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Ex situ metrology and data processing techniques developed at the 

ALS for optimization of beamline performance of bendable x-ray 

mirrors  
Valeriy V. Yashchuk,* Ian Lacey, and Wayne R. McKinney 

Advanced Light Source Berkeley, Lawrence Berkeley National Laboratory, California 94720, USA 

ABSTRACT  

We discuss experimental, analytical, and numerical methods recently developed at the Advanced Light Source (ALS) 

X˗Ray Optics Laboratory (XROL) for calibration and precision shaping of bendable x-ray mirrors. The methods are 

based on ex situ measurements with the mirrors using surface slope profilers available at the ALS XROL. The first 

realization of methods and dedicated software has allowed the optimization of the beamline performance of bendable 

mirrors by adjustment of the mirror shape to minimize the root-mean-square variation of residual (after subtraction of the 

ideal desired shape) slope deviations from ideal (specified) surface figure. Here, we further develop the methods that in 

application to elliptically bent mirrors adapt as a figure of merit the minimum of the rms size of the focused beam. The 

efficacy of the developed methods is demonstrated with examples of optimal tuning of an elliptically bendable 

cylindrical mirror designed for the ALS beamline 10.3.2.  

Keywords: X-ray mirrors, bendable mirrors, adaptive optics, ex situ metrology, surface slope profilometry, long trace 

profiler, synchrotron radiation, X-rays 

 

1. INTRODUCTION  

For simultaneous focusing of x-ray beams in the orthogonal tangential and sagittal directions, two elliptically cylindrical 

reflecting mirrors, a Kirkpatrick-Baez (KB) pair are usually used.1 In x-ray microscopes, Wolter optical systems,2,3 

consisting of a hyperbolic mirror followed by an elliptical mirror, are often used to make a compact system. Because 

fabrication of aspherical surfaces is complicated, the cost of directly fabricated tangential elliptical and hyperbolic 

cylinders is often prohibitive. Moreover, pre-shaped optics cannot be easily readjusted for use in multiple, different 

experimental arrangements, e.g. at different focal distances.4 This is in contrast to flat optics that are simpler to 

manufacture and easier to measure by conventional metrology tools, such as commercial large aperture Fizeau 

interferometers. In bendable x-ray optics, the tangential figure of a flat substrate is changed by placing torques (couples) 

at each end of the substrate. Depending on the applied couples and the variation of the sagittal width of the substrate, one 

can tune the shape of a bendable mirror close to a desired profile, for example, tangential cylinder, parabola, or ellipse.5,6  

High performance of a bendable mirror at the beamline relies on the quality of design and the accuracy of fabrication of 

the mirror substrate and benders, as well as on the capability of ex situ (at optics lab) and in situ (at beamline) metrology 

to optimally tune the mirror, getting the surface profile as close to the desired shape as possible, compensating for the 

design and fabrication errors.  

In this paper, we provide a systematic description of experimental, analytical, and numerical methods7-18 recently 

developed at the Advanced Light Source (ALS) X-Ray Optics Laboratory (XROL)19,20 for optimization of beamline 

performance of bendable x-ray optics used for focusing of beams of soft and hard x-rays at the ALS. We concentrate the 

discussion on the methods that are based on geometrical optics and optical surface slope metrology available at the ALS 

XROL with three state-of-the-art surface slope profilers, the Long Trace Profiler LTP-II,21,22 Developmental LTP, 

DLTP,23,24 and Optical Surface Measuring System, OSMS.25,26 Methods of in situ optimization of bendable optics 

developed at the ALS XROL27-29 are not considered here.   

The paper is organized as follows. First, we review the nature of the requirements for bending and approaches to the 

substrate design (Sec 2). Next (Sec. 3), we provide mathematical foundations of the method of characteristic 

functions7,8,30 in application for ex situ optimal tuning of bendable optics. In the original formulation of the method, the 

figure of merit of the tuning is the minimum of  the root-mean-square (rms)  deviation  of  the  bent  profile  in  the  slope  
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domain from the desired one determined by the parameters of beamline usage (the conjugate parameters) of a mirror. 

Here, we extend the consideration to the case of the weighted rms slope deviations that allows accounting for non-

uniform distribution of the x-ray beamline intensity. In Sec. 4, we derive the analytical expressions describing the 

tangential surface slope and height profile of an ideal elliptically cylindrical mirror as functions of the mirror conjugate 

parameters.  Using the derived analytical expressions, we further develop the method in application to elliptically bent 

mirrors to adapt as a figure of merit the minimum of the rms size of the focused beam (Sec. 5). Realization of the 

developed analytical methods in dedicated software and an application of the software is discussed and demonstrated in 

Sec. 6. The software allows optimization of beamline performance of the mirror by finest adjustment of the mirror 

benders to best match the ideal (specified) surface figure, with accounting for beamline application geometry of the 

mirror and for the no-uniform distribution of intensity of the incident x-ray beam. The efficacy of the developed methods 

is demonstrated with examples of optimal tuning of an elliptically bendable cylindrical mirror designed for the ALS 

beamline 10.3.2. 

2. BENDING WITH TWO BENDING MOMENTS APPLIED TO THE ENDS OF A PLANE 

SUBSTRATE 

The  basic theory of bendable mirrors has been well described in the literature.5,6 The bending of a thin mirror substrate 

is described by the Bernoulli-Euler equation:31 
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where E  is the elastic modulus, ( )I x  is the moment of inertia as a function of the tangential distance along the mirror, 

x  (we assume that 0x   at the mirror center), 1C  and 2C  are the bending moments (couples) applied to the ends of 

the mirror substrate, and L  is the mirror length (Fig. 1). 

 

Figure 1. Bending of a plane mirror substrate with length L  with two couples 1C  and 2C  applied to the ends of the 

substrate. 2C  is typically the downstream adjustment. Arrows define positive couples. 

