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SUMMARY

It is often of interest to decompose the total effect of an exposure into a component that acts on the
outcome through some mediator and a component that acts independently through other pathways. Said
another way, we are interested in the direct and indirect effects of the exposure on the outcome. Even if
the exposure is randomly assigned, it is often infeasible to randomize the mediator, leaving the mediator-
outcome confounding not fully controlled. We develop a sensitivity analysis technique that can bound
the direct and indirect effects without parametric assumptions about the unmeasured mediator-outcome
confounding.

Some key words: Bounding factor; Causal inference; Collider; Natural direct effect; Natural indirect effect.

1. INTRODUCTION

Researchers often conduct mediation analysis to assess the extent to which an effect of an exposure on
the outcome is mediated through a particular pathway and the extent to which the effect operates directly.
Mediation analysis initially developed within genetics and psychology based on linear structural equation
models (Wright, 1934; Baron & Kenny, 1986), and has been formalized by the notions of natural direct
and indirect effects under the potential outcomes framework (Robins & Greenland, 1992; Pearl, 2001) and
the decision-theoretic framework (Didelez et al., 2006; Geneletti, 2007). However, identification of natural
direct and indirect effects used in that literature relies on strong assumptions, including the assumption of
no unmeasured mediator-outcome confounding (Pearl, 2001; Imai et al., 2010; VanderWeele, 2010). Even
if we can rule out unmeasured exposure-mediator and exposure-outcome confounding by randomly assign-
ing the exposure, full control of mediator-outcome confounding is often impossible because it is infeasible
to randomize the mediator. Therefore, it is crucial in applied mediation analyses to investigate the sensitiv-
ity of the conclusions to unmeasured mediator-outcome confounding. Previous sensitivity analysis tech-
niques rely on restrictive modelling assumptions (Imai et al., 2010), use sensitivity parameters involving
counterfactual terms (Tchetgen Tchetgen & Shpitser, 2012), or require the specification of a large number
of sensitivity parameters (VanderWeele, 2010). Other work (Sjölander, 2009; Robins & Richardson, 2010)
has provided bounds for natural direct and indirect effects without imposing assumptions, but these con-
sider the most extreme scenarios and the bounds are often too broad to be useful in practice. We develop
a sensitivity analysis technique which has only two sensitivity parameters and does not make any mod-
elling assumptions or any assumptions about the type of the unmeasured mediator-outcome confounder or
confounders. Our results imply Cornfield-type inequalities (Cornfield et al., 1959; Ding & VanderWeele,
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2014) that the unmeasured confounder must satisfy to reduce the observed natural direct effect to a certain
level or explain it away.

2. NOTATION AND FRAMEWORK FOR MEDIATION ANALYSIS

Let A denote the exposure, Y the outcome, M the mediator, C a set of observed baseline covariates
not affected by the exposure, and U a set of unmeasured baseline covariates not affected by the exposure.
In order to define causal effects, we invoke the potential outcomes framework (Neyman, 1923; Rubin,
1974) and apply it in the context of mediation (Robins & Greenland, 1992; Pearl, 2001). If a hypothetical
intervention on A is well-defined, we let Ya and Ma denote the potential values of the outcome and the
mediator that would have been observed had the exposure A been set to level a. If hypothetical interventions
on A and M are both well-defined, we further let Yam denote the potential value of the outcome that would
have been observed had the exposure A been set to level a and the mediator M been set to level m (Robins
& Greenland, 1992; Pearl, 2001). Following Pearl (2009) and VanderWeele (2015), we need the following
consistency assumption for all a and m: Ya = Y and Ma = M if A = a; and Yam = Y if A = a and M = m.
We further need the composition assumption that YaMa = Ya for a = 0, 1.

We will assume that the exposure A is binary, but all the results in this paper are also applicable to a
categorical or continuous exposure and could be used to compare any two levels of A. In the main text
we consider a binary outcome Y , but in § 6 we note that all the results hold for count and continuous
positive outcomes and time-to-event outcomes with rare events. The mediator M , the observed covariates
C , and the unmeasured confounder or confounders U can be of general types, i.e., categorical, continuous
or mixed, and scalar or vector. For notational simplicity, in the main text we assume that (M, C, U ) are
categorical, and in the Supplementary Material we present results for general types.

