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Uncovering Privacy Leakage in BLE Network Traffic of
Wearable Fitness Trackers

Aveek K. Das, Parth H. Pathak, Chen-Nee Chuah, Prasant Mohapatra
University of California, Davis, CA, USA.

Email: {akdas, phpathak, chuah, pmohapatra}@ucdavis.edu

ABSTRACT
There has been a tremendous increase in popularity and adoption of
wearable fitness trackers. These fitness trackers predominantly use
Bluetooth Low Energy (BLE) for communicating and syncing the
data with user’s smartphone. This paper presents a measurement-
driven study of possible privacy leakage from BLE communication
between the fitness tracker and the smartphone. Using real BLE
traffic traces collected in the wild and in controlled experiments,
we show that majority of the fitness trackers use unchanged BLE
address while advertising, making it feasible to track them. The
BLE traffic of the fitness trackers is found to be correlated with the
intensity of user’s activity, making it possible for an eavesdropper
to determine user’s current activity (walking, sitting, idle or run-
ning) through BLE traffic analysis. Furthermore, we also demon-
strate that the BLE traffic can represent user’s gait which is known
to be distinct from user to user. This makes it possible to identify
a person (from a small group of users) based on the BLE traffic of
her fitness tracker. As BLE-based wearable fitness trackers become
widely adopted, our aim is to identify important privacy implica-
tions of their usage and discuss prevention strategies.

1. INTRODUCTION
The number of wearable devices shipped worldwide has had a

growth of 200% from 2014 to 2015 [1]. Fitness trackers are by far
the most popular wearable devices due to ever-increasing interest in
the notion of quantified-self where users are able to track their daily
activities (e.g. walking, physical workout, vital signs) with very
high accuracy. The fitness trackers connect to user’s smartphone
using a short-range wireless communication like Bluetooth Low
Energy (BLE). Due to substantial reduction in energy consumption,
BLE has become the dominant standard for the fitness trackers to
connect and communicate with smartphones.

Although the fitness trackers and BLE are becoming widely used,
the private information that leaks through the BLE communication
has largely remained unexplored. In a recent study [2], it is shown
that motion sensors on wrist-worn devices (like fitness trackers)
can leak the information about what a user is typing. Different
from this, we explore how private information about the user can
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be leaked by eavesdropping on BLE communication between the
fitness trackers and the smartphone. As BLE becomes pervasive
with its adoption for Internet of Things and proximity sensing ser-
vices like iBeacons in public places, eavesdropping BLE commu-
nication can be easier than ever before, making it imperative to pro-
tect user’s privacy. In this paper, we present a measurement study
by collecting BLE traffic between fitness trackers and smartphones,
and discover the following privacy leakage -

(1) User Tracking: We show that almost all fitness tracker de-
vices utilize unchanged BLE addresses, making the user vulnera-
ble to tracking. Specifically, fitness tracker and smartphone only
periodically connect to each other for exchanging data, leaving the
fitness tracker in disconnected advertising mode most of the time
where it constantly announces its presence by broadcasting adver-
tising packets. This continuous advertising by the fitness trackers
using unchanged BLE addresses can be combined with additional
information (e.g. video monitoring) by an attacker to track the
owner of the BLE device. Using traces collected in a gymnasium
as well as in controlled experiments, we find that the issue prevails
in over 90% of observed devices including top five leading fitness
tracker manufacturers, namely Fitbit, Jawbone, Polar, Garmin and
Misfit. BLE standard [3] outlines the use of randomized addresses
for prevent tracking, however, it is optional and we find that major-
ity of the fitness tracker manufacturers do not follow them in prac-
tice. Compared to tracking through WiFi MAC address (recently
addressed in [4]), BLE tracking can provide more fine-grained lo-
cation of user due to its smaller range and is also feasible even when
user’s smartphone is connected to a cellular network.

