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RESEARCH ARTICLE

Locomotor kinematics on sand versus vinyl flooring in the
sidewinder rattlesnake Crotalus cerastes
Jessica L. Tingle1,*, Brian M. Sherman1 and Theodore Garland, Jr2

ABSTRACT
For terrestrial locomotion of animals and machines, physical
characteristics of the substrate can strongly impact kinematics and
performance. Snakes are an especially interesting system for studying
substrate effects because their gait depends more on the environment
than on their speed. We tested sidewinder rattlesnakes (Crotalus
cerastes) on two surfaces: sand collected from their natural environment
and vinyl tile flooring, an artificial surface often used to elicit sidewinding
in laboratory settings. Of ten kinematic variables examined, two differed
significantly between the substrates: the body’s waveform had an
average of∼17% longer wavelength on vinyl flooring (measured in body
lengths), and snakes lifted their bodies an average of ∼40% higher on
sand (measured in body lengths). Sidewinding may also differ among
substrates in ways we did not measure (e.g. ground reaction forces and
energetics), leaving open clear directions for future study.

KEYWORDS: Biomechanics, Friction, Granular media, Locomotion,
Squamates, Substrate

INTRODUCTION
Terrestrial locomotion necessarily involves physical contact
between an organism or machine and the environment. As a
result, such substrate characteristics as friction, compliance,
rugosity, heterogeneity, and obstacles can impact locomotor
kinematics and performance (e.g. Bergmann et al., 2017;
Claussen et al., 2002; Clifton et al., 2023; 2020; Collins et al.,
2013; Kelley et al., 1997; Li et al., 2010; Redmann et al., 2020).
Snakes are an especially interesting system for studying the effects
of substrate on terrestrial locomotion because they tend to have a
relatively large surface area in contact with the ground, and they can
vary the length and location of the contact patch(es); moreover, they
differ from limbed tetrapods in that their gait depends more on the
environment than on their speed (Gray, 1946; Jayne, 2020).
Here, we investigate substrate effects on a type of snake locomotion

called sidewinding. Sidewinding has a close association with sandy
desert environments, probably because it allows snakes to avoid
slipping while moving on granular media like sand (Cowles, 1920;
Mosauer, 1932; Tingle, 2020). Several viper species have
convergently evolved this unusual type of locomotion, which

involves holding some parts of the body in static contact with the
ground while lifting other parts up and forward to new contact patches
farther along the direction of motion (Gans and Mendelssohn, 1971;
Gray, 1946; Mosauer, 1930; Mosauer andWallis, 1928; Tingle, 2020;
Tingle and Garland, 2021) (Fig. 1A). Sidewinding vipers differ in their
relative use of different types of locomotion, with some employing
sidewinding on nearly any surface, and others switching to lateral
undulation (the gait most commonly used by snakes and other limbless
reptiles) on surfaces like gravel (Gans andMendelssohn, 1971). Many
more species can sidewind facultatively, especially when strongly
motivated and/or placed on granular media or smooth surfaces (Tingle,
2020). Additionally, some species also have derived morphological
features that are hypothesized to enhance sidewinding, including
shorter spinalis muscles (Tingle et al., 2017) and frictionally isotropic
microstructure on the ventral scales (Rieser et al., 2021).

Any effect of substrate on sidewinding would be ecologically
important because deserts show spatial variability in substrate,
including in the size, shape and uniformity of sand grains; the
prevalence of dunes (which can have varying morphologies)
relative to areas that have been stabilized or semi-stabilized by
plants; and the presence of hardpan or other firm surfaces, both
natural and human-made, such as paved roads (e.g. Bagnold, 1941;
Folk, 1978; Lancaster, 1995; 1989; 1981; Lancaster and
Tchakerian, 1996; Sarre and Chancey, 1990). Sidewinding snakes
likely encounter many of these different types of substrates, as they
can move over large areas and have been observed on different
substrate types (Dorfman et al., 2023; Kramer and Schnurrenberger,
1958; Mermod, 1970; Secor, 1994; Subach et al., 2022, 2009).
Better understanding of how snakes deal with challenging terrain can
also help engineers improve the performance of bio-inspired snake-
like robots, which can be used for exploration and search-and-rescue
missions in environments where wheeled or limbed robots may
struggle to move, including on granular media like sand (Astley,
2022; Gao et al., 2008; Hopkins et al., 2009; Liljebäck et al., 2012).