On the risk ratio scale, the conditional natural direct and indirect effects, comparing the exposure levels
A = 1 and A = 0 within the observed covariate level C = c, are defined as

NDE
true
RR|c = pr (Y1M0 = 1 | c)

pr (Y0M0 = 1 | c)
, NIE

true
RR|c = pr (Y1M1 = 1 | c)

pr (Y1M0 = 1 | c)
. (1)

The conditional natural direct effect compares the distributions of the potential outcomes when the expo-
sure level changes from A = 0 to A = 1 but the mediator is fixed at M0. The conditional natural indirect
effect compares the distributions of the potential outcomes when the exposure level is fixed at A = 1 but
the mediator changes from M0 to M1. The conditional total effect can be decomposed as a product of the
conditional direct and indirect effects as follows:

TE
true
RR|c = pr (Y1 = 1 | c)

pr (Y0 = 1 | c)
= NDE

true
RR|c × NIE

true
RR|c.

On the risk difference scale, the conditional natural direct and indirect effects are defined as

NDE
true
RD|c = pr (Y1M0 = 1 | c) − pr (Y0M0 = 1 | c), (2)

NIE
true
RD|c = pr (Y1M1 = 1 | c) − pr (Y1M0 = 1 | c), (3)

and the conditional total effect has the decomposition

TE
true
RD|c = pr (Y1 = 1 | c) − pr (Y0 = 1 | c) = NDE

true
RD|c + NIE

true
RD|c.

3. IDENTIFICATION OF CONDITIONAL NATURAL DIRECT AND INDIRECT EFFECTS

Here we follow the identification strategy of Pearl (2001) for natural direct and indirect effects. A num-
ber of authors have provided other subtly different sufficient conditions (see, e.g., Imai et al., 2010; Vanstee-
landt & VanderWeele, 2012; Lendle et al., 2013). Let ⊥⊥ denote independence of random variables. To
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identify the conditional natural direct and indirect effects by the joint distribution of the observed vari-
ables (A, M, Y, C), Pearl (2001) assumed that for all a, a∗ and m,

Yam ⊥⊥ A | C, Yam ⊥⊥ M | (A, C), Ma ⊥⊥ A | C, Yam ⊥⊥ Ma∗ | C. (4)

The four assumptions in (4) require that the observed covariates C control exposure-outcome confounding,
control mediator-outcome confounding, control exposure-mediator confounding, and ensure cross-world
counterfactual independence, respectively; on a nonparametric structural equation model (Pearl, 2009), this
fourth assumption is essentially that none of the mediator-outcome confounders are themselves affected
by the exposure (Pearl, 2001; VanderWeele, 2015). In particular, on the risk ratio scale, we can identify the
conditional natural direct and indirect effects by

NDE
obs
RR|c =

∑
m pr (Y = 1 | A = 1, m, c) pr (m | A = 0, c)∑
m pr (Y = 1 | A = 0, m, c) pr (m | A = 0, c)

, (5)

NIE
obs
RR|c =

∑
m pr (Y = 1 | A = 1, m, c) pr (m | A = 1, c)∑
m pr (Y = 1 | A = 1, m, c) pr (m | A = 0, c)

. (6)

On the risk difference scale, we can identify the conditional natural direct and indirect effects by

NDE
obs
RD|c =

∑
m

{pr (Y = 1 | A = 1, m, c) − pr (Y = 1 | A = 0, m, c)} pr (m | A = 0, c), (7)

NIE
obs
RD|c =

∑
m

pr (Y = 1 | A = 1, m, c){pr (m | A = 1, c) − pr (m | A = 0, c)}. (8)

Proofs of (5)–(8) can be found in Pearl (2001) and VanderWeele (2015).
If we replace YaMa∗ in definitions (1)–(3) by Ya,Ga∗|c , with Ga∗|c being a random draw from the condi-

tional distribution pr (Ma∗ | c), then we can drop the cross-world counterfactual independence assumption
Yam ⊥⊥ Ma∗ | C (VanderWeele, 2015). This view is related to the decision-theoretic framework without
using potential outcomes (Didelez et al., 2006; Geneletti, 2007). We show in the Supplementary Material
that because the alternative frameworks lead to the same empirical identification formulae as in (5)–(8),
all our results below can be applied.

