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Abstract 

Embedded systems present a tremendous opportunity to customize the designs by exploiting the 
application behavior. Shrinking time-to-market, coupled with short product lifetimes create a crit­
ical need for rapidly explore and evaluate candidate System-on-Chip( SOC) architectures. Recent 
work on language driven Design Space Exploration ( DSE) uses Architecture Description Lan­
guage (ADL) to capture the processor-memory architecture and generate automatically a software 
toolkit for that architecture. We present in this report an ADL-based approach to explicitly cap­
ture the coprocessor configuration, and pe1form exploration of the coprocessor architecture along 
with processor and memory subsystem. We present a set of experiments using our coprocessor­
aware ADL to drive the exploration of the TI C6x processor-memory architecture in the presence 
of coprocessors, demonstrating a range of cost and peifonnance attributes. 
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1 Introduction 

Programmable embedded systems are composed of processor, memory subsystem and coproces­
sors. The coprocessor is used to compute specific functionalities, which processor is not capable 
of doing or cannot perform efficiently. Usually, we add coprocessor next to the processor in order 
to compute specific operations not available in the processor or too time consuming if this opera­
tion is done by the processor . In this case, the processor sends operands to the coprocessor and 
waits for results, while performing certain computations in parallel. On the other hand, coproces­
sor can read its operands from memory using classical I/O ports or via local memory that uses 
DMA to transfer data from main memory. So when designer adds coprocessor, he has to modify 
the application program to incorporate these memory transfers. Designer also need to schedule 
the coprocessor task manually. It means that the designer has to optimize d~ta transfer between 
processor and coprocessor instructions. However, processor memory accesses are known only af­
ter compilation, and it is very difficult to optimize these accesses to incorporate coprocessor. If 
the coprocessor accesses the main memory directly, the problem remains the same because during 
compilation the instruction scheduler doesn't know when the memory will be available. In this 
case, the compilation is independent of the memory access of the coprocessor. 

The solution we deal with is to insert the coprocessor inside, as a new functional unit. The 
re-use of the coprocessor is exactly the same. But inserting it in the processor core presents some 
interesting aspects. First, the instruction scheduler treats this coprocessor as a functional unit, and 
the scheduler knows all the timings. So the application code could be optimized, even if memory 
accesses for (or by) the coprocessor are quite long. In fact, the scheduler can take this into account 
for the scheduling of all the other instructions which need to acc~ss the main memory. Efficient 
cache management could play a very important role in this scenario. Secondly, the designer does· 
not have to modify the application code (explicit I/O, control signals, interrupts etc.) to test it with 
the coprocessor. In our EXPRESSION [9] framework, the compiler recognizes the call function 
that coprocessor will execute. At this point the compiler is not able to extract the code sequence 
from the application program which the coprocessor can execute. We insert call functions to guide 
the compiler to schedule certain part of the application program for the coprocessor. The designer 
can test different application programs quickly. Retargetable simulator and compHer generation 
helps him to explore different processor and coprocessor configurations in the presence of different 
application programs. 

During HW /SW co-design of embedded systems, designers need to decide which part of the 
functionality can be implemented in coprocessor. However, to justify the use of coprocessor the 
designers need to perform design space exploration. Designers have multiple choices viz., using 
a coprocessor to perform a functionality or implement the function in software, or add a func­
tional unit in the processor itself to perform the task, or modify the existing functional unit(s) to 
support new operation(s). However, the last two options are feasible only when the modification 
in the processor core is possible without violating area, timing and power constraints. The first 
one is the only alternative when processor does not support certain operations e.g, division in TI 
C6x ([20]). To evaluate the effect of using coprocessor, designers neep to perform design space 
exploration. However, to enable rapid design space exploration there is a need for (i) describing 
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the embedded system (processor, coprocessor, memory subsystem) in higher level of abstraction, 
and (ii) generating software toolkit (e.g, compiler, simulator, assembler) automatically from the 
description. 

Recent advances in Systems-on-Chip (SOC) technology enable customization of the processor 
architecture, memory subsystem, and co-processor architecture to a specific application (or appli­
cation domain) to meet the diverse requirements, e.g, better performance, low power, smaller area, 
higher code density etc. However, shrinking time-to-market coupled with short product lifetimes 
create a critical need to rapidly evaluate candidate SOC architectures, and complete both soft­
ware and hardware implementations in parallel. Rapid Design Space Exploration (DSE) of SOC -
architectures is critically dependent on a retargetable software toolkit (e.g., compiler, simulator, as­
sembler etc.). Architecture Description Language (ADL) based approaches ([1], [2], [3], [4], [6], 
[9], [17], [19], [21]) have recently been proposed to support automatic softw~e toolkit generation 
for the processor-memory architecture, and provide feedback to the designer on the quality of the 
architecture. While these approaches extensively address processor and memory features, to our 
knowledge no previous approach allows explicit capture of a coprocessor, and the attendant task 
of generating software toolkit that fully exploits this coprocessor architecture. 

The contribution of this report is the explicit description of a coprocessor along with processor 
and memory subsystem in EXPRESSION ADL [9], permitting co-exploration of the processor, 
coprocessor and the memory architecture. We generate coprocessor-aware software toolkit that 
allows rapid design space exploration. 

This report is organized as follows. Section 2 presents related work addressing ADL-driven DSE 
approaches. Section 3 outlines our approach and the overall flow of our environment. Section 4 
describes the coprocessor description in EXPRESSION. Section 5 describes how we generate co­
processor aware software toolkit. Section 6 presents design space exploration experiments using 
the software toolkit. Section 7 concludes the report. 

2 Related Work 

Recent approaches on language-driven design space exploration ([l], [2], [3], [13], [6], [17], 
[19], [21]), use ADLs to capture the processor architecture, generate automatically a software 
toolkit for that processor, and provide feedback to the designer on the quality of the architecture. 

nML [6] has been used by the retargetable code generation environment CHESS [2] to describe 
DSP and ASIP processors. In ISDL [3], constraints on parallelism are explicitly specified through 
illegal operation groupings. This could be tedious for complex architectures like DSPs which 
permit operation parallelism (e.g. Motorola 56K) and VLIW machines with distributed register 
files (e.g. TI C6X). MIMOLA [13] descriptions are structure-based, and generally very low-level, 
and laborious to write. MDes [21] allows only a restricted retargetability of the simulator to the 
HPL-PD processor family. MDes permits the description of the memory system, but is limited to 
the traditional cache hierarchy. LISA [5] and RADL [18] capture VLIW DSP processors. The ap­
proach of [IO] uses LISA and SystemC based framework for fast hardware-software co-simulation. 
An ADL-based approach for processor-memory co-exploration is presented in [15]. 

While these approaches explicitly capture the processor and memory features to varying de-
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grees, to our knowledge, no previous approach allows explicit capture of a coprocessor along with 
processor and memory specification, and the attendant tasks of generating a software toolkit that 
fully exploits this coprocessor architecture. In this report we show how to describe coprocessor 
in EXPRESSION [9] ADL. A coprocessor-aware software toolkit is generated automatically from 
the EXPRESSION description to enable design space exploration. 

3 Our Approach 

Figure 1 shows the flow in our approach. In our IP library based Design Space Exploration -
(DSE) scenario, the designer starts by selecting a set of components from a processor IP library, 
memory IP library, and coprocessor IP library. Our EXPRESSION Architectural Description Lan­
guage (ADL) description (containing a mix of such IP components and custom, blocks) is then used 
to generate the information necessary to target both the compiler and the simulator to the specific 
architecture. 

Processor 
IP Library 

I 
I 
I 
L 

Memory 
IP Lll;lrary 

EXPRESSION AOL 

Figure 1. Flow in our approach 

Feedback 

Traditionally, a coprocessor is used in embedded system to compute specific operations that 
processor either cannot perform or do not perform due to performance and other constraints. In 
this case, the processor send the operation to the coprocessor and wait for the results while com­
puting something else. In certain architectures e.g., ARM [11], the processor does not perform 
anything while coprocessor is active. In this case, the same operation passes through both proces­
sor and coprocessor pipeline; the coprocessor performs the intended task whereas the processor 
treats the operation as NOP. However, if the operation for the coprocessor is scheduled properly, 
the functional units in the processor can perform their operations while coprocessor is busy without 
violating any control or data dependencies. Sometimes the processor reads the operands for the 
coprocessor operation and send the data to the coprocessor. In this case, the coprocessor behaves 
as a functional unit in the processor. Usually, coprocessor reads its operand from the memory 
subsystem. Sometimes it has its own local memory which it uses during computation. The data 
transfer between coprocessor local memory and main memory is done using DMA controller. 
While the processor and memory pipeline was captured in detail [15] to allow processor-memory 
co-exploration, the coprocessor pipeline was not explicitly captured and exploited by the software 
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toolkit during design space exploration. 
We capture coprocessor description in EXPRESSION ADL [9] along with processor and mem­

ory description. We generate from this ADL description the EXPRESS compiler and SIMPRESS 
simulator that can exploit the features available in the coprocessor, allowing for detailed feedback 
on the coprocessor architecture and its match to the target applications. 

