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EEGLAB: an open source toolbox for analysis of single-trial EEG 
dynamics including independent component analysis  

 

Arnaud Delorme, Scott Makeig 

Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San 

Diego, La Jolla CA 92093-0961; {arno,scott}@sccn.ucsd.edu 

 
Abstract: We have developed a toolbox and graphic user interface, EEGLAB, running under the cross-platform 
MATLAB environment (The Mathworks, Inc.) for processing collections of single-trial and/or averaged EEG data 
of any number of channels. Available functions include EEG data, channel and event information importing, data 
visualization (scrolling, scalp map and dipole model plotting, plus multi-trial ERP-image plots), preprocessing 
(including artifact rejection, filtering, epoch selection, and averaging), Independent Component Analysis (ICA) and 
time/frequency decompositions including channel and component cross-coherence supported by bootstrap statistical 
methods based on data resampling. EEGLAB functions are organized into three layers. Top-layer functions allow 
users to interact with the data through the graphic interface without needing to use MATLAB syntax. Menu options 
allow users to tune the behavior of EEGLAB to available memory. Middle-layer functions allow users to customize 
data processing using command history and interactive ‘pop’ functions. Experienced MATLAB users can use 
EEGLAB data structures and stand-alone signal processing functions to write custom and/or batch analysis scripts. 
Extensive function help and tutorial information are included. A ‘plug-in’ facility allows easy incorporation of new 
EEG modules into the main menu. EEGLAB is freely available (http://www.sccn.ucsd.edu/eeglab/) under the GNU 
public license for noncommercial use and open source development, together with sample data, user tutorial and 
extensive documentation. 
 

INTRODUCTION 

Though computing capabilities of nearly every 
electrophysiology laboratory are now sufficient to 
allow advanced signal processing of biophysical 
signals including high-density electroencephalographic 
(EEG) recordings, many researchers continue to rely 
on amplitude and latency measures of peaks in EEG 
trial averages, termed event related potentials (ERPs). 
Historically, the response averaging method was 
developed under technical constraints imposed by 
hardware initially available for psychophysiological 
experiments in 1950s and 1960s. Before digital 
computers were available, researchers had to find a 
way to summarize event-related activity across several 
EEG trials representing brain responses to sensory 
stimulations. For this purpose, they first used analog 
registers to sum activity across EEG data trials. The 
first computerized response averaging computer, the 
computer of average transients (CAT, ca. 1962) helped 
promote the use of response averaging, called at first 
sensory ‘evoked potentials’ (EPs) and later the sensory 
/ cognitive ‘event-related potentials’ (ERPs).  
Using the fast and low-cost digital computers now 
available, technical limitations that constrained 
researchers to confine their EEG data analysis to 
simple ERP measures and parametric statistics are no 
longer relevant. The rationale used to justify response 

averaging is that the single-trial EEG data time locked 
to some class of experimental events consists of an 
average ERP, whose time course and polarity is fixed 
across the trials, plus other EEG processes whose time 
courses are completely unaffected by the experiment 
events. The cortical sources of ERP features may be 
assumed to be spatially distinct from sources of 
spontaneous EEG activities. However, as we have 
demonstrated recently, focusing data analysis on 
response averages alone ignores, first, event-related 
dynamics that do not appear in, or are poorly 
represented in response averages, and second, ignores 
ongoing EEG processes that may be partially time and 
phase-locked by experimental events, thereby 
contributing portions of response averages (Delorme et 
al., 2002; Makeig et al., 2002). 
In the past decades, pioneer researchers have tried to 
apply to EEG data analysis techniques developed in 
electrical engineering and information theory, 
including time/frequency analysis (Pfurtscheller and 
Aranibar, 1979; Bressler and Freeman, 1980; Makeig, 
1993; Neuenschwander and Varela, 1993; Tallon-
Baudry et al., 1996; Weiss and Rappelsberger, 1996) 
and Independent Component Analysis (ICA) (Makeig 
et al., 1996; Makeig et al., 1997; Makeig et al., 1999; 
Jung et al., 2001). These techniques have revealed EEG 
processes whose dynamic characteristics are also 
correlated with behavioral changes, though they cannot 
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FIG. 1. Sample EEGLAB session. Screen capture of an EEGLAB user session running under Linux. Users call EEGLAB functions from the 
main window menus (center) via ‘pop-up’ parameter selection windows (upper left). Warnings and data processing messages are shown in the 
Matlab command line window (lower left), which can also be used to call EEGLAB or other data processing functions directly. 

be seen in the averaged ERP. For example, short-term 
changes in spectral properties of the ongoing EEG in 
specific frequency bands may be correlated with 
cognitive processes, e.g. expectancy of a target 
stimulus (Makeig et al., 1999) and with visual 
awareness (Rodriguez et al., 1999). The sufficiency of 
studying average ERPs has also been questioned by 
Makeig et al. (2002), who showed that some average 
ERP peaks may result from partial synchronization of 
oscillatory EEG processes to time locking events in 
single data trials. 
Currently, most EEG researchers still interpret their 
data by measuring peaks in event-locked ERP 
averages. Free availability of more general and easy-to-
use signal processing software for EEG data may 
encourage the wider adoption of more inclusive 
approaches. Our EEGLAB software toolbox for Matlab 
(freely available from 
http://www.sccn.ucsd.edu/eeglab/) allows processing 
of collections of single EEG data epochs using ICA 
and spectral analysis as well as data averaging 
techniques. Using this toolbox, we have demonstrated 
the advantages of combining ICA, time-frequency 
analysis, and multi-trial visualization in several 
publications (e.g., Makeig et al., 1999; Delorme et al., 

2002; Makeig et al., 2002; Delorme and Makeig, 
2003). In EEGLAB, all these functions are available 
under a common graphic interface under Matlab, a 
widely used multi-platform computing environment. 
EEGLAB extends the collection of publicly available 
Matlab packages for brain imaging including SPM 
(Friston, 1995) and FRMLAB (Duann et al., 2002) for 
functional MRI studies and Brainstorm (Baillet et al., 
1999) for EEG/MEG source analysis. 