4. SENSITIVITY ANALYSIS WITH UNMEASURED MEDIATOR-OUTCOME CONFOUNDING

4·1. Unmeasured mediator-outcome confounding

The assumptions in (4) are strong and untestable. If the exposure is randomly assigned given the values
of the observed covariates C , as in completely randomized experiments or randomized block experiments,
then the first and third assumptions of (4) hold automatically owing to the randomization. In observational
studies, we may have background knowledge to collect adequate covariates C to control the exposure-
outcome and exposure-mediator confounding such that the first and third assumptions in (4) are plausible.
However, direct intervention on the mediator is often infeasible, and it may not be possible to randomize.
Therefore, the second assumption in (4), the absence of mediator-outcome confounding, may be violated
in practice. Furthermore, the fourth assumption in (4) cannot be guaranteed even under randomization of
both A and M , and thus it is fundamentally untestable (Robins & Richardson, 2010).

For sensitivity analysis, we assume that (C, U ) jointly ensure (4), that is,

Yam ⊥⊥ A | (C, U ), Yam ⊥⊥ M | (A, C, U ), Ma ⊥⊥ A | (C, U ), Yam ⊥⊥ Ma∗ | (C, U ). (9)

When C controls the exposure-mediator and exposure-outcome confounding, we further assume that

A ⊥⊥ U | C. (10)

The independence relationships in (9) impose no restrictions on the unmeasured confounders U , and they
become assumptions if we require at least one of the sensitivity parameters introduced in § 4·2 to be finite.
Figure 1 illustrates such a scenario with the assumptions in (9) and (10) holding, where U contains the
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U

A M Y

Fig. 1. Directed acyclic graph with mediator-outcome
confounding within strata of observed covariates C .

common causes of the mediator and the outcome, and A and U are conditionally independent given C. In
§ 6 and the Supplementary Material, we comment on the applicability of our results under violations of
the assumption in (10).

Under the assumptions in (9) and (10), we can express conditional natural direct and indirect effects
using the joint distribution of (A, M, Y, C, U ). In particular, on the risk ratio scale,

NDE
true
RR|c =

∑
u

∑
m pr (Y = 1 | A = 1, m, c, u) pr (m | A = 0, c, u) pr (u | c)∑

u

∑
m pr (Y = 1 | A = 0, m, c, u) pr (m | A = 0, c, u) pr (u | c)

, (11)

NIE
true
RR|c =

∑
u

∑
m pr (Y = 1 | A = 1, m, c, u) pr (m | A = 1, c, u) pr (u | c)∑

u

∑
m pr (Y = 1 | A = 1, m, c, u) pr (m | A = 0, c, u) pr (u | c)

. (12)

On the risk difference scale,

NDE
true
RD|c =

∑
u

∑
m

{pr (Y = 1 | A = 1, m, c, u) − pr (Y = 1 | A = 0, m, c, u)}
× pr (m | A = 0, c, u) pr (u | c), (13)

NIE
true
RD|c =

∑
u

∑
m

pr (Y = 1 | A = 1, m, c, u) pr (u | c)

× {pr (m | A = 1, c, u) − pr (m | A = 0, c, u)}. (14)

The proofs of (11)–(14) follow from Pearl (2001) and VanderWeele (2015). Unfortunately, however, (11)–
(14) depend not only on the joint distribution of the observed variables (A, M, Y, C) but also on the dis-
tribution of the unobserved variable U . In the following, we will give sharp bounds on the true conditional
direct and indirect effects in terms of the observed conditional natural direct and indirect effects and two
measures of the mediator-outcome confounding that can be taken as sensitivity parameters.