4 Coprocessor description in EXPRESSION 
In order to explicitly describe the coprocessor in EXPRESSION, we need to capture both the 

structure and behavior of the coprocessor. We illustrate how we capture coprocessor description -
in EXPRESSION using the TI C6x [20] architecture. Figure 2 shows a simplified model of the 
TI C6211 architecture. The pipeline paths are shown using solid lines whereas the data transfer 
paths are shown using dotted lines. The TI C6211 is an 8-way VLIW DSP processor with a 
deep pipeline, composed of 4 fetch stages (PG, PS, PR, PW), 2 decode stages (DP, DC), followed 
by the 8 functional units (LI, SI, Ml, DI, L2, S2, M2, D2). In this section we describe how we 
capture the coprocessor description in EXPRESSION. We first present how to describe coprocessor 
pipeline along with processor and memory pipelines followed by the description of the instructions 
supported by the coprocessor. 

Figure 2. TI C62x Architecture with Coprocessor 

4.1 Coprocessor Pipeline 

To describe the structure of the coprocessor we capture each pipeline stage of the coprocessor 
along with their characteristics (e.g, timing, parallelism etc.). The EXPRESSION description for 
the coprocessor structure (shown in Figure 2) is shown below. 

;-------Pipeline description--------------------­
(PIPELINE PG PS PW PR DP DC Execute) 
;Coprocessor appears only in the Execute stage 
(Execute (ALTERNATE COPRO Ll Sl Ml Dl D2 M2 S2 L2)) 
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;Only COPRO pipeline shown here 
(COPRO (PIPELINE CP_l EMIF_l CoProc CP_2 EMIF_2)) 

;--------------------------------------------------
;---------------- Characteristics of the CoProc --­
(CoproUnit CoProc 

(CAPACITY 1) 
(TIMING (all 4)) 
(OPCODES COPRO_instr) 
(LATCHES ..... ) 
(PORTS .... ) 

The coprocessor pipeline has 5 stages. The coprocessor instruction is decoded in CP _l stage to -
determine the size of the input data and the starting address in the main memory. The EMIF _l stage 
requests the DMA to transfer the data from the main memory to the coprocessor memory, using 
efficient access modes if needed. The CoProc stage performs the intended computation (e.g., vector 
multiply, FFT etc.) using the coprocessor memory for accessing input operands. Results are stored 
back in the coprocessor memory. The CP _2 stage decides the size of the result and the starting 
address in the main memory to store the results of the computation, and EMIF -2 requests the 
DMA to transfer the data from coprocessor memory to main memory. The example above shows 
the characteristics viz., timing, opcodes supported, parallelism (CAPACITY) for only the CoProc 
unit. The complete coprocessor description in EXPRESSION has description for remaining four 
stages (CP_l, EMIF_l, CP_2, EMIF_2), DMA controller, coprocessor memory (in STORAGE 
section), pipelines latches, ports, connections etc. and can be found in Appendix A. 

4.2 Behavior of the Coprocessor 

To describe the behavior of the coprocessor we capture the operations it supports. For example,­
the EXPRESSION description for the vector multiplication operation is shown below. 

(OP_GROUP COPRO_instr 
(OPCODE VectMul 

(OPERANDS (_SOURCE_l_ mem) (_SOURCE_2_ mem) 
(_DEST_ mem) (_LENGTH_ inunediate) 

Here we show how we capture the vector multiplication operation supported by the copro­
cessor. Unlike normal instructions whose source and destination operands are register type (ex­
cept load/store), here source and destination operands are memory type. The _SOURCE_L and 
_SOURCE_2_ fields refer to the starting addresses of two source operands for the multiplication. 
Similarly _])EST_ refers to the starting address of destination operand for the multiplication. The 
_LENGTH_ field refers to the vector length of the operation that has immediate data type. 

The explicit representation of the coprocessor structure and behavior allows the compiler to ex­
ploit the organization of the coprocessor during operation scheduling, and the simulator to provide 
detailed feedback on the internal coprocessor traffic. 

The pipelining and parallelism between the coprocessor operations are described in EXPRES­
SION through pipeline paths. Pipeline paths represent the ordering between pipeline stages in the 
architecture (represented as solid lines in Figure 2). For example, a coprocessor operation traverses 

7 



first 4 fetch stages (PG, PS, PR, PW) of the processor, followed by the 2 decode stages (DP, DC), 
and then it goes through 5 coprocessor stages (CP _l, EMIF_l, CoProc, CP _2, EMIF_2). It also tra­
verses the data transfer paths for reading operands and writing results (represented as dotted lines 
in in Figure 2). For example, a coprocessor read operation traverses CoProc followed by CoProc­
Memory which gets the data from main memory using DMA. Thus the pipeline path traverse by 
the example coprocessor operation is: 

(PIPELINE PG, PS, PR, PW, DP, DC, CP_l, 
EMIF_l, CoProc, CP_2, EMIF_2) 

Even though in this example pipeline path is flattened, the pipeline path in EXPRESSION are 
described in a hierarchical manner. In this manner EXPRESSION can model a variety of copro­
cessor modules and their characteristics. The EXPRESSION description can be used to drive the 
generation of both coprocessor-aware compiler and cycle-accurate structural coprocessor simula­
tor, as described in Section 5. 

5 Software Toolkit Generation 

We generate automatically the software toolkit from the EXPRESSION description of the pro­
cessor, coprocessor and memory subsystem. In this section we briefly outline how we generate 
compiler and simulator which exploit the features of the coprocessor. As mentioned earlier we 
used the EXPRESSION [9] framework for generating retargetable compiler, EXPRESS [8] and 
simulator, SIMPRESS [12]. In this section we briefly mention how we generate coprocessor-aware 
simulator and compiler from the ADL description of the architecture. 

5.1 Retargetable Simulator Generation 

We are able to generate co-processor aware retargetable simulator due to the use of functional 
abstraction based primitives. We define each stage of the coprocessor unit using parameterized 
functions. Each function is further composed of generic sub-functions which allows a finer granu­
larity of architectural exploration. For example, the generic CoProc unit uses three sub-functions 
as shown below. The parameters for the generic functions (e.g., srclAddr, length etc·.) are obtained 
from the EXPRESSION description of the coprocessor as presented in Section 4. 

CoProc (srclAddr, src2Addr, destAddr, length, funcPtr ) 
{ 

II ReadSrcl, Srcl vector start address and length 
II of the vector are needed to retrieve the values. 

Sl = ReadOperand(srclAddr, length); 

II ReadSrc2 
S2 = ReadOperand(src2Addr, length); 

II Perform the operation 
DO = ComputeResult(Sl, S2, funcPtr); 

II Write the result back. 
WriteOperand(destAddr, length); 
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Similarly, we use the generic model of the DMA controller. The detailed description of all the 
generic abstractions used to retarget the simulator are too long to describe in this report, and can 
be found in [14]. 

5.2 Retargetable Compiler Generation 

The coprocessor related information available in the EXPRESSION description are used to re­
target the compiler. For example, to schedule the operation, the instruction description, and the 
pipeline and timing information of the coprocessor are used to generate reservation tables [7]. 
Considering the fact that DMA can take a long time to access (exact timing is known) the main 
memory, the compiler can schedule operations using reservation tables such that when the copro­
cessor is busy, the functional units of the processor can execute independent operations. To obtain 
optimized code of the application the trailblazing percolation scheduling [ 16] ·is used. 

The on chip memory is shared between coprocessor and the processor core. The data transfer 
between on chip memory and the coprocessor local memory is performed using DMA controller. 
The EMIF _l units sends request to DMA controller to transfer the data from the on chip memory. 
During DMA transfer the memory controller delays all the load/store requests since we allow only 
one of them (DMA controller or memory controller) to access the memory. If this delay of the 
transfer is known before hand, compiler can take this into account during instruction scheduling 
and generate optimized code. Similarly, DMA controller delays memory access requests when 
memory controller is accessing the memory. Again, if this delay can be determined statically, 
compiler can generate better scheduled code. 

In this manner we can generate both coprocessor-aware compiler and cycle-accurate structural 
coprocessor simulator, and thus enable design space exploration and co-design of the coprocessor 
and processor-memory architecture. 

6 Experiments 

We present here a set of experiments to show the usefulness of our approach. Our goal is to 
study the performance impact of using coprocessor to support vector multiplication .. 

6.1 Experimental Setup 

We have used a set of benchmarks from DSPStone fixed point benchmarks that uses vector 
multiplication. We have chosen TI C62x architecture for the exploration. The M unit of the TI 
C62x can be used for vector multiplication. The M unit executes the multiplication operation 
(MUL) iteratively as shown below. 

II Vector Multiplication code in Application Program 
for (i=O; i < n; i++) 

z[i] = a[i] * b[i]; 

II Translated pseudo assembly that can run on TI C62x 
MOV i, 0 

LS: LOAD x, rnern_address(a[i]) 
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LOAD y, mem_address(b(i]) 
MUL t, x, y 

STORE t, mem_address(z[i]) 
INC i 
LT $cc i n) 
IF $cc LS 

II Equivalent instruction for the coprocessor 
VectMul(a, b, z, n); 

However, the same vector multiplication can be performed using a coprocessor. The equiva­
lent coprocessor instruction is shown above. Naturally, the architectural configuration that uses 
coprocessor is more costly than the other one. In both cases (with or without coprocessor) we de­
scribed the architecture using EXPRESSION description and generated EXPRESS compiler and 
SIMPRESS simulator. 