 
METHODS AND RESULTS 

1. Basic functions 

The ICA/EEG toolbox of Makeig and colleagues 
(1997) included a collection of Matlab functions for 
signal processing and visualization of EEG data 
including runica(), a function for automated infomax 
ICA decomposition (Makeig et al., 1997), ERP-image 
plotting (Jung et al., 1999; Makeig et al., 1999), a 
method of visualizing time-locked potential variations 
across sets of single trials, and time-frequency 
decomposition (Makeig, 1993). By 2002, over 5,000 
researchers from over 50 countries had downloaded the 
ICA/EEG toolbox. However the provided tools could 
only be used for EEG analysis by knowledgeable users 
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FIG. 2. Data scrolling. The EEGLAB scrolling data review 
function, eegplot(), allows the user to review and reject data by 
visual inspection. Here, five data epochs (separated by dashed lines) 
are plotted at 31 electrode sites (channel names on the left). Other 
channels in the dataset can be accessed using the vertical slider on 
the left. The arrow buttons (lower left) scroll horizontally through 
the data. The user may zoom in on a selected time range and/or 
electrode group and may change the plotting parameters using menu 
options (upper left). Values of the data point closest to the cursor are 
continuously displayed at the bottom of the display. In this example, 
two (central) data epochs have been automatically marked for 
rejection for out-of-bounds values set by the user in the EEGLAB 
data-rejection pop-up window (not shown). The rejection routine 
here highlights (in white) the channels containing the outlier values. 
The user can further mark (or unmark) data epochs for rejection by 
clicking on them. Pressing ‘Update Marks’ (lower right) saves the 
accumulated rejection markings.

who were prepared to write custom data analysis 
scripts. EEGLAB, by contrast, includes a 
comprehensive graphic user interface for interactively 
calling and viewing results of enhanced and extended 
ICA/EEG toolbox functions while further facilitating 
the development of custom analysis scripts by prepared 
users. Fig.1. shows a screen capture of an EEGLAB 
user session running under Linux.  
 
Data preprocessing. EEGLAB allows reading of data, 
event information, and channel location files in several 
different formats including binary, Matlab, ASCII, 
Neuroscan, EGI, Snapmaster, European standard BDF, 
and Biosemi EDF. Standard data analysis functions 
available in EEGLAB include data filtering, data epoch 
extraction, baseline removal, average reference 
conversion, data resampling and extraction of data 
epochs time locked to specified experimental events 
from continuous or epoched data. EEGLAB also 
includes methods allowing users to remove data 
channels, epochs, and/or components dominated by 
non-neural artifacts, by accepting or rejecting visually-
cued EEGLAB recommendations derived from signal 
processing and information measures. EEG scalp maps 
and channel locations can be converted between 
several widely-used Cartesian, polar and spherical 
coordinate systems and then visualized in two or three 
dimensions. Continuous data and data epochs of any 
number of channels can also be scrolled (both 
vertically and horizontally). 
 
Data structures and events. EEGLAB uses a single 
structure (‘EEG’) to store data, acquisition parameters, 
events, channel locations, and epoch information as an 
EEGLAB dataset. This structure can also be accessed 
directly from the Matlab command line. Text files 
containing event and epoch information can be 
imported via the EEGLAB menu. The user can also use 
the menu to import event and epoch information in any 
of several file formats (Presentation, Neuroscan, ASCII 
text file), or can read event marker information from 
the binary EEG data file (as in, e.g., EGI, Neuroscan, 
and Snapmaster data formats). The menu then allows 
users to review, edit or transform the event and epoch 
information. Event information can be used to extract 
data epochs from continuous EEG data, select epochs 
from EEG data epochs, or to sort data trials to create 
ERP-image plots (Jung et al., 1999; Makeig et al., 
1999). EEGLAB also provides functions to compute 
and visualize epoch and event statistics. 
To illustrate the utility of EEGLAB, below we employ 
a small set of EEG data trials (also available from 
http://www.sccn.ucsd.edu/eeglab/) drawn from an 
experiment in which the subject covertly attended a 
cued location on the computer screen, responding 
quickly with a thumb button press each time a target 

(filled square) was briefly presented at this location 
(Makeig et al., 1999). In different trial blocks, the 
attended location was any one of five positions 
arranged horizontally on the computer screen above a 
fixation cross. The sample dataset consists of 80 3-
second EEG epochs time-locked to targets presented in 
the left visual field between 3 and 1.5 degrees of visual 
angle. Data from thirty-one scalp electrodes (referred 
to the right mastoid) were sampled at 500 Hz (later 
reduced for compactness to 125 Hz). Fig. 2 shows five 

sample data epochs and illustrates the capabilities of 
eegplot(), the EEGLAB data scrolling function. 
 
2. Multi-trial visualization 

ERP-image plotting. The field of electrophysiological 
data analysis has been dominated by analysis of one-
dimensional averaged event-related potential (ERP) 
time series (single channel values across latencies). 
The ERP-image is a more general two-dimensional 
representation of the data (single channel values within 
epochs across latencies) sorted in order of some 
relevant measure (e.g., collection time, subject 
response, amplitude or phase, etc.). Fig. 3(A) illustrates 
the process of constructing ERP-image plots. An ERP 
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FIG. 3. ERP image construction. (A) ERP-image plots are constructed by color-coding (grey bars) potential variations occurring in single-trial 
epochs (black traces). (B) Vertically stacking thin color-coded horizontal bars, each representing a single trial in an event-related dataset, 
produces an ERP image. Here, trials were sorted vertically according to the subject reaction-time (right curving black trace) before applying a 10-
epoch vertical moving average. The trace below the ERP image shows the ERP average of the imaged data epochs. The dot on the scalp map 
(top) indicates the scalp position of the channel whose data are imaged. (C) The erpimage() function automates several methods of sorting trials. 
Here, EEG phase in a given time/frequency window was used as the sorting variable. For each trial, a 10-Hz wavelet was applied to measure 
oscillatory activity in a 3-cycle window centered at time 0. Trials were then sorted (top to bottom) in order of their alpha band frequency phase 
values (-π to π) relative to stimulus onset and were displayed as an ERP image, again smoothed by a 10-trial moving average. The data were not 
otherwise filtered. The partial inter-trial phase coherence of the data following the stimulus onset is then visible as a change in the slope of the 
imaged activity wave fronts to near-vertical after 200 ms. Inter-trial phase coherence (bottom trace) shows that the distribution of alpha activity 
phase across trials is non-random (i.e., is partially phase-reset) between 200 and 450 ms (dotted line in lower trace shows p=0.01), resulting in 
same alpha activity appearing in the ERP average trace (top panel). The middle trace shows that mean changes in alpha power (in ‘dB’) did not 
change significantly (dotted lines) during the epochs. The baseline power level at the analysis frequency (25.9 dB, relative units) is indicated for 
possible comparison with other conditions. 

