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ZW sex chromosome structure in Amborella 
trichopoda

Sarah B. Carey    1, Laramie Aközbek1,2, John T. Lovell    1,3, Jerry Jenkins    1, 
Adam L. Healey    1, Shengqiang Shu    3, Paul Grabowski1,3, Alan Yocca1, 
Ada Stewart1, Teresa Jones1, Kerrie Barry    3, Shanmugam Rajasekar4, 
Jayson Talag4, Charlie Scutt    5, Porter P. Lowry II 6,7, Jérôme Munzinger    8, 
Eric B. Knox    9, Douglas E. Soltis    10, Pamela S. Soltis    10, Jane Grimwood    1,3, 
Jeremy Schmutz    1,3, James Leebens-Mack    11  & Alex Harkess    1 

Sex chromosomes have evolved hundreds of times across the flowering 
plant tree of life; their recent origins in some members of this clade can shed 
light on the early consequences of suppressed recombination, a crucial step 
in sex chromosome evolution. Amborella trichopoda, the sole species of a 
lineage that is sister to all other extant flowering plants, is dioecious with a 
young ZW sex determination system. Here we present a haplotype-resolved 
genome assembly, including highly contiguous assemblies of the Z and 
W chromosomes. We identify a ~3-megabase sex-determination region 
(SDR) captured in two strata that includes a ~300-kilobase inversion that 
is enriched with repetitive sequences and contains a homologue of the 
Arabidopsis METHYLTHIOADENOSINE NUCLEOSIDASE (MTN1-2) genes, 
which are known to be involved in fertility. However, the remainder of the 
SDR does not show patterns typically found in non-recombining SDRs, such 
as repeat accumulation and gene loss. These findings are consistent with the 
hypothesis that dioecy is derived in Amborella and the sex chromosome pair 
has not significantly degenerated.

The evolution of separate sexes, or dioecy, is a rare trait in angiosperms, 
having been identified in just 5–10% of species1. At the same time, dioecy 
has evolved hundreds of times independently across the flowering 
plant tree of life2, making flowering plants ideal for examining the evo-
lution of sex chromosomes over both deep and shallow time scales. 
Comparative investigations of sex chromosomes rely on high-quality 
genome assemblies2, and while the availability of genomes for dioecious 
species has increased, there are only a few where the structure of the 

sex chromosome pair has been well characterized. While divergence 
between X and Y sex chromosomes has been described in a growing 
number of angiosperm species2,3, investigations of what some consider 
to be less common ZW systems can shed new light on the dynamics and 
consequences of sex chromosome evolution.

Since its discovery as the likely sister lineage to all other living 
angiosperms, Amborella trichopoda (Amborellaceae; hereafter, 
Amborella)4–7 has served as a pivotal taxon for investigating the 
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technologies. The final haplotype 1 (HAP1) and 2 (HAP2) assemblies 
include 708.1 Mb in 59 contigs (contig N50 = 36.3 Mb; L50 = 7) and 
700.5 Mb in 45 contigs (contig N50 = 44.5 Mb; L50 = 7), respectively; 
99.69% and 99.87% of the assembled sequence is contained in the  
13 largest scaffolds for HAP1 and HAP2, respectively, corresponding to 
the expected chromosome number19 (Supplementary Fig. 1). We found 
the Merqury k-mer completeness20 of HAP1 to be 95.4% (QV 63) and of 
HAP2 to be 95.3% (QV 55), and the combined assemblies exhibit 98.8% 
completeness (QV 57). Consistent with earlier assemblies, we annotated 
repeats and found that they represent ~56% of the sequence for both 
haplotypes (Fig. 1 and Supplementary Table 2)18. To annotate gene 
models, we used a combination of RNA-seq and Iso-seq (~757 million 
2 × 150 read pairs, ~825 K full-length transcripts). We annotated 21,800 
gene models in HAP1 and 21,721 in HAP2, with embryophyte BUSCOs 
of 98.6% and 98.8%, respectively—an increase from 85.5% in the 2013 
release18. Overall, the new assemblies represent a great improvement 
in the Amborella genome reference, resolving most of the previous 
gaps (Supplementary Fig. 2 and Table 2).

Amborella’s ancient divergence ~140 million years ago (Ma)21 from 
all other living angiosperms provides an opportunity to examine con-
served features that were probably present in the ancestral genome of 
all flowering plants. For example, the repeat-dense pericentromeric 
region and gene-dense chromosome arms of Amborella (Fig. 1) mir-
ror those of most angiosperm genomes, in stark contrast to the more 
uniform gene and repeat density of most conifers, ferns and mosses22–24. 
The pericentromeric regions are enriched in long terminal repeats 
(LTRs), specifically Ty3 and Ty1 elements, as is often seen in other 
monocentric angiosperms25,26. Interestingly, unlike many previously 
examined sex chromosomes, the Amborella Z/W do not stand out as 
notable exceptions in terms of gene or repeat density (Fig. 1).