6.2 Results 

Figure 3 presents a subset of experiments we ran, showing the total cycle counts for the set of 
benchmarks for two different architectural configuration, viz., with coprocessor and without copro­
cessor. Table 1 presents the same. The first column presents the benchmarks we ran. The second 
column presents the number of cycles needed to execute the benchmarks when functional unit is 
used to perform vector multiplication. The third column presents the number of cycles needed 
to execute the benchmarks when coprocessor is used to perform vector multiplication. The last 
column shows the performance improvement obtained due to the coprocessor. The configuration 
with coprocessor shows 29% improvement for dotproduct, vector multiplication dominated DSP 
kernel whereas it shows only 5% improvement for .fir2dim since vector multiplication is only a 
minor part of the program. The performance improvement is due to the fact that coprocessor uses 
its local memory and rely on efficient DMA transfer. Moreover, functional units (e.g., Ml) operate 
in register-to-register mode whereas co-processor operates on its memory-memory mode. As a 
result the register pressure and thereby spilling gets reduced in the presence of the coprocessor. 

8000 .-------,-----..,.--------
Ill Funcnonal Unit 

~ 5000 

~ 4000 ------< 
u 
>. 
(.) 3000 +--------< 

2000 

1000 

Coruolut1on Dot_product Fir2d1m Matrix_multipl)t n_real_updates 

Figure 3. Performance with or without co-processor 

We have run another set of experiments for the benchmark convolution with vector multiplication 
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Table 1. Performance Analysis with or without co-processor 

Benchmark Functional Unit Co-processor % improvement 
convolution 2562 1992 28.61 
doLproduct 5122 3976 28.82 

fir2dim 3581 3407 5.11 
matrix_multiply 6786 5526 22.80 
n_reaLupdates 2821 2282 23.62 

of different vector length. Table 2 presents the results of this experiment. The first column repre­
sents the length of vectors in vector multiplication operation in the convolution benchmark. The 
second column represents the number of cycles needed to execute the program when functional 
unit is used for vector multiplication. The third column presents the number of cycles needed to 
execute the program when co-processor is used for performing vector multiplication instead of the 
functional unit. The last column shows performance improvement for using the coprocessor. Fig­
ure 4 presents the same. While the vector length is small (e.g., 1), functional unit performs better 
since co-processor needs set up cycles. As expected, the coprocessor performs better when vector 
length is large. The use of coprocessor can deliver upto 29% performance improvement for the 
convolution benchmark. 

Table 2. Performance Analysis for convolution benchmark for varied vector size 

Vector length Functional Unit Co-processor % improvement 
1 45 47 -4.26 
2 82 7~ 10.81 
4 162 135 20.00 
8 322 257 . 25.29 
16 642 504 27.38 
32 1282 1000 28.20 
64 2562 1992 28.61 
128 5122 3976 28.82 
256 10242 7944 28.93 
512 20482 15880 28.98 
1024 40962 31752 29.01 

Thus, using our coprocessor-aware ADL-based design space exploration approach, we obtained 
design points with varying cost and performance. Note that this cannot be determined through 
analysis alone, the customized coprocessor must be explicitly captured, and the application have 
to be executed on the configured architecture, as we demonstrated in this section. 

11 



3000 
--Functional Unit 

2500 
---- Co-processor 

..., 2000 
c 
::J 
0 
u 1500 (I) 

(; 
> 
(.) 

1000 

500 

4 16 32 64 

Vector length 

Figure 4. Performance analysis for convolution benchmark for varied vector size 

7 Summary 

This report proposed an ADL driven design space exploration methodology in the presence 
of coprocessors. We capture the coprocessor description in EXPRESSION along with processor 
and memory description and generate software toolkit that exploits the coprocessor features. We 
have demonstrated the power of our approach performing architectural exploration using TI C62x 
architecture with coprocessor. 

Our ongoing work targets the study of cost measures for the local memory, DMA and copro­
cessor to decide the best cost/performance figure. We plan to perform exploration using larger 
examples, to study the impact of the application on the coprocessor and overall performance, as 
well as on system power. 
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;//////////l//l/lll//Section 1: Specific operations ///////////////// 

(OPERATIONS_SECTION 

(VAR_GROUPS 
(reg (OR RFA)) 
(Bl4_Bl5 (OR Bl4 BlS)) 
(creg (OR CONTROL_RF)) 
(cst21 (OR CONST21)) 
(cst16 (OR CONST16)) 
(cst5 (OR CONSTS)) 
(cstS_reg (OR cst5 reg)) 
(cst32 (OR CST32)) 
(cst15 (OR CONSTlS)) 
(cst2l_reg (OR cst21 reg)) 
(cst16_reg (OR cst16 reg)) 
(addr_rnode (OR PREINC PREDEC POSTINC POSTDEC)) 
(circ_reg (OR A4_A7 B4_B7)) ;circular addressing modes 
(A4_A7 (OR A4 AS A6 A7)) 
(B4_B7 (OR B4 BS B6 B7)) 
(bk_reg (OR BKO BKl)) ;block size for circular addressing modes 
( irp (OR IRP)) 
(nrp (OR NRP)) 

(OP_GROUP single_cycle 
(OPCODE ABS 

(OP_TYPE DATA_OP) (OPERANDS (SRC_l reg) (DST reg)) 

(OPCODE ADD ADDU 
(OP_TYPE DATA_OP) (OPERANDS (SRC_l reg) (SRC_2 reg) (DST reg)) 
(BEHAVIOR "DST=SRCl+SRC2") 

(OPCODE ADDAB ADDAH ADDAW 
(OP_TYPE DATA_OP) (OPERANDS (SRC_l circ_reg (CIRC bk_reg)) (SRC_2 reg) (DST reg)) 
(BEHAVIOR "DST=SRC1+SRC2") 

(OPCODE ADDK 
(OP_TYPE DATA_OP) (OPERANDS (SRC_l cst16) (DST reg)) (BEHAVIOR "DST=SRCl+DST") 

(OPCODE ADD2 ; SIMD type ADD (upper and lower halves) 
(OP_TYPE DATA_OP) (OPERANDS (SRC_l reg) (SRC_2 reg) (DST reg)) 

(OPCODE AND 
(OP_TYPE DATA_OP) (OPERANDS (SRC_l reg) (SRC_2 reg) (DST reg)) 
(BEHAVIOR "DST=SRCl & SRC2") 

(OPCODE CLR 
(OP_TYPE DATA_OP) (OPERANDS (SRC_l reg) (SRC_2 reg) (DST reg)) 
(OPERANDS (SRC_l reg) (SRC_2 cst5) (SRC_3 cst5) (DST reg)) 

(OPCODE CMPEQ CMPEQU CMPGT CMPGTU CMPLT CMPLTU 
(OP_TYPE DATA_OP) 
(OPERANDS (SRC_l cstS_reg) (SRC_2 reg) (DST reg)) 
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(OPCODE EXT EXTU ; Extract and sign-extend a bit-field 
(OP_TYPE DATA_OP) (OPERANDS (SRC_l reg) (SRC_2 reg) (DST reg)) 
(OPERANDS (SRC_l reg) (SRC_2 cst5) (SRC_3 cst5) (DST reg)) 

(OPCODE IDLE i multi-cycle NOP 
(OP_TYPE DATA_OP) (BEHAVIOR none) 

(OPCODE LMBD ; left most bit detector 
(OP_TYPE DATA_OP) (OPERANDS (SRC_l cst5_reg) (SRC_2 reg) (DST reg)) 

(OPCODE MV 
(OP_TYPE DATA_OP) (OPERANDS (SRC_l reg) (DST reg)) (BEHAVIOR "DST=SRCl") 

(OPCODE MVC ; move from control register file 
(OP_TYPE DATA_OP) (OPERANDS (SRC_l creg) (DST reg)) (BEHAVIOR "DST=SRCl") 

(OPCODE MVK 
(OP_TYPE DATA_OP) (OPERANDS (SRC_l cstl6) (DST reg)) (BEHAVIOR "DST=S~Cl") 

(OPCODE MVKH 
(OP_TYPE DATA_OP) (OPERANDS (SRC_l cst32 MSB16) (DST reg MSB16)) (BEHAVIOR "DST=SRCl") 

(OPCODE MVKLH 
(OP_TYPE DATA_OP) (OPERANDS (SRC_l cst32 LSB16) (DST reg MSB16)) (BEHAVIOR "DST=SRCl") 

(OPCODE NEG 
(OP_TYPE DATA_OP) (OPERANDS (SRC_l reg) (DST reg)) (BEHAVIOR "DST=-SRCl") 

(OPCODE NOP 
(OP_TYPE DATA_OP) (OPERANDS none) (BEHAVIOR none) 

(OPCODE NORM 
(OP_TYPE DATA_OP) (OPERANDS (SRC_l reg) (DST reg)} 

(OPCODE NOT 
(OP_TYPE DATA_OP) (OPERANDS (SRC_l reg) (DST reg)} (BEHAVIOR "DST=!SRCl") 

(OPCODE OR 
(OP_TYPE DATA_OP) (OPERANDS (SRC_l reg) (SRC_2 reg) (DST reg)) 
(BEHAVIOR II DST=SRCl 11 SRC2 II) 