image is a colored rectangular image in which each 
horizontal line represents a potential time series during 
a single experimental trial. Instead of plotting activity 
in single trials as left-to-right traces in which potential 
is encoded by the ordinate of a data trace, trials are 
represented as horizontal lines whose changing color 
values indicate the potential at each time point in the 
trial. Trials may be plotted in any sorting order of 
interest, and a moving average of across adjacent single 
trials may be used to highlight trial-to-trial consistency. 
Fig. 3(B) illustrates the process of sorting the data trials 
by the subject reaction time.  
Some features of the visual ERP may be produced by 
partial phase-resetting of ongoing EEG activities 
following stimulus presentation (Makeig et al., 2002). 
Fig. 3(C) illustrates a phase-sorted ERP-image plot, a 
visualization tool used to assess whether partial phase 
synchronization may account for ERP features. Sorting 
by value or spectral amplitude in a given time window, 
or by an auxiliary variable are also supported. The 
erpimage() function can also plot the response average 
ERP, changes in signal power and inter-trial coherence 
(as defined below) at a selected frequency, the mean 
signal spectrum, and a representative scalp topography. 
Although a set of event-locked data trials has just one 
ERP average, the number of possible ERP images of a 
set of trials is very large since the trials can be sorted, 
optionally smoothed, and imaged along any path 
(linear or nonlinear), through the possibly high-
dimensional space of trial attributes and/or event 

values. However, not all trial sorting orders give equal 
insights into the brain dynamics expressed in the data. 
It is therefore up to the user to decide which ERP 
images to study.  
ERP images can also be misinterpreted. For example, 
using phase-sorting at one frequency (see Fig. 3(C)) 
can obscure the presence of oscillatory phenomena at 
other frequencies. It is important not to lose sight of the 
fact that nearly all activity recorded from scalp 
electrodes is the volume conducted sum of activities 
originating within a number of cortical domains. 
EEGLAB uses independent component analysis (see 
below) to separate out these activities under the 
assumption that their activities are temporally 
independent or at least more temporally independent 
than any linear combinations of their signals.  
 
3. Independent component analysis (ICA) 

A primary tool of EEGLAB is to facilitate the process 
of applying and evaluating the results of independent 
component analysis (ICA) of EEG data. ICA 
algorithms have proven capable of isolating both 
artifactual and neurally generated EEG sources 
(Makeig et al., 1999; Jung et al., 2000) whose EEG 
contributions, across the training data, are maximally 
independent of one another. ICA was first applied to 
EEG by Makeig et al. (1996) and is now widely used in 
the EEG research community, most often to detect and 
remove stereotyped eye, muscle, and line noise 
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artifacts (Jung et al., 1999; Jung et al., 2000). The 
temporal independence assumption of ICA is readily 
understood as a basis for separating artifact sources, 
since their activities will ordinarily not be reliably 
phase-locked to one another, given enough training 
data. In practice, however, ICA also has proved 
capable of separating biologically plausible brain 
sources whose activity patterns are distinctly linked to 
behavioral phenomena. In fact, many of the 
biologically plausible sources ICA identifies in EEG 
data have scalp maps nearly fitting the projection of a 
single equivalent current dipole (Jung et al., 2001; 
Makeig et al., 2002), and are therefore quite compatible 
with the projection to the scalp electrodes of 
synchronous local field activity within a connected 
patch of cortex. 
EEGLAB contains an automated version, runica() 
(Makeig, 1997), of the infomax ICA algorithm (Bell 
and Sejnowski, 1995) with several enhancements 
(Amari et al., 1996; Lee et al., 1999) both as a Matlab 
function and as a stand-alone binary C program that 
allows faster and less memory-intensive computation. 
The toolbox also allows the user to select any of over 
20 available ICA algorithms including JADE (Cardoso 
and Souloumiac, 1993) and fixed-point ICA 
(Hyvarinen and Oja, 2000). 
Though it is not our goal here to describe ICA in detail, 
we will try to give some insight about its nature. In 
short, ICA finds a coordinate frame in which the data 
projections have minimal temporal overlap. The core 
mathematical concept of ICA is to minimize the mutual 
information among the data projections or maximize 
their joint entropy. ICA can be viewed as an alternative 
linear decomposition to principal component analysis 
(PCA). PCA applied in the temporal domain would 
specifically make each successive component account 
for as much as possible of the activity uncorrelated 
with previously determined components – whereas 
ICA seeks maximally independent sources.  
This difference in goals leads to dramatic differences in 
their results. PCA components are both temporally and 
spatially orthogonal, a constraint unrealistic for actual 
EEG sources, which arise in domains (spatial regions) 
of partially synchronous activity in electrically oriented 
cortical neurons (and possibly glia). Because the 
density of cortical connections is weighted towards 
local connections (<<1 cm), particularly in the network 
of inhibitory cells that sustain cortical oscillations 
(Pauluis et al., 1999), the partially synchronous 
domains giving rise to EEG activity recorded on the 
scalp should be mainly compact – though the extent 
and density of these partially synchronous activities are 
not known. Through simple volume conduction, the 
projection of synchronous activity within nearly any 
patch of cortex will be widespread on the scalp. Any 
electrode will therefore sum contributions of EEG 

sources in a large portion of cortex. EEG source 
contributions to scalp electrode potentials depend on 
source strengths and orientations as much as source 
locations. The scalp projections of actual brain EEG 
sources, therefore, are nearly always overlapping and 
non-orthogonal, contrary to the assumption of PCA. 
Indeed, because of the spatial orthogonality constraint, 
projections of smaller principal components to the 
scalp typically resemble checkerboard maps that could 
not represent coherent activity within a connected 
patch of cortex. 
Therefore, to find biologically plausible sources, PCA 
must be followed by an axis rotation procedure. 
Previously proposed procedures, such as Promax and 
Varimax, were drawn from the factor analysis 
literature. ICA can be viewed as a more powerful 
rotation method, though in practice ICA is usually 
applied to the original data without PCA pre-
processing (for details, see Makeig et al., 1999). ICA 
seeks to find component time courses that are mutually 
independent, meaning that component cross-
correlations as well as all the higher-order moments of 
the signals are zero. ICA is free to adapt to the actual 
projection patterns of EEG generators if their activity 
time courses are (near) independent of one another. 
ICA is now being applied to many biomedical signal 
processing problems including decomposing fMRI data 
(Duann et al., 2002b) and speech and noise separation 
(Park et al., 1999). Performing ICA decomposition is 
most appropriate when sources are linearly mixed in 
the recorded signals, without differential time delays. 
These assumptions are precisely met for brain (and 
non-brain) generator processes summed by volume 
conduction in scalp EEG data. Because ICA does not 
attempt to maximize the variance of each component, 
ICA components may account for more equal portions 
of the total signals than PCA components. For 
example, in 32-channel decompositions ICA 
component activities typically account for near 0% to 
about 5% of the total signals. ICA may usefully be 
applied to data with 128 or 256 channels, though 
meaningful results are also possible using 32 or fewer 
channels (Makeig et al., 2002). 
Some earlier studies applied ICA to collections of ERP 
data averages (Makeig et al., 1997; Makeig et al., 
1999). However, this approach requires care and 
caution in interpretation of results. To separate two or 
more processes, ICA requires that their independence 
be expressed in the data. A small set of data averages 
may not include enough conditions in the training set to 
demonstrate the independence of the underlying 
processes. If, for example, several processes are 
partially phase reset in similar ways, the resulting 
event-locked response averages may not express their 
underlying functional and temporal independence. Data 
averages, by their nature, contain sums of activities 
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FIG. 4. Visualizing independent components. (A) Topographical 2-D scalp maps of the nine independent components (ICs) accounting for the 
most EEG variance of the 32 components returned by the ICA algorithm for the sample dataset. The component scalp map values returned by 
ICA are proportional to µV (scaling is distributed between the component maps and activity time courses). From its far-frontal scalp map, IC3 
appears to account for eye movement artifacts. (B) The ‘Component Properties’ display for IC3 verifies that it accounts for eye artifacts since its 
activity spectrum is smoothly decreasing (bottom panel), and prominent eye movement artifacts appear in its activity ERP image (top right 
panel). By removing this and other eye movement components (not shown) from the dataset, the user can remove most evidence of eye 
movements from the data without removing other activity of interest (Jung et al., 2000). 