For a substrate with rectangular cross-section, the moment of inertia depends on the local sagittal width ( )w x  and 

thickness ( )t x :31  

 
3( ) ( ) ( ) 12I x w x t x . (2) 

According to Eqs. (1) and (2), a substrate with uniform cross-section, 0( )w x w  and 0( )t x t , can be bent only to the 

shape in the height domain described by a third order polynomial. This case includes bending to a parabolic (cylindrical) 

profile at 1 2C C . Bending to more sophisticated shapes (for example, elliptical or hyperbolic), which are not 

described by third order polynomials, requires substrates with a non-uniform cross-section.5,6 From the fabrication point 

of view, profiling of the sagittal width at constant thickness, 
3

0( ) ( ) 12I x w x t , is more practical.  

An analytical expression for the optimal sagittal width as a function of x  can be easily derived from Eq. (1) for the 

known desired mirror profile ( )y x and selected couples 1C  and 2C :9,16 
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In Sec. 4, we derive the analytical expressions describing the tangential height profile and its first and second derivatives 

of an ideal elliptically cylindrical mirror as functions of the mirror conjugate parameters. Substituting the derived 

expression for the second derivative in Eq. (3), one can calculate the sagittal width variation optimal for the elliptically 

bent mirrors.  

3. METHOD OF CHARACTERISTIC FUNCTIONS 

Usually, the design of the mirror bending mechanism does not allow a direct high-precision measurement of the bending 

couples and setting them to values pre-calculated in the course of the mirror design. But even were such a measurement 

possible, such settings are generally not accurate enough due to fabrication tolerances. In this section, we provide 

mathematical foundations of the method of characteristic functions30 for optimal tuning of bendable optics 

experimentally by using ex situ surface slope metrology.7,8 The idea of the experimental estimation of the bender 

characteristic functions was suggested in Ref.30 in application to fine adjustment of bendable KB mirrors at the beamline. 

Unfortunately, the mathematical description in Ref.30 contains an omission (perhaps inadvertent, see also discussion in 

Sec. 3.2) that makes straightforward usage of the described optimization algorithm impractical. 

3.1 Bender’s characteristic functions 

The idea of the method of characteristic functions consists in application linear regression analysis to the system of two 

benders, experimentally calibrated in a series of dedicated measurements. It is possible due to the linearity of Eq. (1) 

with respect to the couples 1C  and 2C . Indeed, with straightforward transformations, Eq. (1) can be rewritten in the 

terms of surface slope variation 0 1 2
ˆ( , ) ( , , , )x C x C C C  , corresponding to the particular values of the bending 

couples:7,8 
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where 0C  is a constant of integration that is an overall tilt of the mirror, and 1( )f x  and 2( )f x  are the bender’s 

characteristic functions defined as  
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According to Eq. (4), the slope trace of a bendable mirror is a linear combination of two functions, 1( )f x  and 2( )f x  

characteristic for the particular mirror design. These functions can be approximately determined from three surface slope 

measurements over the set of discrete positions ix , two of which are repeated at the known changes of the bending 

couples, 1C  and 2C : 

   1 1 2( , , )ix C C ,  2 1 1 2( , , )ix C C C  ,  and  3 1 2 2( , , )ix C C C  .  (6) 

Here, 1C  and 2C  are the adjustments of the bendable mirror in whatever units are convenient for the designed bender 

mechanism and 1,...,i n , where n  is the total number of points in the measured traces.  

Neglecting the measurement error, the approximated characteristic functions experimentally measured in the discrete 

positions ix  are 
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With the asterisk, we separate the estimate from the true value of the function.  



 

 
 

 

3.2 Linear regression analysis in application for ex situ tuning of bendable mirrors 

With the experimentally determined characteristic functions 
*

1 ( )if x  and 
*

2 ( )if x  given with Eqs. (7a,b), we 

approximate (best fit) the deviation ( )ix  of the measured surface slope distribution ( )M

ix  from the desired (ideal) 

one 
0( )ix , calculated for the same set of positions:  

   
0 * *

0 1 1 2 2( ) ( ) ( ) ( ) ( )M

i i i i i ix x x f x f x            ,   (8) 

where 
i  is the approximation error that generally also includes the fabrication error of the substrate surface, the 

measurement error, and the error of the estimation of the characteristic functions. Throughout the present paper, we 

assume that the measurement and the estimation errors are negligible compared to the surface slope error due to the 

fabrication process, and as such, inherent to the mirror surface. However, this assumption is not critical for the 

successful application of the methods under discussion. 

The conventional approach to finding the adjustment parameters in Eq. (8) is to fit the slope error with the characteristic 

functions by minimizing the sum of the squared approximation errors, the method of least squares. In a case such as 

ours, when the fitting function can be expanded into a linear (over the parameters 0 , 1 , and 2 ) combination of some 

known (experimentally determined) functions, the method of linear regression analysis provides a way for direct 

calculation of the parameters.32,33 For tuning a bendable mirror, the couple’s adjustments 1  and 2  determined together 

with 0  in the course of the fitting have to be added to the settings 1

MC  and 2

MC  used in the measurement of the slope 

distribution ( )M

ix . 

We provide below a condensed narration of the method of linear regression analysis in application for tuning of 

bendable mirrors using notations of the book,32 chosen by the authors as a preferred reference due to its compact format 

of comprehensive contents. Unfortunately, the book32 has limited availability. A condensed version of the related 

material can be found in Ref.33 A more detailed discussion of linear regression analysis with extensive proofs of 

formulae used below can be found in more fundamental books (see, for example, Refs.34-36). 

Let us express the approximation error by rewriting (8) as 

* *

0 1 1 2 2( ) ( ) ( )i i i ix f x f x        ,    (9) 

Assuming that dispersion functions of the i  are identical with equal variance 
2 , the best-fitting regression function 

(8) corresponds to the minimum of the sum of squared approximation errors over n  measured points: 
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while the parameters   are varied 
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The system of equations (11) can be transformed to the normal equations: 
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The solution of the system (12) can be simplified if one uses matrix approach. First, introduce an  3n  matrix termed 

the regression matrix,  
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and a 1×3 vector of parameters with the prime denoting a transposed matrix:  

 0 1 2
ˆ , ,    .                                                                              (14) 

In matrix form, equations (9) and (10) can be rewritten as 

ˆˆ ˆˆ A    ,                                                                                           (15) 

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ( ) ( ) 2S A A A A A                     ,                           (16) 

where ̂  and ̂  are 1 n  vectors with the elements ( )i ix    and i , respectively. 