(OPCODE SADD ; add with saturation 
(OP_TYPE DATA_OP) (OPERANDS (SRC_l cst5_reg) (SRC_2 reg) (DST reg)) 
(BEHAVIOR "DST=SRCl+SRC2") 

(OPCODE SAT ; saturate a 40bit int into a 32bit one 
(OP_TYPE DATA_OP) (OPERANDS (SRC_l reg) (DST reg)) 

(OPCODE SET ; set a bit field 
(OP_TYPE DATA_OP) (OPERANDS (SRC_l reg) (SRC_2 reg) (DST reg)) 
(OPERANDS (SRC_l reg) (SRC_2 cst5) (SRC_3 cst5) (DST reg)) 

(OPCODE SHL 
(OP_TYPE DATA_OP) (OPERANDS (SRC_l cst5_reg) (SRC_2 reg) (DST reg)) 
(BEHAVIOR "DST=SRC2 << SRCl") 

(OPCODE SHR 
(OP_TYPE DATA_OP) (OPERANDS (SRC_l cst5_reg) (SRC_2 reg) (DST reg)) 
(BEHAVIOR "DST=SRC2 >> SRCl") 

(OPCODE SHRU 
(OP_TYPE DATA_OP) (OPERANDS (SRC_l cst5_reg) (SRC_2 reg) (DST re~)) 
(BEHAVIOR "DST=SRC2 >> SRCl") 
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(OPCODE SSHL ; shift left with saturation 
(OP_TYPE DATA_OP) (OPERANDS (SRC_l cst5_reg) (SRC_2 reg) (DST reg}) 
(BEHAVIOR "DST=SRC2 << SRCl") 

(OPCODE SSUB ; subtraction with saturation 
(OP_TYPE DATA_OP) (OPERANDS (SRC_l cst5_reg) (SRC_2 reg) (DST reg)) 
(BEHAVIOR "DST=SRC1-SRC2") 

(OPCODE SUB SUBU 
(OP_TYPE DATA_OP) (OPERANDS (SRC_l cst5_reg) (SRC_2 reg) (DST reg)) 
(BEHAVIOR "DST=SRC1-SRC2") 

(OPCODE SUBAB SUBAH SUBAW 
(OP_TYPE DATA_OP) (OPERANDS (SRC_l circ_reg (CIRC bk_reg)) (SRC_2 reg) (DST reg)) 
(BEHAVIOR "DST=SRC1-SRC2") 

(OPCODE SUBC ; conditional int subtract with shift (commonly used in division) 
(OP_TYPE DATA_OP) (OPERANDS (SRC_l cst5_reg LSB16) (SRC_2 reg LSB16) (DST reg)) 
(BEHAVIOR "DST=((SRCl - SRC2) << 1) + 1") 

(OPCODE SUB2 ; SIMD type SUB (upper and lower halves) 
(OP_TYPE DATA_OP) (OPERANDS (SRC_l reg) (SRC_2 reg) (DST reg)) 

(OPCODE XOR 
(OP_TYPE DATA_OP) (OPERANDS (SRC_l reg) (SRC_2 reg) (DST reg)) 
(BEHAVIOR "DST=SRCl xor SRC2") 

(OPCODE ZERO 
(OP_TYPE DATA_OP) (OPERANDS (DST reg)) (BEHAVIOR "DST=O") 

(OP_GROUP COPRO_instr 
(OPCODE VectMul 

(OP_TYPE DATA_OP) (OPERANDS (SRC_l mem) (SRC_2 mem) (DST mem) (LENGTH immediate) 

(OP_GROUP mpyi_instr 
(OPCODE MPY MPYU MPYUS MPYSU 

(OP_TYPE DATA_OP) (OPERANDS (SRC_l cst16_reg LSB16) (SRC_2 reg LSB16) (DST reg)) 
(BEHAVIOR "DST=SRC1*SRC2") 

(OPCODE MPYH MPYHU MPYHUS MPYHSU 
(OP_TYPE DATA_OP) (OPERANDS (SRC_l cst5_reg MSB16) (SRC_2 reg MSB16) (DST reg)) 
(BEHAVIOR "DST=SRC1*SRC2") 

(OPCODE MPYHL MPYHLU MPYHLUS MPYHLSU 
(OP_TYPE DATA_OP) (OPERANDS (SRC_l cst5_reg MSB16) (SRC_2 reg LSB16) (DST reg)) 
(BEHAVIOR "DST=SRCl*SRC2") 

(OPCODE MPYLH MPYLHU MPYLHUS MPYLHSU 
(OP_TYPE DATA_OP) (OPERANDS (SRC_l cstS_reg LSB16) (SRC_2 reg MSB16) (DST reg)) 
(BEHAVIOR "DST=SRC1*SRC2") 

(OPCODE SMPY ; multiply with shift and saturation 
(OP_TYPE DATA_OP) (OPERANDS (SRC_l cst5_reg LSB16) (SRC_2 reg LSB16) (DST reg)) 
(BEHAVIOR "DST=(SRCl * SRC2) << 1") 

(OPCODE SMPYHL ; multiply with shift and saturation 
(OP_TYPE DATA_OP) (OPERANDS (SRC_l cst5_reg MSB16) (SRC_2 reg LSB16) (DST reg)) 
(BEHAVIOR "DST=(SRCl * SRC2) << l") 

(OPCODE SMPYLH ; multiply with shift and saturation 
(OP_TYPE DATA_OP) (OPERANDS (SRC_l cst5_reg LSB16) (SRC_2 reg MSB16) (DST reg)) 
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(BEHAVIOR "DST=(SRCl * SRC2) << l") 

(OPCODE SMPYH ; multiply with shift and saturation 
(OP_TYPE DATA_OP) (OPERANDS (SRC_l cstS_reg MSB16) (SRC_2 reg MSB16) (DST reg)) 
(BEHAVIOR "DST=(SRCl * SRC2) << 1") 

(OP_GROUP ldst_instr 
(OPCODE LDB LDBU LDH LDHU LDW LDWU 

(OP_TYPE DATA_OP) (OPERANDS (SRC_l reg addrmode) (SRC_2 cstS_reg) (DST reg)) 
(BEHAVIOR "DST=MEM[SRC1+SRC2] ") 

(OPCODE LDB15 LDBU15 LDH15 LDHU15 LDW15 LDWU15 
(OP_TYPE DATA_OP) (OPERANDS (SRC_l B14_B15) (SRC_2 cstlS) (DST reg)) 
(BEHAVIOR "DST=MEM[SRC1+SRC2]") 

(OPCODE STB STH STW 
(OP_TYPE DATA_OP) (OPERANDS (SRC_l reg) (SRC_2 reg addrmode) (SRC_3 cstS_reg)) 
(BEHAVIOR "MEM[SRC2+SRC3]=SRC1") 

(OPCODE STB15 STH15 STW15 
(OP_TYPE DATA_OP) (OPERANDS (SRC_l reg) (SRC_2 Bl4_B15) (SRC_3 cst15)) 
(BEHAVIOR "MEM[SRC2+SRC3]=SRC1") 

(OP_GROUP branch_instr 
(OPCODE B 

(OP_TYPE CONTROL_OP) (OPERANDS (SRC_l cst2l_reg)) 

(OPCODE BIRP ; branch using interrupt return pointer 
(OP_TYPE CONTROL_OP) (OPERANDS (SRC_l irp)) 

(OPCODE BNRP ; branch using NMI return pointer 
(OP_TYPE CONTROL_OP) (OPERANDS (SRC_l nrp)) 

hierarchical groupings of instructions to allow shorter reference from components 
(OP_GROUP L_instr 

(OPCODE ABS ADD ADDU AND CMPEQ CMPGT CMPGTU CMPLT CMPLTU LMBD MV NEG 
NORM NOT OR SADD SAT SSUB SUB SUBU SUBC XOR ZERO 

(OP_GROUP M_instr 
(OPCODE MPY MPYU MPYUS MPYSU MPYH MPHHU MPYHUS MPYHSU MPYHL MPYHLU MPYHULS 

MPYHSLU MPYLH MPYLHU MPYLUHS MPYLSHU SMPY SMPYHL SMPYLH SMPYH 

(OP_GROUP S_instr 
(OPCODE ADD ADDU ADDK ADD2 AND B CLR EXT EXTU MV MVC MVK MVKH MVKLH NEG 

NOT OR SET SHL SHR SHRU SHRL SUB SUBU SUB2 XOR ZERO 

(OP_GROUP S2_instr 
(OPCODE BIRP BNRP 
) 

(OP_GROUP D_instr 
(OPCODE ADD ADDU ADDAB ADDAH ADDAQ LDB LDBU LDH LDHU LDW MV STB STH STW SUB 

SUBAB SUBAH SUBAQ ZERO 

(OP GROUP D2_instr 
(OPCODE LDB15 LDBU15 LDH15 LDHU15 LDW15 STB15 STH15 STWlS 
) 
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;///ll//////l//ll///Section 2: Instruction template//////////////////// 