occurring at similar latencies relative to some class of 
events. When two or more sources invariably 
contribute to a set of response averages at the same 
latency, ICA, trained on these averages, may assign 
their summed activities to a single component. Trained 
on the unaveraged data however, ICA may use their 
relative variability in single trials to separate them. A 
second problem with applying ICA to data averages is 
that the averaging process nearly cancels out the 
activity of many of the EEG sources. Thus applying 
ICA to the unaveraged EEG data also allows ICA to 
separate ongoing activity of EEG sources even if they 
are only partially phase-locked for brief time periods. 
This is most useful when there are a sufficient number 
of channels to fit the most active EEG and artifact 
processes.  
Theoretical assumptions underlying the use of ICA to 
decompose EEG data include: (1) The data must 
contain enough data points for the temporal 
independence of the underlying sources to be expressed 
(see Discussion). (2) No electrode activity should be a 
linear mixture of other electrode activities (as may 
occur for, e.g., average-reference data). If so, before 
running ICA training, EEGLAB runica() function 
automatically performs PCA pre-processing to reduce 
the number of data dimensions to the rank of the input 
data. (3) ICA assumes that each data source is spatially 
stationary throughout the training data. This restriction 
may be partially relaxed in more recent ICA methods 
(Anemüller et al., 2003). (4) ICA assumes that the 
distributions of activation values for each EEG source 
are not precisely Gaussian. When a source distribution 
is sub-Gaussian (e.g., as with line noise), the extended 
option of infomax ICA must be used to separate it. The 

current distribution of EEGLAB therefore focuses on 
applying ICA directly to continuous EEG data or, 
typically, to concatenated collections single EEG data 
trials. Fig. 4 illustrates the use of infomax ICA applied 
to the 80 EEG epochs of the EEGLAB sample dataset. 
The lower the component index returned from runica(), 
the more EEG data (neural and/or artifactual) it 
accounts for.  
To determine which components are behaviorally 
relevant and should be selected for further 
investigation, EEGLAB allows the user to plot 
component contributions to the raw data spectrum 
and/or to the trial-average ERP at all (or specified) 
channels. Fig. 5(A) shows component contributions at 
an alpha frequency to channel POz during the sample 
epochs. The function returns the amount contributed by 
each component as a percentage of total data power. 
Another EEGLAB function for estimating component 
contributions to the data, depicted in Fig. 5(B), shows 
component contributions to the trial-average ERP in 
the -500 to 1000 ms latency range. These and other 
visualization functions help users to select which 
components to process further using ERP-image 
plotting (as described above) or using a variety of 
spectral decomposition techniques (discussed below). 
 
4. Time/frequency analysis 

To assess event-related spectral amplitude, phase and 
coherence perturbations in data recorded from single 
electrodes and/or in ICA components, EEGLAB 
employs custom spectral decomposition techniques. 
Our primary measures are the baseline or epoch-mean 
power spectrum and three event-related time/frequency 
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FIG. 5. Evaluating independent component contributions. (A) An EEGLAB spectopo() plot showing the components accounting for the 
largest portions of 10-Hz activity at electrode POz (middle scalp map). The figure shows the power spectrum of the selected channel (top black 
trace), the activity spectra of the projection to that channel of each of the 32 components (lower traces), and the scalp power maps of the four 
largest-contributing components (4, 5, 7, 10). (B) An envtopo() plot showing the envelopes (i.e., the min and max values, over all channels, at 
each time point) of the five independent components making the largest potential contributions to the ERP. The black thick traces show the 
envelope of the (all channel) ERP data and the thin traces, the envelopes of the depicted component contributions to the ERP.  

measures: (1) the event-related spectral perturbation 
(ERSP), measuring mean event-related changes in the 
power spectrum at a data channel or component 
(Makeig, 1993), (2) inter-trial coherence (ITC 
magnitude and phase, also called phase-locking factor) 
at single channels or components, and (3) event-related 
cross-coherence (ERCOH, magnitude and phase) 
between two data channels or components. 

  
ERSP. Plots of the baseline-normalized spectrogram or 
the event-related spectral perturbation (ERSP) are 
increasingly used in the EEG literature to visualize 
mean event-related changes in spectral power over time 
in a broad frequency range. They generalize the 
narrow-band event-related desynchronization (ERD) 
and synchronization (ERS) measures introduced by 
Pfurtscheller and colleagues (Pfurtscheller and 
Aranibar, 1979). 
Calculating an ERSP requires computing the power 
spectrum over a sliding latency window then averaging 
across data trials. The color at each image pixel then 
indicates power (in dB) at a given frequency and 
latency relative to the time locking event. Typically, 
for n trials, if ),( tfFk  is the spectral estimate of trial 
k at frequency f and time t 
 

∑
=

=
n

k
k tfF

n
tfERSP

1

2),(1),(   (1) 