By differentiating Eq. (16), one can get the system of equations equivalent to Eqs. (11) and (12) 

ˆˆ ˆ ˆ ˆ2 2 0A A A      ,                                                                   (17) 

ˆˆ ˆ ˆ ˆ( )A A A   .                                                                                  (18) 

If the matrix ˆ ˆA A is a full rank matrix, the solution of the system (18) is 

* 1ˆ ˆ ˆ ˆ ˆ( )A A A    .                                                                              (19) 

A singularity can appear in the case when the estimation is performed for an excessive number of parameters. In other 

words, excessiveness is observed if any lines of matrix Â  are linearly dependent. This is certainly not true for the case 

of the characteristic functions of two benders at the opposite ends of a bendable mirror; and regression analysis in 

application for optimal tuning bendable mirror appears to be very effective.14-17 

It can be shown that the estimate (19) gives an unbiased estimate of the parameters ̂ , meaning the expectation of  
*̂  

is ̂ . Moreover, the estimate 
*̂  is the most accurate among all possible unbiased estimates.  In the case of independent 

slope measurements with equal variance 
2 , the matrix of errors D̂  for the slope deviations is 



 

 
 

 

2ˆˆ ˆ( )D I  ,                                                                                (20)  

where Î is the n n  unit matrix. Then, the dispersions for adjustment parameters 
*̂  predicted by the linear regression 

analysis can be found with a simple relation;32,33 

   * 1 1 2 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )D A A A D A A A A A   
       .                             (21) 

If the value of 
2  is unknown, its unbiased estimate 

2

*  can be found from the sum of squares of the differences (9) 

between the extrapolating function and the slope deviations 
i  and the difference between the number of observations 

n  and the number of parameters 3:32 
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.                                                                              (23) 

Note that if we leave out the constant term 0 , our consideration above is mathematically exactly that, which has been 

rather briefly outlined in the literature.30 The constant term omitted in Ref.30 is an imperative for accurate application of 

the method. However, the most important difference between the considerations in Refs.7,8 and those here from those in 

Ref.30 is that the linear regression analysis method is grounded and applied for precision tuning of bendable mirrors 

before installation in the beamline and solely based on surface slope data measured ex situ, in the lab. 

From the practical point of view, the application of the linear regression analysis for tuning a bendable mirror requires 

just a few ex situ surface slope measurements. Three measurements with the benders’ settings adjusted according to 

prescription (6) are needed to build the bender’s characteristic functions (7). One of the three measurements (the latest 

one is more preferable for suppressing the spurious effect due to a backlash possible in the bending mechanism) can be 

used in the regression analysis as the measured slope distribution ( )M

ix  in Eq. (8). After the predicted adjustments 

*

1  and 
*

2  are applied to the benders, one more measurement should be performed to verify the result of the tuning. 

This last measurement can be used in an additional regression analysis in order to understand if the new predicted 

adjustments are within the confidence interval for the parameters estimated based on Eqs. (21) – (23). If the second 

prediction provides statistically significant values of the adjustments (for example, due to a non-ideality of the design 

and/or fabrication of the bendable mirror), an additional tuning should be made. According to our experience, a bendable 

mirror appropriately designed and fabricated requires maximum 2-3 tuning iterations that means, requiring only 5-6 

slope trace measurements. 

3.3 Accounting for x-ray beam intensity distribution along the mirror with weighting matrix 

So far, we have assumed that all values of the residual slope error i  have the same statistical weight [compare with 

(20)]. From the point of view beamline application of the mirror, this assumption corresponds to a uniform distribution 

along the mirror of the reflected x-ray beam intensity, when each surface sub-area defined with index i  is equally 

important for beamline performance of the mirror.  

If the assumption about uniform statistical weight of i  is not valid (see also discussion in Sec. 5), one can easily 

generalize the consideration in Sec. 3.2 by assuming the dispersion of i  to be weighted with a parameter i , so that 

2ˆ ˆ( )iD W  ,  
2( ) /i iD    ,                                                          (24) 

where Ŵ  is the weighting matrix. This requires minimization of the value of the weighted squared approximation errors 

[compare with (10)]: 
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Accordingly, the system of normal equations (12) will look like (assuming i n  ; however, we should note that 

the common normalization of the weighting parameters does not affect the regression result for the values of the 

predicted adjustments 
*

1  and 
*

2 ) 
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In order to write the system of equation (26) in matrix form, we construct a diagonal matrix  
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,                                     (27)                            

which relates to the weighting matrix Ŵ  via equation 

ˆ ˆ ˆ ˆ ˆ;W V V V V   .                                                             (28) 

We construct also the ‘weighted’ regression matrix [compare with (13)] and ‘weighted’ matrix of slope deviations 

1 ˆˆA V A  ,                                                                           (29) 

1 ˆV̂   .                                                              (30) 

Using these notations, the system (26) can be presented in matrix form analogous to (16) 

ˆ ˆ ˆ ˆ ˆ( ) ( ) 2 .S A A A A A                                             (31) 

And therefore, the equations for finding parameters 
*̂  will look similar to (19), as well as the equations for the 

dispersions of the parameters ̂  will look similar to (21): 

* 1 1 1 1ˆ ˆ ˆ ˆ ˆˆ ˆ( ) ( )A A A A W A A W          ,                                   (32) 

* 2 1 2 1 1ˆ ˆ ˆˆ( ) ( ) ( )D A A A W A       .                                                    (33) 

Finally, one can modify the equations (22) and (23) to get an unbiased estimate 
2

*  for the ‘weighted’ slope deviations: 
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.                                                   (34) 

In order to construct the weighting matrix reliably describing the beam intensity distribution and perform the thorough 

optimization of beamline performance of a bendable mirror, one has to account for the ideal desired shape of the mirror 

as well as for other peculiarities of the mirror beamline application. Below, we will validate the point with an example of 

an elliptically bent mirror.  