(2) User Activity Detection and Person Identification: We find
that the BLE data traffic between a fitness tracker and a smartphone
is correlated to the intensity of user’s activity. This means that sim-
ply by observing and analyzing the BLE traffic, an eavesdropper
can detect user’s current activity such as walking, sitting, running
etc. For example, a employer can track the activities of employees
by deploying sniffers in the office space. Our evaluation shows that
the activity recognition is feasible with 97.6% for 10 users.

Furthermore, we show that there is a strong correlation between
the motion sensor (accelerometer) readings of wrist-worn fitness
tracker and the patterns of its BLE traffic to the smartphone. Based
on the fact that different users walk with distinct gait, an eavesdrop-
per can analyze the BLE traffic and uniquely identify the user from
a small group of users. This means that a fitness tracker user can be
identified through BLE traffic analysis even when the fitness tracker
randomizes its BLE address. We derive the necessary BLE traffic
attributes and show that person identification is feasible with an ac-
curacy of 89% for groups of 5 people. Compared to address-based
device tracking where a person can be tracked anywhere, identi-
fication of a person is only possible from a small group of fixed
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Figure 1: BLE Communication - Advertising & Data

users, making it a privacy risk in cases like homes, offices etc.

2. BLE OVERVIEW AND SNIFFING
In this section, we provide an overview of BLE communication.

We focus on the aspects necessary in understanding the BLE pri-
vacy leakage. We also discuss the challenges related to sniffing
BLE traffic and our data collection methodology.

2.1 BLE Background

2.1.1 BLE Communication
BLE operates in the 2.4 GHz ISM band and utilizes 40 RF chan-

nels with 2 MHz spacing. The BLE communication is divided in
two phases - advertising and data communication.

Advertising: This phase is responsible for device advertisement,
device discovery and establishing a connection. Packets in the ad-
vertising phase are sent out in the 3 dedicated channels. A BLE
peripheral device (e.g. a fitness tracker) transmits advertisement
packets to announce its presence to the master device (e.g. a smart-
phone). In BLE communication, each packet is associated with
an access address which uniquely identifies a connection between
two devices. The flow diagram of the advertising packets is shown
in Fig. 1a. As we will discuss later, fitness tracking devices com-
monly use Undirected Connectable Advertising Packets in order to
allow any master device to connect to it. The advertising pack-
ets contain information like MAC address, connectability modes
and TX(transmission) power level. A master device upon receiv-
ing an advertising packet, if interested in initiating a connection,
can send a Scan Request to the peripheral requesting additional in-
formation such as device local name, supported profiles, etc. The
peripheral responds with a Scan Response which contains these ad-
ditional information not included in the initial advertising packet.
The master device then establishes a connection using a Connect
Request along with further exchange of information (e.g. sharing
of keys for secure connection). Other types of advertising pack-
ets are Connectable Directed, Non-Connectable Undirected and
Scannable Undirected - used by devices to establish a quick con-
nection or by devices which act just as transmitters.

Data Communication: Once a BLE peripheral is connected to
a master device, the communication is carried out over the 37 data
channels using adaptive frequency hopping. In the data communi-
cation phase, a new access address is used every time the master
and peripheral reconnect. Most of the data communication (trans-
fer of data payload) in BLE happens through the use of Start and
Continuation packets. When new data is being exchanged between
the devices, a start packet is used which is then followed by one
or more continuation packets if more bytes are needed to be trans-
ferred. When two devices are connected, meaningful data is nor-
mally sent out in bursts (in order to save energy). On the other
hand, the devices hop from one frequency to another in very short
intervals. During each hop, if no meaningful data is to be transmit-

ted, empty packets are exchanged before the devices hop to a new
channel. These packets have no payload and just consist of packet
headers. In addition, we also see Control packets which are used
for updating of connection parameters (like hop interval, access ad-
dress, etc.) and for connection termination.

