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Semianalytical Solutions of Radioactive or Reactive 
Tracer Transport in Layered Fractured Media 

Abstract. In this paper, semianalytical solutions are developed for the problem of 

transport of radioactive or reactive tracers (solutes or colloids) through a layered system of 

heterogeneous fractured media with misaligned fractures. The tracer transport equations in 

the matrix account for (a) diffusion, (b) surface diffusion (for solutes only), (c) mass transfer 

between the mobile and immobile water fractions, (d) linear kinetic or equilibrium physical, 

chemical, or combined solute sorption or colloid filtration, and (e) radioactive decay or first 

order chemical reactions. Any number of radioactive decay daughter products (or products 

of a linear, first-order reaction chain) can be tracked. The tracer-transport equations in 

the fractures account for the same processes, in addition to advection and hydrodynamic 

dispersion. Additionally, the colloid transport equations account for straining and velocity 

adjustments related to the colloidal size. The solutions, which are analytical in the Laplace 

space, are numerically inverted to provide the solution in time and can accommodate any 

number of fractured and/or porous layers. The solutions are verified using analytical 

solutions for limiting cases of solute and colloid transport through fractured and porous 

media. The effect of important parameters on the transport of 3H, 237Np and 239Pu (and 

its daughters) is investigated in several test problems involving layered geological systems 

of varying complexity. 239 Pu colloid transport problems in multilayered systems indicate 

significant colloid accumulations at straining interfaces but much faster transport of the 

colloid than the corresponding strongly sorbing solute species. 
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1. Introduction 

The study of radioactive and/ or reactive contaminant transport (of solutes and colloids) 

in complex fractured geologic systems has become increasingly important in recent years 

because of the need to predict the migration and fate of the contaminants. Currently, 

there are some very large contaminated sites (such as Hanford, Washington; Nevada Test 

Site (NTS), Nevada; Idaho National Engineering and Environmental Laboratory (INEEL), 

Idaho) where severe pollution by radioactive materials extends over large areas within the 

subsurface rocks. Experience with numerical model predictions using reactive chemical 

codes has indicated that much research is needed in this area, because field observations 

have shown that contaminated plumes can move much faster than models have predicted 

[McCarthy and Zachara, 1989; Buddemeier and Hunt, 1988, Kersting et al., 1999]. 

At Yucca Mountain (YM), Nevada, the site of the potential repository for high-level 

nuclear waste, the potential transport of radioactive contaminants must be predicted for tens 

to hundreds of thousands of years. Performing reliable radionuclide transport calculations 

for this temporal and spatial scale is obviously very difficult, and furthermore it is impossible 

to verify the results. In addition, the complex geology of the site and the unsaturated nature 

of a significant portion of the flow path add to the difficulty in making such predictions. 

The potential site is located in southern Nevada about 120 km northwest of Las Vegas, 

and is characterized by a thick unsaturated zone (600-700 m) and the presence of rocks onto 

which important radionuclides in the wastes tend to sorb strongly. The YM stratigraphy 

consists of layers of welded and non welded tuffs (with vastly different hydraulic, transport, 

and geochemical properties), with the former generally being extensively fractured and the 

latter behaving similarly to a porous medium [Montazer and Wilson, 1984;Liu et al., 1998; 

Bandurraga and Bodvarsson, 1999]. 

The extremely varied geological and hydrological characteristics of the different tuff 



The extremely varied geological and hydrological characteristics of the different tuff 

layers at Yucca Mountain make the modeling of flow and transport a formidable task. A 

single representation for all of the hydrogeologic units is inappropriate, and several different 

approaches and algorithms must be employed for reliable modeling results. Analytical and 

semianalytical models of transport that can account for the site heterogeneity are important 

because they allow the validation of complex multidimensional numerical models, are 

computationally efficient, and can provide bo~nding estimates of the possible solutions 

of the expected transport at the site. 

·Previous analytical solutions of solute and colloid transport in fractured media involved 

exclusively single semi-infinite domains (layers). Tang et al. [1981] developed a quasi two-

dimensional solution for the transport of solutes in a single saturated fracture (i.e., with a 

semi-infinite matrix) that assumed a constant concentration boundary and accounted for (a) 

advection and dispersion in the fractures, (b) diffusion in the matrix, the fractures, and across 

their interface, (c) sorption onto the matrix and the fractures, and (d) radioactive decay. The 

analytical solution of Sud icky and Frind [ 1982] accounted for the same processes in solute 

transport in a system of parallel fractures (i.e., with a finite matrix block size). The solution 

of Robinson et al. [1998] is an extension of the Sudicky and Frind [1982] solution and 

accounts for the effect of fracture skin on transport in a system of parallel fractures. By 
' 

neglecting hydrodynamic dispersion in the fractures and assuming an instantaneous (delta 

Dirac-type) deposition of a parent radionuclide at the boundary, Sudicky and Frind [1984] 

obtained analytical solutions to the problem of transport of a two-member radioactive chain 

in a single fracture. 

Abdel-Salam and Chrysikopoulos [ 1994] developed a set of analytical solutions to 

the problem of nonradioactive colloid transport in a single saturated fracture for different 

boundary conditions. These solutions account for (a) advection and dispersion in the 

fractures, (b) diffusion in the matrix, the fractures, and across their interface, and (c) kinetic 

3 
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irreversible filtration in the fractures and the matrix. 

In this paper, semianalytical solutions are developed for the problem of transport of 

radioactive or reactive tracers (solutes or colloids) through a layered system of heterogeneous 

fractured media with misaligned fractures (such as the unsaturated zone at YM). The 

solutions allow any number and combination of fractured and/or porous layers that can 

vary in hydraulic and transport properties, fracture frequency, water saturation, fracture 

flow, and fracture-matrix interaction. The tracer transport equations in the matrix account 

for (a) diffusion (molecular or colloidal), (b) surface diffusion (for solutes only), (c) mass 

transfer between the mobile and immobile water fractions, (d) linear kinetic or equilibrium 

physical, chemical or combined solute sorption or colloid filtration, and (e) radioactive decay 

or first order chemical reactions. Any number of daughter products of radioactive decay 

(or of a linear, first-order reaction chain) can be tracked. The tracer transport equations in 

the fractures account for the same processes, in addition to advection and hydrodynamic 

dispersion. Additionally, the colloid transport equations account for straining and velocity 

adjustments related to the colloidal size. The solutions, which are analytical in the Laplace 

space, are numerically inverted to provide the solution in time, and can accommodate 

constant or time-variable concentration or flux boundary conditions. 

2. Solute Transport Equations 

2.1. The PDE of Solute Transport 

The 1-D PDE of transport of a radioactive or reactive solute through a variably saturated 

porous or fractured medium (PM or FM) is described by the equation 

a2c a2ci a2 F ac 
Dm ax2 + Di ax2 + D F ax2 - u ax 

(ac an) (aci ani) aF 
= ¢ (S- Sr) 7ft+ 6r 7ft + ¢Sr Bt + 6r Bt + (1- ¢) P 7ft (1) 

+ .A 8 >. [ ¢ ( S - Sr) C + ¢ Sr Ci + ( 1 - ¢) p F] , 



where 

C dissolved species concentration in the mobile pore water [M L - 3 ]; 

Dm intrinsic diffusion coefficient for the mobile pore water [L2T- 1 ]; 

Ci dissolved species concentration in the immobile pore water [M L - 3]; 

Di intrinsic diffusion coefficient in the immobile pore water [L2T- 1]; 

F = Fp +Fe; 

Fp relative concentration of the physically adsorbed species [(M L - 3 )1 (M L - 3 )]; 

Fe relative concentration of the chemically sorbed species [(M L - 3 )1 (M L - 3 )1; 

R reacted species mass per unit volume in the mobile fraction [M L - 3]; 

Ri reacted species mass per unit volume in the immobile fraction [M L - 3 ]; 

DF apparent surface diffusion coefficient [M L - 1r- 1 ]; 

u = fv V ¢ (S- Sr ), Darcy velocity [LT- 1 ]; 

V pore flow velocity [LT- 1 ]; 

fv velocity adjustment factor(= 1 for solutes, see discussion in Section 3.1); 

S water saturation [L 3 I L 3 ]; 

Sr irreducible water saturation [L3 I L 3 ]; 

p PM grain density [M L - 3 ]; 

¢ total PM porosity [L3 1 L 3 ]; 

). = ln2IT1; 2 , radioactive decay constant [T- 1]; 

T1; 2 half-life of radioactive species [T]. 

The parameters 08 and 0.>. are defined as 

for reactive transport 

for radionuclide transport 
and 0.>. = { 

0 

. 1 

for reactive transport 

for radionuclide transport 

The first three terms on the left-hand side of (1) describe diffusion in the mobile pore 

water [Skagius and Neretnieks, 1988], through the immobile thin film in the immediate 

vicinity of the PM grains [de Marsily, 1986], and surface diffusion [Jahnke and Radke, 
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1987; Skagius and Neretnieks, 1988; Cook, 1989; Berry and Bond, 1992], respectively. 

The fourth term on the left-hand side (1) describes advective transport. The terms on the 

right-hand side of equation (1) describe the dissolved species accumulation and radioactive 

decay in the pore water, in the immobile fraction, and on the PM grains due to sorption (for 

solutes) or filtration (for colloids). Chemical reactions in the water phase are also accounted 

for [ Cho, 1971]. A detailed discussion of these terms can be found in Moridis [ 1999], from 

where 

and (2) 

where Do is the molecular diffusion coefficient of the dissolved species in water [L2T- 1 ], 

aL is the longitudinal dispersivity [L], Tp is the tortuosity factor of the pore paths 

[dimensionless], and Ti is the tortuosity factor in the diffusion paths through the immobile 

fraction [dimensionless]. If surface diffusion cannot be neglected [Jensen and Radke, 1988], 

DF is given by [Jahnke, 1986; Jahnke and Radke, 1987] 

(3) 

where T 8 is the tortuosity coefficient of the surface path [dimensionless], and D 8 is the 

surface diffusion coefficient [L2T- 1]. For homogeneous PM syste~s there is theoretical 

justification [Cook, 1989] for the relationship T 8 = ~ Tp. 

The species concentration in the mobile and immobile water fractions are related 

through the linear equilibrium relationship [de Marsily, 1986], 

(4) 

where Ki is a dimensionless mass transfer coefficient. Equation (1) then becomes 

(5) 



where 

Dr=¢ {Do [Tp (S- Sr) + Ti Sr Ki] + (S- Sr) aL fv V} (6) 

and 

2.2. The Equations of Solute Sorption and 

First~Order Chemical Reaction 

(7) 

Considering that sorption occurs as the dissolved species diffuses through the immobile 

. water fraction, and assuming linear equilibrium (LE) sorption, the following relationship 

applies: 

(8) 

where Kd is the distribution coefficient [M- 1 L 3 ]. 

Linear kinetic physical (LKP) and linear irreversible physical (LIP) sorption are 

described by the equation [Moridis, 1999] 

(9) 

where kp is the kinetic constant of linear adsorption [T- 1 ], and 

.,for LKP sorption; 
(10) 

for linear LIP sorption. 

In the case of LIP sorption, Kd does not represent the distribution coefficient ofLEsorption, 

but is rather a proportionality factor. 

The first -order reversible chemical sorption is represented by the linear kinetic chemical 

(LKC) model 

(11) 

7 
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• where k"d [M- 1 L3T- 1] and k;- [T- 1 ] are the forward and backward kinetic constants, 

respectively. Note that equation (11) can be used in conjunction with the physical sorption 

equations to describe combined sorption [Cameron and Klute, 1977], e.g., physical and 

chemical sorption. Combined sorption accounts for the different rates at which a species 

is sorbed onto different PM contituents. Thus, sorption onto organic components may be 

instantaneous (LE), while sorption onto mineral surfaces may be much slower and kinetically 

controlled [Cameron and Klute, 1977]. 

The equations of a series of Nc first-order chemical reaction are given by [Cho, 1971] 

(12) 

where JCj (j = 1, ... , Nc) is the chemical reaction rate constant [T- 1 ], and Nc is the 

number of chemical reactions in the series. 