4. ELLIPTICAL CYLINDER X-RAY MIRROR: BASIC EQUATIONS IN THE TERMS OF 

THE CONJUGATE PARAMETERS 

In this section, we derive basic equations describing the distributions of the tangential surface height, slope, and radius of 

curvature of an elliptical cylinder x-ray mirror in terms of the mirror beamline application (conjugate) parameters 
1R , 

2R ,  and 
0 , where 

1R  and 2R  are the respective distances between the first (image) focus 
1F  and the second (object) 

focus 2F , and 0 2 u    is the grazing incidence angle at the mirror center – Fig. 2. Many (see, for example, 

Refs.9,21-23 and references therein) have previously derived similar equations, but choices made in parameters, definitions 

and coordinate systems, and in ordering the steps of the derivation can lead to different results. 

 

Figure 2. An elliptical cylinder x-ray mirror (bold-line segment) defined with its beamline application (conjugate) 

parameters 1R , 2R ,  and 0 2 u   . 1F  and 2F  are the image and object foci of the mirror.   is the angle 

between the axis of the ellipse x  and the tangent of the mirror pole at the canonical Cartesian coordinates  0 0,X Y . Axes 

Rx  and Ry  define the mirror-related Cartesian coordinate system. 

In Fig. 2, the elliptical mirror (bold-line segment) is depicted in the canonical coordinate system, where the mirror center 

(pole) is shifted from the center of the coordinate system to the point  0 0,X Y , and the tangent of the pole is tilted by 

an angle  . This is in contrast to the mirror-related coordinate system ( , )R Rx y  used in ex situ metrology with a 

surface slope profiler. In these shifted and rotated Cartesian coordinates, the horizontal axis Rx  is centered in the mirror 

pole and directed along the pole tangent – Fig. 2. In the course of tuning of bendable mirrors, the measured slope trace 

has to be compared to the ideal (desired) slope variation also evaluated in the coordinate system of the mirror substrate 

as measured.  

In this section, we present analytical expressions for the height, slope, and radius of curvature distributions of a grazing 

incidence elliptical cylinder x-ray mirror that are used in our algorithms and dedicated software for optimal tuning of 

bendable mirrors. The detailed derivations can be found in the report37 available upon a direct request. 

4.1 Relation between the canonical and conjugate parameters of an ellipse 

In the canonical form, the shape of the two-dimensional (2D) ellipse in Fig. 2 is determined by the general equation: 
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,      (35) 

where a  and b  are the major and minor semi-axes of the ellipse, respectively. x  is the horizontal axis of the canonical 

Cartesian coordinate system, containing the source and focus points; and y  is the axis orthogonal to x . We assume that 

the mirror tangential central line lies in the plane determined with 0z  . In an x-ray application of a grazing incidence 

elliptical mirror, the parameters in Eq. (35) are the real positive numbers that obey a ratio a b . 

Figure 2 depicts the major parameters of the ellipse used in the derivations below. Basic relations between the canonical 

and conjugate parameters of an ellipse can be found, for example, in Ref.38 According to the definition, the ellipse is the 

locus of points for which the sum of the distances from the two given points (foci) is a constant: 

 2 1 2a R R  .       (36) 

In order to derive the relation between the minor semi-axes b  and the mirror conjugate parameters,  

 
1/2

0 1 2sinb R R .       (37) 

we introduce (36) to the results of Ref.38 for the radius of curvature Rad  in the mirror pole: 
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where 
2p b a  is the semifocal chord (see Fig. 2).   

4.2 Spatial and angular position of the pole of an elliptical mirror 

To express the position of the mirror pole in the canonical coordinate system as a function of the mirror conjugate 

parameters, we use the expressions for 1R  and 2R  as the functions of the canonical coordinate x :38 

1 0R a eX   and 2 0R a eX  ,     (39) 

where e  is the eccentricity :   
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where c  is a half of the distance between the foci (Fig. 2). 

Combining expressions (39) and (40), one can get: 

 

 

2 2

2 1

0 2 2

1 2 1 2 02 4 sin

R R
X

R R R R 




 
.     (41) 

An analogous expression for 0Y  is obtained by straightforward algebraic transformations of the canonical equation (35) 

after substitution of a  , b  , and 0X  given by Eqs. (36), (37), and (41), respectively: 
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The expressions (41) and (42) are used below for shifting the coordinate system to the center of the elliptical mirrors. We 

also need to derive an expression for the angle of rotation   (Fig. 2) of the shifted coordinate system to the mirror-

related Cartesian coordinate system defined with axes Rx  and Ry .  

By differentiation of the known expression38 for the tangent to the mirror pole in the canonical coordinate system  

2 2

0 0 1xX a yY b         (43) 

and using the expressions above, we get 
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4.3 Shape of an elliptical mirror in the mirror-related Cartesian coordinate system as function of the position in 

the shifted (but not rotated) coordinate system 

In the shifted coordinate system, the equation (35) of an ellipse is 
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Next, we apply rotation transformation with angle   [given with Eq. (44)] to ( )y x  and x  coordinates of the ellipse: 

( ) ( )cos sinRy x y x x   ,     (46a) 

( ) cos ( )sinRx x x y x   .     (46b)          

Technically, the transformations (45) and (46) were performed using analytical capabilities of MathematicaTM software 

(version 11.1.1). The resultant expressions for the ellipse height distribution ( )Ry x  and tangential positions ( )Rx x  in 

the rotated coordinate system are 
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and 
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The tangential surface slope distribution for the elliptical mirror in the mirror-related coordinate system can be derived 

by direct differentiation of Eq. (47) and (48): 
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This leads to the following expression for the surface slope distribution of an elliptical mirror in the mirror coordinate 

system 
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The expressions for the tangential radius of curvature ( )TANRad x  and the grazing incidence angle sin ( )x  as the 

functions of the coordinate x  are (the corresponding derivations can be found in Ref.37): 
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4.4 Transition to the positions in the mirror-related Cartesian coordinate 

Practically, measurements of the mirror shape are performed in the mirror-related coordinate system ( , )R Rx y . 