2.1.2 Private advertising addresses in BLE
Compared to Bluetooth classic, BLE introduces the use of ran-

dom addresses, whereby the real address (i.e. MAC address) of a
BLE device is hidden and a random address (which changes fre-
quently) is advertised. BLE devices can use manufacturer provided
fixed MAC address as its address or optionally choose one of three
types of random addressed described below [3].
1) Static address: A BLE device uses a randomly generated ad-
dress that either changes only at bootup or always remains un-
changed. This type provides the least privacy against device track-
ing, especially if the address remains unchanged.
2) Non-resolvable Private address: The address changes periodi-
cally and provides better privacy compared to the static addresses.
3) Resolvable Private address: It is generated using a Identity
Resolving Key (IRK) and a random number. The advantage of this
type of address over non-resolvable is that it can be resolved using
the shared IRK to uniquely identify a device.
The type of random address can be detected by looking at two Most
Significant Bits (MSB) of an address (11 - static address, 00 - non-
resolvable private address and 10 - resolvable private address).

2.2 BLE Network Traffic Sniffing
There are two main challenges in sniffing BLE traffic. First,

when a BLE peripheral is in advertising phase, the advertising pack-
ets are transmitted on all three advertising channels by periodically
switching between them. Since the connection can be established
on any of the three channels, it is necessary to sniff all three ad-
vertising channels in parallel. Second, once the connection is es-
tablished, the sniffer should be able to follow the hopping sequence
(channel map) of the connection to sniff each data packet on 37 data
channels. We use ComProbe Bluetooth Protocol Analyzer (BPA)
600 [5] for sniffing. It can capture BLE advertising packets on all 3
channels and can follow a connection over data channels after the
connection is established. The analyzer software (shown in Fig. 2a)
allows us to investigate each filed of BLE packets. We note that
popular open-source BLE sniffing platform - Ubertooth [6] - can
also be used, however, it is limited to sniffing only one advertis-
ing channel at a time and provides very few dissectors for traffic
analysis.

3. DEVICE TRACKING USING ADVERTIS-
ING PACKETS

In this section, we investigate the private information leaked about
the user from the advertising packets of her fitness tracker. We
study how the information leakage can lead to tracking of the user.

3.1 BLE Dataset
In order to study the privacy leakage from advertising packets,

we collect network traffic traces in the form of two datasets -
Gym Dataset: For understanding BLE traffic in the wild, we

collect traffic traces in a gymnasium where there are likely to be
more users with fitness trackers. We collect the network traffic
traces by sniffing the packets in the air using the ComProbe BPA
600. We only capture the packets for BLE (and not Bluetooth Clas-
sic) as most of the fitness trackers use BLE for communicating with
smartphone. We primarily focus on collecting advertising packets



Local Name 
reveals fitness 
tracker name 
(Misfit Shine)

Device BLE 
MAC Address 

Undirected 
Adv. Pkt.

(a) Snapshot of the information in an
Advertising Packet

 0

 0.2

 0.4

 0.6

 0.8

 1

 4  8  12  16

C
.D

.F
.

Avg. Delta Value(secs.)

Channel 37
Channel 38
Channel 39

(b) C.D.F of the average delta values for the
fitness trackers in the three advertising

channels

 0

 5

 10

 15

 20

 25

 30

 35

 40

Fitbit Flex

Fitbit Charge

Fitbit One

Jawbone UP

Xiaomi MI

Fitbit Surge

Others
Polar H7 

Fitbit Zip

C
o

u
n

t 
o

f 
F

it
n

e
s
s
 T

ra
c
k
e

rs

(c) Different types of fitness trackers - revealed by the
field Local Name in advertising packets. “Other"
includes Garmin, Misfit, Samsung and Empatica.

