastic stability analy-

sis procedure presented in the previous section, consider the low-order pitch plunge

system illustrated in Fig. 5.5. The system is modeled as a rigid airfoil attached

to a support structure composed of springs and cams that allow pitch and plunge

motion. The airfoil also has a trailing edge control surface (flap) that adds an

extra degree of freedom for the system.

Figure 5.5. Isometric view of the pitch-plunge mechanism for studying aeroservoe-

lastic systems.

The equations of motion describing the pitch and plunge motion during aeroe-

lastic response are derived from force and moment equations [52, 93, 61] and written

in matrix form,
[

m mxαb

mxαb Iα

][

ÿ

α̈

]

+

[

cy 0

0 cα

][

ẏ

α̇

]

+

[

ky 0

0 kα

][

y

α

]

=

[

−L
M

]

, (5.5)

where y is plunge deflection and α is pitch angle. The other variables include the

airfoil mass m, distance to center of mass xα, moment of inertia Iα, chord length
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b, structural damping coefficients cy, cα, and spring constants ky, kα. The above

system description can also be extended to generalized second order equations

of motion relating structural dynamics and unsteady aerodynamics, however this

discussion is beyond the intended scope of this chapter and the interested reader

is referred to [61].

The aeroelastic system (5.5) becomes an ASE system by including active servo

control via the control surface. The control surface deflection angle β affect the

lift L and moment M through the relation

L = 2q̃bclα

(

α+ 1.1
b

U
α̇+

1

U
ẏ

)

+ q̃b2clββ, (5.6)

M = 2q̃bcmy

(

α+ 1.1
b

U
α̇+

1

U
ẏ

)

+ q̃b2cmβ
β, (5.7)

where U is the nominal airspeed, clα , cmα
are lift and moment coefficients for pitch

angle and clβ , cmβ
are lift and moment coefficients for control surface angle. The

airspeed U directly corresponds to a dynamic pressure q̃ ∈ R, that represents a

flight condition. The system equations relate rigid body and control surface dis-

placement and velocities through rectangular matrices of the vibration and control

modes.

The aeroservoelastic model for nominal stability (flutter) analysis in the µ-

analysis framework is formulated using a model formulated at some nominal dy-

namic pressure and additional input and output signals to introduce perturbations

to the dynamic pressure. Given a nominal flight condition q̃0, consider perturba-

tions to dynamic pressure δq̃ through a feedback relationship as in Fig. 5.6(a). The

state-space matrices for the general transfer matrix P are given by [61]




































ẏ
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Figure 5.6. Pitch plunge uncertainty block diagram.

where zl, zm, wl and wm are the input-output signals of the feedback connection

with the dynamic pressure perturbation and y, α correspond to pitch-plunge sensor

measurements.

In the traditional aeroservoelastic stability analysis, the nominal stability (or

flutter) margin is defined as the largest perturbation in the dynamic pressure such

that the nominal aeroservoelastic model is stable. Nominal models however are

subject to errors due to the accuracy of model parameters, neglected unmodeled

dynamics, and nonlinear effects. A robust aeroservoelastic model can be gener-

ated by associating uncertainty operators ∆ with the nominal model and include

the parametrization along with a perturbation in dynamic pressure. The robust

aeroservoelastic stability (robust flutter) margin is the largest perturbation in dy-

namic pressure such that all possible feedback connections, formulated as in Fig. 2.7

with nominal model and perturbation ∆ ∈ ∆, are stable. Modeling uncertainties,

both parametric and dynamic in nature, can be incorporated into the aeroservoe-

lastic stability analysis within the µ-analysis framework. The choice of uncertainty

structure plays an important role in determining realistic stability (flutter) bound-

aries, however this discussion is beyond the scope of this dissertation. The aim

here is to investigate the tools presented in the previous chapters for application in
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aeroservoelastic stability analysis, and in particular, model based stability analysis

methods that include model uncertainty.

Consider modeling uncertainties as perturbations to the structural spring con-

stant kα and damping coefficient cy given by

kα = kα0 +Wkα
δkα

, cy = cy0(I +Wcy
δcy

),

with ‖δkα
‖∞ ≤ 1 and ‖δcy

‖∞ ≤ 1. Note the difference between the uncertainty de-

scriptions corresponds to additive and multiplicative uncertainty structures for the

spring constant and damping coefficient respectively. These model uncertainties

are considered along with perturbations to dynamic pressure δq̃ through a feedback

relationship as in Fig. 5.6(b). The control law is given by negative feedback of the

velocity measurement,

K =
[

0 −1
]

.