 
To compute ),( tfFk  EEGLAB uses either the short-
time Fourier transform, a sinusoidal wavelet (short-
time DFT) transform, or a Slepian multitaper 
decomposition (Thompson, 1982) that provides a 

specified time and frequency resolution. In our 
experience, there are no dramatic differences between 
these decompositions (though the number of cycles in 
each data window can be critical). Most often we use a 
version of sinusoidal wavelets in which the number of 
cycles is increased slowly with frequency (Fig. 6). This 
feature allows us to obtain better frequency resolution 
at higher frequencies than a conventional wavelet 
approach that uses constant cycle length. This method 
is also better matched to the linear scale we use to 
visualize frequencies. To visualize power changes 
across the frequency range, we subtract the mean 
baseline log power spectrum from each spectral 
estimate, producing the baseline-normalized ERSP.  
Significance of deviations from baseline power is 
assessed using a bootstrap method. A surrogate data 
distribution is constructed by selecting spectral 
estimates for each trial from randomly selected latency 
windows in the specified epoch baseline (e.g., prior to 
stimulus onset), and then averaging these. Applying 
this process several hundred times (default: N=200) 
produces a surrogate ‘baseline’ amplitude distribution 
whose specified percentiles are then taken as 
significance thresholds. If sufficient pre-stimulus data 
are not available, the surrogate data may be drawn 
from any other part or from the whole epoch. Figs. 
6(A) and 6(B) show significant ERPS phenomena for 
two independent EEG components. 

 
ITC. Inter-Trial Coherence (ITC) is a frequency-
domain measure of the partial or exact synchronization 
of activity at a particular latency and frequency to a set 
of experimental events to which EEG data trials are 
time locked. The measure was introduced by Tallon-
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FIG. 6. Time/frequency decompositions of independent component activities. Time/frequency decomposition was applied to the activities of 
two independent EEG components using sinusoidal wavelet transforms, 3 cycles in length at the lowest frequency (6 Hz), increasing linearly 
with frequency up to 9 cycles at the highest plotted frequency (35 Hz). Using this approach, it is possible to obtain reasonable time and frequency 
stability at all frequencies. (A-B) Event-related spectral perturbation (ERSP) plots showing mean changes in spectral power during the epoch, 
relative to a 1-s pre-stimulus baseline (plotted vertically on the left). Component IC4 shows a transient increase near 12 Hz centered at 500 ms, 
while component IC9 shows a power decrease in this range following 500 ms. (C-D) Phase cross-coherence (ERPCOH) magnitude and phase 
delay between the two components shown in panels A-B, zero-masked in regions in which cross-coherence magnitude was not significant 
(p>0.01). The components appear to become partially synchronized above 10 Hz (coherence ≤ 0.53) during the period 400 to 1000 ms with a 
phase offset near -120 degrees. Under the minimum phase assumption, this implies that high-alpha activity of IC9 tends to lead that of IC4 
during this period by about 30 ms. 

Baudry et al. (1996) and termed a ‘phase locking 
factor.’ The term ‘inter-trial coherence’ refers to its 
interpretation as the event-related phase coherence 
(ITPC) or event-related linear coherence (ITLC) 
between recorded EEG activity and an event-phase 
indicator function (e.g. a Dirac or cosine function 
centered on the time locking event). Using the same 
notation as above 
 
 
Inter-trial phase coherence (2)is defined by 
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and Inter-trial linear coherence (3) by 
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where  represents the complex norm. The most 
common (and default) version is inter-trial phase 
coherence (called ‘phase-locking factor’ by Tallon-
Baudry et al., (1996)). The ITC measure takes values 

between 0 and 1. A value of 0 (not expected in practice 
based on a finite number of epochs) represents absence 
of synchronization between EEG data and the time-
locking events; a value near 1 indicates their perfect 
synchronization (i.e. near perfect EEG phase 
reproducibility across trials at a given latency). In the 
complex 2-D Cartesian coordinate frame, spectral 
estimates at given frequencies and times are returned as 
complex vectors in the 2-D phase space. The norm and 
phase angle of each vector are represented by the 
magnitude and phase of the spectral estimate. To 
compute inter-trial phase coherence (ITPC), we first 
normalize the lengths of each of the trial activity 
vectors to 1 and then compute their complex average. 
Thus, only the information about the phase of the 
spectral estimate of each trial is taken into account.  
For linear inter-trial coherence (ITLC), the initial 
normalization step is omitted: the vector sum is 
computed and then normalized by RMS power in the 
single-trial estimates. EEGLAB function erpimage() 
computes ITPC at a single frequency for display 
beneath an ERP image (Fig. 3(C)); function timef() 
computes color-coded ITPC or ITLC images across 
frequencies (not shown). As for the ERSP, ITC 
significance levels are assessed using surrogate data by 
randomly shuffling the single-trial spectral estimates 
from different latency windows during the baseline 
period. 
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ERCOH. EEGLAB function crossf() computes event-
related coherence (ERCOH) between two channel or 
component activities in sets of trials to determine the 
degree of synchronization between the two activity 
measures. As for ITC, both phase coherence 
(ERPCOH) and linear coherence (ERLCOH) measures 
are supported. Other phase coherence measures have 
not (yet) been included in EEGLAB (e.g., Lachaux et 
al., 1999). In EEGLAB, for two signals, a  and b , and 
using the same notation as above 

 

Phase cross-coherence (4) is defined by 
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and linear cross-coherence (5) by 
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Here, *),( tfF b
k  is the complex conjugate of 
),( tfF b

k . The magnitude of cross-coherence varies 
between 0 and 1, a value of 0 again indicating a 
complete absence of synchronization at the given 
frequency f in the time window centered on t, and 1 
indicating perfect synchronization. As for ITPC, the 
normalizing factor in the ERPCOH denominator 
ensures that only the relative phase of the two spectral 
estimates at each trial is taken into account. Linear 
ERCOH (ERLCOH), by contrast, estimates the extent 
of complex linear relationship between the two signals 
(proportional amplitudes at a fixed delay).  

When ERCOH magnitude (i.e., norm of the complex-
valued ERCOH vector) is significantly above its 
expected baseline value, the phase of the ERCOH 
vector may indicate, under the minimum phase 
assumption, which of the two component activities 
tends to lead the other at the analysis frequency. The 
minimum phase assumption means that the actual 
phase lag is les than ±180°. Fig. 6(C) illustrates 
significant ERPCOH synchronization between two 
components. Even though independent components 
were identified by ICA as being (maximally) 
independent over the whole time range, they may 
exhibit partial but statistically significant 
synchronization, within specific event-related 
time/frequency windows (Delorme et al., 2002). Here 
again, crossf() can assess significance of the observed 

ERCOH using the method of surrogate data by 
computing the expected ERCOH distribution using 
randomly selected data windows from the ‘baseline’ 
portion of each epoch. Different surrogate data 
selection methods are used to estimate ERCOH for the 
two processes, either including or excluding any 
common spectral amplitude changes and/or partial 
phase-locking related to the time-locking experimental 
events. These four methods are referred to in EEGLAB 
as linear or phase coherence, with or without removal 
of common ITC. The preferable method may depend 
on several factors that we do not detail here. 