(INSTRUCTION_SECTION 
(WORDLEN 32) 
(SLOTS 

((TYPE DATA) (BITWIDTH 8) (UNIT COPRO)) 
((TYPE DATA) (BITWIDTH 8) (UNIT Ll)) 
((TYPE DATA) (BITWIDTH 8) (UNIT L2)) 
((TYPE DATA) (BITWIDTH 8) (UNIT Ml)) 
((TYPE DATA) (BITWIDTH 8) (UNIT M2)) 
((TYPE DATA CONTROL) (BITWIDTH 8) (UNIT Dl)) 
((TYPE DATA CONTROL) ( BITWIDTH 8 ) (UNIT D2)) 
((TYPE DATA) (BITWIDTH 8) (UNIT Sl)) 
((TYPE DATA) (BITWIDTH 8) (UNIT S2)) 

;///ll//l/lll//Section 3: Operation mappings /l///lll/l/l/ll//ll//l/l/ll// 

(OPMAPPING_SECTION 
(OP MAPPING (GENERIC (IADD SRCl SRC2 DST)) (TARGET (ADD SRCl SRC2 DST))) 
(OP_MAPPING (GENERIC (ISUB SRCl SRC2 DST)) (TARGET (SUB SRCl SRC2 DST))) 
(OP_MAPPING (GENERIC (IVLOAD SRCl SRC2 DST)) (TARGET (LDW SRCl SRC2 DST))) 
(OP_MAPPING (GENERIC (IVSTORE SRCl SRC2 SRC3)) (TARGET (STW SRCl SRC2 SRC3))) 
(OP_MAPPING (GENERIC (IASSIGN SRCl DST)) (TARGET (MV SRCl DST))) 
(OP_MAPPING (GENERIC (IASH SRCl (INT_POZ SRC2) DST)) (TARGET (SHR SRCl SRC2 DST))) 
(OP_MAPPING (GENERIC (IASH SRCl (INT_NEG SRC2) DST)) (TARGET (SHL SRCl (MINUS SRC2) DST))) 
(OP_MAPPING (GENERIC (ILSH SRCl (INT_POZ SRC2) DST)) (TARGET (SHRU SRCl SRC2 DST))) 
(OP_MAPPING (GENERIC (ILSH SRCl (INT_NEG SRC2) DST)) (TARGET (SHL SRCl (MINUS SRC2) DST))) 
(OP_MAPPING (GENERIC (DADD SRCl SRC2 DST)) (TARGET (ADD SRCl SRC2 DST))) 
(OP MAPPING (GENERIC (DSUB SRCl SRC2 DST)) (TARGET (SUB SRCl SRC2 DST))) 
(OP_MAPPING (GENERIC (DMUL SRCl SRC2 DST)) (TARGET (MPY SRCl SRC2 DST))) 
(OP MAPPING (GENERIC (ICONSTANT SRCl DST)) (TARGET (MVK SRCl DST))) 
(OP_MAPPING (GENERIC (ASSIGN SRCl DST)) (TARGET (MV SRCl DST))) 
(OP_MAPPING (GENERIC (IGE SRCl SRC2 DST)) (TARGET (CMPLT SRC2 SRCl DST))) 
(OP_MAPPING (GENERIC (ILT SRCl SRC2 DST)) (TARGET (CMPLT SRCl SRC2 DST))) 
(OP_MAPPING (GENERIC (ILE SRCl SRC2 DST)) (TARGET (CMPGT SRC2 SRCl DST))) 
(OP_MAPPING (GENERIC (IGT SRCl SRC2 DST)) (TARGET (CMPGT SRCl SRC2 DST))) 
(OP MAPPING (GENERIC (IEQ SRCl SRC2 DST)) (TARGET (CMPEQ SRC2 SRCl DST))) 
(OP_MAPPING (GENERIC (DMTCl SRCl DST)) (TARGET (MV SRCl DST))) 
(OP MAPPING (GENERIC (TRUNCID SRCl DST)) (TARGET (MV SRCl'DST))) 
(OP_MAPPING (GENERIC (MFCl SRCl DST)) (TARGET (MV SRCl DST))) 
(OP_MAPPING (GENERIC (DCONSTANT SRCl DST)) (TARGET (MVK SRCl DST))) 
(OP MAPPING (GENERIC (MTCl SRCl DST)) (TARGET (MV SRCl DST))) 
(OP_MAPPING (GENERIC (CVTDI SRCl DST)) (TARGET (MV SRCl DST))) 
(OP MAPPING 
(OP MAPPING 
(OP_MAPPING 
(OP_MAPPING 
(OP_MAPPING 
(OP_MAPPING 
(OP_MAPPING 
(OP_MAPPING 
(OP_MAPPING 
(OP_MAPPING 
(OP_MAPPING 

(GENERIC (ILAND SRCl SRC2 DST)) 
(GENERIC (DASSIGN SRCl DST) ) 
(GENERIC (DGE SRCl SRC2 DST)) 
(GENERIC (DLT SRCl SRC2 DST)) 
(GENERIC (DLE SRCl SRC2 DST)) 
(GENERIC (DGT SRCl SRC2 DST)) 
(GENERIC (DEQ SRCl SRC2 DST)) 
(GENERIC (CVTSD SRCl DST)) 
(GENERIC (CVTDS SRCl DST)) 
(GENERIC (DMFCl SRCl DST)) 
(GENERIC (FADD SRCl SRC2 DST)) 

(OP_MAPPING (GENERIC (FSUB SRCl SRC2 DST)) 
(OP_MAPPING (GENERIC (FMUL SRCl SRC2 DST)) 
(OP_MAPPING (GENERIC (FDIV SRCl SRC2 DST)) 

(TARGET (AND SRCl SRC2 DST))) 
(TARGET (MV SRCl DST))) 
(TARGET (CMPLT SRC2 SRCl DST))) 
(TARGET (CMPLT SRCl SRC2 DST))) 
(TARGET (CMPGT SRC2 SRCl DST))) 
(TARGET (CMPGT SRCl SRC2 DST))) 
(TARGET (CMPEQ SRC2 SRCl DST))) 
(TARGET (MV SRCl DST))) 
(TARGET (MV SRCl DST))) 
(TARGET (MV SRCl DST))) 
(TARGET (ADD SRCl SRC2 DST))) 
(TARGET (SUB SRCl SRC2 DST))) 
(TARGET (MPY SRCl SRC2 DST))) 

(PREDICATE (POW2 SRC2) (TARGET (SHR SRCl (LOG2 SRC2) DST))) 
(PREDICATE TRUE (TARGET (STW SRCl SP J POSTINC) (STW SRC2 SP 0 POSTINC) (B div))) 
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(OP_MAPPING 
(GENERIC (DDIV SRCl SRC2 DST)) 
(PREDICATE (POW2 SRC2) (TARGET (SHR SRCl (LOG2 SRC2) DST))) 
(PREDICATE TRUE (TARGET (STW SRCl SP 0 POSTINC) (STW SRC2 SP 0 POSTINC) (B div))) 

(OP_MAPPING 
(OP_MAPPING 
(OP_MAPPING 
(OP_MAPPING 

(GENERIC (DVLOAD SRCl SRC2 DST)) 
(GENERIC (DVSTORE SRCl SRC2 SRC3)) 
(GENERIC (FVLOAD SRCl SRC2 DST)) 
(GENERIC (FVSTORE SRCl SRC2 SRC3)) 

(TARGET (LDW SRCl SRC2 DST))) 
(TARGET (STW SRCl SRC2 SRC3) )) 

(TARGET (LDW SRCl SRC2 DST})) 
(TARGET (STW SRCl SRC2 SRC3))) 

;////!!l!!!!!!ll!! Section 4: Components Specification/////////////////// 

(ARCHITECTURE_SECTION 
(SUBTYPE UNIT ProgAddrGenUnit ProgAddrSendUnit ProgAccessWaitUnit ProgFetchPktReceiveUnit 

InstrDispatchUnit InstrDecodeUnit CPlphase EMIFlphase CoProcUnit CP2phase EMIF2phase 
LUnitElphase MUnitElphase SUnitElphase DUnitElphase MUnitE2phase DUnitE2phase MemoryController) 

(SUBTYPE PORT UnitPort Port) 
(SUBTYPE CONNECTION RegisterConnection MemoryConnection) 
(SUBTYPE STORAGE RegFile VirtualMemory Memory) 
(SUBTYPE LATCH OneOpLatch ThreeOpLatch ThreeOpBranchLatch ThreeOpLoadStoreLatch TwoOpLatch ListOpLatch) 

(ProgAddrGenUnit PG 
(CAPACITY 8) (TIMING (all 1)) (OPCODES all) (LATCHES (OUT PGLatch)) 

) 
(OneOpLatch PGLatch) 

(ProgAddrSendUnit PS 
(CAPACITY 8) (TIMING (all 1)) (OPCODES all) (LATCHES (OUT PSLatch)) (LATCHES (IN PGLatch)) 

) 
(OneOpLatch PSLatch) 

(ProgAccessWaitUnit PW 
(CAPACITY 8) (TIMING (all 1)) (OPCODES all) (LATCHES (OUT PWLatch)) (LATCHES (IN PSLatch)) 

) 
(OneOpLatch PWLatch) 

(ProgFetchPktReceiveUnit PR 
(CAPACITY 8) (TIMING (all 1)) (OPCODES all) (LATCHES (OUT PRLatch)) (LATCHES (IN PWLatch)) 