The state-space matrices of the general transfer matrix for this uncertainty and

feedback linear fractional transformation configuration is given by [61]
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, (5.8)

where numeric values are given for each parameter, and the generalized transfer
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matrix P is given by

P =
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.

More complex model uncertainties can be considered by augmenting the outputs

of the state-space system with feedback perturbations. Additional model pertur-

bations could include parametric uncertainty in the aerodynamic models, struc-

tural modes and model properties, as well as dynamic uncertainty overbounding

responses measured from flight data [71, 59].

5.3.3 Robust Analysis of the Pitch-Plunge System

Computation of robust aeroservoelastic stability (robust flutter) margins is con-

sidered in the µ-analysis framework of Section 3.4.1 through an augmented gener-

alized plant (5.8) and uncertainty structure given by

∆̃ =

{

∆̃ : ∆̃ =

[

∆ 0

0 δq̃I

]

, ∆ ∈ diag(δcy
, δkα

), ‖∆‖∞ ≤ 1, ‖δq̃‖∞ ≤ 1

}

.

The norm bound ‖δq̃‖∞ ≤ 1 restricts the search over dynamic pressure to pertur-

bations of q̃ = q̃0 ± 1 with respect to the nominal dynamic pressure q̃0. Searching

over larger range of dynamic pressure simply requires introducing an appropriate

weighting Wq̃ to the additive perturbation of q̃,

q̃ = q̃0 +Wq̃δq̃. (5.9)
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The dynamic pressure weighting is incorporated into the generalized plant to pro-

duce a scaled plant P̃

P̃ = P

[

Wq̃ 0

0 I

]

. (5.10)

Lemma 5.1. Let nominal plant P , derived for nominal dynamic pressure q̃0,

be given and define the relationship for perturbations to dynamic pressure δq̃ as

in Fig. 5.6(a). Let scaling Wq and uncertainty structure ∆ be also given such that

‖∆‖∞ < 1, for all ∆ ∈ ∆. Define the scaled plant P̃ as in (5.10). Then Wq is the

robust aeroservoelastic stability (robust flutter) margin

Γrob = Wq̃

if and only if µ
∆̃

(P̃ (jω)) = 1, where µ∆(·) is defined in (3.23). Furthermore,

q̃rob := q̃0 +Wq is the dynamic pressure which is at the limit of stability.

Proof: See [61].

The robust aeroservoelastic stability (robust flutter) margin is determined by

iterating over the scaling Wq̃ until the largest dynamic pressure q̃ given in (5.9) is

found such that P̃ is robustly stable with respect to the set of uncertainties ∆.

This idea is presented formally in the following proposition.

Proposition 5.1. Let nominal plant P , derived for nominal dynamic pressure q̃0,

be given and define the relationship for perturbations to dynamic pressure δq̃ as

in Fig. 5.6(a). Let scaling Wq and uncertainty structure ∆ be also given such that

‖∆‖∞ < 1, for all ∆ ∈ ∆. Evaluate the following iterative procedure.

(a) Compute the scaled plant (5.10).

(b) Compute an upperbound for µ
∆̃

(P̃ (jω)) ≤ ρ
∆̃

(M) as given in (3.27).

(c) For a given tolerance level ε, if (ρ
∆̃

(M) < 1 − ε) or (ρ
∆̃

(M) > 1 + ε) then

Wq̃ = Wq̃/ρ∆̃
(M)

and return to step (a). Otherwise let q̃rob = q̃0 +Wq and Γrob = Wq̃ and exit.
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The robust aeroservoelastic stability margin use µ-analysis tools to give worst-

case stability parameters. Safe and efficient expansion of the flight envelope can

be performed using on-line implementation of the above analysis algorithm. Since

computing the upperbound is a convex problem, it does not introduce excessive

computational burden. The predictive nature of model based analysis methods,

such as the µ-method allow for so called flutterometer tools to be developed for

tracking flutter margin during flight tests [60].

The generalized plant is scaled such that the peak structured singular value plot

is approximately, but not over, unity. That is the system is robustly stable, with

respect to the model uncertainty and scaled perturbation in dynamic pressure.