2.3. The Solute Transport ODE in the Laplace Space 

2.3.1. Parent or Stable Species. After incorporating the sorption terms, the Laplace 

transform (LT) of the solute transport equation ( 5) yields the following Ordinary Differential 

Equation (ODE) 

d2C dC ~ 
D--U--EC=O, 

dx 2 dx 
(13) 

where C = £{ C}, £{} denotes the LT of the quantity in the brackets, 

(14) 



h+w'l/J for LE sorption; 

h+u'l/J for LKP or LIP sorption, 

h+v'l/J for LKC sorption, 
R= (15) 

h+(w+u)'l/J for combined LE and LKPILIP sorption, 

h+(w+v)'l/J for combined LE and LKC sorption, 

h+ (u+v)'l/J for combined LKPILIP and LKC sorption, 

Dr+ cPTsw'l/JDs for LE sorption; 

Dr+ cPTsu'l/JDs for LKP or LIP sorption, 

Dr+ cPTs v'l/JDs for LKC sorption, 
D= (16) 

Dr+cPTs(w+u)'l/JDs for combined LE and LKPILIP sorption, 

Dr+cPT8 (w+v)'l/JDs for combined LE and LKC sorption, 

Dr+cPTs(u+v)'l/JDs for combined LKPILIP and LKC sorption, 

k"t Ki v = --=----
8 +.A+ k~' 

.J,- (1- ¢) 
'+'- ¢ p, (17) 

and s is the Laplace space parameter. The term R is an expanded retardation factor, which 

can account for kinetic behavior [Moridis, 1999]. Its development involves the LT of the 

sorption from equations (8) through (11). It is straightforward to show that [Moridis, 1998] 

~ ~ 

F=pC (18) 

9 
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where F = £{ F} and 

w for LE sorption; 

u for LKP or LIP sorption, 

v for LKC sorption, 
p= (19) 

w + u for combined LE and LKPILIP sorption, 

w + v for combined LE and LKC sorption, 

u + v for combined LKP/LIP and LKC sorption. 

Equation ( 13 ), subject to equations (14) through (19), is the ordinary differential 

equation (ODE) of solute i.r,utsport in its most general form. Implicit in (13) are the 

assumptions that (a) C(x, t = 0) = 0, (b) F(x, t = 0) = 0, (c) R(x, t = 0) = 0, 

and (d) in combined sorption, different sites are involved in each of the constituent types of 

sorption. 

2.3.2. Daughter Species of Radioactive Decay. If the species is radioactive, the 

right-hand side of equation (5) is augmented by the term 

-Av-1 mr [¢hCv-l + (1- ¢) pFv-d, where 
Mv 

mr=M ' v-1 

Mv is the molecular weight of the v-th daughter (1 < v :::;: Nd, Nd being the total number 

of radioactive decay or reaction products), and v - 1 refers to the decaying parent. Then, 

omitting for simplicity then subscript, the Laplace space transport equation for any daughter 

product v of the decay chain following a LE isotherm is given by 

(20) 

where 

(21) 



If the daughter sorption is kinetically controlled, the kinetic sorption equations (9) and 

( 11) need to account for the generation of daughter mass due to the decay of the sorbed 

parent, and become 

where Fv-l is the sorbed mass of the parent, 

for LKPILIP sorption, 

for LKC sorption, 

(22) 

{ 

kp 8p for LKP/LIP sorption, 

k/3 = 
k;; for LKC sorption, 

and (v is the fraction of the mass of the decayed sorbed parent that remains sorbed as a 

daughter (0 ::; (v ::; 1). The term (v is introduced to account for the different sorption 

behavior of parents and daughters, and the fact that daughters can be ejected from grain 
( 

surfaces due to recoil, e.g., the ejection of 234Th from grain surfaces during the alpha decay , 

of 238U [Faure, 1977]. The LT of (22) returns 

' 
(23) 

where p is obtained from equation ( 19), and 

for (a) LKPILIP or (b) combined LE-LKPILIP sorption 

(24) 
for (a) LKC sorption or (b) combined LE-LKC sorption 

For combined LKC and LKPILIP sorption, Pr is the sum of the two components in (24). 

Using (23) and (24), it is easy to show that equation (20) applies, but with 

(25) 

All other terms in (20) remain unchanged. Equations (20) through (25) are valid in any 

layer n. It is obvious that for a complete daughter ejection, [Faure, 1977], (v = 0, Pr = 0, 

and (21) and (25) become identical. 

11 
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2.3.3. Products of Chemical Reactions. If the species is a product of the v-th first­

order chemical reaction in the reaction chain (12), the right-hand side of equation (5) is 

augmented by the term-¢ hKv-1 Cv_1 . Then, equation (20) applies unchanged, but with 

Gv-1 = cP h Kv-1 · 

3. Colloid Transport Equations 

3.1. The PDE of Colloid Transport 

(26) 

The 1-D PDE of transport of a radioactive or reactive true colloid (i.e., a colloid 

generated from contaminants when their concentrations exceed their solubility [Saltel?i et 

al., 1984]) through a variably saturated PFM is described by equation ( 1) with the following 

changes: 

(a) The term C refers to the colloidal species. The term Ci is entirely analogous, and 

equation ( 4) applies. 

(b) Colloids do not support surface diffusion, thus Ds = 0 in equation (3). 

(c) The term F is replaced by a, which describes physical-chemical filtration of colloids 

(distinctly different from surface filtration and straining). Thus, the sorption term 

( 1 - ¢) p ~~ in equation (1) is replaced by the filtration term Pc ~~, where Pc is the 

colloid density [M L - 3 ] and a is the filtered concentration of the colloid expressed as 

volume of colloids per volume of the porous medium. 

(d) The velocity adjustment factor fv = 1 for solutes (see the definition after equation 

(1)), but 1 ~ fv ~ 1.5 in colloids. For fv > 1, it indicates that colloidal advection is 

larger than the average water velocity [Ibaraki and Sudicky, 1995]. This results from 

the relatively large size of the colloids, which leads to their concentration in the middle 

of the pores where the groundwater velocity is larger than the bulk average velocity. 

The factor fv tends to increase with decreasing ionic strength, but cannot exceed 1.5 



because colloids cannot move faster than the maximum groundwater velocity [lbaraki 

and Sudicky, 1995]. 

(e) The dispersivities aL and aT are generally different from those for solutes [Jbaraki 

and Sudicky, 1995] and may be a function of the colloidal particle size. 

(f) The term Do in Dm and Di (equations (1) and (2)) is the colloidal diffusion coefficient 

in water [L2T- 1] and is described by the Stokes-Einstein equation as [Bird et al., 

1960] 

D 
_ kBT 

o-
3?r J-L de ' 

(27) 

where kB is the Boltzmann constant (1.38 x 10-23 J K- 1 in SI units), Tis the absolute 

water ten-. perature [K], J-L is the dynamic viscosity of water [M L - 1T- 1 ], and de is the 

colloid diameter[£]. 

3.2. The Equations of Colloid Filtration 

When colloid deposition is a relatively fast process compared to the water velocity, 

it is possible to describe colloid filtration as a linear equilibrium process [James and 

Chrysikopoulos, 1999]. Filtration is then described by 

(28) 

where Ka is a distribution coefficient [M- 1 _;:}]. 

The colloid filtration is generally nonequilibrium and is more accurately described by 

a linear kinetic model [(:orapfioglu et al., 1987], which can take the following form: 

(29) 

kinetic forward and reverse colloid deposition rates (clogging and declogging coefficients), 

13 
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respectively, which are specific to each colloid and PFM type. The parameter 8p is analogous 

to that for sorption in equation (10), and describes the reversibility of filtration. 

The term r;,- is commonly assumed to be zero [Bowen and Epstein, 1979], but there is 

insufficient evidence to support this. The parameter r;,+ can be given by 

or r;,+ = Efv U G, (30) 

where E is the filter coefficient of the porous medium [L - 1 
], fv is a dimensionless velocity 

modification factor, U is the Darcy velocity [LT- 1 ], and G is a dimensionless dynamic 

blocking function (DBF) which describes the variation of the PFM porosity and specific 

surface with a- [James and Chrysikopoulos, 1999]. For deep filtration (i.e., in the case of 

very dilute colloidal suspensions), there is no interaction among the colloidal particles and 

no effect on the medium porosity and permeability (i.e., ¢ is constant), and G = 1. 

The first expression in (30) is similar to that for linear kinetic sorption, and is an 

approximation that can be used effectively in studies where the water flow velocities vary 

within a narrow range. An example of such an application would be the study of colloid 

filtration in 1-D systems (columns) under steady-state flow conditions, from which the r;,+ 

and r;,- parameters can be determined. The second expression in (30) is more general, 

applies to domains in which the flow velocity varies within a wide range [de Marsily, 1986], 

and is conceptually more robust because it considers the effects of flow velocity on colloid 

attachment. 

For transport through porous media or in a single fracture with fracture porosity¢ f=. 1, 

E can be computed from Yao et al. [1971] or Tien et al. [1979] as 

1-¢ 
E = 1.5~7Jc, (31) 

where dm is the particle size of the medium grains or the fracture aperture [L], and rJc from 

Yao et al. [1971] is 



(32) 

in which kB is the Boltzman constant, de is the colloid diameter [L], ac is the singe collector 

efficiency, and all other terms remain as previously defined. Alternatively, Tic in SI units 

can be computed from Tien et al. [1979] as 

=(1 _ -+.)2/3 A Nl/8 N1s;s + 4 A 1/3 N-2/3 
Tic '+' S Lo R S Pe 

+ 3.375 x 10-3 (1 - ¢ )213 As Nb· 2 Nfi0
·
4 

, 

where 

As- 2 (1- ws) 
- 2 - 3w + 3w5 - 2w6 ' 

4 X 10-20 

N Lo = 9 7r f.1, d~ U ' 

N _ (Pc - p) d~g 
G- 18n p, U ' 

N _ 3 7r f.1, de dm U 
Pe- kT ' 

3.3. The Colloid Transport ODE in the Laplace Space 

(33) 

(34) 

The transport of a radioactive or reactive colloid through a variably saturated PFM in the 

Laplace space is described by equations (13) through (16) and (18) through (26) with the 

following changes: 

(a) For colloids Ds = 0 in equation (16). 

(b) Equations (15), (16) and (19) reflect now colloid filtration that can be described by a 

linear equilibrium, linear kinetic, or linear irreversible relationship, or combinations 

thereof. 

(c) The terms in equation (17) are now given by 

~+ 
u-----
-s+)..+~-' v = 0, and 'lj; = ~ . (35) 

(d) In equation (22), ka = ~+and k13 = ~-,while the term (vis the fraction of the mass of 

the filtered (attached) parent colloid that remains attached after the decay (0 ::; (v ::; 1). 

15 
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The term Pr in (24) is now given by 

Av-l (v 
Pr = U. 

S + Av + /'\,- (36) 

4. Transport in Layered Fractured Media 

The development of the equations for transport in a a layered fractured media expands 

on the analysis of Tang et al. [1981] and Sudicky and Frind [1982]. A schematic of the 

fracture-matrix system is shown in Figure 1, in which each of the N layers has different 

properties. 

4.1. Transport in the Matrix 

4.1.1. The ODE of Parent or Stable Species Transport in the Matrix. Advection 

in the matrix is neglected, that is U:;:" = 0. Then the Laplace space ODE of the species 

transport in the matrix layer n is given by 

2~m 

m d Cn Emc~m 
Dn -d 2 - n n =0, 

xn 
(37) 

where the m superscript denotes the matrix. The diffusive flux across the fracture-matrix 

interface is given by 

mnm ac;;­
qn = -rn Xn n -

8
--
Xn 

(38) 
Xn = 0 

and differs from the analogous expression of Tang et al. [1981] in the inclusion of (a) the 

active interface area reduction factor rn and of (b) the accessibility factor Xn· The te~ rn 

(1 ~ rTI > 0) is defined as the ratio of the average interface area between mobile water in a 

fracture and its surrounding matrix to the average interface area between a fracture and the 

surrounding matrix. A detailed discussion on the subject can be found in Liu et al. [1998]. 

It is obvious that, for a fully saturated fracture, r n = 1. 
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The accessibility factor x~ adjusts the fracture-matrix interface fluxes within a layer; 

x~ = 1 for solute transport, and 0 ::; x~ ::; 1 for colloid transport. It describes the portion 

of the colloidal concentration in a medium allowed to enter an adjacent medium of different 

characteristics, and quantifies pore-size exclusion (straining). 

4.1.2. The ODE of Daughter Transport in the Matrix. From equation (20), the 

Laplace space ODE of transport of the daughter v in the matrix of layer n is given by 

d2CJm ~ ~ 
Dm n,v Em em em em n v d 2 - n v n v -----: - v n v-1' 

' Xn ' , ' 
(39) 

where the term G~ is computed from (21) to (26). The diffusive flux of the daughter v 

across the fracture-matrix interfac~ is given by equation (38). 

4.2. Transport in the Fractures 

4.2.1. · Adjustments to Concepts and Equations. In fracture transport, the Darcy 

velocity Un in any layer n is computed from the basic mass balance equation as 

where Qw is the water influx rate per unit fracture thickness (in they direction, not shown 

in Figure 1) at the z1 = 0 boundary [L2T- 1 ], and 2bn is the fracture aperture [L]. The 

parameter Mn [L/ L] is the fracture density, and is determined from the number of fractures 

in an arbitrary length Lx (see Figure 1 ). The term Lx is related to the matrix block half-width 

Xn [L] and bn (see Figures 2a and 2b) through the relationship 

Lx 
Mn = 2 (Xn + bn)' n = 1, ... 'N. 