Identification of the phased Amborella sex chromosomes
Sex chromosomes have unique inheritance patterns relative to auto-
somes. In a ZW system, the non-recombining SDR of the W chromosome 

origin and early diversification of flowering plants8,9. Amborella is 
an understory shrub or small tree endemic to New Caledonia and the 
sole extant species in the Amborellales. The flowers of Amborella are 
actinomorphic and have a perianth of undifferentiated tepals, which 
are characteristics shared with the reconstructed ancestral flower 
(Fig. 1)9. Importantly, however, Amborella is dioecious10 with ZW sex 
chromosomes that evolved after the lineage diverged from other flow-
ering plants11. This implies that dioecy in Amborella is derived from a 
hermaphroditic mating system and that the ancestral angiosperm had 
perfect flowers, in agreement with ancestral state reconstructions9. 
Substantial progress has been made in several angiosperm species 
to identify the genes involved in the evolution of dioecy12–17, but the 
molecular basis in Amborella remains unknown. Here we present a 
haplotype-resolved assembly of the Amborella genome and compare 
highly contiguous Z and W sex chromosome assemblies to address 
outstanding questions about their structure and gene content, includ-
ing putative sex-determining genes.

Results
Improved genome assembly and annotation of Amborella
The Amborella reference genome has been a central anchor for compar-
ative investigations of gene family and gene structure evolution across 
angiosperms. Despite its demonstrated utility, the 2013 Amborella 
genome used primarily short sequencing reads, which cannot fully 
resolve repetitive regions18. The repeat-derived gaps were filled in a 
long-read assembly11, but both biological haplotypes were collapsed 
into a single sequence representation. Despite the higher contiguity, the 
2022 genome offers limited information regarding sex-determination 
regions (SDRs) because in this assembly, the Z and W chromosomes are 
a chimaeric mix represented as a single chromosome11.

To build a haplotype-resolved genome assembly for Amborella 
cv. Santa Cruz 75, we used a combination of PacBio HiFi (mean cover-
age = 58.81× per haplotype; mean read length = 22,900 bp) and Phase 
Genomics Hi-C (coverage = 42.31×; Supplementary Table 1) sequencing 
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Fig. 1 | Amborella and its genome structure. a,b, Female (a) and male (b) 
Amborella flowers. c,d, The Amborella genome (c) and chromosome 9 (Chr09, 
d) are typical of flowering plants: gene-rich chromosome arms and repeat-
dense, large pericentromeric regions. Gene positions were extracted from the 
protein-coding gene annotations, repeats from EDTA and exact matches of 
536,985 female-specific k-mers (W-mers). Syntenic mapping was calculated using 
AnchorWave and processed using SyRI, only plotting inversions, insertions and 

deletions >10 kb. Visualization of synteny was accomplished with GENESPACE 
and sliding windows with gscTools. The sex-determination region of Chr09  
with W-mers is highlighted in d. All chromosomes in haplotype 1 and all but  
four in haplotype 2 have both left and right telomeres in the assembly  
(flagged with red *), defined as a region of ≥150 bp made up of ≥90% plant 
telomere k-mers (CCCGAAA, CCCTAAA, RC) separated by no more than 100 bp. 
CDS, coding sequence.
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is only inherited by females, while the remaining pseudoautosomal 
region (PAR) recombines freely and is expected to show a similar lack 
of divergence between the sexes as the autosomes. Identification of the 
boundary between the SDR and PAR of sex chromosomes is non-trivial, 
and PAR/SDR boundaries have been shown to vary among populations 
in some species27,28. Standard approaches for boundary identification 
employ combinations of methodologies such as sex-biased read cover-
age and population genomic analyses29.

To delimit the PAR/SDR boundary, we performed a k-mer 
analysis12,30 to identify sequences that are unique to the Amborella 
SDR (henceforth, W-mers), using four different sampling strategies 
(Supplementary Methods). We found that the W-mers densely mapped 
to Chr09 at ~44.32–47.26 Mb of HAP1 (Figs. 1 and 2, and Supplementary 
Figs. 3–6), supporting its identity as the W chromosome. This location 
is consistent with previous analyses11, although we find that assessing 
W-mers to a haplotype-resolved assembly narrows the estimated size 
of the SDR from ~4 Mb to 2.94 Mb (Fig. 2 and Supplementary Fig. 7). 
Importantly, the W-mers show consistent coverage on Chr09 in HAP1, 
with low and sporadic coverage along any other chromosome or unin-
corporated scaffold in the assembly (for example, when using the 
Island-wide sampling, 97.73% of the mapped W-mers are within the SDR; 
Supplementary Figs. 3–6 and Table 3). In contrast to the chimaeric Z/W 
in the previous assembly, the resulting sex chromosome assemblies 

are nearly complete, with only four unresolved gaps in the SDR (zero 
gaps in the homologous region on the Z (HZR) chromosome), and are 
fully phased (Supplementary Fig. 7).