Figure 2: BLE Dataset: Snapshot of Packet in Data Collected, Packet intervals distributions , Fitness Trackers in the Dataset

in this data collection. The traces were collected for 8 consecu-
tive days, with each trace being two hours in duration. Overall,
the dataset contained a total of around 7.5 million packets with the
total size of traces being 3.5 GB. Table 1 shows the number of ad-
vertising packets and devices for each day, and average packets per
second. Fig. 2b represents how frequently the advertising packets
are sent out by showing the C.D.F. of the mean value of time inter-
val between two consecutive packets in the same channel for each
device. We note here, that in each interval calculated, there are
two more packets being sent out in the other two advertising chan-
nels. As per BLE standard, the duration between two advertising
packets should vary between 20 ms and 10.24 seconds. We ob-
serve that most values of the this interval (about 95%) are less than
8 seconds, proving that these devices transmit advertising packets
continuously.

Apart from the BLE MAC addresses, which we anonymize, the
collected BLE traffic contains no user-identifiable information (such
as user names or email addresses). An attacker can associate a
MAC address to a specific user over a period of time with the use of
auxiliary information about user’s presence (such as video record-
ing). We do not acquire an IRB approval because we do not collect
any such additional information in our dataset and only rely on pas-
sively monitoring network packets without direct user involvement.

Controlled Dataset: For controlled experiments, we use 6 popu-
lar fitness trackers (Fitbit Flex, Fitbit Charge, Jawbone UP, Garmin
vivosmart, Misfit Shine and Polar Heart Rate Sensor) and collect
its BLE traffic over multiple days in a controlled setup using the
ComProbe BPA 600 when these fitness trackers are connected to
an iPhone 6 and a Nexus 6.

We empirically evaluate the range of the sniffer to be approxi-
mately between 20 to 25 meters. Fig. 2a shows a sample advertis-
ing packet and its fields such as device’s advertised address, access
address (fixed for advertising) and “Complete Local Name”.

3.2 Consistent Advertising and Static BLE Ad-
dresses

For the gym dataset, we first determine if the advertising BLE
device is a fitness tracker using the “Shortened Local Name” or
“Complete Local Name” field. We observe that the local name field
reveals the device name in plain-text. For example, a fitness tracker
“Fitbit Flex" has the “Shortened Local Name" of Flex in the adver-
tising packet. In Fig. 2a we see the complete local name Shine as
a part of the packet - which indicates that the device is a “Misfit
Shine". Using this information, we determine that there are 99 dis-
tinct fitness trackers in the collected traces. Fig. 2c shows the man-
ufacturer and model of the fitness trackers in our dataset as deter-
mined from the complete local name. Note that there can be many
other fitness trackers that do not reveal their name in the advertising
packets. The other types of BLE devices observed in the traces, that

Trace
Advertising

Packets
(millions)

Advertising
Devices

Fitness
Trackers

Avg.
Pkts.

per sec.
A 0.504 189 12 69.1
B .41 147 7 60.2
C 0.76 200 12 99.7
D 1.07 182 18 145.2
E 1.40 207 24 196.8
F 1.28 226 21 172.6
G 1.09 277 21 125.7
H .99 188 12 147.3

Table 1: BLE Packet Traces collected from Gymnasium

are not fitness trackers, primarily include gym equipment like body
scales and treadmills. In our traces, we do not find any devices
which we could identify as a smartwatch. We also observe that the
smartphones (both iOS and Android), being master devices, do not
advertise continuously and also change their addresses (which is
observed in Connect Request). The only devices, apart from fit-
ness trackers, which have a “Local Name” in our dataset are gym
equipment.

Why fitness trackers constantly advertise? The high frequency
of advertising packets by almost all fitness trackers raise an im-
portant question - why the fitness trackers consistently advertise
even when they are in close proximity of owner user’s smartphone?
Through the controlled dataset, we observe that the frequent adver-
tising is due to the fact that the master device (i.e. smartphone)
frequently disconnect the fitness trackers in order to reduce its own
energy consumption. The fitness trackers are only connected to the
smartphone when the corresponding smartphone application on the
smartphone is running (foreground). When the app is running, the
tracker actively communicates and synchronizes the activity data
(e.g. steps, calories etc.). When the app is not running, the connec-
tion is terminated, leaving the fitness tracker in advertising state.
This behavior was observed in all six fitness trackers in the con-
trolled dataset.