) 
(OneOpLatch PRLatch) 

(InstrDispatchUnit DP 
(CAPACITY 8) (TIMING (all 1)) (OPCODES all) (LATCHES (OUT DPLatch)) (LATCHES (IN PRLatch)) 

) 
(OneOpLatch DPLatch) 

(InstrDecodeUnit DC 
(CAPACITY 8) (TIMING (all 1)) (OPCODES all) 
(LATCHES (OUT decodeLatchl) (OUT decodeLatch3) (OUT decodeLatch7) (OUT decodeLatchS) 

(OUT decodeLatch6) {OUT decodeLatch8) {OUT decodeLatch4) {OUT decodeLatch2)) 
(LATCHES {IN DPLatch)) 

) 
{ThreeOpLatch decodeLatchl) 
{ThreeOpLatch decodeLatch3) 
{ThreeOpBranchLatch decodeLatch7) 
{ThreeOpLoadStoreLatch decodeLatchS) 
(ThreeOpLoadStoreLatch decodeLatch6) 
{ThreeOpBranchLatch decodeLatch8) 
{ThreeOpLatch decodeLatch4) 
{ThreeOpLatch decodeLatch2) 

{LUnitElphase Ll El 
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(CAPACITY 1) (TIMING (all 1)) (OPCODES all) (LATCHES (IN decodeLatchl)) 
(PORTS Ll_El_srcportl Ll_El_srcport2 Ll_El_dstport3) 

(UnitPort Ll_El_srcportl ("_READ_") (ARGUMENT _SOURCE_l_)) 
(Uni tPort Ll_El_srcport2 ( "_READ_") (ARGUMENT _SOURCE_2_) ) 
(UnitPort Ll_El_dstport3 ("_WRITE_") (ARGUMENT _DEST_)) 

(CPlphase CP_l 
(CAPACITY 1) (TIMING (all 1)) (OPCODES COPRO_instr) (LATCHES (IN decodeLatch9)) 
(LATCHES (OUT CPlLatch) (PORTS CP_l_srcportl CP_l_srcport2) 

) 

(UnitPort CP_l_srcportl ("_READ_") (ARGUMENT _SOURCE_l_)) 
(UnitPort CP_l_srcport2 ("_READ_") (ARGUMENT _SOURCE_2_)) 
(ListOpLatch CPlLatch) 

(EMIFlphase EMIF_l 
(CAPACITY 1) (TIMING (all 1)) (OPCODES COPRO_instr) (LATCHES (IN CPlLatch)) 
(LATCHES (OUT EMIFlLatch) (OUT EMIFlDMALatch)) 

) 

(ListOpLatch EMIFlLatch EMIFlDMALatch) 

(CoProcUnit COPRO 

) 

(CAPACITY 1) (TIMING (all 4)) (OPCODES COPRO_instr) (LATCHES (IN EMIFlLatch)) 
(LATCHES (OUT CoProcLatch) (PORTS CoProcReadPortl CoProcWritePortl) 

(UnitPort CoProcReadPortl ("_READ_") (ARGUMENT _SOURCE_l_)) 
(UnitPort CoProcWritePortl ("_WRITE_") (ARGUMENT _DEST_)) 
(ListOpLatch CoProcLatch) 

(CP2phase CP_2 
(CAPACITY 1) (TIMING (all 1)) (OPCODES COPRO_instr) (LATCHES (IN CoProcLatch)) 
(LATCHES (OUT CP2Latch) (PORTS CP_2_srcportl) 

) 

(UnitPort CP_2_srcportl ("_READ_") (ARGUMENT _DEST_)) 
(ListOpLatch CP2Latch) 

(EMIF2phase EMIF_2 
(CAPACITY 1) (TIMING (all 1)) (OPCODES COPRO_instr) (LATCHES (IN CP2Latch)) 
(LATCHES (OUT EMIF2DMALatch)) 

) 

(ListOpLatch EMIF2DMALatch) 

(MUnitElphase Ml_El 
(CAPACITY 1) (TIMING (all 1)) (OPCODES all) (LATCHES (OUT Ml_ElLatch)) 
(LATCHES (IN decodeLatchJ)) (PORTS Ml_El_srcportl Ml_El_srcport2) 

) 

(ThreeOpLatch Ml_ElLatch) 
(UnitPort Ml_El_srcportl ("_READ_") (ARGUMENT _SOURCE_l_)) 
(UnitPort Ml_El_srcport2 ("_READ_") (ARGUMENT _SOURCE_2_)) 

(SUnitElphase Sl_El 
(CAPACITY 1) (TIMING (all 1)) (OPCODES all) (LATCHES (IN decodeLatch7)) 
(PORTS Sl_El_srcportl Sl_El_srcport2 Sl_El_dstport3) 

) 

(UnitPort Sl_El_srcportl ("_READ_") (ARGUMENT _SOURCE_l_)) 
(UnitPort Sl_El_srcport2 ("_READ_") (ARGUMENT _SOURCE_2_)) 
(UnitPort Sl_El_dstport3 ("_WRITE_") (ARGUMENT _DEST_)) 

(DUnitElphase Dl El 
(CAPACITY 1) (TIMING (all 1)) (OPCODES all) (LATCHES (OUT Dl_ElLatch)) 
(LATCHES (IN decodeLatch5)) (PORTS Dl_El_srcportl Dl_El_srcport2 Dl_El_dstport3) 

) 

(TwoOpLatch Dl_ElLatch) 
(UnitPort Dl_El_srcportl ("_READ_") (ARGUMENT _SOURCE_l_)) 
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(UnitPort Dl_El_srcport2 ("_READ_") (ARGUMENT _SOURCE_2_)) 
(UnitPort Dl_El_dstport3 ("_WRITE_") 

(OPCODES ADD ADDU ADDAB ADDAQ MV SUB SUBAB SUBAH SUBAW ZERO) (ARGUMENT _DEST_) 

(DUnitElphase D2_El 
(CAPACITY 1) (TIMING (all 1)) (OPCODES all) (LATCHES (OUT D2_E1Latch)) 
(LATCHES (IN decodeLatch6)) (PORTS D2_El_srcport2 D2_El_srcportl D2_El_dstport3) 

) 

(TwoOpLatch D2_E1Latch) 
(UnitPort D2_El_srcport2 ("_READ_") (ARGUMENT _SOURCE_2_)) 
(Uni tPort D2_El_srcportl ("_READ_") (ARGUMENT _SOURCE_l_) ) 
(UnitPort D2_El_dstport3 ("_WRITE_") 

(OPCODES ADD ADDU ADDAB ADDAQ MV SUB SUBAB SUBAH SUBAW ZERO) (ARGUMENT _DEST_) 

(SUnitElphase S2_El 
(CAPACITY 1) (TIMING (all 1)) (OPCODES all) (LATCHES (IN decodeLatch8)) 
(PORTS S2_El_srcportl S2_El_srcport2 S2_El_dstport3) 

) 

(UnitPort S2_El_srcportl ("_READ_") (ARGUMENT _SOURCE_l_)) 
(UnitPort S2_El_srcport2 ("_READ_") (ARGUMENT _SOURCE_2_)) 
(UnitPort S2_El_dstport3 ("_WRITE_") (ARGUMENT _DEST_)) 

(MUnitElphase M2_El 
(CAPACITY 1) (TIMING (all 1)) (OPCODES all) (LATCHES (OUT M2_E1Latch)) 
(LATCHES (IN decodeLatch4)) (PORTS Ml_El_srcportl Ml_El_srcport2) 

) 

(ThreeOpLatch M2_E1Latch) 
(UnitPort Ml_El_srcportl ("_READ_") (ARGUMENT _SOURCE_l_)) 
(UnitPort Ml_El_srcport2 ("_READ_") (ARGUMENT _SOURCE_2_)) 

(LUnitElphase L2_El 
(CAPACITY 1) (TIMING (all 1)) (OPCODES all) (LATCHES (IN decodeLatch2)) 
(PORTS L2_El_srcportl L2_El_srcport2 L2_El_dstport3) 

(UnitPort L2_El_srcportl ("_READ_") (ARGUMENT _SOURCE_l_)) 
(UnitPort L2_El_srcport2 ("_READ_") (ARGUMENT _SOURCE_2_)) 
(UnitPort L2_El_dstport3 ("_WRITE_") (ARGUMENT _DEST_)) 

(MUnitE2phase Ml_E2 
(CAPACITY 1) (TIMING (all 1)) (OPCODES all) (LATCHES (IN Ml_ElLatch)) (PORTS Ml_E2_dstport3) 

) 

(UnitPort Ml_E2_dstport3 ("_WRITE_") (ARGUMEN'r _DEST_)) 

(DUnitE2phase Dl_E2 
(CAPACITY 1) (TIMING (all 1)) (OPCODES all) (LATCHES (OUT Dl_E2Latch)) (LATCHES (IN Dl_ElLatch)) 

) 

(TwoOpLatch Dl_E2Latch) 

(DUnitE2phase D2_E2 
(CAPACITY 1) (TIMING (all 1)) (OPCODES all) (LATCHES (OUT D2_E2Latch)) (LATCHES (IN D2_E1Latch)) 

) 

(TwoOpLatch D2_E2Latch) 