A key characteristic of sex chromosomes is the suppressed recom-
bination of the SDR, and in many species, structural variants have been 
identified as the causal mechanism. To examine this in Amborella, we 
first used genome alignments to identify the HZR. The HZR is located 
on Chr09 of HAP2 at 44.52–47.12 (~2.60 Mb; Supplementary Fig. 8), 
suggesting that the SDR is only 340 kb larger than the HZR, which is 
consistent with the observed cytological homomorphy of the ZW pair19. 
In the SDR, we found evidence for a ~292-kb inversion located ~20 kb 
within the beginning of the boundary and containing the majority of 
the W-specific sequence (Fig. 1b and Supplementary Fig. 9). We could 
not, however, find evidence for inversions or other large structural 
variants surrounding the remaining portion of the SDR. Instead, the 
Z and W chromosomes are highly syntenic with one another, similar 
to the autosomes (Fig. 1 and Supplementary Fig. 8). We investigated 
other potential mechanisms for suppressed recombination, such as 
proximity to centromeres, where the existing low recombination has 
been shown to facilitate SDR evolution in some species31. In Amborella, 
the SDR is not located near the centromere; rather, it is ~1.82 Mb away 
from the Ty3-retrotransposon-rich pericentromeric region (Fig. 2). In 
the absence of obvious structural variants encompassing the SDR, it 
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suggests that Amborella has a non-canonical mechanism to enforce 
non-recombination between the Z and the W chromosomes.

The Amborella sex chromosomes are evolutionarily young
Amborella’s sex chromosomes have previously been shown to have 
evolved after the lineage split from other living flowering plants11. 
With our phased Z/W pairs, we can better determine Z- and W-linked 
genes, providing a more confident estimate of the age of the SDR, and 
examine gene gain events. A classic signature of multiple recombina-
tion suppression events is a stepwise pattern of synonymous substi-
tutions (Ks) of neighbouring genes on the sex chromosomes32. Genes 
captured into the SDR in the same event are expected to have similar 
levels of Ks (that is, evolutionary strata), whereas the older strata will 
have higher divergence between the Z and W compared with younger 
strata32. Understanding this timing of gene gain is essential to under-
standing the genetic mechanism for sex determination, because the 
candidate sex-determining genes are likely to have ceased recombining 
first (barring turnovers29).

To examine gene gain in the Amborella SDR, we calculated Ks of 
one-to-one orthologues on the W and Z chromosomes (that is, game-
tologues). We compared the Ks values of 45 identifiable gametologues 
to 1,397 one-to-one orthologues in the PARs. We found that Ks varies 
across the SDR–HZR portion of the sex chromosomes (0.002–0.20; 
mean Ks = 0.0298, s.d. = 0.032) and is significantly higher than Ks in 
the PARs (mean Ks = 0.004, s.d. = 0.019; Kruskal–Wallis P < 0.00001) 

(Supplementary Fig. 10), consistent with the expectation that the SDR 
is diverging from the HZR on the Z chromosome. Interestingly, the 
gametologue pair with the highest Ks within the SDR is a homologue of 
Arabidopsis METHYLTHIOADENOSINE NUCLEOSIDASE MTN1-2, a gene 
involved in fertility, suggesting that it resides in the oldest portion of 
the SDR; notably, the location of the W-linked MTN1-2 homologue is 
within the SDR inversion.

We found that the Ks values have two distinct steps, with the 
higher Ks values in the region corresponding to the inversion, sug-
gesting two strata of gene capture into the SDR (Fig. 3). Defining the 
precise boundary between strata without obvious structural variants 
can be a challenge. To delineate stratum one (S1) from two (S2), we 
used a change-point analysis on Ks and the average nucleotide dif-
ferences between sampled females and males (Nei’s dXY), which sug-
gested that S1 ends at ~46.08 Mb (Supplementary Fig. 11). We found 
Ks to be significantly different between the strata (S1 mean Ks = 0.037, 
s.d. = 0.037, n = 25; S2 mean Ks = 0.021, s.d. = 0.023, n = 20; Mann–
Whitney U, P = 0.0014) as was the extent of non-synonymous changes 
in proteins (Ka; Mann–Whitney U, P = 0.008; Fig. 3), supporting the 
inference of two strata. We also found dXY of genes to be significantly 
different (Mann–Whitney U, P < 2.6 × 10−6), higher in S1 (mean = 0.0169, 
s.d. = 0.007, n = 57) than in S2 (mean = 0.0089, s.d. = 0.006, n = 40). 
Using Ks, we also estimated the age of the SDR in Amborella. Follow-
ing the previously applied approach11, we found S1 to have evolved 
~4.97 million years ago while S2 is nearly half as old at ~2.41 Ma. These 
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analyses indicate that the Amborella sex chromosomes are evolutionar-
ily young, similar to several well-characterized XY systems3, and further 
suggest that the sex chromosomes evolved well after the lineage split 
from the rest of all living angiosperms.

The Amborella W shows little degeneration
The recent origin of the Amborella sex chromosomes provides an 
opportunity to examine the early stages of their evolution. The lack 
of recombination in an SDR reduces the efficacy of natural selection 
and drives the accumulation of slightly deleterious mutations33,34. Two 
parallel signatures of deleterious mutations seen across independent 
evolutions of sex chromosomes are the accumulation of repeats and 
the loss of genes35–38. However, the tempo of this process of degenera-
tion is not well understood.