Substrate effects would also have implications for laboratory studies,
which often necessarily use substrates differing from those found in the
study species’ natural environment (Moore and Clifton, 2023). For
studies of sidewinding specifically, researchers have often conducted
sidewinding tests on sand that did not come from the animals’ natural
habitat and/or on smooth laboratory surfaces like linoleum, vinyl
flooring, wood, or metal (Brain, 1960; Gasc, 1974; Gray, 1946; Jayne,
1988; Klauber, 1997; Mosauer, 1930; Scanlon, 2001). These studies
have never quantified the potential effects of substrate differences on
kinematics, and as a result, it is unclear to what degree our
interpretation of these studies should be affected by their choice of
substrate. It would therefore be very helpful to know which locomotor
variables, if any, are affected by these type of substrate differences.

We tested sidewinder rattlesnakes (Crotalus cerastes Hallowell
1854) on sand from their natural habitat and on vinyl flooring to
determine whether locomotor kinematics are affected. C. cerastes is an
appropriate study species due to their strong tendency to useReceived 8 September 2023; Accepted 23 October 2023
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sidewinding over other types of locomotion on a wide variety of
surfaces (Klauber, 1997; Tingle, 2020) and because we can readily
access free-living individuals in the field. We chose sand from their
natural habitat and vinyl flooring as our test substrates because, 1) they
represent a natural surface and an artificial one that has often been used
in laboratory studies, such that the results of this study can help
contextualize the ecological relevance of results from laboratory studies
and inform the design of future studies, and 2) their very different
properties increase the likelihood that we would detect any kinematic
differences that might arise from sidewinding on different substrates, as
opposed to testing snakes on substrates that differ more subtly from

each other. Sand shifts around beneath an animal, behaving somewhat
like a solid and somewhat like a fluid (Duran, 2000). Vinyl flooring, on
the other hand, is firm but has a low frictional coefficient, such that a
snake’s skin can easily slide across it. Given that sand and vinyl differ
substantially, with one shifting under pressure and the other solid but
smooth, we expected that successful locomotion (i.e. forward progress)
would require different kinematics on the two surfaces.

RESULTS
Of the ten kinematic variables we examined, with body length as a
covariate, two of them differed significantly between substrates:

Fig. 1. Sidewinding kinematics. (A) Sidewinding snakes move in a direction oblique to their body axis, propagating waves that have a horizontal as well as
a vertical component. At any given time, some sections of the body remain in static contact with the ground while other sections are lifted up and forward to a
new contact patch. (B) The shape of a sidewinder’s body can be described using common wave properties, including peak-to-peak amplitude and
wavelength. Stride length is the distance between successive tracks in the direction of travel. Because the body axis is oblique to the direction of travel, both
amplitude and wavelength contribute to stride length, and their relative contributions are determined by other aspects of the wave’s shape, such as skew
angle. (C) Wavelength is the distance between successive maxima (crests) or successive minima (troughs). If we draw a triangle between two minima and
the maximum in between them (or two maxima and the minimum in between them), then skew angle is the angle between the triangle’s median and any line
perpendicular to the line connecting the minima (or the maxima). Amplitude is the triangle’s altitude, which equals the median times the cosine of the skew
angle. (D) Positive skew angle indicates that waves are tilted towards the head, whereas negative skew angle indicates a tail-wards tilt. Figure and caption
reproduced from Tingle et al. (2022). Panels A and B are traces from high-speed video of C. cerastes, modified with permission from Tingle (2020). Panels C
and D are stylized.
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wavelength was longer on vinyl flooring, and sidewinders lifted
their bodies higher on sand (Table 1, Fig. 2). Wavelength averaged
0.217 body lengths on sand (range: 0.123-0.297) versus 0.259 body
lengths on vinyl (range: 0.223-0.328), a difference of 17.6%. Height
lifted averaged 0.027 body lengths on sand (range: 0.014-0.043)
versus 0.018 body lengths on vinyl (range: 0.009-0.033), a
difference of 40%. Wavelength, amplitude, height lifted, and
skew angle increased significantly with snout-vent length (Table 1,
Fig. 2). Results from the paired t-tests for the four individuals tested
on both substrates partially agreed with our main results from the
ANCOVA analysis (Fig. 3 presents data for only those four
individuals). As for the ANCOVA, wavelength was significantly
longer on vinyl (t(3)=6.751, P=0.007), but the difference between
substrates for height lifted was not significant in the paired t-test
(t(3)=−1.938, P=0.148).