There are two different ways to treat the fractures. If the fractures are open, we 

have surface-based rather than volume-based sorption in the fractures of any layer n 

(n = 1, ... , N). The following changes are then made: 

17 
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(a) F is now the mass of solute adsorbed per unit length of fracture surface, and has units 

[M L - 2 ]. Similarly, cr is the volume of colloids attached per unit length of fracture 

surface, and has units of [L - 1 ]. 

(b) From the mass balance equations, the term ( 1 - ¢) p in ( 17) and Pc in equation (34) 

are replaced by 1/bn, where bn is the fracture width [L] in layer n. 

(c) The distribution coefficient of the fracture K~ is now defined as the mass of solute 

adsorbed per unit area of surface divided by the concentration of solute in solution 

[Tang et al., 1981], with units [L]. Similarly, the distribution coefficient of the fracture 

K £ is now defined as the mass of true colloids attached per unit area of surface divided 

by the concentration of colloids in suspension, with units [L]. 

(d) The kinetic constants k-: of chemical sorption in (11) and "'+ in (30) have units 

[ML- 2T- 1]; k-; in (11) and"'- in (30) have units [LT- 1]. For transport through 

a single fracture with fracture porosity ¢ = 1, E in (29) is now dimensionless and is 

given byAbdel-Salam and Chrysikopoulos [1995] as 

'r/d 
E = 2b' (40) 

_ where 'r/d is the fracture surface colloid deposition coefficient [L]. Abdel-Salam and 

Chrysikopoulos [1995] and Chrysikopoulos and Abdel-Salam [1997] reported 'r/d in 

the 10-10 - 10-9 m range. 

If the fractures are filled (a rather common occurrence), they are treated as a porous 

medium. Then, there is no need for the conceptual or mathematical adjustments in ( 1) 

through (4). 

In both open and filled fractures, the right-hand side of equation (5) is augmented by 

the term 

and Qn is described by (38). 

{ 

1/bn 
where f~ = 

1 

for open fractures 
(41) 

for filled fractures, 



4.2.2. The ODE of Parent or Stable Species Transport in the Fractures. The 

Laplace space equation for fracture transport along the z-coordinate (Figure 1) then becomes 

2 ~f ~f 

nt d Cn - U dCn - Ef fjf = Q~ 
n d 2 n d n n n, Zn Zn 

(42) 

where the f superscript denotes the fracture, the n subscripts denotes the layer, and 

On = .C{ Qn}· Equation (42) is written in terms of the local coordinate Zn in each layer n. 

4.2.3. The ODE of Daughter Transport in the Fractures. The Laplace space ODE 

of transport for the daughter v in the matrix of layer n is given by 

2 ~, ~f 

f d Cn,v _ dCn,v _ t ~ t _ ~ _ t ~ f 
Dn v d 2 Un d En v Cn v- Qn Gn Cn v-1 · (43) , zn Zn ' , ' 

All the terms in ( 43) are as previously defined. 

4.3. Initial and Boundary Conditions 
~ ' 

The initial and boundary conditions corresponding to the fracture equation are 

C~(zn, t = 0) = 0, 

C{ (z1 = 0, t) = Czo(t), 

C~ (zn = Zn, t) = c;+l (zn+l = 0, t), n = 1, ... , N- 1, 

C~(ZN -too, t) = 0, 

(44) 

where Zn denotes the thickness of the n-th segment (layer). The time-dependence of Czo 

allows investigation of systems with time-variable upper boundaries. Some of the more 

common forms of C zo ( t) are 

Co 

Co exp[->. (t + td)] 

N* 

constant concentration 

decaying radionuclide concentration 

'I:C;[U(t- t;_ 1 ) - U(t- t;)] variable pulse concentration 
i=l 

( 45) 
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where Co is a constant, td is the release delay (the time between radionuclide generation or 

storage, and the beginning of release), U(t- t*) denotes the unit step function at timet* 

(see Figure 3), and N* is the number of different concentration pulses (see Figure 3). Note 

that t0 = 0 and that, for N* = 1, we obtain the unit pulse of duration ti. 

The initial and boundary conditions corresponding to the matrix equation are 

c: (X, t = 0) = 0, 

c:(x = 0, t) = c~ (zn, t), 

{ 

acm a: (x =X, t) = 0 for Case 1 (Figure 2a), 

C:;;"(x -7 oo, t) = 0 for Case 2 (Figure 2b), 

(46) 

where X is the half width of the matrix block (Figure 2). Case 1 in Figure 2a describt-.:: a 

finite system with a Neuman boundary. If dry fractures (i.e., fractures in which the water 

phase is discontinuous) occur in the rock matrix of Case 1, the half-width X is replaced 

by X* = 2X/(nd + 1), where nd is the number of dry fractures evenly spaced along x in 

the matrix block (Figure 2b). Case 2 in Figure 2b describes a semi-infinite system. The 

Laplace transforms of equations (44) through (46) are trivial. 

5. The Laplace Space Equations 

5.1. General Matrix Solutions in Each Layer 

5.1.1. Parent or Stable Species. Omitting_ for simplicity the n subscript, and 

expanding on Tang et al. [ 1981] and Sud icky and Frind [ 1982], the solutions to (37) are 

given by 

fjm = {He cosh[B (X- x)] for Case 1 

He exp( -B x) for Case 2 

respectively, where He and He are parameters to be determined, and 

{F 
B=B(s)=vnm· 

(47) 

(48) 



From (47) and the Laplace transform of (46), 

from which 

{ 

cosh[B (X- x)] {Jf 
(Jm = (Jm(x, s) = cosh(B X) 

. exp( -B x) CJ! 

for Case 1 
(49) 

for Case 2 

for Case 1 
(50) 

for Case 2 

Although the hyperbolic cosine solutions for X ~ oo theoretically provides the same 

results with the exponential solution, in practice this is not the case because of difficulties 

in the computation of cosh[B (X- x)] for large values of the argument. The equations in 

(50) are applicable in any layer n (n = 1, ... , N). 

5.1.2. Daughter or Reaction Products. Following the same approach, it is 

straightforward to show that the Laplace space solution of the ODE in (43) for any daughter 

or reaction product v is given by 

If~ cosh[9v(X- x)] + ,f;=_, (f! AZ:) H~ cosh[9,(X- x)] for Case 1 

H~ exp( -9. x) + .f, (f! AZ:) H! exp( -9, x) for Case 2 

(51) 

where 

(52) 

The coefficients H v are given by the general expression 

(53) 

where Tv,r;, are appropriate coefficients. Expressions for H v and Tv,r;, (the derivation of 

which is tedious but straightforward) for Cases 1 and 2 are provided in Appendix A. 
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Equation (51) shows that the solution of the matrix transport equation of the daughter 

or reaction product v requires knowledge of the fracture solutions of all previous members 

of the decay or reaction chain. 

5.2. General Fracture Solutions in Each Layer 

5.2.1. Parent or Stable Species. From the Laplace transform of the diffusive flux in 

( 42), and omitting for simplicity the subscript n, 

where 

'Y = { r xm Dm t9 tanh(B X) 

rxm DmB 

Substituting in ( 42) and collecting terms, 

for Case 1 

for Case 2 

where E* = Ef + 'Y fq. The general solution to (56) is given by 

{Jf = {Jf (x, s) = aexp(r/ z) + ,Bexp(7]- z), 

where a and ,B are parameters to be determined, and 

± U ± JU2 + 4Df E* 
17 = 2Df 

Equations (54)-(58) apply in any layer n. 

(54) 

(55) 

(56) 

(57) 

(58) 

5.2.2. Daughter or Reaction Products. From equations (41)-(44) and (51)-(53), for 

a daughter v 
v 

Qv = fq r xm D~ Wv = fq L "tv,,. 8!. (59) 
,.=1 



Equation (59) is general and applies to both Case 1 and Case 2. Expressions for Wv and 

rv,, (the derivation qf which is tedious but straightforward) for Cases 1 and 2 are provided 

in Appendix B. 

Substituting in (43) and collecting terms, 

(60) 

where E~ = E[ + rv,v r. 
Following the same approach, it is straightforward to show that the Laplace space 

solution of any daughter or reaction product v is given by 

~, + -
Cv = nv exp(1Jv z) + f3v exp(1Jv z) + Yv, (61) 

where 
1 

At,, a, exp(1J: z) + L A~, {3, exp( 17;; z) , (62) 

and 
B± 

A± = v,, 
v,, n1 ('Yl±)2 - u 17 ± - E* · v .,, . , v 

(63) 

The computation of the B(j, coefficients is tedious but straightforward. Expressions for 
' 

B(j, and for v ~ 5 are given in Appendix C. Equations (61) and (62) show that the solution 
' ' 

of the fracture transport equation of the daughter or reaction product v requires knowledge 

of all previous nv and f3v. i.e., the solutions of all previous members of the decay or reaction 

chain. 

6. The Solution Approach 

6.1. Determination of the a and (3 Parameters 

Equation (57) defines a total of 2N unknowns, i.e., the a and {3 parameters in each of the 

N subdomains. These are obtained from the solution of the following equations. 
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6.1.1. Boundary Equations. These apply to the z1 = 0 point in the first layer (n = 1). 

From (57) and the Laplace transform of (44), for a known boundary concentration we have 

while for known flux boundary conditions 

where Czo = £.{ Czo}. For the common boundary conditions in (45), 

Co 
s 

constant concentration 

(64) 

(65) 

Co exp( -,\ td) 
s+>. 

decaying radionuclide concentration 

N* C* 2:-i [exp( -st:_ 1 ) - exp( -st:)J 
s 

i=l 

piecewise constant concentration. 

(66) 

For the limiting case of a system consisting of a single semi-infinite layer (i.e., N = 1) 

with an open fracture and a constant concentration at z1 = 0, a1 = 0, /31 = Co/ s, and 

equation (57) is reduced to the Laplace space solutions obtained by Tang et al. (1981] (Case 

2) and Sudicky andFrind [1982] (Case 1). 

6.1.2. Concentration Equations. At the layer interfaces we have the equations 

for n = 2, ... , N. An additional equation is provided by the requirement that C~ be finite 

for ZN -----t oo, which dictates that aN = 0. 

6.1.3. Flux Equations. The remaining N - 1 equations are provided by the equality 

of fluxes across the layer boundaries in the fractures, which dictates that 



in which the quantity in the brackets is computed at the value of the local z coordinate 

indicated by the bracket subscript. From (57) and (68) we obtain 

nn_:1 [ Mn-1 bn-1 (Un-1,- D~-1 77~-1)] exp(77~-1 Zn-1) 

+ f3n-1 [ Mn-1 bn-1 (Un-1 - D~-1 77~-1)] exp(77~-1 Zn-1) 

-an [Mn bn(Un- D~ 77~)] - f3n [Mn bn(Un- D~ 77~)] = 0, 

wheren = 1, .. . ,N -1. 

(69) 

6.1.4. Equations for Daughters. For a daughter product v of radioactive decay or 

reaction, the following changes are made to equations (64) through (69): 

(a) In the right-hand side of equations (64) and (65), the term Czo is replaced by Cv,zo, 

where Cv,zO = £{ Cv,zo }, and Cv,zo is the concentr~tion of daughter vat the .Z1 = 0 

boundary. For a constant Cv,zo, Cv,zo can be obtained from equation (66). For a 
~ 

z1 = 0 boundary with a decaying radionuclide concentration, Cv,zo is computed from 

· . 8Cv zO 
the Laplace transform of the mass balance equation 

8
; = >.vCv,zo- Av-1 Cv-1,zo 

as 

(70) 

For a reaction chain, equation (70) indicates a recursive reaction~ 

(b) The 0 on the right-hand side of the layer interface equation (67) is replaced by , 

Yv,n(Zn = 0)- Yv,n-1(Zn-1 = Zn) for n = 2, ... , N. 

(c) Equation (68) applies unchanged. The 0 on the right-hand side of equation (69) is 

replaced by the known quantity 

[ 
f dYv,n-1] 

- Mn-1 bn-1 Un-1 Yv,n-1- Dv,n-1 d · 
Zn-1 Zn-1 

6.1.5. Parent-Daughter Species. Note that the development of the equations for 

parents and daughters is general and does not restrict radioactive chains to solute or colloidal 
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species. Thus, colloidal parents can have solute daughters if the daughter solubility exceeds 

that of the parent (a distinct possibility in the transport of small-diameter colloids). The 

reverse is also possible if the parent solubility exceeds that of the daughter. 