The constant advertising of BLE fitness trackers make them vul-
nerable to tracking. This means that an attacker can sniff the BLE
traffic and track the users’ visits as they move around in public
places such as shopping malls, gymnasiums, cafeterias etc. As
discussed in Section 2.1.2, the BLE devices can choose to change
their address in order to avoid tracking. However, as we discuss
next, majority of the BLE fitness trackers do not use the random
addresses, leading to a severe privacy implication of user tracking
through fitness trackers.

Unchanged BLE Addresses: Through our controlled experi-
ments, we observe that none of the six fitness trackers change their
BLE address. We power-cycle the devices multiple times by drain-
ing their battery and find that the addresses do not change after
reboot. We also observe that the advertised address do not have the



Trace A B C D E F G H
A - 1 2 0 2 0 0 1
B 1 - 1 1 0 0 0 0
C 2 1 - 0 1 0 1 1
D 0 1 0 - 1 1 2 1
E 2 0 1 1 - 4 2 0
F 0 0 0 1 4 - 4 2
G 0 0 1 2 2 4 - 4
H 1 0 1 1 0 2 4 -

Total 5 3 4 6 8 9 10 7

(a) Reappearing Fitness Trackers

Trace A B C D E F G H
A - 3 9 2 16 1 3 4
B 3 - 5 4 1 16 1 2
C 9 5 - 0 3 2 3 2
D 2 4 0 - 5 4 21 2
E 16 1 3 5 - 6 8 4
F 1 16 2 4 6 - 13 8
G 3 1 3 21 8 13 - 9
H 4 2 2 2 4 8 9 -

Total 30 27 15 32 34 40 45 21

(b) Reappearing BLE Devices

Table 2: Reappearing Device Count Matrix - Each element of the matrix is the number of BLE devices that are common between two traces.

Address Type MSB % Fitness
Trackers

Non-resolvable Private Address 00 0
Resolvable Private Address 10 11

Static Address 11 89

Table 3: Fitness Trackers and their different address types

MSB of 00 or 10 (Section 2.1.2) - the recommended standard for
private addresses. Thus, we conclude that these devices never alter
their address. With additional information which can map a spe-
cific device to a specific user, the unchanged BLE addresses make
the users carrying these devices trackable.

To further confirm our observation about unchanged device ad-
dresses in the controlled experiments, we analyze the gym dataset.
Table 3 shows the MSB of the observed fitness trackers in our
dataset where we see that majority (89%) of them use static ad-
dress with MSB of 11. Furthermore, Table 2 shows a matrix where
each element is the number of common devices (same advertising
address) across the two traces. We show the matrix for all BLE
devices and the ones which we know are fitness trackers based on
their advertised names. We find that -

(1) 113 devices out of a total of 1485 BLE devices have appeared
in more than one trace.

(2) 24 out of the total 99 fitness trackers have appeared in more
than one trace. This is number is noticeably high (almost 25%)
given that the traces were only collected on different days for only
two hours per day.

(3) The highest overlap in advertising devices between two traces
is 21, whereas the highest for fitness trackers is 4.

The number of reappearing devices proves our hypothesis in-
ferred from the controlled experiments - that the BLE devices do
not alter their advertising addresses - making its users vulnerable
to tracking through the use of auxiliary information which can map
a specific device to its user.