4·2. Sensitivity parameters and the bounding factor

First, we introduce a conditional association measure between U and Y given (A = 1, M, C = c), and
define our first sensitivity parameter as

RRUY |(A=1,M,c) = max
m

RRUY |(A=1,m,c) = max
m

maxu pr (Y = 1 | A = 1, m, c, u)

minu pr (Y = 1 | A = 1, m, c, u)
,

where RRUY |(A=1,m,c) is the maximum divided by the minimum of the probabilities pr (Y = 1 |
A = 1, m, c, u) over u. When U is binary, RRUY |(A=1,m,c) reduces to the usual conditional risk ratio of U on
Y , and RRUY |(A=1,M,c) is the maximum of these conditional risk ratios over m. If U and Y are conditionally
independent given (A, M, C), then RRUY |(A=1,M,c) = 1.

Second, we introduce a conditional association measure between A and U given M . As illustrated in
Fig. 1, although A ⊥⊥ U | C , an association between A and U conditional on M arises from conditioning
on the common descendant M of A and U , also called the collider bias. Our second sensitivity parameter
will assess the magnitude of this association generated by collider bias. We define our second sensitivity
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parameter as

RRAU |(M,c) = max
m

RRAU |(m,c) = max
m

max
u

pr (u | A = 1, m, c)

pr (u | A = 0, m, c)
, (15)

where RRAU |(m,c) is the maximum of the risk ratio of A on U taking value u given M = m and C = c. When
U is binary, RRAU |(m,c) reduces to the usual conditional risk ratio of A on U given M = m and C = c. The
second sensitivity parameter can be viewed as the maximum of the collider bias ratios conditioning over
the stratum M = m. We give an alternative form

RRAU |(m,c) = max
u

{
pr (m | A = 1, c, u)

pr (m | A = 0, c, u)

}/ {
pr (m | A = 1, c)

pr (m | A = 0, c)

}
, (16)

which is the maximum conditional relative risk of A on M = m within stratum U = u divided by the uncon-
ditional relative risk of A on M = m. The relative risk unconditional on U is identifiable from the observed
data, and therefore the second sensitivity parameter depends crucially on the relative risk conditional on U .

Nonparametrically, we can specify the second sensitivity parameter using expression (15) or (16). If we
would like to impose parametric assumptions, for example that pr (m | a, c, u) follows a log-linear model,
then it reduces to a function of the regression coefficients, which will depend explicitly on the A-M and
U -M associations, as shown in the Supplementary Material.

To aid interpretation, Lemma S4 in the Supplementary Material shows that

RRAU |(m,c) � max
u |= u′

pr (m | A = 1, c, u) pr (m | A = 0, c, u′)
pr (m | A = 0, c, u) pr (m | A = 1, c, u′)

,

which measures the interaction of A and U on M taking value m given C = c on the risk ratio scale
(Piegorsch et al., 1994; Yang et al., 1999).

To further aid specification of this second parameter, we note that Greenland (2003) showed that,
depending on the magnitude of the association, in most but not all settings the magnitude of the ratio
association measure relating A and U introduced by conditioning on M is smaller than the ratios relating
A and M and relating U and M . Thus, the lower of these two ratios can help to specify the second param-
eter. In particular, when the exposure is weakly associated with the mediator, the collider bias is small. If
A ⊥⊥ M | C , then the collider bias is zero, i.e., RRAU |(M,c) = 1.

Finally, we introduce the bounding factor

BFU |(M,c) = RRAU |(M,c) × RRUY |(A=1,M,c)

RRAU |(M,c) + RRUY |(A=1,M,c) − 1
,

which is symmetric and monotone in both RRAU |(M,c) and RRUY |(A=1,M,c), and is no larger than either sen-
sitivity parameter. If one of the sensitivity parameters equals unity, then the bounding factor also equals
unity. The bounding factor, a measure of the strength of unmeasured mediator-outcome confounding, plays
a central role in bounding the natural direct and indirect effects in the following theorems.

4·3. Bounding natural direct and indirect effects on the risk ratio scale

THEOREM 1. Under the assumptions in (9) and (10), the true conditional natural direct effect on the
risk ratio scale has the sharp bound NDE

true
RR|c � NDE

obs
RR|c/BFU |(M,c).

The sharp bound is attainable when U is binary, pr (m | A = 0, c) is degenerate, and some other con-
ditions hold as discussed in the Supplementary Material. Theorem 1 provides an easy-to-use sensitivity
analysis technique. After specifying the strength of the unmeasured mediator-outcome confounder, we
can calculate the bounding factor and then divide the point and interval estimates of the conditional natu-
ral direct effect by this bounding factor. This yields lower bounds on the conditional natural direct effect
estimates. We can analogously apply the theorems below.