In the SDR of Amborella, we curiously do not find the expected 
patterns of repeat expansions found in other SDRs. At 51.66% repeat ele-
ments, the SDR percentage is lower than the genome average (56%) and 
0.05% lower than the HZR, even when considering S1 and S2 separately 
(S1 = 52.13%; S2 = 50.98%; Supplementary Table 4). The only observed 
enrichment in repeats is within the inversion in S1, where we find more 
Ty3 LTRs (4.32% increase relative to the HZR; Fig. 2). Otherwise, only 
a slight distinction between the SDR and its HZR is evident: the SDR 
exhibits a marginal increase ranging between 0.01 and 0.13% in the den-
sity of some superfamily elements (Fig. 2 and Supplementary Table 4). 
We examined the distribution of the divergence values for intact LTRs 
as a proxy for their age39 but found no patterns of distinctly younger 
or older LTRs within the W or Z chromosome (Supplementary Fig. 12). 
Moreover, to assess genome-wide repeat expansion across the major 
transposable element (TE) superfamilies40, we used repeat landscapes, 
which showed a comparable pattern within the Z/W (Fig. 3 and Supple-
mentary Fig. 13). These observations support previous characteriza-
tion of TE insertions in the Amborella genome as being quite old with 
little proliferation over the last 5 million years18. It has been proposed 
that a loss of active transposases or silencing may be playing a role in 
reducing TE activity across the Amborella genome18, including the SDR.

Gene loss in an SDR has been hypothesized to contribute to the 
evolution of heteromorphy seen in many sex chromosome pairs41,42. In 
Amborella, of the 97 annotated models in the SDR and 84 in the HZR, 37 
were W-specific and 24 Z-specific. To examine whether these models 
were missing from the other haplotype for technical or biological 
reasons, we also used dXY and presence–absence variation (PAV; Sup-
plementary Table 5, 6) between the sexes to evaluate gene content. For 
most of the W-specific models, males showed presence, and dXY within 
females was comparable to that of identifiable gametologues (mean 
dXY = 0.0136; Supplementary Table 7). Only seven models showed 
absence in coverage in males (dXY = 0 in females), suggesting con-
servatively that these represent W-specific genes, four of which are 
in the SDR inversion. Similarly, we identified only six Z-specific gene 
models. These analyses suggest that the Z and W have similar numbers 
of haplotype-specific genes and that the SDR has experienced similar 
levels of gene loss as the HZR.

Together, these results provide little evidence that degenera-
tive processes, associated with cessation of recombination, have 
occurred in the Amborella SDR. This region is younger than that of 
Rumex (5–10 Ma43) and Silene (10 Ma44), which both show signatures 
of degeneration38,45. However, in Spinacia oleracea, a younger SDR 
(2–3 Ma) does show signs of degeneration46,47. The tempo of degenera-
tion is apparently slower in Amborella, and there has not been sufficient 
time for gene loss or an accumulation of repeats as a consequence of 
the loss of recombination. One possible reason for the slower rela-
tive tempo is that most analyses of degeneration have focused on 
Y chromosomes, which are expected to degenerate faster than Ws 
due to male-biased mutation rates and stronger sexual selection48. 
Comparisons to other W chromosomes across independent origins 
are necessary to see whether this holds true.

Candidate sex-determining genes in Amborella
ZW sex chromosomes have been less well characterized in plants than 
in animals; thus, Amborella can provide unique insights regarding the 
genetic mechanisms associated with their evolution. The two-gene 
model for sex chromosome evolution associated with a transition from 
hermaphroditism to dioecy posits that distinct genes with antagonis-
tic impacts on female and male function experience strong selection 
for tight linkage (that is, loss of recombination)49. Under this model, 
evolution of a ZW sex chromosome pair requires a dominant mutation 
causing male sterility arising on a proto-W chromosome, followed by 
a recessive loss-of-female-function mutation on the proto-Z (assum-
ing a gynodioecious intermediate)49. As more sex chromosome pairs 
have been assembled, new models50,51 have emerged that could be 
congruent with the data presented here, including the possibility that 
recombination suppression around a sterility locus could expand due 
to the sheltering of deleterious mutations.

Identification of these sex-determining genes requires an under-
standing of when sterility arises in the carpel and stamen develop-
mental pathways. In Amborella, ontogenetic differences between 
female and male flowers are seen early in development52. Whereas male 
flowers produce an average of 12 stamens spiralling into the centre 
of the flower, female flowers typically initiate a few staminodes just 
inside the tepals, but carpel initiation replaces staminode initiation 
as organ development proceeds towards the centre of the flower52 
(Fig. 1). To identify candidate sex-determining genes, we examined 
differential expression between female and male flower buds during 
stage 5/6 of flower development, when carpels, stamens and micro-
sporangia develop11,52,53. We found 1,777 significantly differentially 
expressed genes at an adjusted P value greater than 0.05. Of these, 34 
are in the SDR, several of which are well-known flower development 
genes, including homologues of MTN1-2, WUSCHEL (WUS), LONELY 
GUY (LOG), MONOPTEROS/Auxin Response Factor 5 (MP/ARF5) and 
small auxin upregulated RNA (SAUR) gene families (Supplementary 
Fig. 14, and Tables 8 and 9). We found that ambMTN and ambLOG had 
higher transcript abundance in females, while ambWUS, ambMP and 
ambSAUR had greater expression in males. To further examine the 
sex-specific expression of SDR genes, we used the EvoRepro database 
(https://evorepro.sbs.ntu.edu.sg/), which has transcriptome data for 16 
different tissue types for Amborella54. We contrasted female and male 
buds and flowers and found three genes with male-biased transcript 
abundance: ambWUS and a DUF827 gene in buds and ambLOG in flow-
ers, the latter differing in which sex has higher abundance from the 
analyses using stage 5/6 flowers. Given the known functions of these 
genes in Arabidopsis flower development, they are strong candidates 
for investigation of sex determination in Amborella.