 

5. Menu calls and script writing 

The EEGLAB graphic user interface (GUI) is designed 
to allow non-experienced Matlab users to apply 
advanced signal processing techniques to their data. 
However, more experienced users can also use the GUI 
to save time in writing custom and/or batch analysis 
scripts in Matlab by incorporating menu shortcuts and 
EEGLAB history functions. Table I provides examples 
of EEGLAB scripts of different levels of complexity. 
EEGLAB functions may be roughly divided into three 
layers designed to increase ease-of-use for different 
types of users: 

I. GUI-based use. Naive Matlab users may choose to 
interact only with the main EEGLAB window menu, 
first to import data into EEGLAB (in any of several 
supported formats), and then to call any of a large 
number of available data processing and visualization 
functions by selecting main-window menu items 
organized under five headings: ‘File’ menu functions 
read/save data file and data information files. ‘Edit’ 
menu functions allow editing a dataset, changing its 
properties, reviewing and modifying its event and 
channel information structures. ‘Tools’ menu functions 
extract epochs from continuous data (or sub-epochs 
from data epochs), perform frequency filtering, 
baseline removal, and ICA, and can assist the user in 
performing semi-automated artifact data rejection 
based on a variety of statistical methods applied to 
activity in the raw electrode channels or their 
independent components. ‘Plot’ menu functions allow 
users to visualize the data in a variety of formats, via 
(horizontally and vertically) scrolling displays or as 
trial (ERP), power spectrum, event-related 
time/frequency averages, etc. A large number of 
visualization functions are dedicated to the display and 
review of properties of scalp data channels and 
underlying independent data components. The user can 
make use of standard Matlab capabilities to edit, print, 
and/or save the resulting plots in a variety of formats. 
Finally, the user can use ‘Help’ menu functions to call 
up documentation on EEGLAB functions and data 
structures. 
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1. >> pop_erpimage(EEG); 

2. >> figure; pop_erpimage(EEG, 1, [1], [], 'Channel 1 
erpimage', 10, 1);   

3. >> erpimage(EEG.data(1,:), ones(1, EEG.trials ) *
EEG.xmax * 1000, linspace( EEG.xmin * 1000, 
EEG.xmax * 1000, EEG.pnts), 'Channel 1 ERP 
image', 10, 1, 'topo', {1 EEG.chanlocs }, 'erp', 
'cbar'); 

 

TABLE I. Sample EEGLAB processing scripts. All scripts assume 
that the Matlab data structure ‘EEG’ contains the sample EEGLAB 
dataset (described in the EEGLAB tutorial and available for 
download). Script 1 calls the EEGLAB (‘pop’) interface function 
that in turn calls the erpimage() processing function to compute and 
draw an ERP image plot (Jung et al., 1999; Makeig et al., 1999) of a 
selected single-channel time record for each trial. Additional plotting 
parameters can then be entered manually by the user in the resulting 
pop-up window. Script 2 performs the same action, but now the 
ERP-image ‘pop’ function is called with specific arguments. The 
ERP-image plot then appears directly, with no intervening ‘pop’ 
window. Each time the user selects an operation from the EEGLAB 
menu, the resulting Matlab function call (including all input 
parameters) is appended to the EEGLAB session command history. 
Subsequently, the user can simply copy and paste commands from 
the command history to repeat the same actions. Thus, in Script 3, 
the ‘pop’ ERP-image function is bypassed and the eponymous 
EEGLAB data processing function, erpimage(), is called directly by 
the user script referencing parameters stored in the EEG data 
structure. The erpimage() function requires no knowledge of the 
EEG data structure used by EEGLAB, and can be applied to any 
user-defined data array. If the user selects the supplied default 
parameters in the pop_erpimage() pop-up data entry window, the 
three scripts will all have the same effect. See the Matlab help 
messages for the meaning of the pop_erpimage() and erpimage() 
function arguments (also available as HTML pages linked to the 
main EEGLAB website). 

II. EEGLAB command history. Intermediate level users 
may first use the menu to perform a series of data 
loading, processing and visualization functions, and 
then may take advantage of the EEGLAB command 
history functions to easily produce batch scripts for 
processing similar data sets. Every EEGLAB menu 
item calls a Matlab function that may also be called 
from the Matlab command line. These interactive 
functions, called ‘pop’ functions, work in two modes. 
Called without (or in some cases with few) arguments, 
an interactive data-entry window pops up to allow 
input of additional parameters. Called with additional 
arguments, ‘pop’ functions simply call the eponymous 
data processing function, without creating a pop-up 
window. For example, function pop_erpimage() calls 
erpimage(). When a ‘pop’ function is called by the user 
by selecting a menu item in the main EEGLAB 
window, the function is called without additional 
parameters, bringing up its GUI pop-up window to 
allow the user to enter computation parameters. When 
the processing function is called by EEGLAB, its 
function call is added as a command string to the 

EEGLAB session history variable. By copying history 
commands to the Matlab command line or embedding 
them in Matlab text scripts, users can easily apply 
actions taken during a GUI-based EEGLAB session to 
a different data set. A comprehensive help message for 
each of the ‘pop’ functions allows users to adapt the 
commands to new EEG data. 

III. Custom EEGLAB scripting. More experienced 
Matlab users can take advantage of EEGLAB functions 
and dataset structures to perform computations directly 
on datasets using their own scripts that call EEGLAB 
and any other Matlab functions while referencing 
EEGLAB data structures. Since all the EEGLAB data 
processing functions are fully documented, they can be 
used directly. Experienced users should benefit from 
using all three modes of EEGLAB processing: GUI-
based, history-based, and autonomously scripted data 
analyses. Such users can take advantage of the data 
structure (‘EEG’) in which EEGLAB datasets are 
stored. The GUI interface uses a single Matlab 
variable, a structure named ‘EEG’ that contains all 
dataset information and is always available at the 
Matlab command line. This variable can easily be used 
and/or modified to perform custom signal processing or 
visualizations. Finally, while EEGLAB ‘pop’ functions 
(described above) assume that the data are stored in an 
EEG data structure, most EEGLAB signal processing 
functions accept standard Matlab array arguments. 
Thus, it is possible to bypass the EEGLAB interface 
and data structures entirely, and directly apply the 
signal processing functions to data matrices. 