DISCUSSION
Previous studies have found kinematic differences on sand versus
solid substrates for many kinds of locomotion. For example, eels
differ in their kinematics and performance when moving
terrestrially on sand versus pebble substrates (Mehta et al., 2020;

Redmann et al., 2020), box turtles have shorter strides and lower
speeds on sand than on Styrofoam (Claussen et al., 2002), human
athletes use different ankle and hip joint kinematics during squat
jumps on rigid versus sand surfaces (Giatsis et al., 2004), and a
cursorial gecko species was shown to change its body angle and
duty factor during transitions from firm to sand surfaces (Naylor and
Higham, 2022). On the other hand, one experiment showed that
kangaroo rats could hop at 1.8 m s−2 on either sand or a solid surface
without changing any of the kinematic variables that were measured
(hop period, hop length, duty cycle) (Hall et al., 2022). Even within
granular media, variation in physical characteristics can affect
locomotion. For example, sand particle size may affect running in
some lizards (Bergmann et al., 2017), skinks do not burrow as
deeply in wet sand as in dry sand (Sharpe et al., 2015), and
mudskippers change their locomotor behavior on mud versus dry
sand (Naylor and Kawano, 2022).

Our results add not only to the literature on kinematic differences
between sand and solid surfaces, but also to a growing body of
literature on the ways sidewinding snakes and robots can modulate
their kinematics to overcome locomotor challenges. Previous studies
have focused on ascending slopes (Hatton and Choset, 2010;

Table 1. ANCOVA results showing the effects of snout-vent length and substrate type on ten kinematic variables

Kinematic variable Sum of squares d.f. β SE F p

log(centroid mean speed)
r2: 0.030; adjusted r2: −0.033

Intercept 0.062 1 0.772 0.755 1.046 0.314
Substrate type 0.052 1 0.095 0.101 0.877 0.356

SVL 0.014 1 0.136 0.284 0.230 0.635
Residuals 1.840 31

log(centroid peak speed)
r2: 0.026; adjusted r2: −0.037

Intercept 0.124 1 1.091 0.754 2.093 0.158
Substrate type 0.048 1 0.091 0.101 0.812 0.375

SVL 0.005 1 0.082 0.284 0.084 0.774
Residuals 1.839 31

log(centroid mean acceleration)
r2: 0.052; adjusted r2: −0.008

Intercept 0.187 1 1.341 0.969 1.914 0.176
Substrate type 0.154 1 0.163 0.130 1.576 0.219

SVL 0.001 1 −0.028 0.364 0.006 0.940
Residuals 3.034 31

log(centroid peak acceleration)
r2: 0.010; adjusted r2: −0.054

Intercept 0.319 1 1.749 0.978 3.200 0.083
Substrate type 0.030 1 0.072 0.131 0.298 0.589

SVL 0.000 1 0.008 0.368 0.001 0.982
Residuals 3.089 31

log(frequency)
r2: 118; adjusted r2: 0.061

Intercept 0.072 1 0.829 0.774 1.147 0.292
Substrate type 0.075 1 0.113 0.104 1.196 0.283

SVL 0.126 1 −0.413 0.291 2.020 0.165
Residuals 1.935 31

log(wavelength)
r2: 0.770; adjusted r2: 0.755

Intercept 0.227 1 −1.504 0.283 28.176 0.000
Substrate type 0.041 1 −0.084 0.037 5.023 0.033

SVL 0.665 1 0.967 0.107 82.432 4.1E-10
Residuals 0.242 30

log(amplitude)
r2: 0.917; adjusted r2: 0.911

Intercept 0.255 1 -1.592 0.143 124.337 0.000
Substrate type 0.000 1 0.004 0.019 0.052 0.821