6.2. The Laplace Space Solutions 

The generality and complexity of these equations preclude the development of closed­

form solutions for ai, f3i (i = 1, ... , N). Consequently, it is not possible to analytically 

invert equations (57) or (61), and to obtain a closed-form equation for concentration in 
I 

time. The problem is alleviated by numerically inverting the Laplace space solutions. The 

algebraic equations discussed in Section 6.1 may be written in a general matrix form as: 

(71) 

where M is the coefficient matrix, X is the vector of the unknowns, and B is the composite 

vector of knowns. Solution of (71) returns the vector 

where - (a·) xi= 
13
; , i = 1, ... , N. (72) 

The solution of the matrix equation (71) necessitates arithmetic values for the s 

parameter of the Laplace space. These are provided by the numerical inversion scheme 

of DeHoog et al. [1982] that uses complex values for s. A detailed discussion of the 

application of this method and its performance can be found in Sudicky [1990] and Moridis 

[1998]. The quantities M, X and B assume the complex type of s. 

The ai and f3i computed from the matrix equation (71) are then used to obtain all . 
the C~ solutions (i = 1, ... , N). The corresponding c;;- solutions are obtained from C~ 

and equations (50) or (51)-(53). Note that the solutions for daughters or reaction products 



requires knowledge of the solutions of all the previous members in the radioactive or reactive 

chain. 

6.4. Numerical Inversions of the Laplace Space Solutions 

The various time-variable concentrations can be determined by numerically inverting 

the Laplace space solutions, i.e., 

(73) 

where .C - 1 {} denotes the inverse Laplace transform of the quantity in the brackets. Details 

on the inversion will not be discussed here; they can be found in DeHoog et al. [ 1982] and 

in Moridis [1998]. 

7. Treatment of Special Conditions 

7.1. Colloid Transport With Straining 

If straining across the interfaces (fracture-fracture or fracture-porous medium) of layers 

is considered, the determination of the a and f3 parameters is more complicated and can 

involve several stages. The solution process is as follows: 

(a) The system described by equations (64)-(69) is solved, and CXn, f3n (n = 1, ... , N) are 

computed. 

(b) The potential (maximum) flux at the bottom boundary of the first layer (first interface) 

is computed as 
~f 

~ - [ ~f f dC1] Qz1 - U1C1 -D1 rz--
1 z1=Z1 (74) 

= cx1(U1- D{ 77t)exp(7Jt Z1) + f31(U1- D{ 771)exp(7J1 Z1) 

This represents the Laplace-transformed flux if all the colloids can move uninhibited 

(i.e., without straining) across the layer interface. Because all the quantities in (74) are 
I 

~ 

known, Q z 1 is easily computed. 
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(c) The actual transformed flux across the straining boundary is now 

Qz1 = ai(UI- D{ 77t) exp(77t Z1) + j3~(U1- D{ 771) exp(771 Z1), 

=X~ Qzl 
(75) 

where the superscript * denotes the actual (as opposed to potential) values, and x~ 

is a dimensionless accessibility factor [Moridis et al., 1999]. The term x~ adjusts 

the fluxes at the fracture interfaces of layers 1 and 2. It describes the portion of the 

colloidal concentration in the fractures that is allowed to enter the fractures (or, in the 

case of an unfractured layer, the flowing portion of the matrix) of an adjacent layer 

of different characteristics, and quantifies pore size exclusion (straining). For solutes 

x~ = 1, while for colloids 0 :S x~ s 1 because of their relatively large size. 

For the first layer ( n = 1 ), equations ( 64 )-( 66) are unaffected. Equation ( 67) is replaced 

by the actual flux equation (75). The right hand side ( = x~ Q z1 ) and the coefficients 

of ai and /3i in (75) are known quantities. 

(d) The flux equation (69) for n = 2 now becomes 

ai [ M1 b1 (U1 - D{ 77t)] exp(77t Z1) 

+ 13; [M1 b1(U1- D{ 771)] exp(771 Z1) (76) 

-az [Mzbz(Uz-Dt77i)] -f3z [Mzbz(Uz-Dt772)] ,0. 

(e) Equations (67) and (69) apply for n > 2. The resulting system of linear equations in 

(71) is solved again to yield ai, /3i, an, f3n (n = 2, ... , N). 
~ 

(f) The potential (maximum) flux Q z2 at the bottom boundary of the next layer n = 2 is 

then computed in analogously to that in equation (74). In the same layer, equation (67) 

is replaced by the equation of the corrected flux in (75), and the adjusted flux at the 

boundary between the n = 2 and n = 3 layers is obtained from (76) after the subscript 

substitutions 2 --t 1 and 3 --t 2. The new system of linear equations (71) is solved 

again to yield ai, J3i, a2, /32, On, f3n (n = 3, ... , N). 



(g) The process is repeated until all the concentration equations (67) are replaced by the 

corrected flux equations (75). The solution of the linear system (71) then returns a~, 

(3~ (n = 1, ... , N). Using the a~ and (3~ values (instead of an and f3n) in (57) yields 

Cl. 
It is obvious that colloid filtration with pore-size exclusion (straining) requires solution 

of the linear system (71) a maximum of N times. Note that there is no need to apply the 

process described above at the interfaces where no straining occurs. 

Extension to. daughter products (colloidal or solute) of the decay of radioactive colloids 

is straightforward. Equations (65)-(69), as modified per the discussion in Section 6.1.4, 

appiy to the initial (unstrained) system. The quantity 

is added to the expression for Q z 1 in the second line of (7 4 ), whereas the quantity 

is subtracted from the right-hand side (second line) of (75), where Y* indicates particular 

solutions based on the corrected fluxes. 

7 .2. Misaligned Fractures 

The analysis presented thus far assumes that the effect of fracture offset on transport is 

negligible. This may not be the case for large fracture spacing or at short observation times. 

The process that accounts for fracture misalignment is described in Figure 4. The 

increased travel path of the transporting water caused by the offset fractures is indicated 

by the horizontal pathway at the confluence of the n and n + 1 layers in Figure 4a, and its 

effect is described by the addition of an "interlayer", i.e., a pseudo-layer (Figure 4b) with 

the following characteristics: 
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(b) A relative frequency M1 = Mn. 

(c) An open or filled fracture of width b I through which water flows between the n and 

n + 1 layers. The properties of the fracture in the interlayer are independent of those 

in the layers above and below. 

(d) A complex matrix, composed of the matrices of both the n and n + 1layers. In Figure 

4b, the matrices of the n and n + 1 layers are positioned on the left and right sides 

of the fracture, respectively. The two components of the matrix are assumed to be 

semi-infinite, as illustrated by their rotation by 90° (with respect to the original layer 

orientation) in Figure 4b. Then, the flux into the composite matrix of the interlayer is 

computed from equation (54), but with 'Y = "fJ, where 

1 
'YI = 2 bn + 'Yn+d, (77) 

and "fn, 'Yn+l are computed from equation (55). 

Thus, consideration of misaligned fractures transforms a system of N layers to a system 

of N + N1 layers, where N1 is the number of interlayers. The solution of the augmented 

system does not pose any particular challenges and proceeds in the manner discussed in 

Section 6. Note that the approximation discussed involves the longest possible travel path 

and the largest possible amount of tracer diffusing into the matrix. This is because the 

concept of the interlayer assumes semi-infinite psedomatrices (see Figure 4b) and ignores 

cross diffusion between the n and n + 1 layers. In that respect, the transport estimates 

considering and ignoring fracture offset provide the limits that bracket the true solution. 

7.3. Occasional Unfractured Layers 

If the layered system includes unfractured (porous) layers (e.g., Layer 3 in Figure 



1), these are treated as a combination of a pseudo-matrix (representing the n9nflowing 

portion of the layer) and a pseudo-fracture representing the flowing portion of the layer. In 

essence, unfractured layers are treated as filled-fracture systems, and all the equations apply 

unchanged. The properties of the unfractured medium are assigned ~ both the pseudo­

matrix and the pseudo-fracture. The relative sizes of band X can describe the flowing and 

non-flowing portions of the porous medium. If water flows uniformly through the porous 

medium, X = 0. This approach maintains water mass and flux balance. 

It is obvious that, for unfractured media, Lx = 2(bn + Xn). i.e., Mn = 1. Note that 

correct water saturations S must be used (obtained from the solution ofthe steady-state flow 

equation) because the derivation of the transport equations is based on time-invariant flow 

conditions and cannot compute changes inS. 

7.4. Transport in Layered Unfractured Media 

This is a limiting case of the scenario discussed in Section 7.3. Setting Xn = 0 

(n = 1, ... , N) transforms the problem into that of one-dimensional tracer transport in a 

layered porous (unfractured) system. Then, all the semianalytical solutions derived here 

apply unchanged. 

8. Verification 

A FORTRAN program was written to obtain the semianalytical (SA) solutions 

developed in Sections 4 through 6 by first solving (71), and then performing the numerical 

inversion indicated in (73). This code, named FRACL, accounts for all the processes, 

phenomena and conditions discussed in Sections 2 through 7. It can obtain solutions for 

a system involving an arbitrary number of layers N of any combination of porous and/or 

fractured media, and up to 4 daughters (i.e., 5 radionuclides, including the parent). It is 

31 



32 

very computationally efficient, and required less than 10 seconds for any of the problems 

discussed in Sections 8 or 9. 

FRACL is verified through comparisons to analytical solutions of radioactive solute 

and colloid transport in 1-D porous (unfractured) media and 2-D fractured media. In all 

cases, FRACL solutions are first obtained in a system consisting of a single semi-infinite 

layer (i.e., N = 1). The domain is then subdivided into three layers in the z direction, and 

FRACL solutions for this multilayered system (N = 3) are obtained. Coincidence of the 

analytical solutions to the FRACL solutions for N = 1 and for N = 3 validates FRACL. 

8.1. Test FSl: Radioactive Solute Transport in a 

System of Parallel Fractures 

This problem describes transport with LE sorption in the fracture-matrix system of 

Case 1 (Figure 2a). The corresponding analytical solution was developed by Sudicky and 

Frind [1982]. The values of the parameters used for the computation of the analytical and 

the SA solutions are as in Sudicky and Frind [1982], and are listed in Table 1. A constant 

concentration condition is applied at z1 = 0. 

Figure 5 shows the distribution of the relative concentration CR (defined as CR = 
C~/Czo) in the fractures along the z axis at t = 1, 000 days. The analytical solut~on and the 

two FRACL solutions (for N = 1 and N = 3) are identical in the first 5 significant digits. 

8.2. Test FS2: Radioactive Solute Transport in a Single Fracture 

This problem describes transport with LE sorption in the fracture-matrix of Case 2 

(Figure 2b). The corresponding analytical solution was developed by Tang et al. [1981]. 

The values of the parameters used for the computation of the analytical and the SA solutions 

are the same as in Test FS 1, and are listed in Table 1. A constant concentration condition is 

applied at z1 = 0. 



Figure 6 shows the distribution of Cn in the fracture along the z axis at t = 10, 000 

days . The analytical solution and the two FRACL solutions (for N = 1 and N = 3) are 

identical in the first five significant digits. 

8.3. Tests FS3 and FS4: Transport of a Two-Member Radioactive 

Solute Chain in a Single Fracture and in Parallel Fractures 

An analytical solution to the problem of transport of a parent and a single daughter 

was developed by Sudicky and Frind [ 1984 ], but was based on a simplified PDE of fracture 

transport that neglects dispersion (in addition to involving a delta-Dirac type of contaminant 

release). Because of these differences, it is not possible to compare the SA solution from 

FRACL to the Sudicky and Frind [1984] solution. 
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To verify the ability of FRACL to predict the transport of the members of radioac- ,;. 

tive/reactive chains, the transport of a parent and a single daughter is studied in Tests FS3 

and FS4 (corresponding to the conditions of Case I and 2, respectively). The parent radionu­

clide is non sorbing and has a short half life (t1; 2 = 1, 000 s). The daughterradionuclide has 

the properties of the radionuclide discussed in Tests FS I and FS2 (Table 1 ). The boundary 

conditions and the values of the parameters are the same as in Tests FS 1 and FS2. The 

observation time in this test is long (t = 100, 000 days). This allows a fast and practically 

complete decay to the daughter radionuclide at the time of observation. 

The SA solutions of Tests FS3 and FS4 for N = 1 and N = 3 are shown in Figure 

7. The SA predictions of the C R distributions in the fractures for both N = 1 and N = 3 

coincide with the analytical solutions of Sudicky and Frind [1982] and Tang et al. [1981]. 

8.4. Tests FCl and FC2: Colloid Transport in a Single Fracture 

These tests correspond to nonradioactive colloid transport with kinetic filtration 

(deposition) in the fracture-matrix system of Case 2 (Figure 2b). Abdel-Salam and 
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Chrysikopoulos [ 1994] developed the corresponding analytical solutions for different 

boundary conditions and matrix penetration scenarios. 

The values of the parameters used for the computation of the analytical and the SA 

solutions of Tests FC1 and FC2 are listed in Table 2. In both tests, a constant flux condition 

is applied at z1 = 0. Filtration in the matrix is not considered in Test FC1, while matrix 

deposition is controlled by a linear kinetic model in Test FC2. 