Therefore, in order to compare the measured shape with the desired elliptical shape, we need to calculate the surface 

height distribution ( )R Ry x  as a function of Rx , rather than ( )Ry x  as in Eq. (47).  The same is true for calculation of 

the ideal distributions of ( )R x , ( )TANRad x , and sin ( )x . 

The problem can be solved by reversing Eq. (48) to express the positions x  in the shifted (but not rotated) coordinate 

system as a function ( )Rx x  of the measured positions Rx  in the rotated coordinate system. Then, the calculated 

positions x  are placed into the corresponding expressions (47), (50), (51), and (52) to calculate the corresponding 

values of the surface height, slope, radius of curvature, and grazing incidence angle. The final set of the analytically 

calculated ideal distributions (in the height, slope, and curvature domains) are presented as a function of the original 

positions Rx  in the mirror-related coordinate system.  

The result of reversing Eq. (48) obtained with MathematicaTM software is as follows: 
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 (53) 

The correctness of the analytical expressions was verified in Ref.37 by comparing the elliptical mirror profile analytically 

calculated based on the derived expressions, with the profile numerically generated using the same set of mirror’s 

conjugate parameters. For all the expressions, the difference was on the level of inherent precision of the numerical 

calculations with IDLTM and OriginProTM software. 

Below, in Sec. 5, we discuss the application of the derived expressions for design and optimal tuning of elliptically bent 

x-ray mirrors.  

5. DESIGN AND OPTIMAL TUNING OF ELLIPTICALLY BENT X-RAY MIRRORS 

In this section, we discuss an application of the analytical expressions derived in Sec. 4 for design and optimal tuning of 

elliptically bent x-ray mirrors. The same approaches can also be applied to the bendable x-ray mirrors with the desired 

shape different from the elliptical cylinder, if the corresponding expressions are available. Note that similar analytical 

expressions for hyperbolic cylinder x-ray mirrors have been derived in Ref.39 available upon direct request.  



 

 
 

 

5.1 Sagittal shaping of substrate for elliptically bent x-ray mirror 

In order to precisely specify the optimal sagittal width of substrate for an elliptically bent mirror, we use an analytical 

expression for the second derivative of the ellipse height variation in the mirror-related coordinate system (see Sec. 2). 

The expression is derived by differentiating tan ( )R x  given with Eq. (50) in the same manner as Eq. (49): 
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The result of the derivation is (we omit here the sign ‘-‘ appeared due to the selected quadrant of the ellipse in Fig. 2): 
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.   (55) 

In Eq. (3), the variation of the substrate width is defined as a function of the position parameter given in the mirror-

related coordinate system. Before substitution to Eq. (3), the second derivative (55) has to be expressed as a function of 

Rx  by using Eq. (53) for ( )Rx x . 

The second derivative (55) and the radius of curvature (51) mutually relate as38 
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,    (56) 

where ( )TANCur x  is the curvature in the elliptical surface. In the case of x-ray mirrors when the surface slope variation 

is much less than 1, the denominator in Eq. (56) can be approximated with 1. This approximation is often acceptable for 

evaluating the sagittal width of a substrate for a bendable x-ray mirror [compare with Eq. (3)]:9,16 
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In the course of mirror design, the values of the couples 1C  and 2C  are selected by modeling with finite element 

analysis (FEA) software. The modeling also allows to accounting for the finite thickness of the substrate that, when 

bending the substrate, leads to a bird-like residual shape in the tangential direction, as well as to an anticlastic 

deformation in the sagittal directions.5,6 In order to regain the efficacy of the FEA optimization of the design, one can use 

the modified method of characteristic functions as suggested and demonstrated in Ref.11     

5.2 Effect of the finite length of an x-ray mirror used in grazing incidence 

The effect of the surface slope error ( )ix  [compare with Eq. (8)] in a particular point ix  (as measured in the mirror 

related coordinates) of an elliptically bent mirror to the focusing performance of the mirror linearly scales with the 

distance 1( )ir x  [ 1 1(0)r R ] from the point to the image focal plane:10,15  

 1 1( ) 2 ( ) tan ( ) 2 ( ) ( )i i i i ix r x x r x x     , (58) 

where i  is the ray position deviation in the focal plane. Equation (58) means that at the same value of slope error, the 

further the point on the mirror surface from the focal plane, the larger the ray position deviation is. Therefore, the mirror 

bent to minimize the residual slope variation with respect to the ideal elliptical shape is generally not optimal for 

focusing the x-rays with the smallest possible width in the focal plane. Optimization of bendable focusing mirrors based 



 

 
 

 

on focusing performance is especially important for beamlines, such as the ALS micro-diffraction beamlines 10.3.217 

and 12.3.2,16 where the distance from the mirror to the focal plane is comparable with the mirror length. 

Mathematically, optimization of the focusing performance of a bendable mirror consists of minimizing the variance of 

ray position errors in the focal plane. This is done by applying to ( )ix  the linear regression analysis, as discussed in 

Sec. 3.2, but with the characteristic functions scaled according to Eq. (58): 

* *

0 1 1 2 2( ) ( ) ( )i i i ix f x f x             ,    (59) 

where [compare with Eq. (9)]  

* *

1 1 1( ) 2 ( ) ( )i i if x r x f x    and   
* *

2 1 2( ) 2 ( ) ( )i i if x r x f x  .  (60) 

At the assumption of a uniformly distributed intensity of the reflected x-ray beam, the dispersion functions of the 

approximation errors i  are identical with equal variance 
2

 . The rms variation of the resulting (corresponding to the 

best fit) approximation errors 
*

i  describes the rms width of the focused beam.  