4. ACTIVITY AND PERSON IDENTIFICA-
TION USING DATA PACKETS

As described in Section 2, once the advertising device (fitness
tracker) receives a connection request from the master device (smart-
phone), the data transfer phase starts and data is transferred on all
37 channels. BLE utilizes AES-CCM encryption method and it is
difficult to decrypt the payload without intercepting packets in ini-
tial key exchange phase [7]. In this section, we show how statistical
traffic pattern analysis over the encrypted traffic can be used to de-
tect user’s activity. In scenarios, when the BLE devices actually use
the private address techniques and alter their advertising addresses
regularly, this method can also be used to identify an individual
from a small user group. Since Fitbit fitness trackers are by far the
most widely adopted devices (from [1] and Fig. 2c), we only focus
on Fitbit devices (specifically, Flex) in this section.
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Figure 3: Data Rate for different User Activities

Experimental Setup: We conduct experiments with 10 volun-
teers who wear a Fitbit on their non-dominant wrist and walk in
their natural gait. We also attach a smartphone (Nexus 6) close
to the Fitbit on user’s wrist to collect raw accelerometer signals at
20Hz sampling rate. The BLE traffic between the Fitbit and user’s
smartphone is sniffed using ComProbe BPA 600. Each experiment
lasts for 150 seconds and is repeated 10 times per user. The data
is collected while the Fitbit app is open in the foreground on an
iPhone 6. In addition to the walking experiments, we collect the
accelerometer and BLE traffic data while the user is at rest, work-
ing at a desk and running.

4.1 Activity Detection
When the smartphone application of Fitbit is open and running

in foreground, the Fitbit and the smartphone actively exchange data
packets. The data communication stops when the smartphone ap-
plication is closed. We observe that the amount of BLE data traf-
fic between the Fitbit and the smartphone is proportional to the
(motion) intensity of user’s activity. For example, when the user
is sitting with some sporadic low-intensity motion (desk-bound or
sedentary), the BLE traffic consists of a large number of empty
packets and only a small number of start or continuation packets.
This means that the size of data being transferred is much relatively
smaller in size. In comparison, when the user is walking, the data to
be transferred increases, resulting in more number of start packets.
We observe that even though the packets are encrypted, the volume
of the data is a definite indicator of the user’s activity. The privacy
implication is that an attacker can sniff the BLE traffic and infer
user’s current activity. For example, an employer can track and
monitor the activities (e.g. sitting on desk, walking etc.) of em-
ployees at workplace, and if the fitness trackers also don’t change
their device address, the employer can even track employee’s walk-
ing trajectories using multiple sniffers. In a gymnasium, an attacker
can monitor the amount of time a user sits, walks or runs everyday.

In BLE data communication, meaningful data is transmitted in
Start and Continuation packets. We refer to the data transmitted
in these packets (without their header) as the BLE payload. Fig. 3



Mean and Max Acceleration
Accelerometer Zero-Crossings, Absolute Area

Sum of Absolute Acceleration
Start Pkts., Empty Pkts., Payload Size

BLE Data Payload Datarate, Time b/w Start Pkts.
Empty Pkts. b/w Start Pkts

Table 4: Feature Set : Accelerometer Features for Correlation,
each measured on each of the 3 axis (X,Y,Z). BLE Data features

for person identification. We calculate min, max, mean and
standard deviation for the last two BLE Data features.

shows the payload data-rate in bits per second for four different
user activities, namely, stationary (at rest or sleeping), sitting (or
working at a desk), walking and running. We observe that the data
rate of the Bluetooth communication is different from when the
user is at rest or in motion. A comparison of Figs. 3a and 3b shows
that when a user is working, the data rate for most parts is simi-
lar to a stationary user apart from when the user moves her hands
which results in spikes in data transmission, as seen in the later part
of the Fig. 3b. Since, Fitbit is not just a step-counting device, we
note here that these spikes are not necessarily due to a step being
reported, but also due to the update of other information (like calo-
ries). Comparing the data rates of walking and running, we observe
that the data rate does not fall to zero for the running case Fig. 3d,
confirming the proportionality with the intensity of activity.

We further validate the claims of activity detection through BLE
traffic analysis using the data collected from 10 volunteers. Using
the collected data we calculate a feature vector for time windows of
20 seconds. The feature vector includes (1) payload data rate, (2)
number of empty packets and (3) number of start packets. Using the
feature vector, a decision tree classifier can classify the 4 activities
with an accuracy of 97.6%.