Figure 8 shows the distribution of the relative concentration C R in the fractures along 

the z axis at t = 5 years. The SA predictions of C R in the fractures for both N = 1 and 

N = 3 coincide with the analytical solutions of Abdel-Salam and Chrysikopoulos [1997]. 

8.5. Tests PSl to PS4: Radioactive Solute Transport in 

Unfractured Porous Media 

Tests PS 1 to PS4 are designed to confirm the ability of the SA solutions to describe 

transport in unfractured media without any modification. The solution to this problem is 

provided by Bear [1979], and accounts for LE sorption and radioactive decay. 

The values of the parameters used for the computation of the analytical and the SA 

solutions of Tests PS 1 to PS4 are listed in Table 3. In all four tests, a constant concentration 

condition is applied at z1 = 0. The solute is a nondecaying isotope in Tests PS,1 and PS2, 

and a decaying radionuclide in Tests PS3 and PS4. LE sorption is considered in Tests PS2 

and PS3, but is ignored in Tests PS 1 and PS4. 

Figure 9 shows the distribution of the relative concentration C R along the z axis at 

t = 200 days. The SA predictions of CR distributions for both N = 1 and N = 3 are 

identical with the analytical solutions of Bear [ 1979]. 



8.6. Test PSS: Transport of a Three-Member Radioactive 

Solute Chain in U nfractured Porous Media 

This test is designed to verify the ability of the SA solutions to describe the transport of 

reactive chains in unfractured media without any modification. An analytical solution to this 

problem was developed by Harada et al. [1980], and accounts for LE sorption, radioactive 

decay, and time-variable boundary conditions. 

Test PS5 describes the transport of the radioactive chain 

through a sorbing porous medium. The concentration of 234 U (i.e., the parent radionuclide \ 

at the z1 = 0 is not constant over time, but subject to radioactive decay. The initial 

concentrations of the 230Th and 226Ra daughte~ radionuclides at the z1 = 0 boundary are 
; 

zero, but increase over time because of the decay of their parents. 

The values of the parameters used for the computation of the analytical and the SA 

solutions of Test PS5 are as in Harada et al. [1980], and are listed in Table 4. Figure 10 

shows that the analytical solutions at t = 10,000 years coincid~ with the SA predictions 

(for both N = 1 and N = 3) of the C R distributions of the three members of the radioactive 

chain. 

8.7. Tests PCl to PC3: Transport of Non-Radioactive Colloids 

in Unfractured Porous Media 

Tests PC 1 to PC3 describe nonradioactive colloid transport in a porous medium under 

conditions of "deep filtration" (see Section 3.2). An analytical solution to this problem for 

fv = 1 (see Sections 3.1 and 3.2) was developed byDieulin [1982], and accounts for kinetic 

irreversible filtration (i.e., /'\,- = 0 in equation (29)). 

The values of the parameters used for the computation of the analytical and the SA 
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solutions of Tests PC1 to FC3 are listed in Table 5. The three tests differ only in the value 

of the filtration coefficient E of equation (30). A constant concentration condition is applied 

at z1 = 0 in all three tests. 

The distributions of the relative concentration CR in the three tests at t = 7200 s are 

shown in Figure 11. In all tests, the SA predictions for both N = 1 and N = 3 are identical 

with the corresponding analytical solutions of Dieulin [ 1982]. 

9. Analysis and Test Problems 

In this section the transport of various radionuclides is studied in layered systems 

(involving both fn .. ctured and porous laye,·s) of different characteristics and properties:The 

Do and ,\ of the radionuclides discussed here appear in Table 6. For constant boundary 

conditions in any of the problems in this section, C R = 1 by definition. 

9.1. Problem 1: Importance of Fracture Misalignment 

This problem studies the importance of fracture misalignment on transport, as quanti­

fied by the concept of interlayers (discussed in Section 7.2). The following analysis focuses 

on the effects of the presence of such interlayers, in conjunction with other parameters of 

the hydrogeologic layers and of the species. The flow velocity in all cases of ,Problem 1 

was U = 0.1 m/day, the system was saturated (5 = 1), and the z = 0 boundary was kept 

at a constant concentration (CR = 1). 

9.1.1. Case 1-a: Effect of fracture offset (interlayers). This case involves the 

transport of the nonsorbing solute species 3 H in a layered fractured system with fracture 

offsets and various interlayer characteristics. Case 1-a involves three sub-cases: 1-a1, 1-

a2 and 1-a3. The geometry of the reference Case 1-a 1 of the layered fractured system is 

described in Table 7, while the hydraulic properties of the fractured layers are shown in 



Table 8 and the sorption properties in Table 9. The three main layers (identified as Layers# 

1,3 and 5 in Table 8) were fractured media (FM), while the interlayers (identified as Layers 

# 2 and 4) were considered to be fracture interlayers (FI, i.e., horizontal open fractures 

connecting the vertical fractures in the layers above and below). 

The characteristics of Cases 1-a2 and 1-a3 are explained in Table 10, which shows only 

the differences from the base Case 1-a1. Thus, Cases 1-a2 and 1-a3 differ from Case 1-a1 

in that the interlayers are porous interlayers (PI), i.e., the horizontal features connecting the 

fractured layers are either fractures filled with porous media or unfractured porous media. 

Flow and transport occurs through a porous medium with different transport behavior than 

in the Fls of Case 1-al. The hydraulic properties of the porous media in the Pis in Cases 

1-a2 and 1-a3 are the same as those of the porous matrix in the overlaying and underlying 

layers. In Cases 1-:a2 and 1-a3, the Pis have an X = 0.025 m and X = 0.1 m, respectively. 

The results of the three subcases of Case 1-a are shown in Figure 12, which shows 
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the fracture CR. The presence of the interlayers in Figure 12 is marked by the vertical "7'. 

steps in the C R profiles (caused by the fact that Figure 12 indicates the vertical coordinate 

z and not the length of the travel path. For the nonsorbing 3H and at early times, the 

retardation caused by the presence of the FI is measurable, as compared to the case with 

aligned fractures (no interlayer, denoted by NI in Figure 12-included for compar,son). This 

was expected because of the longer travel path in the case of Fls, which increase the amount 

of 3H diffusing into the porous matrix and result in lower fracture concentrations. At the 

same early times, the retardation caused by the Pis can be substantial and increases with 

the the half-width b of the Pl. These results also conform with. expectations because of the 

slower flow velocities in the porous media of the PI (as compared to those in the fractures 

of the Fls), which increase the residence time and diffusion into the porous matrix. 

Figure 12 also shows that the effect of the interlayers keeps decreasing with time. 

This was expected in Case 1-a because the travel path increase caused by the interlayers is 
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small (as the layer half-width X is only 0.25 m) and 3 H is nonsorbing (leaving diffusion 

into the matrix as the only mechanism removing the radionuclide from the flowing water). 

At t = 104 days, the presence of interlayers of any kind (FI vs. PI) has no effect on the 

concentration profile in the fractures. 

9.1.2. Case 1-b: Combined effect ofinterlayers and matrix width of the fractured 

layers. This case involves three subcases: 1-b1, 1-b2 and 1-b3 (see Table 10). Cases 1-b1, 

1-b2 and 1-b3 differed from Cases 1-al, 1-a2 and 1-a3 in that X = 2.5 m instead of 0.25 

m, thus substantially increasing the travel path and residence time of 3H in the interlayers. 

This is expected to increase retardation, especially at early times. 

Figure 13 confirms this expectation. At t = 102 days, the presence of the relatively fast 

flowing FI is sufficient to reduce C R in the fracture by about four orders of magnitude. The 

effect is more pronounced in Case 1-b3 (PI with b = 0.1 m). The same pattern is observed 

at t = 103 days, at which time the retardation in Case 1-b3 remains very substantial. This 

is caused by the reduction of the advective and dispersive components of transport (because 

velocity decreases as b increases) in addition to the reduction of the molecular diffusion 

component (due to the smaller ¢ and T values in the filled fracture, see equation (2)). 

Remarkably, stronger retardation is observed in Case 1-b 1 (FI) than in case 1-b2 (PI with 

b = 0.025 m). This is attributed to the larger solute mass in the PI, which is le,ss affected 

by diffusion into the matrix (about the same in both cases). As in Case 1-a, the effect of the 

fracture offset (presence of interlayers) decreases with time. 

The conclusion reached from these results is that the effect of fracture offsets 

(interlayers) increases with the matrix block size of the fractured layers. This is consistent 

with expectations because the travel path increases substantially in fractured system with 

large X, with a corresponding increase in residence time and diffusion into the matrix. 

9.1.3. Case 1-c: Combined effect of interlayers and aperture b of the fractured 

layers. This case involves two subcases: 1-c 1 and 1-c2 (see Table 1 0). Cases 1-c 1 and 



1-c2 differed from Cases 1-a1 and 1-a3, respectively, in that b = 5 X w-4 m instead of 

5 x w-s m, thus substantially increasing the fracture width and, correspondingly, the mass 

of the radionuclide transported in the flowing water per unit time. 

Figure 14 shows that the transport is faster in this case (compared to Cases 1-a and 

1-b ), and that the effect of fracture misalignment is minimal because the mass flow rate in 

this case is ten times that in Cases 1-a and 1-b. Although there may be an interlayer effect at 

very early times, the comparatively very large amount of available 3H easily overwhelms the 

increased retardation capacity of the system (caused by the increased travel path, residence 

time, and diffusion into the matrix). The obvious conclusion is that the effect of fracture 

misalignment on retardation decreases with the fracture aperture of the fractured layers. 

9.1.4. Case 1-d: Combined effect of interlayers and water saturation S of the 

fractured layers. This case involved two subcases: 1-d1 and 1-d2 (see Table 10). Cases 

1-dl differed from Case 1-a1 in that sm = 0.8 and Sf = 0.5 instead of sm = Sf = 1. 

Cases 1-d2 differed from Case 1-a3 in that sm = Sf = 0.8 instead of sm =Sf = 1. The 

effect of S is exhibited through its effect on the water velocity: a higher pore velocity V is 

needed to maintain the same U if S decreases. Thus, faster transport was expected in this 

case, with a corresponding decrease in the importance of the increased travel path caused 

by the fracture offset. 

The results in Figure 15 confirm these expectations. Transport appears faster than 

in Cases 1-a and 1-b, while the relative importance of the fracture . offset (presence of 

interlayers) decreases in systems with the same water mass flow rate but with decreasing 

water saturation. 

9.1.5. Case 1-e: Combined effect ofinterlayers and radionuclide properties. The 

transport of 237Np (a moderately sorbing radionuclide) and 239Pu (a strong sorber) were 

studied in the fracture systems discussed in Case 1-a. The properties of 237Np and 239Pu 

appear in Tables 6 and 9. The sorption behavior of these two species is expected to increase 
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the retardation effect of the interlayers. 

The results are shown in Figures 16 (for 237Np) and 17 (for 239Pu), and confirm 

expectations. Despite the much longer T1; 2 of 237Np and 239Pu, transport is much slower 

than that for 3 H because of two mechanisms at work removing the solutes from the water 

in the fractures: diffusion and sorption. The longer travel path in the case of interlayers 

(fracture offsets) provides an opportunity for increased diffusion and sorption, as indicated 

by the comparison to the fracture C R profile for no interlayers. Note that sorption decreases 

the concentration in the liquid phase, and although the D0 of 3H is higher, diffusion is higher 

because the ~~ gradient is steeper. Retardation increases with the distribution coefficient 

Kd of the radionuclide, from Fis to Pis, and with an increasing b of the Pis. 

9.2. Transport of Straining 239Pu Colloids in a Layered 

Fractured System With Fracture Misalignment 

Problem 2 describes colloid transport through the layered system with the geometry 

and characteristics of Case 1-a 1 of Problem 1. Thus, the domain comprises three misaligned 

layers with the fracture offsets represented by inter layers, for a total of five layers. Colloids 

are subject to straining (pore-size exclusion) and filtration (a physical-chemical process of 

colloid attachment to active sites on the fractures and matrix). 

Three cases (Cases 2-a, 2-b and 2-c) are studied in Problem 2. The properties and 

parameters of the base Case 2-a1 are listed in Table 11, and the specifics of the various cases 

of this problem are listed in Table 12. Two colloids are compared in all the studies: a 5 nm 

colloid and a 500 nm colloid. Flow velocities, water saturations and boundary conditions 

were as in Problem 1. 

9.2.1. Case 2-a: No matrix deposition. In this case, colloids were deposited in the 

fractures, but there was no colloid filtration in the matrix. The FRACL results in Cases 2-al 

and 2-a2 are shown in Figures 18 and 19, which also include the CR profile for aligned 



fractures (no interface, Nl) for reference. The following observations are made: 

1. At the straining interface (i.e., at the boundary of a fracture with a PI) CR exhibits a 

local steep peak, and C R can easily exceed the value of 1. This indicates a concentration 

that exceeds the source concentration and is an expected consequence of straining. 