Mathematically, the optimization by minimizing the variance of the ray position deviations is equivalent to the surface 

slope error minimization with the weighted approximation errors scaled as 
2

14 ( )ir x . Indeed, Eq. (59) can be rewritten 

in the terms of regression equation (9): 

* *

0 1 1 2 2( ) ( ) ( )i i i i i i i i ix f x f x             .   (61) 

The sum of squared approximation errors in (61), 
2 2

i i  , has the form of Eq. (25) with the weighting parameter  

2 2

14 ( )i i ir x   .      (62) 

5.3 Accounting for the variation of the grazing incidence angle along an elliptically bent x-ray mirror  

Let us consider the case of focusing with an elliptically bent mirror of x-ray light beam emitted by a point source with 

uniform (independent of divergence angle) intensity 0I  – Fig. 3.  

 

Figure 3. Illustration of the effect of changing the intensity distribution of the reflected light due to the variation of the 

grazing incidence angle along elliptically bent mirror. The notations are discussed in the text. 

In the limit of infinitely small elementary area x  around the tangential position ix , the light flux ( )iF x  incident to 

the surface area defined by x  depends on the local values of the grazing incidence angle i  and the surface slope i : 
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According to Eq. (63), in spite of the uniform distribution of the incident light intensity, the intensity of the reflected 

light ( )R iI x  is not uniform and depends on the position along the mirror surface.18 The variation of the reflected 

intensity ( )R iI x  is accounted in the regression analysis via a corresponding non-normalized weighting parameter: 

 2sin ( )cosi i i ir x           (64) 

In order to find an analytical expression for sin i  for elliptically bent mirrors, we use Eq. (37) for the ellipse minor 

semi-axis b  written for the mirror center and 
ix  positions: 

   
1/2 1/2

0 1 2 1 2sin sin ( ) ( )i i iR R r x r x  .    (65) 

In the case of x-ray grazing incidence mirrors under consideration, the surface slope variation is usually less than 

±10 mrad. Correspondingly, the variation of cos i  is less than 10-4 and can be ignored in the denominator of Eq. (64). 

Introducing (65) to (64), we get 

   
1/2 1/2 3/2

0 1 2 1 2sin ( ) ( )i i iR R r x r x  ,    (66) 

5.4 Non-uniform distribution of intensity of the incident x-ray beam 

So far, we were assuming that the incident x-ray beam has a uniform intensity distribution. In the frame of the approach 

developed above in this section, accounting for non-uniform distribution of the incident x-ray beam intensity is rather 

straightforward if one defines the distribution as a function of the position along the mirror ix ,  

0 ( )In iI I x  .       (67) 

The intensity distribution function ( )ix  has to be included into the non-normalized weighting parameter i  

describing the effect of variation of the grazing incidence angle with Eq. (66): 

   
1/2 1/2 3/2

0 1 2 1 2( )sin ( ) ( )i i i ix R R r x r x   .    (68) 

A more natural definition of the intensity distribution would be in the angular terms: 

0 ( )InI I    ,        (69) 

where ( )i ix   is the angle determining the direction of the light ray incident to the mirror surface point with the 

tangential coordinate ix   Fig. 4.  

 
Figure 4. Reflection from an elliptically bent mirror of a beam with intensity distribution depending on the angle 

i  counted 

with respect to the direction to the center of the mirror where 0  . Other notations are defined in the text. 



 

 
 

 

Without losing the generality of the consideration, the angle i  is counted with respect to the direction to the center of 

the mirror, where 0  . We also assume that at 0ix  , the angles i  and i  are negative, 0i   and 0i  . 

From Fig. 4, it is evident that  

0i i i              (70) 

Because all angles in Eq. (70) have comparable values, for calculation of i  corresponding to the position ix  in the 

mirror-related coordinates, one has to use the exact expressions for the local grazing incidence angles given with 

Eqs. (50), (52), and (53).  

5.5 Weighting parameter associated with the geometrical peculiarities of an elliptically bent x-ray mirror 

The product of Eqs. (62) and (68) describes the weighting parameter associated with the geometrical peculiarities of an 

x-ray mirror used in grazing incidence arrangement:  

3/2 3/2

1 2( ) ( ) ( )Mi i i ix r x r x     ,    (71) 

where the constant terms in (62) and (68) are omitted because the scaling factors do not affect the result of application of 

the regression analysis, as discussed in Sec. 3.3.   

Let us now derive analytical expressions for 1( )ir x  and 2( )ir x  for the case of an elliptically bent mirror. For high 

quality x-ray optics, one can use the expressions, corresponding to an ideally shaped mirror (no surface errors). Using 

the relations (39), written for the position 0ix X  in the shifted coordinate system, and Eqs. (40) and (41), one can 

derive dependencies of the focal distances on the position ix : 
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The exact relation between the given ix  in Eqs. (72) and the corresponding position ix  in the mirror based coordinate 

system, which corresponds to the same distances between a particular point on the ellipse curve in Fig. 2 and the image 

and object foci 1F  and 1F  (Fig. 3), is rather unwieldy. Much simpler expressions are obtained with an approximation 

cosi ix x   that provides reasonable accuracy for accounting of the mirror geometry effects in the shape 

optimization of a bendable elliptical mirror. In this case, by using Eq. (44) one gets:10,15  

1 1 0( ) cosi ir x R x     and  2 2 0( ) cosi ir x R x    .    (73) 

Substitution of (73) to (71) gives a relatively simple, but sufficiently accurate, scaling of the weighting parameter as a 

function of the tangential position in the mirror based coordinate system: 

   
3/2 3/2

1 0 2 0( ) cos cosMi i i ix R x R x   


       .    (74) 

The weighting parameter given by Eq. (74) is not normalized to obey the condition Mi n   that, in principle, does 

not affect the result of the linear regression analysis, described in Sec. 3.3. However, if the weighting parameter is 

normalized to its average value 
1

M Min   , 

*

Mi Mi M   ,     (75) 



 

 
 

 

the resulting (corresponding to the best fit) rms variation of the approximation error can be thought of as an estimation of 

the effective residual slope error (rms) of the elliptically bent mirror with optimized focusing performance. 