While functional analyses are not currently possible in Amborella, 
comparisons to other species implicate the function of candidate 
genes that may be playing roles in Amborella sex determination. WUS 
encodes a homoeobox transcription factor that is required for the 
maintenance of the floral meristem and has been shown to influence 
gynoecium and anther development55,56. In Arabidopsis, WUS knockouts 
have sepals, petals, a single stamen and no carpel57. WUS has also been 
implicated in sex determination or shown sex-specific expression in 
several species that have unisexual flowers. In monoecious castor bean 
(Ricinus communis), WUS expression was only found in the shoot api-
cal meristem of male flowers58, and in cucumbers (Cucumis sativus), 
WUS expression is three times greater in the carpel primordia of male 
flowers than female flowers59. In Silene, gynoecium suppression is 
controlled by the WUSCHEL-CLAVATA feedback loop16. However, we do 
not see male-biased expression of the CLV3 orthologue in Amborella, 
but we do see female-biased transcript abundance of the Amborella 
CLE40 orthologue. In Arabidopsis, WUS promotes CLV3 expression 
in the central zone of the inflorescence meristem while suppressing 
CLE40 expression in the peripheral zone60. It is possible that the smaller 
floral meristem seen in female development relative to male floral 
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meristems is due to reduced ambWUS expression driving increased 
ambCLE40 expression and encroachment of peripheral zone cells into 
the central zone of the floral meristem. The role of WUS in maintain-
ing meristematic zonation, coupled with its position in S1 in the SDR, 
makes ambWUS a strong candidate for playing some role in gynoecium 
suppression. Another strong candidate is ambLOG. LOG mutants were 
originally characterized in rice as producing floral phenotypes with a 
single stamen and no carpels61; in date palms (Phoenix dactylifera), 
a LOG-like gene was identified as a candidate Y-chromosome-linked 
female suppression gene13. In Amborella, ambLOG showed greater 
expression in females in the stage 5/6 data but was male-biased when 
considering all 16 tissues in the EvoRepro dataset. This switch in sex 
bias, and the fact ambLOG is located in the younger stratum of SDR 
(S2), suggest that differential ambWUS (and ambCLE40) expression 
may have been a first step in the divergence of male and female flower 
development. Similar to ambLOG, the ambMP and ambSAUR genes were 
captured in S2, and their functions in Arabidopsis suggest other roles 
in sex-specific development. MP has been shown to be involved with 
apical patterning of the embryo axis62,63. SAURs are a large gene family 
and in general play a role in cell elongation64, including in pollen tube 
growth65, stamen filament elongation66 and pistil growth67. Without 
functional validation in Amborella, we cannot rule out the possibility 
of any of these genes, although based on the data available, ambWUS 
may be the strongest candidate for spurring divergence in male and 
female flower development.

The significant difference in gene expression of ambMTN is 
especially interesting, given that it is the gene model with the high-
est Ks value that is located in the SDR inversion. MTN1-2 genes encode 
5′-methylthioadenosine (MTA) nucleosidase68, and double mutant 
mtn1-1 mtn2-1 flowers in Arabidopsis have indehiscent anthers and 
malformed pollen grains69. Double mutants also affected carpels and 
ovules, although the structures were aberrant but not necessarily 
non-functional, and 10% looked like wild type69. The observed anther phe-
notype in Arabidopsis is consistent with the staminode development in 
female flowers in Amborella, and together these lines of evidence suggest 
that ambMTN may be the male-sterility gene. On the basis of our analyses, 
we hypothesize that the W-linked ambMTN was the initial male-sterility 
mutation creating the proto-W, followed by a loss-of-function mutation 
on the W-ambWUS and a Z-copy shift to dosage-dependant gynoecium 
suppression. The genes we have identified here make ideal candidates 
for further functional genomic investigation and validation.

Discussion
Advances in sequencing technologies and assembly algorithms have 
enabled the construction of telomere-to-telomere genome assemblies 
for humans, including the X and Y sex chromosomes70,71. The sex chro-
mosomes in humans and other mammals are often highly heteromorphic 
and can be the most challenging chromosomes to sequence and assem-
ble72. Moreover, given their antiquity, it is not possible to reconstruct 
events dating back to the origin and early evolution of mammalian sex 
chromosomes. In some plants and animals, however, sex chromosomes 
have repeatedly evolved from different ancestral autosomes, with dif-
ferent sex-determining mutations2,3,73 and with various mechanisms to 
impede recombination between the sex chromosome pair. Here we show 
that we can fully phase structurally similar sex chromosomes within a 
heterogametic individual. Our analyses highlight the utility of phased 
sex chromosomes and diversity sequencing in developing models of 
sex chromosome evolution when experimental investigation of gene 
function is currently intractable. This research lays the foundation for 
examining sex chromosome evolution in all angiosperms.