SVL 0.653 1 0.958 0.054 318.478 1.6E-17
Residuals 0.061 30

skew angle
r2: 0.213; adjusted r2: 0.161

Intercept 533.142 1 -72.829 30.356 5.756 0.023
Substrate type 0.005 1 -0.030 4.000 0.000 0.994

SVL 718.000 1 31.776 11.413 7.752 0.009
Residuals 2778.748 30

log(height lifted)
avg of markers 2-8
r2: 0.327; adjusted r2: 0.284

Intercept 0.107 1 -1.016 0.302 11.341 0.002
Substrate type 0.092 1 0.126 0.040 9.670 0.004

SVL 0.083 1 0.336 0.113 8.808 0.006
Residuals 0.294 31 NA

log(marker peak speed)
avg of markers 3-7
r2: 0.033; adjusted r2: -0.029

Intercept 0.179 1 1.312 0.705 3.463 0.072
Substrate type 0.055 1 0.097 0.094 1.063 0.311

SVL 0.004 1 0.073 0.265 0.077 0.784
Residuals 1.606 31

For each variable, the ANCOVAmodel included substrate (sand or vinyl floor tiles) as a categorical predictor variable and snout-vent length (SVL) as a continuous
covariate. SVL was log10 transformed, as were all kinematic variables except skew angle (which cannot be log transformed because it can have negative values).
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Fig. 2. Comparison of sidewinding kinematics on sand versus vinyl floor tiles with the full sample used in the main analysis. Scatterplots showing
kinematic variables plotted against log10 snout-vent length (SVL). Kinematic variables are log10 transformed except for skew angle, which cannot be log
transformed because it is signed. Open circles represent sand trials (n=25 snakes for wavelength, amplitude, and skew angle; n=26 for all other variables),
whereas filled triangles represent vinyl trials (n=8). ANCOVA results indicate that SVL is significantly related to wavelength, amplitude, height lifted, and skew
angle (Table 1). Substrate significantly affected wavelength and height lifted (Table 1). Wavelength averaged 0.217 body lengths on sand (range:
0.123-0.297) versus 0.259 body lengths on vinyl flooring (range: 0.223-0.328), a difference of 17.6%. Height lifted averaged 0.027 body lengths on sand
(range: 0.014-0.043) versus 0.018 body lengths on vinyl (range: 0.009-0.033), a difference of 40%.
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Marvi et al., 2014), turning (Astley et al., 2015; Gong et al., 2012),
and negotiating obstacles (Astley et al., 2020). As other workers
have noted, a more thorough understanding of locomotor control in
biological sidewinders can help engineers more effectively
coordinate the motion of snake-like robots to achieve a greater

range of functions (Astley et al., 2020; 2015; Gong et al., 2016;
Marvi et al., 2014).

We provide the first evidence that sidewinding snakes adjust their
kinematics at least subtly between substrates. Sidewinders may lift
their bodies higher on sand than on vinyl in response to the sand

Fig. 3. Comparison of sidewinding kinematics on sand versus vinyl floor tiles, showing only four individuals tested on both substrates. Scatterplots
showing kinematic variables plotted against log10 SVL. Kinematic variables are log10 transformed except for skew angle, which cannot be log transformed
because it is signed. Open circles represent sand trials (n=4), whereas filled triangles represent vinyl trials (n=4).
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shifting beneath them and/or to clear the ridges of sand that pile up
on the edges of their tracks. Speculating why wavelength might be
longer on vinyl is more difficult, given that it may change in tandem
with other parameters that we were not able to measure.
Given the results of previous studies and the mechanical