6. APPLICATION OF THE DEVELOPED ALGORITHMS AND SOFTWARE TO 

OPTIMAL TUNING OF AN ELLIPTICALLY BENT X-RAY MIRROR 

In this section, we apply the developed analytical methods and dedicated bending optimization software to a bendable 

elliptically cylindrical mirror M4 for the ALS beamline (BL) 10.3.2.  

ALS BL 10.3.2 is a versatile environmental and materials science tool, primarily designed for heavy metal speciation 

and location. The x-ray beam is focused via a KB mirror system to the sample location with a spot size of about 1 µm. A 

full description of this beamline and its capabilities, as of 2004, can be found in Ref.40 The BL end-station optical 

schematic includes three bendable mirrors. A vertically deflecting parabolic mirror (M2) collimates the beam to a two-

crystal monochromator. A second parabolic cylinder mirror (M3) focuses the beam vertically, and an elliptical mirror 

(M4) focuses the beam horizontally. The performance of the beamline, namely the spatial and energy resolutions of the 

measurements, depends significantly on the collimation properties of M2 mirror and focusing properties of the mirrors 

M3 and M4.  

Mirrors M2, M3 and M4 are all bendable mirrors, based on a similar design approach,14 each with two bending, 

cantilever-like, couples attached to ends of the mirror substrate (Fig. 5). In this design, the measure of the applied 

bending couples is the value of the linear translation (in microns) of a Pico-motor that stresses the corresponding 

cantilever spring. 

 

Figure 5: The ALS BL 10.3.2 mirrors M3 and M4 prepared for surface slope measurements with the XROL DLTP.23,24 The 

high temperature stability of the mirrors is due to the active temperature stabilization with Peltier elements. One of them is 

seem as attached to the body of M3 mirror. 

6.1 Characteristic functions of the ALS BL 10.3.2 M2 mirror benders 

We selected the M4 mirror to illustrate the developed bending optimization methods because the mirror clear aperture 

length of 80 mm is comparable with the mirror image focus of about 120 mm. The overall size of the mirror substrate is 

102 mm (length) × 13 mm (width at middle), with a strong variation of the sagittal width of the substrate. This 

arrangement allows us to test the sensitivity of the shape optimization to the weighting functions dependent on the mirror 

geometry (see Sec. 5).  

The beamline arrangement of the mirror is specified with the conjugate parameters of a source distance 2R , fixed 

grazing incidence angle 0 , and focal (image) distance 1R :  

2 2218.3R  mm,  0 4.0  mrad, and 1 118.9R  mm.         (76) 



 

 
 

 

With the conjugate parameters (76), the mirror radius of curvature varies from approximately 80 m down to about 30 m. 

The surface slope measurements with the mirror were performed with the developmental long trace profiler23,24 available 

at the ALS X-Ray Optics Lab. The mirror tuning was performed after installation of a new substrate and approximate 

shaping using a Fizeau interferometer. 

First, the characteristic functions of the mirror’s upstream 
*

1 ( )if x  and downstream 
*

2 ( )if x  benders were constructed 

(Fig. 6) based on three surface slope measurements, as described in Sec. 31 with Eq. (7), with the changes of the bending 

couples, 
1C  and 2C  of 50 µm. Note that the evaluation of a characteristic function from the difference of two 

surface slope measurements has a differential nature. Therefore, the systematic errors common for the measurements do 

not affect the result.  

 

Figure 6: The upstream (the upper, blue line) and the downstream (the lower, red line) characteristic functions of M4 

mirror’s benders evaluated from three DLTP measurements performed at the bending couples sequentially changed by 50 

µm. As expected, the upstream (downstream) characteristic function is steeper at the upstream (downstream) part of the 

mirror reflecting the stronger effect to this part by the corresponding bending couple.  

6.2 Optimization software 

At the ALS XROL, we have realized the tuning algorithms discussed in detail throughout this paper in dedicated 

software developed in the IDL development environment platform. The software allows optimization of the shape of 

elliptical or parabolic bendable mirrors using the analytical equations in Secs. 4 and 5 to calculate the ideal mirror shape 

and the weighting functions.  

The software predicts the best-fit adjustments to the bender’s couples measured in the same units as the changes to the 

couples applied for measurement of the characteristic functions. The adjustment are given with respect to the bender 

settings of one of the three measurements, as well as with respect to an additional, fourth measurement that can be 

carried out to test the result of the first iteration. The software also estimates the prediction errors for the regressed 

parameters. 

An additional iteration, if needed, uses the same data for calculation of the characteristic function. Therefore, additional 

iteration generally requires only one additional measurement. Practically, in order to optimally set the benders of a 

properly designed elliptical or parabolic mirror, we usually need 1 or 2 iterations. 

6.3 Optimal tuning of the bendable elliptically cylinder M4 mirror for the ALS BL 10.3.2 

The contribution of different weighting factors to the mirror M4 shape optimization is illustrated in a series of tunings 

performed with the same measured slope traces, but when fitting with different weighting functions. 



 

 
 

 

Figure 7 shows the residual [after subtraction of the ideal ellipse given by the conjugate parameters (76)], slope trace of 

the clear aperture of the M4 mirror before the bender’s optimization. The peak-to-valley (PV) surface slope variation is 

about 23 µrad. 

 

Figure 7: Residual slope, after subtraction of the ideal ellipse, of the central tangential trace along the clear aperture of the 

M4 mirror before the bender’s optimization. The peak-to-valley surface slope variation is about 23 µrad.  

The residual slope trace of the clear aperture of the M4 mirror after applying to the bender’s couples the adjustments 

predicted without accounting for the peculiarities of the mirror geometry and beamline application, as well as the x-ray 

beam intensity variation (see Sec. 5) is presented in Fig. 8. The third order trend in the residual slope trace is very 

characteristic of bendable mirror (see discussion in Sec. 5.1). It corresponds to a 4th order “bird-like” shape in the height 

domain. The rms and PV variations of the residual slope are 0.574 µrad and 2.3 µrad, respectively. 