2. Because of their larger size and enhanced pore size exclusion, the fracture C R of larger 

colloids is significantly higher than that for smaller colloids if no Pis are involved. 

3. Figures 18 and 19 confirm the expectation that Pis can have a very strong retardation 

effect on transport because they are far more effective strainers than Fls (in which 

straining may be provided by a narrowing of the fracture). Consequently, the fracture 

CR of larger colloids after a PI is significantly lower than that of smaller colloids. 

This indicates that filled fractures or flow through the matrix between fractures can 

drastically reduce colloid concentrations in the fractures. 

4. A very important observation is that larger colloids exhibit faster transport in the 

fractures than smaller ones. This is because of their size, which affects three processes. 

Larger colloids move faster (1 < fv :::; 1.5 because they are channeled toward the 

middle of the fractures and pores where the flow velocity is maximum. As can be seen 

from equation (27), the coefficient of colloidal diffusion decreases in larger colloids, 

thus limiting diffusion into the matrix and leaving larger colloidal loads in thy fractures. 

Penetration into the matrix (and, consequently, removal from the fractures) is further 

restricted by pore size exclusion. 

5. The 239 Pu colloid front moves at least one to two orders of magnitude faster than the 

front of the solute 239Pu (a strongly-sorbing species). This is true even when colloids 

are transported through straining (and strongly retarding) Pis, and appears to confirm 

previous laboratory and field studies [McCarthy and Zachara, 1989; Buddemeier and 

Hunt, 1988, Kersting et al., 1999]. The obvious implication is that, if the geochemical 

conditions favor the creation and stability of radioactive colloids, these can move much 
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faster through the geologic system than the corresponding solutes of strongly sorbing 

species, because colloid filtration is not as important a retardation mechansism as solute 

sorption. 

6. At longer times, the fracture C R profiles for both the 5 nm colloid and the 500 nm 

colloid are about the same if no Pis are involved. 

7. The fracture concentrations C R continue to grow for a long time behind the straining 

surface, and eventually reach steady-state levels that, for larger colloids, can be 

hundreds of times high~r than the source concentrations. In this example, the 500 

nm colloid before the first PI reaches a CR of about 300 at t = 104 days; at the same 

time and location, the 5 nm colloid reaches a CR = 20. 

Figure 20 provides a more detailed view of the steep C R peaks behind the Pis (i.e., the 

straining interfaces) and their evolution over time. Note that the 500 nm profile reaches a 

· steady state far earlier than the smaller colloid. 

9.2.2. Case 2-b: Colloid filtration in the matrix. The specifics of the various 

subcases of Case 2-b are listed in Table 12. The only difference in geometry is the wider 

matrix block of the fractured system under study. The results at t = 104 days are shown 

in Figure 21, which also includes the solution for aligned fractures (denoted by NI, i.e., no 

interlayer). 

The general pattern of fracture C R profile here is similar to that in Figures 18 and 19, 

and is characterized by steep concentration spikes behind straining PI interfaces. There are, 

however, some significant differences. 

One of the most remarkable differences is that the effect of matrix filtration is far more 

pronounced in the case of the 5 nm colloid than in the larger 500 nm colloid. Thus, the 

presence of matrix filtration leads to significantly lower concentrations than the analogous 

results without filtration, and is consistent with the diffusion of relatively large amounts of 

the smaller colloids into the matrix. This holds true for any of the subcases (2-b 1 through 



2-b4), as well as for the reference case of aligned fractures. In subcase 2-b3 (which assumes 

transport through a PI with b = 0.1 m- PI(b) in Figure 21), the colloids breach the first 

PI, but the combined straining-filtration effect at the interface of the fractured layer and 

the· second PI is so strong that the 5 nm colloids have not yet entered the fractures in the 

underlying layer after t ·= 104 days. 

In subcases 2-b2 (thinner porous flowing section- PI(a) in Figure 21) and 2-b4 (thinner 

flowing section and weaker filtration- PI( c) in Figure 21), the colloid manages to breach the 

Pis, but the retardation (over the no-filtration cases of Figure 19) is very significant. This is 

important, given the fact that these very large retardations are caused by an additional travel 

path of only 0.25 min each interlayer. Note that, as expected, the weaker matrix filtration 

in subcase 2-b4 leads to higher C R in the fractures. The fracture C R profiles for the cases 

of NI and FI practically coincide. 

An interesting observation is that the C R profiles for NI and FI of the 500 nm colloid 

show little difference from those without matrix filtration in Figure 19. This indicates that 

matrix deposition does not significantly affect the transport of this colloid for NI or FI, and 

is attributed to the fact that so little of it enters the matrix because of straining. The effect 

of straining at the interface with Pis, however, has significant effects on the fracture C R· 

which are now much lower than the corresponding profiles in Figure 19. As in ~he case of 

the 5 nm colloid, no 500 nm colloids appear in the fractures of the underlying layer when 

the PI has a b = 0.1 m (Case 2-b3- PI(c) in Figure 21). In Cases 2-b2 and 2-b4, the CR 

concentrations are (a) lower than the corresponding ones in Figure 19 (because of colloid 

removal by the porous medium in the PI), but (b) higher than the ones for the 5 nm colloids 

in Figure 21 (because far fewer 500 nm colloids than 5 nm colloids enter the ~atrix). 

9.2.3. Case 2-c: Colloid filtration in fractured media with wide matrix blocks. 

The specifics of the various subcases of Case 2-c are listed in Table 12. The results at 

t = 104 days are shown in Figure 22, which also includes the solution for aligned fractures 
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(denoted by NI). 

Figure 22 shows the same general pattern of colloid transport observed in Figures 18 

through 21 and a prominent colloid accumulation behind straining PI interfaces. For no 

matrix deposition (denoted by NMD in Figure 22), there is practically no difference in the 

fracture C R profiles between Case 2-c and 2-a (see Figure 20) for both the 5 nm and the 

500 nm colloids. 

Thus, the effect of a larger matrix block (and, consequently, longer travel path) is 

practically negligible at t = 104 days when matrix deposition is not considered. The same 

holds true for the profile with NI and matrix deposition (denoted by WMD in Figure 22) for 

both colloids, and the profile for FI and the larger colloid (because of the limited diffusion 

and the pore size exclusion). The 5 nm fracture C R profile for matrix filtration does show 

a small difference from the one for FI, which is attributed to the increased filtration and 

diffusion into the matrix due to the longer travel path of the colloid in the FI in Case 2-c 

(which is 10 times longer than the reference travel path in the FI in Case 2-a). 

The most pronounced effect is noticed in the case of a PI, which strains colloids and 

provides more opportunities for filtratioa in the matrix of the interlayer. In both colloids, the 

longer travel path in the PI (over the reference in Case 2-a) results in profiles that indicate the 

colloids cannot even breach the first PI after t = 104 years. Thus, the fracture mi~alignment 

and the transport through a longer porous pathway (a consequence of the larger matrix 

blocks) prevent the migration of the colloids in the fracture system. 

9.3. Problem 3: Radioactive Solute Transport 

in a Complex Multi-Layered System 

The complex geological system in Problem 3 is comprised of 14layers and interlayers 

of fractured and porous media. The geometry and configuration of the system are described 

in Table 13, and the rock properties and conditions are listed in Table 14. Linear equilibrium 



sorption is assumed, and the sorption coefficients of the various radionuclides in the fractures 

and in the matrix of the various layers (K~ and KT, respectively).are listed in Table 15. 

The water velocity U at z = 0 is as in Problem 1. 

9.3.1. 3H Transport. The fracture C R profiles of the nonsorbing 3H for both constant 

concentration (CC) and decaying (radioactively) concentration (DC) at the z = 0 boundary 

are shown in Figure 23, which includes observations at the following times: t 1 = 104 days, 

t 2 = 5 x 104 days, t 3 = 105 days, t 4 = 2.5 x 105 days and t 5 = 5 x 105 days. 

The various layers can be generally identified by a change in the C R slope, while 

the interlayers are indicated by vertical sections of the Cn curves (as the abscissa is the z 

coordinate rather than the travel path). For a CC boundary, the Cn distribution reaches a 

steady state for t 2': t4 . As expected, the effect of the DC boundary is a C R profile that 

is progressively lower than the one for a CC boundary, never reaches steady state, and is 

outside the Cn range ( < 10-9 ) for t 2': t 4 . This example demonstrates that a complex 

problem of transport in a multilayered system can be easily handled by FRACL, which 

yields semi analytical (SA) solutions in less than 10 s. 

9.3.2. 99Tc Transport. 99Tc (in its pertechnate Tc04 speciation) is a non-sorbing 

radionuclide with a longer half life than 3H (see Table 6). Two boundary conditions were 

considered in this case: a CC boundary and a piece-wise continuous (step) coQcentration 

(PC) boundary, i.e., 

fort ::; 5 x 104 days 

for t > 5 x 104 days 

The Cn profiles in the fractures of the layered geologic system (at the same times as 

in the case of 3H in Section 9.3.1) are shown in Figure 24. The effect of the longer half 

life is evident in the Cn profile for CC boundary, which indicates that 99Tc advances much 

further in the formation than 3 H at the same times (the difference is due to radioactive 

decay), and does not appear to' have reached steady state at t = t 5 . The change in the 
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boundary concentration over time in the PC boundary case results in C R profiles that show 

a progressively larger (with time) 99Tc-free zone near the boundary, while the C R further into 

the formation keeps decreasing and deviating from that for constant boundary concentration 

(with which it coincides fully or in part fort ::; t4). 

As indicated in the case of 3H, the various layers and interlayers can be generally 

identified from changes in the C R slope. Transport in fast flowing fractures (e.g., in the case 

of narrow fractures with large matrix blocks under a layer of wider fractures and narrow 

matrix blocks) can also be identified by a near-horizontal portion of the CR profile. This 

example (which takes less than 15 sec to run) confirms the ability of FRACL to solve the 

problem of transport of a decaying radionuclide in a complex geological system. 

9.3.3. 237Np Transport. The fracture CR profile of the moderately sorbing 237Np for 

a CC boundary is shown in Figure 25. Note that the observation times here are: t 1 = 5 x 104 

days, t2 = 105 days, t3 = 5 x 105 days, t 4 = 106 days, t5 = 2.5 x 106 days and t6 = 5 x 106 

days. 

The slower transport of 237Np (compared to that of 99Tc) is caused by sorption and, 

to a far lesser extent, by increased diffusion into the matrix. Despite its longer half-life, the 

transport of 237Np appears to be about an order of magnitude slower than that of 99Tc, and 

does not appear to have reached steady state at t = t6 . 

The C R profiles along the x axis in the matrices of the various layers at t = t 6 are 

shown in Figure 26. The different shape of the curves is a function of their location (with 

respect to the z = 0 boundary and to the solute front) and of the sorption properties of the 

matrix in the various layers. 

9.4. Problem 4: Solute Transport of a Three-Member Radioactive 

Decay Chain in a Complex Multi-Layered System 

Problem 4 describes the transport of the radioactive chain 



through the complex multilayered system described in Problem 3 (Tables 12 and 13). The 

sorption coefficients Kft and K:F of the 239Pu parent in the various layers are listed in 

Table 15. The sorption coefficients of 235U and 231 Pa in the fractures and in the matrix 

were assumed to be 5% and 50% of the 239Pu ones, respectively. CR profiles of the three 

radionuclides were obtained at the following observation times: t1 = 105 days, t 2 = 106 

days, t 3 = 107 days, t 4 = 108 days, t 5 = 109 days, and t 6 = 1010 days. Two boundary 

conditions were considered: a CC and a DC boundary. 

9.4.1. 239Pu Transport. Figure 27 shows the CR profiles of 239Pu in the fractures 

for constant boundary concentration and a decaying boundary concentration. There is no 

or little deviation of the two curves until t = t3 . The fracture C R in DC case at t = t 4 

is substantially lower than that of the CC case, a11d the C R for a DC boundary is less than 

10-9 for t ;::: t 5 . 

An interesting observation is that, for a CC boundary, the 239Pu front does not advance 

deep into the formation despite observation times orders of magnitude larger than those for 

the 237Np transport. This is due to the very strong sorption of 239Pu onto the matrix and 

fractures of the layers and, to a lesser extent, the shorter half life of 239Pu (compared to that 

of 237Np. Note that the CR profile appears to have reached steady state at t;::: tq. 

In addition to the transport of the members of the chain, the transport of 239Pu was 

studied separately, assuming a CC boundary and a r ::; 1 (see Equation (38) and the 

corresponding discussion). This describes a situation in which not all the contact area 

between fracture and matrix contributes to transport (e.g., because of a partially dry fracture 

which constitutes a discontinuity in the water phase). In this case, r = SL in the fractured 
! 

layers and interlayers (FM or Fl), and r = 1 elsewhere. 