As shown in § 2, the conditional total effect can be decomposed as the product of the conditional natural
direct and indirect effects on the risk ratio scale, which, coupled with Theorem 1, implies the following
bound on the conditional natural indirect effects.
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THEOREM 2. Under the assumptions in (9) and (10), the true conditional natural indirect effect on the
risk ratio scale has the sharp bound NIE

true
RR|c � NIE

obs
RR|c × BFU |(M,c).

Even if a researcher does not feel comfortable specifying the sensitivity parameters, Theorems 1 and 2
can still be used to report how large the sensitivity parameters would have to be for an estimate or lower
confidence limit to lie below its null hypothesis value. We illustrate this in § § 4·5 and 5.

If the natural direct effect averaged over C is of interest, the true unconditional natural direct effect
must be at least as large as the minimum of NDEobs

RR|c/BFU |(M,c) over c. If we further assume a common
conditional natural direct effect among levels of C , as in the log-linear or logistic model for rare out-
comes (cf. VanderWeele, 2015), then the true unconditional natural direct effect must be at least as large
as the maximum of NDEobs

RR|c/BFU |(M,c) over c. Similar arguments hold for the unconditional natural indirect
effect.

4·4. Bounding natural direct and indirect effects on the risk difference scale

THEOREM 3. Under the assumptions in (9) and (10), the true conditional natural direct effect on the
risk difference scale has the sharp bound

NDE
true
RD|c �

∑
m

pr (Y = 1 | A = 1, m, c) pr (m | A = 0, c)
/
BFU |(M,c) − pr (Y = 1 | A = 0, c).

Because the conditional total effect can be decomposed as the sum of the conditional natural direct and
indirect effects on the risk difference scale as shown in § 2, the identifiability of the conditional total effect
and Theorem 3 imply the following bound on the conditional natural indirect effect.

THEOREM 4. Under the assumptions in (9) and (10), the true conditional natural indirect effect on the
risk difference scale has the sharp bound

NIE
true
RD|c � pr (Y = 1 | A = 1, c) −

∑
m

pr (Y = 1 | A = 1, m, c) pr (m | A = 0, c)
/
BFU |(M,c).

Because of the linearity of the risk difference, the true unconditional direct and indirect effects can be
obtained by averaging the bounds in Theorems 3 and 4 over the distribution of the observed covariates C.

4·5. Cornfield-type inequalities for unmeasured mediator-outcome confounding

We can equivalently state Theorem 1 in terms of the smallest value of the bounding factor to reduce an
observed conditional natural direct effect to a true conditional causal natural direct effect, i.e., BFU |(M,c) �
NDE

obs
RR|c/NDE

true
RR|c, which further implies the following Cornfield-type inequalities (Cornfield et al., 1959;

Ding & VanderWeele, 2014).

THEOREM 5. Under the assumptions in (9) and (10), to reduce an observed conditional natural direct
effect NDEobs

RR|c to a true conditional natural direct effect NDEtrue
RR|c, both RRAU |(M,c) and RRUY |(A=1,M,c) must

exceed NDE
obs
RR|c/NDE

true
RR|c, and the larger of them must exceed

[
NDE

obs
RR|c + {

NDE
obs
RR|c(NDE

obs
RR|c − NDE

true
RR|c)

}1/2
]/

NDE
true
RR|c.

To explain away an observed conditional natural direct effect NDEobs
RR|c, i.e., NDEtrue

RR|c = 1, both sensitivity
parameters must exceed NDE

obs
RR|c, and the maximum of them must exceed NDE

obs
RR|c + {NDEobs

RR|c(NDE
obs
RR|c −

1)}1/2. In Theorem S1 in the Supplementary Material, we present the inequalities derived from Theorem 3
on the risk difference scale.