 

Figure 8: Residual slope, after subtraction of the ideal ellipse, of the central tangential trace along the clear aperture of the 

M4 mirror after adjusting the couples to the optimal settings predicted without accounting for the peculiarities of the mirror 

geometry and beamline application, as well as the x-ray beam intensity variation. The rms and PV variations of the residual 

slope are 0.574 µrad and 2.3 µrad, respectively.  



 

 
 

 

Accounting for the weighting factors reflecting the mirror geometry (see Secs. 5.2 and 5.3), but still with uniform 

illumination, leads to a noticeable, ~ 0.7 µrad (PV), change of the residual slope variation depicted in Fig. 9.  

 

Figure 9: Difference of the residual slope traces corresponding to the adjustments of the bending couples without and with 

accounting for the peculiarities of the mirror geometry and beamline application. The both tuning options assume uniform 

x-ray beam intensity distribution along the mirror. The PV change of the mirror surface slope is about 0.7 µrad. 

Let us now allow for a non-uniform distribution of the x-ray beam intensity, described by the Gaussian distribution 

2 2(2 )

0( ) ix

iI x I e


        (77) 

with a standard deviation of 10  mm that corresponds to a full-width-half-maximum of the beam footprint on the 

mirror surface of approximately 23 mm. Figure 10 shows the residual slope trace after applying adjustments to the 

bender’s couples predicted accounting for the peculiarities of the mirror geometry the non-uniformity of x-ray beam 

intensity distribution (77).  

 

Figure 10: Residual slope, after subtraction of the ideal ellipse, of the central tangential trace along the clear aperture of the 

M4 mirror after adjusting the couples to the optimal settings predicted with accounting for the peculiarities of the mirror 

geometry, beamline application, and the non-uniformity of the x-ray beam intensity distribution given with Eq. (77). The 

rms and PV variations of the residual slope are 1.46 µrad and ~ 6.5 µrad, respectively. 



 

 
 

 

Table 1 summarizes the couples’ adjustments and their standard deviations predicted with the developed software for the 

three cases considered above: (i) without weighting function (Fig. 8), (ii) with waiting function accounting for the mirror 

geometry (Fig. 9), and (iii) with accounting for the non-uniform distribution of the x-ray beam intensity (Fig. 10).  From 

Table 1, it is evident that a relatively small mistuning of the BL 10.3.2 mirror M4 benders can dramatically change the 

beamline performance of the mirror. 

Table 1. The BL 10.3.2 mirror M4 couples’ adjustments and their standard deviations predicted with the developed software 

for the three case considered above: (i) without weighting function, (ii) with waiting function accounting for the mirror 

geometry, and (iii) with accounting for the non-uniform distribution of the x-ray beam intensity. 

Tuning options 1C  (upstream), µm 
1C , µm 

1C  (downstream), µm 
2C , µm  

(i) -59.7  1.8 -8.4 1.9 

(ii) -62.9  2.3 -5.7 1.9 

(iii) -62.5 2.6 -18.1 2.4 

Additional accounting for the non-uniform distribution of the x-ray beam intensity dramatically changes the residual 

slope variation. The optimization decreases the slope error over the mostly illuminated central part of the mirror, shifting 

the slope variation to the edges of the clear aperture. In spite of the ~2.5 fold increase of the rms slope variation 

compared to Fig. 8, the beamline performance of the mirror illuminated with the non-uniform intensity will be 

significantly better. This can be characterized with the value of the effective (weighted rms) residual slope variation 

equal to the square-root of the sum in Eq. (25) divided by the number of points in the trace. The resulted weighted rms 

residual slope variations for the cases in Figs. 9 and 10 are 0.567 µrad and 0.143 µrad, respectively. As expected, with a 

narrower beam intensity distribution, the effective rms slope variation is much smaller, by a factor of about 4. 

7. CONCLUSIONS 

We have systematically discussed the experimental, analytical, and numerical methods developed at the ALS X˗Ray 

Optics Lab for ex situ (at optics lab) calibration and precision shaping of bendable x-ray mirrors. We concentrate the 

discussion on the methods that are based on geometrical optics and optical surface slope metrology available at the ALS 

XROL with three state-of-the-art surface slope profilers, LTP-II, DLTP, and OSMS.  

The developed methods and dedicated software allow optimization of the beamline performance of bendable mirrors not 

only by adjustment of the mirror shape to minimize the root-mean-square variation of residual (after subtraction of the 

ideal desired shape) slope deviations from ideal (specified) surface figure, but also by optimization with accounting for 

the peculiarities of the mirror geometry and beamline application. In this case, the figure of merit for the tuning is the 

minimum of the rms size of the focused beam. Note that the discussed methods help getting the surface profile as close 

to the desired shape as possible, partially compensating for the design and fabrication errors. 

The efficacy of the optimization is demonstrated with examples of optimal tuning of the elliptically bendable cylindrical 

mirror M4 designed for the ALS beamline 10.3.2. 

We should also mention that the same mathematical approach can be used for additional optimization of the beamline 

performance of the bendable mirror by optimization of the conjugate parameters of the at-beamline optical application, 

after the best tuning of the bending couples is completed. This possibility has been discussed in detail in Ref.41 

In Ref.,11 evaluation of characteristic functions based on Finite Element Analysis of a complete bendable mirror 

assembly has been suggested and investigated. Calculating FEA-based characteristic functions and applying the 

regression analysis methods discussed in the present work in the design stage would allow better understanding of the 

design of the bender’s adjustment mechanism and permit that design to be better matched to the required beamline 

performance of the mirror.  

The presented analytical foundations are generally applicable to in situ optimization of bendable optics as the ones 

developed at the ALS XROL,27-29 as well as to the extension of the ex situ optimization to account for diffraction 

effects.18  
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