differences between sand and vinyl flooring, we were surprised to
find that only wavelength and height lifted differed, and that they
differed relatively subtly, with overlapping distributions in the
values for the two substrates (Table 1, Fig. 2). We speculate that
morphological adaptations of sidewinder rattlesnakes (C. cerastes)
might improve the robustness of their locomotion, allowing them to
maintain similar kinematics in the face of substrate differences. To
give one example of a morphological trait presumed to be an
adaptation, C. cerastes and some other sidewinding species have a
microstructure on the skin of their ventral surface that differs from
that of most other snakes (Rieser et al., 2021). This derived
microstructure causes their ventral skin to be frictionally isotropic
(i.e. to have the same friction coefficient in every direction), which
was shown by mathematical modelling to enhance sidewinding
performance at the cost of lateral undulation by reducing slipping
within the track (Rieser et al., 2021). Species that lack
morphological adaptations for sidewinding might face greater
challenges controlling their movement, affecting their kinematics.
One previous study quantitatively compared sidewinding
kinematics in C. cerastes and two species that can sidewind
facultatively but are not known (or suspected) to have
morphological specializations for sidewinding, Cerberus
rynchops and Nerodia fasciata (Jayne, 1986). At times, these two
species could be observed to slide within their tracks while
otherwise exhibiting an asymmetric movement pattern characteristic
of sidewinding (Jayne, 1986). It would be interesting to pursue the
question of whether morphological specialization (or lack thereof )
affects the magnitude of kinematic change on differing substrates.
Sidewinding locomotion may differ among surfaces in ways we

did not quantify. For example, we could not measure slipping, and
our method for quantifying the body’s waveform could not capture
all details of body shape (e.g. local curvatures, the length of regions
of static contact with the ground). Perhaps more importantly, we
measured only kinematics, and not forces or energetics. The
different nature of slipping on sand versus vinyl could have
important consequences for ground reaction forces. Additionally,
locomotion can be particularly intensive on a shifting surface like
sand because not only does the animal have to move its own center
of mass relative to the environment, but it also expends energy
moving the sand (Lejeune et al., 1998). Therefore, energy
expenditure (along with cost of transport) might be expected to
differ on shifting versus smooth surfaces. We expect that future
studies may also demonstrate differences in ground reaction forces
and/or energy use on shifting versus firm substrates. Future studies
could also determine whether sand characteristics or other naturally
varying aspects of the substrate affect cost of transport, speed,
stability, or other biologically relevant performance metrics. Any
effects would be consequential for our understanding of free-living
animals’ habitat use and activity patterns, while informing future
experiments on snake locomotion and control of snake-like robots.

MATERIALS AND METHODS
Data collection
Our sample consisted of juvenile and adult sidewinder rattlesnakes
(Crotalus cerastes Hallowell 1854) collected in June and July 2016 at the
BarryM. Goldwater Range near Yuma, Arizona, USA. Research procedures
were approved by the San Diego State Institutional Animal Care and Use

Committee (permit number 16-08-014C), and animals were collected under
Arizona State Scientific Collecting Permit SP506470.Within approximately
1 day of capture, we anesthetized the snakes with isoflurane via inhalation,
measured snake snout-vent length (SVL) with a measuring tape, and painted
ten markers along the body following the protocol described in Tingle et al.
(2022). Snake sex and SVL can be found in Supplementary Dataset 1, and
additional morphological data collected from the same specimens for a
different study (Tingle et al., 2022) can be downloaded from the Dryad data
repository (Tingle et al., 2022).

After allowing the snakes to recover from anesthesia for about a day, we
conducted locomotor trials on sand and on vinyl flooring. After reducing
our sample to trials that did not suffer from video calibration or other issues,
the final sample consisted of trials for 26 snakes tested on sand and eight
tested on vinyl, with four of those individuals overlapping between the trial
types (see below for details on data processing and statistical analysis). The
sand trials were previously used for a different study that focused on scaling
and relations of morphology with locomotor kinematics (Tingle et al.,
2022). The testing arena for sand trials consisted of a shallow 1.2×1.2 m
square box containing a 2 cm layer of sand, which was collected on the
Barry M. Goldwater Range very near to where the sidewinders were found.
We raked and smoothed the sand between trials. The vinyl testing arena
consisted of a 1.2×1.2 m area covered in 30.5×30.5 cm squares of 1/8″
standard Excelon vinyl composition tiles (model number 51858), a common
flooring in labs (note that such flooring is often colloquially referred to as
linoleum, but linoleum is a different material that appears superficially
similar). This arena size provided enough space for the snakes, which
measured 0.23 to 0.69 m SVL, to complete several sidewinding cycles per
trial. Substrate temperatures during testing ranged from 20.4 to 27.2°C,
within the range recorded during field observations of active sidewinders
(Cowles and Bogert, 1944; Moore, 1978; Signore et al., 2022).