Methods
DNA/RNA extraction, library prep and sequencing
We sequenced A. trichopoda (var. Santa Cruz 75) using a whole-genome 
shotgun sequencing strategy and standard sequencing protocols. 

High-molecular-weight DNA was extracted from young tissue using the 
protocol in ref. 74 with minor modifications. Flash-frozen young leaves 
were ground to a fine powder in a frozen mortar with liquid nitrogen, 
followed by very gentle extraction in a 2% CTAB buffer (that included 
proteinase K, PVP-40 and beta-mercaptoethanol) for 30 min to 1 h at 
50 °C. After centrifugation, the supernatant was gently extracted twice 
with 24:1 chloroform:isoamyl alcohol. The upper phase was transferred 
to a new tube and 1/10th volume of 3 M sodium acetate was added, the 
solution gently mixed and DNA precipitated with isopropanol. The DNA 
precipitate was collected by centrifugation, washed with 70% ethanol, 
air dried for 5–10 min and dissolved thoroughly in an elution buffer at 
room temperature followed by RNAse treatment. DNA purity was meas-
ured with a Nanodrop, DNA concentration was measured with Qubit 
HS kit (Invitrogen), and DNA size was validated using the CHEF-DR II 
system (Bio-Rad). The A PacBio HiFi library was constructed using DNA 
that was sheared using a Diagenode Megaruptor 3 instrument. Libraries 
were constructed using an SMRTbell Template Prep Kit 2.0 and tightly 
sized on a SAGE ELF instrument (1–18 kb) to a final library average insert 
size of 24 kb. PacBio sequencing was completed using the SEQUEL II 
platform at the HudsonAlpha Institute for Biotechnology (Huntsville, 
Alabama), yielding 83.3 Gb of raw sequence with a total coverage of 
58.81× per haplotype (Supplementary Table 12).

Illumina Hi-C sequencing for Santa Cruz 75 was conducted at Phase 
Genomics with a single 2 × 80 Dovetail Hi-C library (42.31×; Supplemen-
tary Table 1). DNA for the Illumina PCR-free library was extracted using 
a Qiagen DNeasy kit (Qiagen) and was sequenced at the HudsonAlpha 
Institute for Biotechnology. Illumina reads were sequenced on the Illu-
mina NovaSeq 6000 platform using a 400-bp-insert TruSeq PCR-free 
fragment library (49.62×). Before assembly, Illumina fragment reads 
were screened for phix contamination. Reads composed of >95% sim-
ple sequence and those <50 bp after trimming for adapter and quality 
(q < 20) were removed. The final read set consists of 158,007,088 reads 
for a total of 49.62× of high-quality Illumina bases.

To annotate gene models, we generated RNA-seq and Iso-seq 
data for several stages of leaf, flower and fruit for Santa Cruz 75 and 
two male isolates, ABG 2006-2975 and ABG 2008-1967 (Supplemen-
tary Table 11). Total RNAs were extracted using a Qiagen RNeasy kit. 
The PacBio Iso-seq libraries were constructed using a PacBio Iso-Seq 
Express 2.0 kit. Libraries were either sized (0.66× bead ratio) or unsized 
(1.2× bead ratio) to give final libraries with average transcript sizes of 
2 kb or 3 kb, respectively. Libraries were sequenced using polymer-
ase V2.1 on a PacBio Sequel II platform. The RNA-seq libraries were 
constructed using an Illumina TruSeq Stranded mRNA Library Prep 
kit using standard protocols and sequenced using a NovaSeq 6000 
Instrument PE150 to 40 million reads per library.

To identify the sex chromosomes, we additionally sequenced the 
whole genomes of 52 Amborella individuals sampled from natural pop-
ulations (Supplementary Table 11). DNA extractions were performed 
using a standard CTAB protocol. Illumina sequencing was performed 
on NovaSeq and HiSeq platforms at RAPiD Genomics using a 2 × 150 
paired-end library. The voucher specimens are deposited at the New 
Caledonia Herbarium in Nouméa (herbarium code: NOU) and Indiana 
University (IND). Existing data used to support this manuscript are 
found in Supplementary Table 11.