 

6. Distribution, documentation and support 

The EEGLAB toolbox is distributed under the GNU 
General Public License (for details see 
http://www.gnu.org/licenses/gpl.txt). The source code, 
together with web tutorials and function description 
help pages, is freely available for download from 
http://sccn.ucsd.edu/eeglab/. As the toolbox currently 
includes approximately 300 Matlab functions 
comprising 50,000 lines of Matlab code, it is not 
possible to describe all of its functionality in a journal-
length paper. An extensive user tutorial explains in 
detail how to import and process data using EEGLAB, 
including the derivation and evaluation of its 
independent components. We also provide ‘Frequently 
Asked Questions (FAQ)’ and ‘Known Bugs’ web 
pages, a support email (eeglab@sccn.ucsd.edu), a 
dedicated mailing list for software updates 
(eelagbnews@sccn.ucsd.edu), and a discussion mailing 
list (eeglablist@sccn.ucsd.edu) which currently reaches 
over a thousand EEG researchers. 
Open-source EEGLAB functions are not precompiled; 
users can read and modify the source code of every 
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function. Each EEGLAB function is also documented 
carefully using a standardized help-message format and 
each function argument is described in detail with links 
to related functions. We have attempted to follow 
recognized best practice in software design for 
developing EEGLAB. The source code of EEGLAB is 
extensively documented and is internally under the 
Linux revision control system (RCS), which allows us 
to easily collaborate with remote researchers on the 
development of new functions. Matlab allows 
incremental design of functions, so adding new 
features to a function can be easily accomplished while 
preserving backward compatibility. The EEGLAB 
history feature also makes it easy to generate test 
scripts that we now launch nightly to maintain 
EEGLAB stability.  

 
DISCUSSION 

We have developed EEGLAB, a complete interactive 
environment for processing EEG (or MEG) data under 
Matlab, to provide both standard and advanced EEG 
processing functions developed in our own and other 
laboratories. EEGLAB is strongly oriented towards 
single-trial visualization techniques, ICA and event-
related time/frequency analysis. Because the software 
was developed by and for ERP/EEG researchers, we 
have taken care to make the data processing as 
transparent as possible and to allow users to tune their 
parameters as easily as possible. We will now briefly 
review a few limitations of EEGLAB and, because the 
methods incorporated into EEGLAB are not yet widely 
practiced, some limitations of ICA applied to high-
density EEG data. 
 
Limitations of time/frequency decomposition 

Filtering methods implemented in EEGLAB take 
advantage of linear filtering implemented in the Matlab 
Signal Processing toolbox. One of drawback of using 
linear filters is that the signal roll-off at the cut-off 
frequency is weaker than what it would be using 
nonlinear filters. However, with linear filtering, data 
phase information is preserved across frequencies. 
Time-frequency decomposition in EEGLAB is limited 
to FFTs, multi-taper analysis, and a single type of 
sinusoidal wavelet, as is standard for EEG analysis. 
Other methods, for example the Hilbert method, are not 
currently implemented. However quantitative 
comparisons show that results on EEG data using 
Hilbert transforms do not differ dramatically from 
applying sinusoidal wavelets (Le Van Quyen et al., 
2001). Also, bi-coherence between frequencies cannot 
yet be assessed within EEGLAB (e.g., von Stein and 
Sarnthein, 2000; Lachaux et al., 2003). We intend in 
the future to include functions to assess 
synchronization (1) of phase at one frequency with 

amplitude at another frequency, (2) of phase 
synchronization between frequencies, and (3) of 
amplitude correlation between frequencies. We 
welcome further open source contributions 
implementing other time-frequency approaches, and 
have added an EEGLAB plug-in facility to promote 
and ease development of such contributions. 

 
Significance and statistical comparisons across 
subjects or conditions 

To assess significance of within-subject measures, 
EEGLAB uses non-parametrical methods that do not 
assume a known activity distribution. A null hypothesis 
distribution, used to determine significance thresholds, 
is estimated by accumulating surrogate data, shuffling 
the data across latencies alone, latencies and trials, or 
trials alone. To compensate for multiple comparisons, 
significance thresholds may need to be decreased (e.g. 
Bonferroni, 1950; Holm, 1979). Since it is not 
reasonable to compute an unlimited amount of 
surrogate data to estimate very low probability 
thresholds heuristically, we have implemented a 
method to fit the observed surrogate data distribution 
using a fourth order distribution fit (Ramberg et al., 
1979). This feature will be available in a near-term 
release of EEGLAB.  
To test significance across conditions or subjects, we 
either use parametrical tests or accumulated 
significance results from each subject. Our ERP 
function pop_comperp() currently uses a t-test to 
compare two conditions for several subjects. When 
processing spectral decompositions of one channel (or 
component class) from different subjects (already been 
masked for significance), our tftopo() function applies 
a threshold derived by simple statistics on the number 
of subjects for which the spectral decomposition is 
significant at a give time-frequency point. If not 
enough subjects show a significant change at the 
specified point, this point is considered non-significant 
in the group average. This is a statistically conservative 
approach. For further statistical assessment, raw data, 
ERP, or independent component weights and activity 
can be exported as ASCII to statistical packages such 
as Statview (SAS Institute Inc.), SPSS (SPSS Inc.), or 
the Matlab Statistics Toolbox (The Mathworks, Inc.). 

 
ICA Stability  

Because the infomax ICA algorithm begins with a 
random unmixing matrix and then randomly shuffles 
the order of the data time points before each training 
step, the results of successive ICA decompositions may 
be slightly different even when ICA is performed on 
the same data. In particular, the scalp maps and activity 
time courses of the independent components (and their 
order), may differ slightly across runs. Therefore, we 
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advise that features of the decomposition that do not 
remain stable across decompositions of the same data 
should not be interpreted except as irresolvable ICA 
‘uncertainty.’ Differences between decompositions 
trained on somewhat different data subsets may have 
additional causes. We are currently investigating the 
stability of ICA methods applied to typical datasets 
(Delorme et al., in preparation). 
 