The effect of r ::; 1 in Figure 28 appears to have a substantial effect on transport, 

and results in a 239Pu front that reaches much further (i.e., about three time deeper) in the 
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geologic profile than that for r = 1. This is a direct consequence of a reduced area for 

239Pu diffusion from the fractures into the matrix, which leaves a larger amount of 239Pu in 

the fractures where advection is fast and sorption relatively small (compared to the matrix). 

Thus, the transport of strongly sorbing radionuclides in fractured systems may be strongly 

influenced (enhanced) by partially dry fractures. 

9.4.2. ·· 235 U 'fransport. The fracture CR profiles of 235 U for CC and DC boundaries 

and fort :::; t 4 are shown in Figure 29. The CR of the DC solution always exceeding that 

from the CC solution, and significantly so (as imposed) in the vicinity of z = 0. A very 

significant observation is that, in either case, CR ~ 1 fort 2: t 4 in the top 120m of the 

domain. This is even more the case in Figure 30, which shows the CR of 235 U fort 2: 4 

and gives a more detailed picture of the C R distribution near the value of 1. The results in 

Figures 29 and 30, in conjunction with the observations from Figure 27, indicate that for 

t 2: t 4 , practically all of the radionuclide that advances deep into the formation is the 235 U 

daughter. The transport of 235 U is faster, the front reaches deeper, and CR ~ 1 because 

235 U is generally weaker sorbing than 239Pu and it has an extremely long half life. The 

obvious implication is that studies of 239Pu transport cannot neglect the transport of the 

235U daughter, which is the dominant radionuclide at longer times. 

Note from Figure 30 that, for t = t 4 and a DC boundary, CR > 1, i.e.,, the 235U 

concentration in the fractures exceeds the initial 239Pu concentration at the z = 0 boundary. 

This is possible because the boundary (which introduces a radionuclide mixture composed 

of all the members of the decay of the chain as 239Pu decays) is now contributing a stream 

of almost 100% 235U, which is added to the 235 U produced from the (almost complete) 

decay of 239Pu already in the fractures and matrix of the system. 

As expected, the C R from the CC solution at t = t4 is lower than that from the DC 

solution (Figure 29). For t > t 4 , the CC solutions exceed the DC solutions because the 

decay of the 235 U at the boundary is beginning to have an effect on the fracture distribution 



of CR. This is particularly evident at t = t5. Note that steady state is not reached (in either 

the CC or the DC boundary cases) even after t6 = 1010 days because of the extremely long 

half-life of 235U. 

9.4.3. 231 Pa Transport. The fracture C R profiles of 231 Pa for CC and DC boundaries 

are shown in Figure 31. The C R levels of 231 Pa are quite low because of the very long 

half life of its 235 U parent, its own shorter half life, and its stronger tendency to sorb. The 

C R increases with time for both DC and CC boundaries. The CC profile has always lower 

concentrations because there are all derived solely from the decay of 235U (the boundary 

does not supply any additional 231 Pain a CC regime). Note that in either case, concentrations 

reach a steady state at about t = t4. 

These examples demonstrate that the FRACLcode (i.e., the FORTRAN implemen­

tation of the semianalytical solutions developed in Sections 2.0 through 7.0) is capable of 

handling the transport of all the members of decay chains in complex multilayered geological 

systems and under a variety of boundary conditions. 

9.5. Problem 5: Transport of a Radioactive Colloid Parent 

and a Solute Daughter in a Complex Multi-Layered System 

Problem 5 describes the transport of the radioactive chain 239Pu- 235U,. in which 

239Pu is a 10 nm true colloid (with the properties of Pu02 ), and 235 U is a solute._ The 

radionuclides are transported through the complex layered system of Problems 3 and 4, 

and fv = 1 in all the layers. The C?lloid filtration is described by the linear kinetic model 

of equation (29). The filtration and straining parameters in the matrix and in the fractures 

are listed in Table 16, and the sorption coefficients of the 235 U daughter are as in Problem 

4. C R profiles of the three radionuclides are obtained at the following observation times: 

t 1 = 105 days, t 2 = 106 days, and t 3 = 107 days (sufficiently short so that the colloidal 

particle diameter remains practically unchanged). A CC boundary condition is assumed. 
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9.5.1. Transport of the 239Pu colloid. Figure 32 shows the C R profiles of the 239Pu 

in the fractures at t 1 , t 2 and t3 . The Cn of the solute 239Pu (Figure 27) at the same times 

are included for reference. The colloid Cn profiles are typical of straining colloids (e.g., 

Figures 18 to 22), and exhibit concentration spikes that can exceed the input concentrations 

immediately behind straining interfaces (porous media layers or filled fractures). A very 

important observation is that the colloid front advances about six times deeper into the 

formation than the corresponding 239Pu solute. This is because matrix diffusion is far 

less important in the case of the colloid because of its larger size, which results in larger 

colloid concentrations in the fractures where transport is fast. Additionally, the strong 239Pu 

sorption is a much more effi~ient retardation mechanism than the colloid filtration. 

·9.5.2. Transport of the solute 235U daughter of the colloid. The fracture Cn profiles 

of the solute 235U daughter of 239Pu colloid is shown in Figure 33, which also includes the 

Cn profiles of the 235U daughter of 239Pu solute (Figure 29). The faster transport of the 

colloid parent is reflected in the solute daughter C R profiles, which show that the 235U 

moves faster and advances deeper in the formation than the daughter of the 239Pu solute. 

The concentration spikes of the parent (caused by colloid accumulation behind straining 

interfaces) are evident in the Cn of the 235U daughter at t1. but these are progressively 

attenuated (but discernible) as time advances. Note that the 235 U concentratiqn near the 

z1 = 0 boundary is lower than in the case of 235U from the a solute 239Pu parent. This is 

caused to the limited (compared to sorption) filtration of the 239Pu colloids in the fractures 

and the matrix in the vicinity of the boundary, which in turns limits the amount of parent 

available for 235 U generation through decay. 

10. Summary 

In this paper, semianalytical solutions are developed for the problem of transport of 



radioactive or reactive tracers (solutes or colloids) through a layered system of heterogeneous 

fractured media with misaligned fractures. The solutions allow any number and combination 

of fractured and/or porous layers that can vary in hydraulic and transport properties, fracture 

frequency, water saturation, fracture flow, and fracture-matrix interaction. 

The tracer transport equations in the matrix account for (a) diffusion, (b) solute surface 

diffusion, (c) mass transfer between the mobile and immobile water fractions, (d) linear 

kinetic or equilibrium physical, chemical or combined solute sorption or colloid filtration, 

and (e) radioactive decay or first order chemical reactions. Any number of radioactive 

decay daughter products (or products of a linear, first-order reaction chain) can be tracked. 

The tracer transport equations in the fractures account for the same processes, as well as 

for advection and hydrodynamic dispersion. Additionally, the colloid transport equations 

account for straining and velocity adjustments related to colloidal size. A wide array of 

boundary conditions (constant or time-variable, concentration or flux) can be accomodated. 

Analytical solutions describing transport in the fracture and the matrix of each layer 

are first obtained in the Laplace space. These are impossible to invert analytically, and are 

numerically inverted by the method of DeHoog et al. [ 1982] to yield the solutions in time. 

The semianalytical solutions are verified against analytical solutions of limiting cases 

of solute and colloid transport in a fractured medium. Additional verification is provided 

by comparisons against analytical solutions of transport in porous (unfractured) media. 

The semianalytical solutions are then tested in a series of hypothetical problems of 

increasing complexity. The effect of important parameters on the transport of 3H, 237Np 

and 239Pu (and its daughters) is investigated in several test problems involving layered 

'heterogeneous geological systems. Fracture misalignment appears to significantly affect 

transport if water flow (and, consequently, transport) between the fractures of the overlaying 

and the underlaying layers occurs through a porous connecting pathway. Test problems 

involving radioactive e39Pu) colloid transport in multilayered systems indicate significant 
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colloid accumulations at straining interfaces but much faster transport of the colloid than 

the corresponding strongly sorbing solute species. Solute daughters of colloid parents are 

affected by the faster transport of the parents, and exhibit faster transport than the same 

daughters from solute parents. 

The semianalytical solutions are very computationally efficient, requiring less than 10 

seconds of execution time for the examples studied in this paper. The results of the test 

problems indicate that the semianalytical solutions can easily solve the problem of transport 

of parent and daughter radioactive species in multilayered heterogeneous systems under a 

variety of boundary conditions. 
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Appendix A: The Hv and Tv,~ Coefficients 

For Case 2 (X ~ oo ), the H v = H~ of the first five members of a radioactive or 

reactive chain (v = 1, ... , 5) are 

~~ Hf = cl 
e ~ ~~ ~~ H 2 - C2 - Az1 C1 

~~ ~~ ~~ 
H~ = C3 - A32 C2 + Az1 (A32 - A31) C1 

~~ ~~ ~~ H4 = C4 - A43 C3 + A3z(A43- A4z) C2 



""! ""! ""! H~ = C5 - As4 C4 + A43(As4- As3) C3 

- A32[A43(As4- As3)- A42(As4- As2)] C{ 

+ A21 { A32[A43(As4- As3)- A42(As4- As2)] 

- A3I[A43(As4- As3)- A41(As4- As1)l} C{ 

in which them superscript of the A factors (equation (52)) are omitted for simplicity. The 

terms Tv,K. in equation (53) can be easily identified by inspection. By following the emerging 

pattern, the development of the expressions for H v for v > 5 is tedious but straightforward. 

The H v _ H~ expressions (corresponding to Case 1) are entirely analogous, and are 

derived by dividing H~ by cosh(8v X). For example, for v = 2, 

Appendix B: The Wv and rv,K. Coefficients 

For Case 2 (X ---? oo ), the Wv W~ of the first 5 members of a radioactive or reactive 

chain (v = 1, ... , 5) are 

+ A21 { A31 A41 81 - A32 A42 82 + A43(A32 - A31) 83 

""! - [A32 (A43- A42)- A31 (A43- A41)] 84} C1 
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f --, --, 
W~ = Bs C5 + As4 (B4- Bs) C4 + A43[As3 ()3- As4 ()4 + (As4- As3) Bs] C3 

+ A32 { A42 As2 B2 - A43 As3 ()3 + As4 ( A43 - A42) () 4 

--, 
- [A43 (As4- As3)- A42(As4- As2)] Bs} C2 

+ A21 { A31 A41 As1 B1 - A32 A42 As2 B2 + A43 As3(A32 - A31) ()3 

- As4[A32 (A43- A42)- A31(A43- A41)] ()4 

+ [A32[A43(_As4- As3)- A42(As4- As2)] 

- A3I(A43(As4- As3) - A41 (As4- Asi)l] Bs C1, } --, 
in which them superscripi of the A factors (equation (52)) are omitted for simplicity. 

We obtain W~ for Case 1 by replacing Bv by Bv tanh(B~.~X) in W~. Thus, for v = 2 

and Case 1, 

The terms !v,,.. are easy to obtain from (59) and theW~, W~ expressions by inspection. 

Extension for v > 5 follows the same pattern. 