For both trial types, snakes were placed gently into the arena, and if they
did not begin moving on their own, they were given the minimum
motivation required for them to move, which involved waving snake tongs
behind them and/or tapping the tongs on either the substrate or the snake’s
tail. Trials were recorded with two high-speed cameras (Edgertronic Model
SC1; San Jose, CA, USA) positioned approximately 1.5-2 m away from the
testing arenas, with one camera on a tall tripod, well above the arena, and the
other on a short tripod, close to arena-level. For each individual, we recorded
three trials that included at least 2-3 full cycles of sidewinding.

Data processing
Videos were calibrated and digitized using the MATLAB programs
DLTcal5 and DLTdv5 (Hedrick, 2008) to produce 3D coordinates of the
ten painted marker points. Our calibration object consisted of several metal
rods fixed to each other and to a metal base plate, with markers at regular
known intervals. Calibration residuals were <2 pixels. After digitizing, we
processed the data and extracted kinematic variables with two custom
MATLAB programs, described in detail in our previous paper (Tingle et al.,
2022). Briefly, we used the X, Y, and Z coordinates output from DLTdv5 to
calculate displacement for all ten markers, which we then smoothed in
MATLAB using a 3-pass fourth order Savitzky-Golay filter with a uniform
weight distribution. Velocity and acceleration were calculated from
smoothed displacement and then smoothed using a single-pass fourth
order Savitzky-Golay filter with a uniform weight distribution. After
smoothing, we extracted several kinematic variables, including peak speed
of individual marker points, mean and peak speed of the centroid of the ten
painted markers, mean and peak acceleration of the centroid, frequency of
the sidewinding cycles, wavelength and amplitude of the body’s
waveform, skew angle of the wave, and the height to which the body was
lifted (Fig. 1B-D provides diagrams and explanations of kinematic
variables).

Statistical analysis
For each snake, we chose one representative trial based on the following
criteria: 1) ruled out trials with obvious issues, like excessively poor video
quality or calibration problems, 2) we ruled out trials where the snake did not
perform steady-state sidewinding (i.e. trials where the snake stopped or
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turned); 3) we ruled out trials where our MATLAB program was unable to
compute all the variables of interest from the digitizing output, which
sometimes occurred if not enough sidewinding cycles were recorded;
however, for one individual on sand, all trials lacked some variables, so we
chose the trial with the fewest variables lacking; 4) of the remaining trials,
we chose the one that captured the greatest number of sidewinding cycles.
We originally planned to test for differences in kinematics on vinyl versus
sand using a paired design. However, of the ten snakes tested on vinyl, we
could not use trials for two of those due to calibration issues, and for four of
the eight remaining individuals, their corresponding sand trials were not
useable due to calibration issues. Therefore, we compared the eight vinyl
trials to the 26 sand trials from our previous study (Tingle et al., 2022).
Those sand trials included 22 individuals that were not tested on vinyl, and
four individuals that were. For the present study, we used ANCOVAs with
type III sums of squares (package car; Fox and Weisberg, 2019) to test
whether any of the ten kinematic variables differed between the two
substrates, with snout-vent length as the covariate. We previously found no
significant effect of temperature, sex, or age class on any of the kinematic
variables considered (Tingle et al., 2022), so we did not include them as
predictors in the current model. As described previously (Tingle et al., 2022),
we log10 transformed all traits prior to conducting the ANCOVAs except for
skew angle, which cannot be log transformed because it is signed. We
examined standardized residuals to check for outliers, and we found none
using the criterion that outliers would have standardized residuals exceeding
∼3 in magnitude. Residuals were normally distributed, and Levene’s test
confirmed homogeneity of variance between substrates for all variables.

In addition to our main ANCOVA analysis, we conducted two-tailed
paired t-tests for the four individuals that were tested on both substrates.
Although a sample size of four individuals is at best marginal for such an
analysis, we present it for completeness. All statistical analyses were
implemented in R 4.2.1 (R Core Team, 2022). Data for trials used in our
analysis are provided in Supplementary Dataset 1.
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