Difference between ICA algorithms 

Which is the best ICA algorithm to use for EEG 
decomposition? From a theoretical point of view, all 
ICA algorithms maximize independence in an 
approximate sense (Lee et al., 2000), while the degree 
to which EEG data actually fit ICA assumptions is 
unknown. Applied to simulated, relatively low 
dimensional data sets for which the ICA assumptions 
are exactly fulfilled, leading ICA algorithms (including 
infomax, JADE, and FastICA) return near-equivalent 
components. However, the physiological significance 
of any differences in the results of the same or different 
ICA algorithms (or of different parameter choices for 
the various algorithms) has not been systematically 
tested and reported - neither by us nor, as far as we 
know, by others. Therefore, different ICA 
decompositions may give slightly different results, as 
has been shown for neural ensemble data (Laubach et 
al., 1999) and fMRI data (Duann et al., 2001; Esposito 
et al., 2002). Each ICA algorithm has its own 
particularities. The infomax algorithm in its native 
form can only separate sources with super-Gaussian 
(i.e. peaky, thick-tailed) activity distributions. If there 
are strong electrical artifacts in data, it is preferable to 
use the ‘extended’ ICA option of runica() (Lee et al., 
1999), to allow the algorithm to detect sources with 
sub-gaussian activity distribution, such as line current 
artifacts and/or slow activity. 
Whereas infomax implicitly uses a combination of 
higher-order moments of the data to find independent 
components, the JADE algorithm (Cardoso and 
Souloumiac, 1993) diagonalizes all the fourth-order 
moments explicitly. Although for low numbers of data 
channels the JADE algorithm is fast and stable, the 
memory required to manipulate all the fourth-order 
moments becomes quite impractical with high numbers 
of channels. Whereas both infomax and JADE 
algorithms find and return all the independent 
components at once, the default setting of the fixed-
point ICA algorithm of Hyvärinen (2000) computes 
and returns components one by one. The order of the 
components it returns, however cannot be known in 
advance, and performing a complete decomposition is 
not faster than with infomax. Also, in our experience 
(see also Esposito et al., 2002) the fixed-point ICA 
algorithm may be more less robust than infomax ICA 

when applied high-dimensional real data. To 
decompose EEG data, therefore, we most often use 
infomax or extended infomax ICA. The infomax 
algorithm reliably finds independent components that 
are physiologically plausible, functionally distinct, and 
often have spatial and functional similarities across 
data sets, sessions, and subjects (Delorme et al., 2002; 
Makeig et al., 2002).  
 
Insufficient data for running ICA 

A chief case in which ICA algorithms may not return 
reliable results is when too few data are provided to 
them. ICA being a statistical method, if the 
independence of the functionally distinct EEG 
processes is not adequately exhibited in the data, ICA 
cannot separate them.  
The size of the weight matrix being the square of the 
number of channels, a number of time points at least a 
few times the square of the number of channels is 
usually needed to obtain reliable decompositions. 
These data points may be drawn from continuous data 
or from several data epochs Of course, additional data 
points can only improve the decomposition - when and 
if relative stationarity of the spatial structure of the 
EEG sources set can be assumed.. In our experience, 
using short baseline-zeroed data epochs that include 
task-related behavior may give qualitatively more 
consistent results than using longer data epochs. Using 
short epochs constrains ICA to focus on the task-
relevant portion of the data.  
 
Nonlinearities 

Another case in which ICA will fail to extract all the 
involved sources occurs when the data are not a linear 
sum of the underlying source projections – this chiefly 
occurs when the amplifiers become ‘railed’ at high 
signal levels, leading to signal ‘clipping’, or when high 
signal levels exceed the input range of the A/D 
converter, leading to signal ‘wrap-around.’ In either 
case, the severe nonlinearity involved will cause linear 
ICA algorithms to give spurious results, so such data 
epochs must be carefully rejected from the data before 
running ICA.  
 
Noise 

Finally, when the data contains many more strong 
spatial sources than the number of recording channels, 
the additional sources must be mixed into the output 
components. In particular, this may occur during 
‘paroxysmal’ noise which may for instance be 
introduced into EEG data during strong head 
movements. Else, a loose electrode may introduce a 
large noise signal not linearly related to any of the 
other electrode signals. In this case, ICA may dedicate 
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a single component to the electrode noise, thus 
unnecessarily reducing the number of components 
available to separate other neural and artifact sources. 
Therefore, we find it best to train ICA on carefully 
pruned ‘clean’ data epochs, which can, however, retain 
spatially stereotyped artifact activity such as eye blinks 
and eye movements, repeated muscle activity, etc. 

 
Processing speed 

Matlab offers a powerful environment for processing 
biophysical data because of (1) the simplicity of its 
command line language, (2) the many Matlab functions 
made available by The Mathworks, Inc and by 
independent researchers, and (3) its high-level 
visualization capabilities. However, there are two 
possible problems in using Matlab for processing EEG 
data. First, though ever-increasing speed of current 
workstations continues to make processing time of less 
limiting importance for data analysis, interpreted 
computer languages are inherently slower than 
compiled languages. Matlab has facilities for compiling 
and running binary versions of scripted functions, but 
their speed may still be suboptimal. For this reason, we 
converted to C the most time consuming EEGLAB 
function, runica(). Both the Matlab ICA function - 
runica() - and the binary C-language ICA function - 
binca() - can be called from the EEGLAB GUI. Under 
Matlab v4, we observed a speed-up of about 10 for 
binica() compared to runica(). However, under Matlab 
v6 the speed-up factor seems to be much smaller 
(<100%). Most other EEGLAB functions are less 
compute intensive.  
 
Memory requirements 

Another relative disadvantage of using Matlab to 
process high-density EEG data is that Matlab currently 
converts all floating-point numbers to  64-bit  double-
precision, thus requiring large amounts of main 
memory to process large data sets. Though hopefully 
some future Matlab versions may allow the option of 
processing data in 32-bit floating-point format, we 
have taken care to address this issue in EEGLAB by 
including various options to minimize memory usage, 
such as constraining EEGLAB to work on a single 
dataset, or computing the ‘activation’ time courses of 
independent components only as needed. However, this 
issue remains a serious problem for large datasets: 
parts of the toolbox may have to be updated to allow 
very large (e.g., long 256-channel) datasets to be 
analyzed within the current Linux 2GB/process limit. 
One possibility is to use the Matlab MEX language, an 
interface between C and Matlab that allows a wider 
variety of data types including single precision. 
Another possibility is to have EEGLAB load into main 
memory only a part of the dataset at a time. However, 

as 64-bit processors become more available, the current 
data space limits of operating systems and Matlab 
should increase, in which case the remaining problem 
would only be the burden of purchasing the necessary 
RAM. 
Current development of EEGLAB focuses on 
processing of large datasets (>1 Gb), semi-
automatically grouping independent component across 
subjects, and component source localization. EEGLAB 
will also be linked to our FMRLAB toolbox 
(http://www.sccn.ucsd.edu/fmrlab) to process 
simultaneously recording EEG and fMRI data (Duann 
et al., 2002a). We also have begun working with co-
developers to increase the range of EEGLAB functions 
using the ‘plug-in’ facility, whereby contributors may 
easily contribute optional EEGLAB code that is readily 
incorporated into the EEGLAB menu. The plug-in 
facility is designed so that plug-in functions can be 
used and distributed both within EEGLAB and 
independently. By this mechanism we hope to 
encourage the open source development of 
comprehensive EEG (and MEG) signal processing 
tools under EEGLAB. 
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