Genome assembly
The version 2.0 HAP1 and HAP2 assemblies were generated by assem-
bling the 3,605,703 PacBio circular consensus sequencing (CCS) 
reads (58.81× per haplotype) using the HiFiAsm+HIC assembler75 and 
subsequently polished using RACON76. This approach produced ini-
tial assemblies of both haplotypes. The HAP1 assembly consisted of 
1,522 scaffolds (1,522 contigs), with a contig N50 of 25.5 Mb and a total 
genome size of 800.6 Mb (Supplementary Table 13). The HAP2 assem-
bly consisted of 1,043 scaffolds (1,043 contigs), with a contig N50 of 
43.0 Mb and a total genome size of 773.5 Mb (Supplementary Table 13).
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Hi-C Illumina reads from A. trichopoda isolate Santa Cruz 75 were 
separately aligned to the HAP1 and HAP2 contig sets with Juicer77, 
and chromosome-scale scaffolding was performed using 3D-DNA78. 
No misjoins were identified in either the HAP1 or HAP2 assemblies. 
The contigs were then oriented, ordered and joined together into 13 
chromosomes per haplotype using the Hi-C data. A total of 31 joins 
was applied to the HAP1 assembly and 20 joins for the HAP2 assembly. 
Each chromosome join is padded with 10,000 Ns. Contigs termi-
nating in telomeric sequence were identified using the (TTTAGGG)n 
repeat, and care was taken to make sure that the repeats were properly 
oriented in the production assembly. The remaining scaffolds were 
screened against bacterial proteins, organelle sequences and GenBank 
non-redundant database, and any scaffold found to be a contaminant 
was removed. After the chromosomes were formed, it was observed 
that some small (<20 kb) redundant sequences were present on adja-
cent contig ends within chromosomes. To resolve this issue, adjacent 
contig ends were aligned to one another using BLAT79, and duplicate 
sequences were collapsed to close the gap between them. A total of 
5 adjacent contig pairs were collapsed in the HAP1 assembly and 4 in 
the HAP2 assembly.

Finally, homozygous single nucleotide polymorphisms (SNPs) 
and insertions/deletions (INDELs) were corrected in the HAP1 and 
HAP2 releases using ~49× of Illumina reads (2 × 150, 400-bp insert) 
by aligning the reads using BWA-MEM80 and identifying homozygous 
SNPs and INDELs with GATK’s UnifiedGenotyper tool81. A total of 465 
homozygous SNPs and 15,763 homozygous INDELs were corrected in 
the HAP1 release, while a total of 473 homozygous SNPs and 17,208 
homozygous INDELs were corrected in the HAP2 release. The final ver-
sion 2.0 HAP1 release contained 707.9 Mb of sequence, consisting of 59 
contigs with a contig N50 of 36.3 Mb and a total of 99.69% of assembled 
bases in chromosomes. The final version 2.0 HAP2 release contained 
700.3 Mb of sequence, consisting of 45 contigs with a contig N50 of 
44.5 Mb and a total of 99.87% of assembled bases in chromosomes.

Genome annotation
Transcript assemblies were made from ~757 M pairs of 2 × 150-stranded 
paired-end Illumina RNA-seq reads using PERTRAN, which conducts 
genome-guided transcriptome short-read assembly via GSNAP82 and 
builds splice alignment graphs after alignment validation, realignment 
and correction. To obtain 825 K putative full-length transcripts, ~20 M 
PacBio Iso-seq CCSs were corrected and collapsed by a genome-guided 
correction pipeline, which aligns CCS reads to the genome with GMAP82 
with intron correction for small indels in splice junctions, if any, and 
cluster alignments when all introns are the same or have 95% overlap 
for a single exon. Subsequently, 563,694 transcript assemblies were 
constructed using PASA83 from expressed sequence tags (EST)s and 
RNA-seq transcript assemblies described above. Loci were determined 
by transcript assembly alignments and/or EXONERATE alignments of 
proteins from Arabidopsis thaliana, Glycine max, Sorghum bicolor, 
Oryza sativa, Lactuca sativa, Helianthus annuus, Cynara cardunculus, 
Selaginella moellendorffii, Physcomitrella patens, Nymphaea colorata, 
Solanum lycopersicum and Vitis vinifera, and Swiss-Prot eukaryote 
proteomes to the repeat-soft-masked A. trichopoda HAP1 genome 
using RepeatMasker84, with up to 2 kb extension on both ends unless 
extending into another locus on the same strand. Gene models were 
predicted by homology-based predictors, FGENESH+85, FGENESH_
EST (similar to FGENESH+, but using EST to compute splice site and 
intron input instead of protein/translated open reading frame (ORF)), 
EXONERATE86, PASA assembly ORFs (in-house homology-constrained 
ORF finder) and AUGUSTUS87 trained by the high-confidence PASA 
assembly ORFs and with intron hints from short-read alignments. The 
best-scored predictions for each locus were selected using multiple 
positive factors, including EST and protein support, and one nega-
tive factor: overlap with repeats. The selected gene predictions were 
improved using PASA, and the optimal set was selected using several 

curated gene quality metrics88. We assessed the gene annotations using 
compleasm (v.0.2.6)89 using the Embryophyta database.

We further annotated repeats with EDTA (v.2.0.0)90 using the sensi-
tive mode that runs RepeatModeler91. To identify tandem repeats, we 
used Tandem Repeats Finder (v.4.09.1)92 (parameters: 2 7 7 80 10 50 500 
-f -d -m -h). We ran StainedGlass (v.0.5)93 to visualize the massive tandem 
repeat arrays for chromosomes in both haplotypes. To build the repeat 
landscapes for assessing recent expansion events, we followed the 
methods outlined in EDTA Github Issue #92: Draw Repeat Landscapes, 
utilizing a library generated from an independent annotation on the 
combined haplotypes with EDTA v.2.0.1.