4.2 Person Identification
Wearable fitness trackers calculate a number of useful health-

related statistics like number of steps walked, total calories burnt,
total distance covered, flights of stairs climbed etc. When the smart-
phone app is running in the foreground, these information is sent
from the Fitbit to the smartphone, which in-turn updates the user in-
terface on the app. In the previous subsection, we observed that the
intensity of a user activity is related to the data-rate of the Bluetooth
connection. In this section, we show that the BLE data exhibits dif-
ferent patterns when different users are walking, making it possible
to uniquely identify a user from a small group of users.

Correlation with Accelerometer Data: Fitbit Flex utilizes a
3-axis accelerometer to monitor user movements (frequency, dura-
tion and patterns) and derive necessary statistics [8]. A later model
of Fitbit (Surge) also has a gyroscope, compass and ambient light
sensor, but for our experiments we just focus on the accelerometer
readings. Since the actual algorithms used by Fitbit to monitor user
activities are unknown, we conjecture that there is a strong correla-
tion between the observed accelerometer signal and corresponding
BLE traffic. If this correlation is indeed strong, the BLE traffic
can be used by an attacker to detect user’s walking speed and gait.
As we know from past research [9] that user’s gait can uniquely
identify the user with high accuracy (especially in a small group of
users), the BLE traffic can also be misused for user identification.

Using the collected acclerometer and BLE data for walking ac-
tivity of 10 volunteers, we calculate the statistical features listed
in Table 4 for 20 seconds time windows. The accelerometer fea-
tures we use are found to be useful in detecting human physical
activities in [10]. We then build separate linear regression models
which use these accelerometer features as input to predict each of
the BLE network features. We compute the correlation coefficient
between the calculated values of the BLE network features (using

BLE Data Feature Correlation
Empty Pkts. 0.705

Payload Datarate 0.699
Start Pkts. 0.684

Payload Size 0.676
Time b/w Start Pkts. 0.647
Pkts b/w Start Pkts. 0.634

Table 5: Correlation between predicted values of BLE Data
feature, calculated using linear regression on accelerometer

values, and the actual value of the feature.

regression) and the actual values obtained from the captured data.
The correlation coefficients for different BLE traffic features are
listed in Table 5. We observe a correlation of approximately 70%
for payload datarate and empty packet count. This shows that the
BLE traffic is correlated to the observed accelerometer data.

Person Identification using BLE Traffic: Because of the cor-
relation of BLE traffic pattern with the accelerometer data, it repre-
sents user’s gait while walking and thereby can be used to uniquely
identify the user. Based on the BLE network data collected for
10 users, we calculate the features shown in Table 4 for 20 sec-
ond windows. Fig. 4a shows two features - payload data rate and
average number of empty packets between two start packets - for
5 users. We observe that for each user there is a non-overlapping
cluster signifying the two BLE features can distinguish the 5 users.
We also represent the BLE payload data rate for two representative
users in 4b and see the variation is very distinct. Thus, the features
extracted can be considered useful for uniquely identifying a user.
We use the BLE features and build a person identification classifier
using decision tree. Fig. 4c show the average accuracy of person
identification using the BLE traffic features. We consider all possi-
ble combinations of users when the person identification classifier
is built for less than 10 users. The standard deviation of accuracy
for different user sets are also shown in Fig. 4c. The false positive
rate for all the different user sets was less than 5%. The classifica-
tion accuracy decreases with increase in number of users because
dissimilarities in gait reduces as user population increases.