(MUnitE2phase M2_E2 
(CAPACITY 1) (TIMING (all 1)) (OPCODES all) (LATCHES (IN M2_E1Latch)) (PORTS M2_E2_dstport3) 

) 

(UnitPort M2_E2_dstport3 ("_WRITE_") (ARGUMENT _DEST_)) 

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; MemController 

;stage 1, does the memory side communication 
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(MemCtrlClass memController_El 
(PORTS memController_Memportl memController_Memport2 

memController_Memport3 memController_Memport4) (OPCODES ldst_instr) 

;stage 2, does the RF side corrununication 
(MemCtrlClass memController E2 

(PORTS memController_RFAreadport memController_RFBreadport 
memController_RFAwriteport memController_RFBwriteport) 

;;;;;;;;;;; ;;;;;;;;;;;;;;;;Main Memory controller (outside the CPU) 
(MemCtrlClass mainMemController) 
(RegFile RFA 

(PORTS 
RFAreadportl RFAreadport2 RFAreadport3 RFAreadport4 RFAreadportS RFAreadport6 
RFAreadport7 RFAreadport8 RFAwriteportl RFAwriteport2 RFAwriteport3 RFAwriteport4 
RFAwriteportS RFAreadport9 RFAreadXport) 

(RegFile RFB 
(PORTS 

RFBreadportl RFBreadport2 RFBreadport3 RFBreadport4 RFBreadportS RFBreadport6 
RFBreadport7 RFBreadport8 RFBwriteportl RFBwriteport2 RFBwriteport3 RFBwriteport4 
RFBwriteportS RFBreadport9 RFBreadXport) 

(VirtualMemory OnChipMemory ; this is a "virtual" memory, as seen by 
; the CPU, containing 4 banks & controller 

(SUBCOMPONENTS memController_El memController_E2 MemoryBlock) 
(PORTS memController_RFAport memController_RFBport) 

(Memory MemoryBlock ; this is the memory block containing the four banks 
(SUBCOMPONENTS Memory_BankO Memory_Bankl Memory_Bank2 Memory_Bank3) 
(PORTS mernportl rnemport2 memport3 mernport4) 

(Storage Memory_BankO (PORTS rnemportl)) 
(Storage Memory_Bankl (PORTS memport2)) 
(Storage Mernory_Bank2 (PORTS memport3)) 
(Storage Memory_Bank3 (PORTS memport4)) 

(Port RFAreadportl (ARGUMENT _SOURCE_l_) ) 
(Port RFAreadport2 (ARGUMENT _SOURCE_2_)) 
(Port RFAreadport3 (ARGUMENT - SOURCE_l_)) 
(Port RFAreadport4 (ARGUMENT - SOURCE_2_) ) 
(Port RFAreadportS (ARGUMENT _ SOURCE_l_) ) 
(Port RFAreadport6 (ARGUMENT _SOURCE_2_) ) 
(Port RFAreadport7 (ARGUMENT _SOURCE_l_)) 
(Port RFAreadport8 (ARGUMENT _SOURCE_2_)) 
(Port RFBreadportl (ARGUMENT _SOURCE_l_)) 
(Port RFBreadport2 (ARGUMENT - SOURCE_2_) ) 
(Port RFBreadport3 (ARGUMENT - SOURCE_l_) ) 
(Port RFBreadport4 (ARGUMENT - SOURCE_2_) ) 
(Port RFBreadportS (ARGUMENT _SOURCE_l_)) 
(Port RFBreadport6 (ARGUMENT _ SOURCE_2_) ) 
(Port RFBreadport7 (ARGUMENT _ SOURCE_l_) ) 
(Port RFBreadport8 (ARGUMENT _ SOURCE_2_)) 
(Port RFAwriteportl (ARGUMENT _DEST_)) 
(Port RFAwriteport2 (ARGUMENT _DEST_)) 
(Port RFAwriteport3 (ARGUMENT _DEST_)) 
(Port RFAwriteport4 (ARGUMENT _DEST_)) 
(Port RFAwriteportS (ARGUMENT _MEM_SRC_) ) 
(Port RFAreadport9 (ARGUMENT _MEM_DEST_) ) 
(Port RFBwriteportl (ARGUMENT _DEST_)) 
(Port RFBwriteport2 (ARGUMENT _DEST_) ) 
(Port RFBwriteport3 (ARGUMENT _DEST_)) 
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(Port RFBwriteport4 (ARGUMENT _DEST_)) 
(Port RFBwriteportS (ARGUMENT _MEM_SRC_)) 
(Port RFBreadport9 (ARGUMENT _MEM_DEST_)) 

;RFA, RFB cross connection ports 
;the register file ports have to have assigned arguments, 
;to be able to map them to the SRC/DST field in the instruction 
;these guys go to both source 1 and source 2 of the functional units 
(Port RFAreadXport (ARGUMENT _SOURCE_l_) (ARGUMENT _SOURCE_2_)) 
(Port RFBreadXport (ARGUMENT _SOURCE_l_) (ARGUMENT _SOURCE_2_)) 

';memory controller ports (towards RFs and towards mem) 
;ports towards the register files 
(Port memController_RFAreadport 

(ARGUMENT _MEM_DEST_) (OPCODES STB STH STW) (TIMING (all 0)) 

(Port memController_RFAwriteport 
(ARGUMENT _MEM_SRC_) (OPCODES LDB LDH LDW) (TIMING (all 0)) 

(Port memController_RFBreadport 
(ARGUMENT _MEM_DEST_) (OPCODES STB STH STW) (TIMING (all 0)) 

(Port memController_RFBwriteport 
(ARGUMENT _MEM_SRC_) (OPCODES LDB LDH LDW) (TIMING (all 0)) 

;ports towards the memory banks 
(Port memController_Memportl 

(ARGUMENT _MEM_BYTE_) (TIMING (all 0)) 

(Port memController_Memport2 
(ARGUMENT _MEM_BYTE_) (TIMING (all 0)) 

(Port memController_Memport3 
(ARGUMENT _MEM_BYTE_) (TIMING (all 0)) 

(Port memController_Memport4 
(ARGUMENT _MEM_BYTE_) (TIMING (all 0)) 

;memory ports (4 banks, each with one 16bit port) 
(Port memportl ( "_READWRITE_") (ARGUMENT _MEM_BYTE_)) 
(Port memport2 ( "_READWRITE_") (ARGUMENT _MEM_BYTE_)) 
(Port memport3 ( "_READWRITE_") (ARGUMENT _MEM_BYTE_)) 
(Port memport4 ( "_READWRITE_") (ARGUMENT _MEM_BYTE_)) 

;Ll, L2 connections 
(Connection Ll_El_sportlRFA) 
(Connection Ll_El_sport2RFA) 
(Connection Ll_El_dport3RFA) 
(Connection L2_El_sport1RFB) 
(Connection L2_El_sport2RFB) 
(Connection L2_El_dport3RFB) 

;Ml, M2 connections 
(Connection Ml_El_sportlRFA) 
(Connection Ml_El_sport2RFA) 
(Connection Ml_E2_dport3RFA) 
(Connection M2_El_sport1RFB) 
(Connection M2_El_sport2RFB) 
(Connection M2_E2_dport3RFB) 

;Dl, D2 connections 
(Connection Dl_El_sportlRFA) 
(Connection Dl_El_sport2RFA) 
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(Connection Dl_El_dport3RFA) 
(Connection D2_El_sportlRFB) 
(Connection D2_El_sport2RFB} 
(Connection D2_El_dport3RFB} 

;Sl, S2 connections 
(Connection Sl_El_sportlRFA} 
(Connection Sl_El_sport2RFA} 
(Connection Sl_El_dport3RFA} 
(Connection S2_El_sportlRFB} 
(Connection S2_El_sport2RFB} 
(Connection S2_El_dport3RFB} 

; cross connections between opposite register files and units 
(Connection Ll_El_sportlRFB} 
(Connection Ll_El_sport2RFB} 
(Connection Ml_El_sport2RFB} 
(Connection Sl_El_sport2RFB) 
(Connection L2_El_sportlRFA) 
(Connection L2_El_sport2RFA} 
(Connection M2_El_sport2RFA} 
(Connection S2_El_sport2RFA} 

; Coprocessor, DMA, coprocessor memory connections 
(Connection CP_l_sportlRFA} 
(Connection CP_l_sport2RFA} 
(Connection CP_2_sportlRFA} 
(Connection CoProc_CoProcMemory} 
(Connection CoProcMemory_CoProc} 
(Connection CoProcMemory_DMA} 
(Connection DMA_OnChipMemory) 

; memory controller connections 
(Connection memController_Meml) 
(Connection memController_Mem2) 
(Connection memController_Mem3) 
(Connection memController_Mem4) 
(Connection memController_RFAread) 
(Connection memController_RFAwrite) 
(Connection memController_RFBread} 
(Connection memController_RFBwrite} 

;; dummy resources to avoid false path in the memory 
(Connection dummyl) 
(Connection dummy2) 
(Connection dummy3} 
(Connection dummy4} 