Comparisons between assembly haplotypes
To plot comparisons between the two haplotypes, including genes and 
repeats, we used GENESPACE (v.1.3.1)94. To generate synteny between 
the two haplotypes, we first performed genome alignments. HAP1 
and HAP2 were aligned with AnchorWave (v.1.0.1)95 using the ‘genoAli’ 
method and ‘-IV’ parameter to allow for inversions. Alignment was 
performed using only the ‘chromosome’ sequence for each haplotype. 
The alignment was converted to SAM format using the ‘maf-convert’ 
tool provided in ‘last’ (v.460)96 and used for calling variants with SyRI 
(v.1.6.3)97. The output from SyRI was used to make chromosome-level 
synteny and SV plots using plotsr (v.0.5.4)98.

Identification of the sex chromosome non-recombining 
region
We used whole-genome sequencing data to identify the 
sex-determining region of the W. All paired-end Illumina data had 
adapters removed and were quality filtered using TRIMMOMATIC 
(v.0.39)99, with leading and trailing values of 3, sliding window of 30, 
jump of 10 and a minimum remaining read length of 40. We next found 
all canonical 21-mers in each isolate using Jellyfish (v.2.3.0)100 and 
used the bash ‘comm’ command to find all k-mers shared in all female 
isolates and not found in any male isolate (W-mers). We mapped the 
W-mers to both haplotype assemblies using BWA-MEM (v.0.7.17)80, with 
parameters ‘-k 21’ ‘-T 21’ ‘-a’ ‘-c 10’. W-mer mapping was visualized by first 
calculating coverage in 100,000-bp sliding windows (10,000 bp jump) 
using BEDTools (v.2.28.0)101 and plotted using karyoploteR (v.1.26.0)102.

Structural variation
To identify structural variants between the haplotypes, we mapped 
PacBio reads using minimap2 (v.2.24)103 in HiFi mode, added the MD 
tag using samtools (v.1.10) ‘calmd’ and called structural variants using 
Sniffles (v.2.0.7)104. We also performed whole-genome alignments using 
minimap2 (v.2.24)103 and visualized the dotplot using pafR (v.0.0.2)105.

Gene homology and protein evolution
To identify one-to-one orthologues on the ZW to examine protein 
evolution, we ran OrthoFinder (v.2.5.2)106,107 using only the Amborella 
haplotypes. We calculated synonymous (Ks) and non-synonymous (Ka) 
changes in codons using the Ka/Ks Calculator (v.2.0)108.

To identify the boundaries of evolutionary strata, we used the mcp 
(v.0.3.4)109 R package on dXY and Ks. For Ks, we first ran a test for outli-
ers using PMCMRplus (v.1.9.10)110 to run Rosner’s generalized extreme 
studentized deviate many-outlier test111. For mcp, we used the model, 
‘y~1, ~1’ to identify the change point between two plateaus, and we used 
100,000 iterations, 3 chains and a burn-in of 100,000 (that is, ‘adapt’).

Nucleotide differences between the sexes
BWA (v.0.7.17)80 was used to map reads, and bcftools (v.1.9) ‘mpileup’ 
and ‘call’112 functions were used to call variants using the Island-wide 
sampling (9 male and 6 female plants; Supplementary Table 11). We 
filtered the vcf file using ‘QUAL > 20 & DP > 5 & MQ > 30’, minor allele 
frequency of 0.05 and dropped sites with >25% missing data. To calcu-
late Nei’s nucleotide diversity between the sexes (dXY), we used pixy 
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(v.1.2.7.beta1)113. dXY was calculated using 100,000-bp windows with 
a 10,000-bp jump, and separately on the gene models only.

Presence–absence variation
PAV was identified following the methods in ref. 114, mapping reads 
from the Island-wide sampling (8 male and 6 female plants; the Atlanta 
Botanical Gardens isolate was removed due to low resequencing depth; 
Supplementary Table 11) to our new reference genome and annotation. 
Briefly, reads for the samples were aligned to each haplotype using BWA 
(v.0.7.17)80. Sorted BAM files were converted to bedgraph format using 
bedtools (v.2.30.0)101. Genes were called absent if the horizontal cover-
age of exons was <5% and the average depth was <2×. A test for equality 
in the proportion of PAV rate across chromosomes was performed in R 
using the ‘prop.test()’ function.

Gene expression analyses
To examine gene expression and identify candidate sex-determining 
genes, we used existing RNA-seq data from 10 females and 10 males11. 
We first filtered reads using TRIMMOMATIC (same parameters as 
above). Filtered reads were mapped to the HAP1 genome assembly 
using STAR (v.2.7.9a)115 and expression estimated for the annotated 
gene models using StringTie (v.2.1.7) (-e, -G)116. We performed dif-
ferential gene expression analyses using DESeq2 (v.1.32.0)117, with the 
contrast being between the sexes.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The genome assemblies and annotations (v.2.1) are available on Phyto-
zome v.13 (https://phytozome-next.jgi.doe.gov/) and have been depos-
ited on NCBI under BioProjects PRJNA1100625 and PRJNA1167780. 
Sequencing libraries for the genome assembly and annotation are 
publicly available on NCBI under BioProject PRJNA1100625, and the 
whole-genome sequencing of additional isolates under PRJNA1161132. 
Individual accession numbers are provided in Supplementary Tables 10 
and 11.
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