Person identification through BLE traffic analysis is a major pri-
vacy concern as it can enable an attacker to track a user using her
fitness tracker even when it changes its BLE address. The person
identification works when a classifier is pre-trained for the walk-
ing pattern of a known set of users. In many cases such as office
buildings or gymnasiums where the same set of users reappear fre-
quently, the collected data can be used to train an accurate model.
It is to be noted here that the attack model we discuss works when
the Fitbit app is open in the foreground. However in the case of
certain trackers, like Garmin, the attack is possible even when the
app is not running in the foreground, as long as the phone and the
BLE device has been previously paired.

5. RELATED WORK
In recent years, there has been a number of research works on the

leakage user’s activity through wireless signal analysis. Keystroke
recognition [11] and human activity recognition [12] has become
possible through changes in the Channel State Information(CSI) as
a user moves or types on her keyboard. [13] shows how the ac-
celerometer and gyroscope sensors in smartwatches can be used to
uniquely identify finger movements, hand and forearm motion of
users on the basis of some essential features extracted from these
sensors’ data. This paper also shows that finger-writing on a sur-
face or on the air can be detected from these sensors, whereas [2]
shows that when a user is typing on the keyboard the motion sen-
sors on a smartwatch can predict the word typed out with a certain
level of confidence. Our work differs from these, as we focus on
device tracking and user activity detection just from the point of
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Figure 4: BLE Person Identification Results

view of the network data created by the devices (and not based on
the sensor values themselves).

In mobile telephony, temporary and contextual user identifiers
have been proposed instead of the permanent ones to prevent track-
ing but some of these techniques have not been very successful in
providing privacy [14]. From the point of view of Bluetooth traf-
fic, a Man-in-the-Middle attack on a Bluetooth keyboard allows an
attacker to access all keystrokes on a keyboard and lead to serious
security leaks. Similar attacks has been executed using data from
wireless mouse to reconstruct mouse cursor trajectory and infer pri-
vate user information [15]. Some researchers proposed the use of
the device clocks (time interval among advertising packets) to fin-
gerprint different Bluetooth devices and prevent address forging.
There has been recent some research which looks at how BLE data
communication security can be broken by capturing the necessary
keys during the connection-establishment phase [7]. Compared to
this, our work does not attempt to decrypt the encrypted BLE traffic
but focuses entirely on feasibility of mining already encrypted BLE
data from the point of view of activity and person identification.

6. DISCUSSION AND CONCLUSION
The advertising and data communication phases of BLE network

traffic cause concerns from the point of view of user privacy. The
detection of activity is possible due to the fact that sending of BLE
data (payload) is triggered only by user activity. This can be pre-
vented by sending out artificial traffic (or chaff) [16]. In this solu-
tion, we can insert artificial data packets (start and continuation) in
our BLE network so that activity recognition from the payload pat-
tern becomes more complex and circumvent traffic analysis. How-
ever, one drawback of this is that the energy consumption would in-
crease as a result of transmitting more packets than required. Thus,
a balance has to be maintained between sending out artificial traffic
at certain intervals so as to prevent detection but not at the expense
of high energy consumption.

To prevent user tracking based on advertising packets one po-
tential solution is to randomize the advertised address, a topic that
has recently been brought to light for WiFi communication, with
the recent versions of iOS randomizing the MAC address while
broadcasting to prevent tracking at public places. There has also
been efforts in terms of mobile telephony to use temporary iden-
tifiers instead of long term permanent identifiers to prevent third-
party tracking. However, usage of randomized addresses can lead
to the smartphone not being able to identify the BLE fitness tracker
to which is has already been paired and might need the tracker to
pair again - leading to a disruption in user experience. Also, ran-
domized addresses can still be used to track a user based on the
user activity determined using data packets. Another solution is not
to advertise continuously and instead, use direct advertising pack-
ets from the fitness trackers directly to the user’s smartphone (to

which the tracker has been previously synced), when the smart-
phone switches on the fitness tracker app. With the ever increas-
ing popularity of smartwatches and corresponding applications on
these devices, BLE communication privacy is even more critical in
the near future. In our future work, we will analyze BLE network
data generated by different applications in smartwatches from the
point of view of user privacy.
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