For this feedback control configuration, the singular value plot approaches the

robust stability limit at frequencies much lower than the predominant dynamics

of the system. Had analysis been performed on a finite frequency range above

10−4Hz one would have overestimated the stability margin. Conversely had the

analysis been performed using conventional techniques that hold for all frequencies

ω ∈ R, such as the bounded real lemma, the stability margin would have been

greatly underestimated due to the conservativeness introduced by the numerical

computations.

This simple example illustrates the usefulness of the results presented in pre-

vious chapters for practical problems in which performance and robustness are

considered along with numerical difficulty.
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Chapter 6

Conclusions and Comments

6.1 Achieved Contributions

In model-based system analysis, the modeling of a dynamical system is the first

step in obtaining information regarding the satisfactory compliance with system

requirements. Studies on iterative identification and control design have lead to

model estimation schemes that are tuned toward their intended purpose, for exam-

ple control design suggests models estimated from closed-loop data. The resulting

model is then used in the analysis of the closed-loop system. The modeling ob-

jectives summarized above form the basis for Problem 1. To this end, Chapter 2

provides an extension of the two-step method proposed in [86] for to identifying ap-

proximately normalized coprime factorization from closed-loop data. The proposed

algorithm demonstrates the use of a constrained ARX model structure, maintaining

a linear regression form for numerical efficiency in computing estimates. Further-

more, the model structure preserves the McMillan degree of a constructed model

from its coprime factors while allowing the number of denominator of each co-

prime factor individually to grow. The servomechanical example illustrated that

the proposed identification algorithm effectively estimates coprime plant factors

from closed-loop data.

The discussion on iterative identification and model based control design pro-

vides motivation for studying model-based analysis techniques that incorporate

different requirements in various frequency regions of interest. This allows the

113
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control engineer to pose and analyze system requirements specified over a fre-

quency regions, for example around the closed-loop bandwidth, without the use

of weighting functions. These analysis objectives are formulated in Problem 2.

Chapter 3 addresses these objectives by proposing an alternative formulation of

the KYP Lemma, relating an infinite dimensional frequency domain inequality with

a pair of finite dimensional linear matrix inequalities. The proposed formulation

encompasses previous finite frequency KYP Lemmas for the case when the coeffi-

cient matrix of the frequency domain inequality does not depend on frequency. In

addition, the proposed formulation allows the coefficient matrix of the frequency

domain inequality to vary affinely with the frequency variable. The result has

many applications including a new way to allow for frequency-dependent scalings

in computing upper bounds to the structured singular value, which can be used to

verify stability and performance robustness. The conditions, expressed as a pair

of convex inequalities, are computationally efficient and can be limited to finite

frequency intervals, features which can significantly reduce conservatism as com-

pared to existing conditions with similar complexity. This effect was illustrated by

a case study for hard disk drive servo example.

Noticing the benefits of the alternative formulation of the finite frequency KYP

Lemma, Problem 3 asks if generalizations of this result are possible. Chapter 4

explores the same generalizations proposed in [48] via transformations of the fre-

quency variable which leads to several useful extensions. These extensions many

applications such as analysis of discrete-time linear systems and analysis of infinite

frequency intervals specified with numerically tractable finite limits. The proposed

extensions to infinite frequency intervals are particularly interesting since it pro-

vides a generalization of the original KYP Lemma, which holds over all frequencies.

The particular extension for infinite frequency intervals is illustrated with numer-

ical examples particularly in demonstrating reduced conservatism in the analysis.

6.2 Future Research

Future work on developing control-relevant identification algorithms will be to

extend the proposed linear regression method of Chapter 2 to include multivariable
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system identification. Also of interest will be to explore explicit control-relevancy

implications directly from the limit-model expressions, most likely in terms of a

gap-metric.

Future work on system analysis tools will be to show that the sufficient LMI

test for frequency domain inequalities in finite frequency ranges presented in Chap-

ters 3 and 4 are also necessary in the case the coefficient matrix Θ is frequency

dependent. The methods for proving necessity involve introducing an augmented

system followed by subsequent reduction of the analysis conditions through ap-

propriate congruent transformations. Regarding the application of these tools to

robust analysis, the question of characterizing the class of uncertainties that is

represented by the proposed robust stability test remain open. Additionally, ex-

tensions for the conditions may be proposed to include even broader class of system

descriptions particularly polynomial systems.

Finally, many of the control synthesis and filter design applications proposed

in [48] can be posed under the extended conditions. Although through example

these extended conditions show numerical benefits in system analysis it is not clear

how these traits might carry over to synthesis.
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