;//II/I/!/// Section 5: Pipeline and Data-transfer paths //////////////// 

(PIPELINE_SECTION 
(PIPELINE PG PS PW PR DP DC Execute} 
(Execute (ALTERNATE COPRO Ll_El Ml Sl_El Dl L2_El M2 S2_El D2)) 
(COPRO (PIPELINE CP_l EMIF_l CoProc CP_2 EMIF_2)) 
(Ml (PIPELINE Ml_El Ml_E2}) 
(M2 (PIPELINE M2_El M2_E2)) 
(Dl (ALTERNATE Dl_El Dl_load Dl_store)) 
(D2 (ALTERNATE D2_El D2_load D2_store)) 
(Dl_store (PIPELINE Dl_El_MC2 Dl_E2_MC1 mainMemController)) 
(Dl_load (PIPELINE Dl_El Dl_E2 mainMemController memController_El memController_E2)) 
(D2_store (PIPELINE D2_El_MC2 D2_E2_MC1 mainMemController)) 
(D2_load (PIPELINE D2_El D2_E2 mainMemController memController_El memController_E2)) 
(Dl_El_MC2 (PARALLEL Dl El memController_E2)) 
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(Dl_E2_MC1 (PARALLEL Dl_E2 rnemController_El)) 
(D2 El MC2 (PARALLEL D2_El rnemController_E2)) 
(D2 E2 MCl (PARALLEL D2_E2 rnemController_El)) 

.................... 
11 I I I I I I 111 11 JI I I I I I 

(DTPATHS 
(TYPE UNI 

;Ll, L2 
From To 

transfers 
(RFA Ll_El 
(RFA Ll_El 
(Ll_El RFA 
(RFB L2_El 
(RFB L2_El 
(L2 El RFB 

;Ml, M2 transfers 
(RFA Ml_El 
(RFA Ml_El 
(Ml_E2 RFA 
(RFB M2_El 
(RFB M2_El 
(M2_E2 RFB 

;Dl, D2 transfers 
(RFA Dl_El 
(RFA Dl_El 
(Dl_El RFA 
(RFB D2_El 
(RFB D2_El 
(D2_El RFB 

;Sl, S2 transfers 
(RFA Sl El 
(RFA Sl_El 
(Sl_El RFA 
(RFB S2 El 
(RFB S2_El 
(S2 El RFB 

data transfer paths 

Path taken;;;;;;;;;;; 

RFAreadportl Ll_El_sportlRFA Ll_El_srcportl) 
RFAreadport2 Ll_El_sport2RFA Ll_El_srcport2) 
Ll_El_dstport3 Ll_El_dport3RFA RFAwriteportl) 
RFBreadportl L2_El_sportlRFB L2_El_srcportl) 
RFBreadport2 L2_El_sport2RFB L2_El_srcport2) 
L2_El_dstport3 L2_El_dport3RFB RFBwriteportl) 

RFAreadport3 Ml_El_sportlRFA Ml_El_srcportl) 
RFAreadport4 Ml_El_sport2RFA Ml_El_srcport2) 
Ml_E2_dstport3 Ml_E2_dport3RFA RFAwriteport2) 
RFBreadport3 M2_El_sportlRFB M2_El_srcportl) 
RFBreadport4 M2_El_sport2RFB M2_El_srcport2) 
M2_E2_dstport3 M2_E2_dport3RFB RFBwriteport2) 

RFAreadportS Dl_El_sportlRFA Dl_El_srcportl) 
RFAreadport6 Dl_El_sport2RFA Dl_El_srcport2) 
Dl_El_dstport3 Dl_El_dport3RFA RFAwriteport3) 
RFBreadportS D2_El_sportlRFB D2_El_srcportl) 
RFBreadport6 D2_El_sport2RFB D2_El_srcport2) 
D2_El_dstport3 D2_El_dport3RFB RFBwriteport3) 

RFAreadport7 Sl_El_sportlRFA Sl_El_srcportl) 
RFAreadport8 Sl_El_sport2RFA Sl_El_srcport2) 
Sl_El_dstport3 Sl_El_dport3RFA RFAwriteport4) 
RFBreadport7 S2_El_sportlRFB S2_El_srcportl) 
RFBreadport8 S2_El_sport2RFB S2_El_srcport2) 
S2_El_dstport3 S2_El_dport3RFB RFBwriteport4) 

cross transfers between opposite register files and units 
(RFB Ll_El 
(RFB Ll_El 
(RFB Ml - El 
(RFB Sl - El 
(RFA L2 - El 
(RFA L2 El 
(RFA M2 - El 
(RFA S2_ El 

;CP_l transfers 
(RFA CP 1 
(RFA CP_l 

;CP_2 transfer 
(RFA CP_2 

(TYPE BI 

RFBreadXport Ll_El_sportlRFB Ll_El_srcportl) 
RFBreadXport Ll _El_sport2RFB Ll_El _srcport2) 
RFBreadXport Ml _El_sport2RFB Ml_El _srcport2) 
RFBreadXport Sl_El_sport2RFB Sl_El_srcport2) 
RFAreadXport L2 _El_sportlRFA L2_El_srcportl) 
RFAreadXport L2 - El _sport2RFA L2 - El _srcport2) 
RFAreadXport M2_El_sport2RFA M2_El_srcport2) 
RFAreadXport S2 - El _sport2RFA S2 - El _srcport2) 

RFAreadportlO CP_l_sportlRFA CP_l_srcportl) 
RFAreadportll CP_l_sport2RFA CP_l_srcport2) 

RFAreadportl2 CP_2_sportlRFA CP_2_srcportl) 

memory controller transfers towards the memory 
(memController_El Memory_BankO memController_Memportl durnrnyl memController_Mernl memportl) 
(memController_El Memory_Bankl memController_Memport2 durnrny2 memController_Mern2 memport2) 
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(memController_El Memory_Bank2 memController_Memport3 dummyl memController_Mem3 memport3) 
(memController_El Memory_Bank3 memController_Memport4 dummy2 memController_Mem4 memport4) 
; CoProcMemory and DMA transfers 
(CoProcMemory DMA CoProcMemoryPortl CoProcMemory_DMA DMAPortl) 
(DMA OnChipMemory DMAPort2 DMA_OnChipMemory OnChipMemoryPortl) 

(TYPE UNI 
memory controller transfers towards the RFs 
(memController_E2 RFA memController_RFAwriteport dummy3 memController_RFAwrite RFAwriteport5) 
(RFA memController_E2 RFAreadport9 memController_RFAread durruny4 memController_RFAreadport) 
(memController_E2 RFA memController_RFBwriteport dummy3 memController_RFBwrite RFBwriteport5) 
(RFA memController_E2 RFBreadport9 memController_RFBread durruny4 memController_RFBreadport) 
; CoProc and coprocessor memory transfers 
(CoProc CoProcMemory CoProcReadPortl CoProc_CoProcMemory CoProcMemoryReadPortl) 
(CoProcMemory CoProc CoProcMemoryWritePortl CoProcMemory_CoProc CoProcWritePortl) 

;////////////// Section 6: Memory hierarchy ////ll///ll//////l/////ll/ 

(STORAGE_SECTION 
(RFA 

(TYPE REGFILE) (SIZE 32) (WIDTH 32) 

(RFB 
(TYPE REGFILE) (SIZE 16) (WIDTH 32) 

(CoProcMemory 
(ACCESS_PORTS 

(CoProcMemoryReadPortl (ACCESS_WIDTHS 8 16 32 64 128 256 512 1024)) 
(CoProcMemoryWritePortl (ACCESS_WIDTHS 8 16 32 64 128 256 512 1024)) 

(SIZE 2048) (WIDTH 8) (ADDRESS_RANGE (0 65535)) (ACCESS_TIMES 1) 

(OnChipMemory ; contains all the 4 banks 
(ACCESS_PORTS 

(memController_RFAreadport (ACCESS_WIDTHS 8 16 32)) 
(memController_RFBreadport (ACCESS_WIDTHS 8 16 32)) 
(memController_RFAwriteport (ACCESS_WIDTHS 8 16 32)) 
(memController_RFBwriteport (ACCESS_WIDTHS 8 16 32)) 
(OnChipMemoryPortl (ACCESS_WIDTHS 8 16 32 64 128 256 1024)) 

(SIZE 65536) (WIDTH 8) (ADDRESS_RANGE (0 65535)) (ACCESS_TIMES 3) 

(Memory_BankO 
(TYPE SRAM) (SIZE 16384) (WIDTH 8) 
(ADDRESS RANGE (0 16376 (STRIDE 8)) 

(Memory_Bankl 

(ACCESS_TIMES 2) 
(1 16377 (STRIDE 8))) 

(TYPE SRAM) (SIZE 16384) (WIDTH 8) (ACCESS_TIMES 2) 
(ADDRESS_RANGE (2 16378 (STRIDE 8)) (3 16379 (STRIDE 8))) 

(Memory_Bank2 
(TYPE SRAM) (SIZE 16384) (WIDTH 8) 
(ADDRESS RANGE (4 16380 (STRIDE 8)) 

(Memory_Bank3 
(TYPE SRAM) (SIZE 16384) (WIDTH 8) 
(ADDRESS_RANGE (6 16382 (STRIDE 8)) 

(ACCESS_TIMES 2) 
(5 16381 (STRIDE 8))) 

(ACCESS_TIMES 2) 
(7 16383 (STRIDE 8))) 
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