5. ILLUSTRATION

VanderWeele et al. (2012) conducted mediation analysis to assess the extent to which the effect that
variants on chromosome 15q25.1 have on lung cancer is mediated through smoking and the extent to
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which it operates through other causal pathways. The exposure levels correspond to changes from zero
to two C alleles; smoking intensity is measured by the square root of number of cigarettes smoked
per day; and the outcome is the lung cancer indicator. The analysis of VanderWeele et al. (2012) was
on the odds ratio scale using a lung cancer case-control study, but for a rare disease the odds ratios
approximate risk ratios. After controlling for observed sociodemographic covariates, they found that
the natural direct effect estimate is 1·72 with 95% confidence interval [1·34, 2·21], and the natural
indirect effect estimate is 1·03 with 95% confidence interval [0·99, 1·07]. Their analysis used logistic
regression models, requiring all the odds ratios to be the same across different levels of the measured
covariates.

The evidence for the indirect effect is weak, because the confidence interval covers the null hypoth-
esis of no effect. However, the direct effect deviates significantly from the null. According to § 4·5, to
reduce the point estimate of the conditional natural direct effect to below unity, both RRAU |(M,c) and
RRUY |(A=1,M,c) must exceed 1·72, and the maximum of them must exceed 1·72 + (1·72 × 0·72)1/2 = 2·83.
For a binary confounder U under parametric models with main effects, to explain away the direct effect
estimate it would generally have to (Greenland, 2003, cf. Supplementary Material) increase the likelihood
of Y and increase M by at least 1·72-fold, and it would have to increase at least one of Y and M by
2·83-fold. To reduce the lower confidence limit to below unity, both sensitivity parameters must exceed
1·34, and the maximum of them must exceed 1·34 + (1·34 × 0·34)1/2 = 2·02. For a binary confounder
U under parametric models with main effects, to explain away the lower confidence limit for the direct
effect it would generally have to increase the likelihood of Y and increase M by at least 1·34-fold, and
it would have to increase at least one of Y and M by 2·02-fold. This would constitute fairly substantial
confounding.

Previous studies have found that the exposure-mediator association in this context is weak (Saccone
et al., 2010). Suppose that the risk ratio relating A and M is less than 1·40. If we assume that the collider
bias is smaller than this in magnitude, e.g., RRAU |(M,c) � 1·40, as indicated by Greenland (2003), then
RRUY |(A=1,M,c) must be at least as large as 11·47 to reduce the point estimate to below unity, and be at least
as large as 8·93 to reduce the lower confidence limit to below unity. In general, when RRAU |(M,c) is relatively
small, we require an extremely large RRUY |(A=1,M,c) to reduce the conditional natural direct effect estimate
to below unity. In fact, if RRAU |(M,c) is smaller than the lower confidence limit of the conditional natural
direct effect, it is impossible to reduce it to below unity because the bounding factor is always smaller than
RRAU |(M,c).

6. DISCUSSION

Theorems 1–5 are most useful when the conditional natural direct effect is greater than unity. We can
also simply relabel the exposure levels and all the results will still hold.

In § 4 we derived sensitivity analysis formulae for causal parameters on the risk ratio and risk difference
scales. If we have rare outcomes, as in most case-control studies, we can approximate causal parameters
on the odds ratio scale by those on the risk ratio scale, and all the results about risk ratio also apply to the
odds ratio. We have illustrated this in § 5. Furthermore, we comment in the Supplementary Material that
similar results hold for count and continuous positive outcomes and rare time-to-event outcomes, if we
replace the relative risks on the outcome by the hazard ratios and mean ratios.

The assumption A ⊥⊥ U | C may be violated if U affects (A, M, Y ) simultaneously, i.e., if unmeasured
exposure-mediator, exposure-outcome and mediator-outcome confounding all exist. Even if A ⊥⊥ U | C is
violated, we show in Theorem S2 in the Supplementary Material that Theorems 1 and 3 can be interpreted
as the bounds of the conditional natural direct effects for the unexposed population, which is also of interest
in other contexts (Vansteelandt & VanderWeele, 2012; Lendle et al., 2013).

ACKNOWLEDGEMENT

The authors thank the editor, associate editor and two referees for helpful comments. This research was
funded by the U.S. National Institutes of Health.



490 P. DING AND T. J. VANDERWEELE

SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes proofs of the theorems and more details
about the discussions in § § 3, 4·2, 4·5 and 6.
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