Appendix C: The Bt,,.. Coefficients 

The B"&-,.. coefficients of up to the first 5 members of a radioactive or reactive chain 
' 

(v = 1, ... , 5, K, = 1, ... , v- 1) are given by the following general expressions: 

B ± - fq G1 
v v-l - lv,v-l - v 
' 



The coefficients A£ needed for the computation of B± are obtained from equation ( 63). All 

other terms are as discussed in Section 5.2. Extension for v > 5 follows the same pattern. 
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Table 1. Input parameters in Test FSl 

Parameters Values 

Water saturation S 1 

PM grain density p 2600 kg/m3 

Do 1.6x w-9 m2/s 

Fracture aperture 2b 10-4 m 

FractureS 1 

Fracture¢ 1 

Fracture T 1 

Fracture Kd 0 m3/kg 

Longitudinal dispersivity aL in the fracture 0.1 m 

Fracture flow velocity V 0.1 m/day 

Matrix block width 2X 0.5m 

Matrix S I 

Matrix¢ 0.01 

Matrix T 0.1 

Matrix Kd 0 m3/kg 

Radionuclide T1;2 12.35 years (tritium)' 

Z1o Z2, Z3 (for N = 3) 1m, 9 m, oo 

. 
\ 
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Table 2. Input parameters in Tests FCl ai:td FC2 

Parameters Values 

Colloid diameter de w-6 m 

Colloid density Pc 103 kg/m3 

Temperature T 293.15 °K 

Fracture aperture 2b 1.25x w-4 m 

Sf 1 

¢1 1 

Tf 1 

rJ~ w-10 m 

Fracture K- 0 year- 1 

Fracture flow velocity V 1 rn/year 

Longitudinal dispersivity CXL in the fracture 0.24998645 m 

sm 1 

cpm 0.3 

Tm 0.8 

Matrix""- 0 year- 1 

Matrix K+ (Test FCl) 0 m3 /kg/year ' 

Matrix""+ (Test FC2) 5x w-s m3/kg/year 

Z1. Z2, Z3 (for N = 3) 0.5 m, 0.5 m, oo 
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Table 3. Input parameters in Tests PSl to PS4 

Parameters Values 

p 2600 kg/rn3 

Do 5 X IQ-2 rn2/day 

s 1 

¢ 0.1 

T 1 

v 0.1 m/day 

K d (Tests PS 1 and PS4) 0 rn3/kg 

Kd (Tests PS2 and PS3) 4.2735042x w-s rn3/kg 

T1; 2 (Tests PS 1 and PS2) oo (stable isotopes) 

T1; 2 (Tests PS3 and PS4) 100 days 

Z1, Z2, Z3 (for N = 3) lOrn, lOrn, oo 
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Table 4. Input parameters in Test PSS 

Parameters Values 

p 2600 kg/m3 

Do 1000 m2 /year 

s 1 

¢ 0.3 

T 1 

v 100 rnlyear 

Kd for 234U 1.64819 m3/kg 

Kd for 230Th 8.24159 m3/kg 

Kd for 226 Ra 8.22528x to-2 m3/kg 

Tl/2 of 234U 2.45 X 105 years 

Tl/2 of 230Th 7.54 x 104 years 

T 1; 2 of 226Ra 1.60x 103 years 

Z1. Z2, Z3 (for N . 3) 50 m, 150m, oo 
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Table 5. Input parameters in Tests PCl to PC3 

Parameters Values 

de 10-3 m 

Pc 103 kg/m3 

T 293.15 °K 

s 1 

¢ ,0.3 

T 1 
' 

U(= ¢V) 2 rnlday 

0.£ 0.15 m 

£in PC1 30 m- 1 

£in PC2 100 m- 1 

£in PC3 3000 m- 1 

Z1, Z2, Z3 (for N = 3) 0.1 m, 0.1 m, oo 

Table 6. Radionuclide properties used in the transport simulations of Section 9 

Radionuclide Do (m2/s) >. = ln2 (1/s) 
T112 

3H 1.60x w-9 1.778x w-9 

99Tc 4.55 x 10- 10 1.031 x w- 13 

237Np 7.12x10- 10 1.026x w- 14 

239pu 6.osx w- 10 9.114x w- 13 

23su 6.08x w- 10 3.1023x w- 17 

231pa 6.08x1o- 10 6.7583x w- 13 
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Table 7. Layer geometry in Case 1-a of Problem 1 

Layer# Type Parameter Value 

1 FM z 5m 

X 0.25m 

b 5 x 10-5 m 

2 FI b 5 x 10-5 m 

3 FM z lOrn 

X 0.25m 

b 5 x 10-5 m 

4 FI b 5 x 10-5 m 

5 FM z oom 

X 0.25m 

b 5 x 10-5 m 
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Table 8. Properties in Case 1-a1 of Problem 1 

Layer# Parameters Values 

1,3,5 CY.L 0.1 m 

</Jm 0.01 

Tm = Tm = Tm = Tm p t s 0.1 

¢! 1 

Tf = Tf = rf = Tf p t s 1 

K-rrt = Kf 
t t 

1 

sm = st w w 1 

2,4 CY.L 0.1 m 

¢m 0.01 

Tm = Tm = r-rrt = Tm p t s 0.1 

¢! 1 

Tf = Tf = Tf = Tf p t s 1 

x-rn = K 1 
t t 1 

sm =Sf 1 

Table 9. Transfer coefficients in Problem S-1 

Radionuclide Kd 
3H KJ: = 0 m3/kg 

3H K! =Om 

237Np K:F = 10-3 m3/kg 

237Np K! = 5 x 10-7 m 

239pu KJ: =10- 1 m3/kg 

239pu K! = 5 x 10-5 m 
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Table 10. Parameter variations in the various cases of Problem 1 

Case# Layer# Type Parameter Value 

1-a2 2,4 PI b 0.025 m 

1-a3 2,4 PI b 0.10m 

1-b1 1,3,5 FI X 2.5m 

2,4 FI z 2.5m 

1-b2 1,3,5 FI X 2.5m 

2,4 PI z 2.5m 

b 0.025 m 

1-b3 1,3,5 FI X 2.5m 

2,4 PI z 2.5m 

b 0.10m 

1-c1 1,3,5 FI b 5 x 10-4 m 

2,4 FI b 5 x 10-4 m 

1-c2 1,3,5 FI X 5 x 10-4 m 

2,4 PI b 0.1 m 

1-d1 All FM,FI sm 
w 0.8 

Sf ' 0.5 w 

1-d2 All FM,PI sm =sf w w 0.8 

2,4 PI b 0.1 m 
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_Table 11. Properties and parameters in Case 2-al 

Case Layer# Parameter Value 

2-al All 'T/d 10-10 m 

(Geometry Fracture K- 0 lis 

as in xf (5 nm colloid) 1 

Case 1-al) xf (500 nm colloid) 1 

fv (5 nm colloid) 1 

fv (500 nm colloid) 1.1 

Km 
a 0 m3/kg 

xm (5 nm colloid) 0.95 

xm (500 nm colloid) 0.35 
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Table 12. Properties and parameters in the cases of Problem 2 

Case Layer # (Type) Parameter Value 

2-a2 2,4 (PI) Kf 
(}' Om 

(Geometry xf (5 nm colloid) 0.95 

as in xi (500 nm colloid) 0.35 

Case 1-a2) 

2-b1 All Matrix 1'\;+ w-7 m3/kg/s 

(As in Matrix 1'\;- w-6 lis 

Case 2-a1) 

2-b2, 2-b3 1,3,5 (FM) Matrix 1'\;+ w-7 m3/kg/s 

(Geometry Matrix 1'\;- w-6 1/s 

as in Cases 2,4 (PI) Ef (5 and 500 nm colloid) 103 

1-a2, 1-a3 Colloid 1'\;- = 0.11'\;+ 

respectively) xf (5 nm colloid) 0.95 

xf (500 nm colloid) ' 0.35 

2-b4 All As in 2-b2 but Ef = 102 

2-c1, 2-c2 All Properties as in Cases 

(Geometry of 1-b1) 2-a1, 2-b 1 respectively 

2-c3, 2-c4 All Properties as in Cases 

(Geometry of 1-b2) 2-al, 2-b2 respectively 
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Table 13. Layer geometry in Problem 3 

Layer# Type Z (m) X (m) b (m) 

1 FM 10 0.5 w-4 

2 PI 5 x w-2 

3 FM 10 0.25 5 x w-5 

4 PI 2.5 x w-2 

5 FM 10 3 2 x w-4 

6 PM 5 

7 FM 15 0.1 2 x w-4 
' 

8 PI w-1 

9 FM 10 4 2 x w-5 

10 FI 2 x w-5 

11 FM 20 1 5 x w-5 

12 PM 5 

13 FM 30 6 s x w-5 

14 PM 00 
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· Table 14. Rock properties in Problem 3 

Layer# c/Jm Tm sm 
w cpf Tf Sf w 

1 0.15 0.5 0.7 1 1 0.2 

2 0.3 0.3 1 0.3 0.3 0.4 

3 0.1 0.4 0.6 1 1 0.15 

4 0.35 0.3 1 0.35 0.3 0.3 

5 0.05 0.5 0.8 1 1 0.1 

6 0.35 0.8 0.9 0.35 0.8 0.9 

7 0.025 0.2 0.9 1 1 0.1 

8 0.2 0.3 0.9 0.2 0.3 0.4 

9 0.01 0.2 0.95 1 1 0.05 

10 0.01 0.2 0.95 1 1 0.05 

11 0.05 0.15 0.95 1 1 0.05 

12 0.1 0.1 0.9 0.2 0.1 0.9 

13 0.05 0.1 1 1 1 1 

14 0.1 0.1 1 0.1 0.1 1 
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Table 15. Transfer coefficients in Problem ,3 

Layer 3H or 99Tc 237Np 239Pu 

# K;t (*) K~ (f) K;t(*) K~(D K;t(*) K~ (f) 

1 0 0 6 X 10-4 3 X 10-8 6 X 10-2 3 X 10-6 . 
2 0 0 8 X 10-4 8 X 10-4 8 X 10-2 8 X 10-2 

3 0 0 7 X 10-4 3.5 X 10-8 7 X 10-2 3.5 X 10-6 

4 0 0 8 X 10-4 8 X 10-4 8 X 10-2 8 X 10-2 
"' 

5 0 0 8 X 10-4 4 X 10-8 8 X 10-2 4 X 10-6 • 

6 0 0 10-4 10-4 10-2 w-2 

7 0 b w-3 5 X 10-7 w-1 5 x w-s 

8 0 0 8 x w-4 8 x w-4 8 x w- 2 8 x w-2 

9 0' 0 5 X 10-4 2.5 x w-8 5 x w-2 2.5 x w-6 

10 0 0 5 X 10-4 2.5 x w-8 5 x w-2 2.5 x w-6 

11 0 0 9 X 10-4 
) 

4.5 x w-8- 9 x w-2 4.5 x w-6 
' 

12 0 0 10-3 w-3 10-1 w-1 

13 0 0 6 X 10-4 3 X 10-8 6 x w-2 3 x w-6 

14 0 0 7 X 10-4 7 X 10-4 7 x w-2 7 x w-2 

(*): in m3/kg, Ct): in m 
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Table 16. Colloid filtration and straining parameters in Problem 5 

Layer Matrix""+ Matrix""- (*) t (m) Fracture xi xm 
No. (m3/kg/s) (lis) or 7Jd (lim) /'l, - xi xm 

1 10-7 10-6 TJd = 10-10 0 - 1 

2 10-7 10-6 c = 103 = 0.1/'i:+ 0.97 1 

3 10-7 10-6 TJd = 10-1o 0 1 1 

4 10-7 10-6 c = 103 = 0.1/'i:+ 0.97 1 

5 10-7 10-6 TJd = 10-1o 0 1 1 

6 10-8 10-6 c = 102 = O.lt~+ 0.97 1 

7 10-7 10-6 TJd = 10-1o 0 1 1 

8 10-7 10-6 c = 103 = 0.1/'l,+. 0.95 1 

9 10-7 10-6 TJd = 10-1o 0 1 1 

10 10-7 10-6 TJd = 10-1o 0 ' 1 1 

11 10-7 10-6 TJd = 10-1o 0 1 1 
. 

12 10-7 10-6 c = 103 = 0.1/'i:+ 0.95 1 

13 5 X 10-8 10-6 TJd = 10-9 0 1 1 

14 5 X 10-8 10-6 c = 103 = 0.05/'i:+ 0.95 1 

(*): The fracture""+ is computed from equations (30) and (40). 
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Figure 1. A variably-fractured layered geologic system. 
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Figure 10. Comparison of the SA solutions from FRACL to the analytical solutions of 

solute transport of the radioactive chain 234U - 230Th - 226Ra in porous media in Test 

PS5. 
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Figure 14. Combined effect of increased band fracture offset on the transport of 3H through 

the layered fractured system of Case 1-c (nomenclature as in Figure 12). 
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through the layered fractured system of Case 1-d (nomenclature as in Figure 12). 
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· through the layered fractured system of Case 1-e. 
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Figure 17. Effect of fracture offset (presence of interlayers) on the transport of 239Pu 

through the layered fractured system of Case 1-e. 
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100 

10°~~~~.~~~~~~~~~~~~~~~~~~~~~~~~~ 

\ "<:.:<:::::::::::::::.::,:,~-.......,'> 

' \ ·. ·. 
' ' \ 

\. 
\\ 
' ' ' \ 

.. ! w 

.... \. ~ 

\.\ I 
r==-;:11 
~ 

\·········-·· ... ················\ ~ 

\::-··········J, .......................... , \ 

~ 
\\ 1-~ 

~--+--<-~ 

-4---f--~ ~-J \. 
::·: ~~~~~~-h-T-~4n-~-n.~tn1,1n.~::~~~~nt4Tn1 ~n.n.n.n.n~~TnTri\Tn,\~\~~~ 

0 20 40 60 80 100 120 140 
z coordinate (m) 
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system of Problem 4. 
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Figure 31. Fracture C R profiles of 231 Pa in the complex geological system of Problem 4. 
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Figure 32. The fracture C R profiles of the 239Pu colloid in the complex geological system 

of Problem 5. 
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Figure 33. Fracture C R profiles of the solute 235 U daughter of the colloidal 239Pu parent 

in the complex geological system of Problem 5. 
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