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Abstract. Digital fringe projection is a surface-profiling technique used for highly accurate non-
contact measurements. As with any measurement technique, a variety of sources degrade to the
measurement accuracy of the method. This paper presents an analytically-derived probability density
function that explicitly models the surface height measurement error due to inevitable phase mea-
surement error, and it includes the specific case of pixel noise inducing the phase measurement error
that ultimately leads to the height estimation error. The accuracy of the model was validated through
Monte-Carlo simulations of resultant height distributions subject to arbitrarily correlated pixel in-
tensity noise and experimental digital fringe projection measurements where the pixel-by-pixel height
uncertainty estimations were compared to the predictions of the derived model.

1 Introduction

Digital fringe projection (DFP) is a non-contact surface measurement technique used in surface
height profiling, surface roughness quantification, and three-dimensional point cloud creation, among
other areas. As commercial availability of high accuracy projectors and digital cameras increases,
this versatile measurement technique has become even more popular for highly critical engineering
applications drawn from biomedical [1-3], materials science [4-6], and electronics inspection |7, 8]
domains. When such measurements are used to inform decisions regarding part acceptance, maintenance,
or usage, it is important to understand and quantify uncertainties in the measurement process prior to
implementation. Potential sources for measurement uncertainty in the DFP method include projector
gamma nonlinearity [9-11], projector and camera quantization effects [12H14], and pixel intensity
noise |[15-18]. Substantial work has been made to quantify and mitigate the height profile measurement
error caused by non-linear projector gamma [19-22] and other publications address measurement
uncertainty and mitigation caused by projector and camera quantization [23-25].

Pixel intensity noise is one of the major sources of error in DFP height profilometry [26], and
has been mentioned for decades in classical works on the DFP method [27,28]. It has motivated
development of new phase-shifting algorithms [17,|18], and has been reported to dominate the error
contributions from camera and projection quantization error [29]. Even with the development of
nonlinear gamma error reduction, measurement uncertainty contributions from noise in the pixel field
is unavoidable [15]. However, to the authors’ knowledge, no work has been published which explicitly

provides a forward analytical model of the measurement height uncertainty caused by phase noise. In



this work, a probability density function (PDF) model is developed that expresses how phase noise
error propagates into resultant height measurement uncertainty. The specific case where pixel intensity
noise is the source of the phase measurement noise is then outlined, ultimately providing an expression
that relates pixel noise to height measurement uncertainty in the DFP measurement process.

Other works have considered height estimation uncertainty due to phase noise in previous
alternative ways. The work of G. Notni et al. [29] summarized a variety of phase errors due to the
digital camera and projector in DFP phase measurement, but it did not include height-converted
phase noise analysis nor an analytically derived model for the phase measurement dispersion caused by
the quantization errors. Creath [30] proposed a specialized technique utilizing two-wavelength phase
shifting, and reported the height noise impact of the approach, but it did not provide a quantitative
measure of the phase or pixel noise contributions to height measurement. Two studies by An et
al. [31,32] proposed and evaluated a method which uses geometric constraints for phase-unwrapping,
specifically used in low low signal-to-noise ratio phase measurement. These works also did not provide
a rigorous method for modeling resultant height uncertainty. Tang et. al [33] developed a method of
analysis to obtain height incorporating demodulation and convolution techniques. In their study, phase
error was reduced using signal processing techniques, quantified, and converted to height error, but did
not include a formal estimation of the propagation of intensity or phase noise into height measurement.
A common theme among most published works thus far is an abundance of techniques which alleviate
phase (and ultimately height) error, benchmarked on known measured objects, but the contributions
of alleviated error sources are usually not modeled from a fundamental level. The work presented
in this study advances DFP metrology by providing such a method for statistically modeling height
measurement uncertainty from contributions of phase error. We then continue the derivation to include
the specific and important case of pixel noise sources converting to phase error (described in detail in
O’Dowd et al. [34]) and how that propagates to height estimation uncertainty. The height uncertainty
model is compared against Monte-Carlo MC simulation as well as an ensemble of surface measurements
with a prototype DFP measurement system, demonstrating the model’s efficacy. Ultimately, this
model can be used to estimate order statistics—and thus quantify—the height uncertainty in the DFP

measurement process using measured noise properties from the pixel field.
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Figure 1: A general two-dimensional schematic of the digital fringe projection measurement.
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Commonly, DFP height measurements are made by projecting patterns onto a flat reference plane
(physical or mathematical, denoted further with subscript "r"), then placing an object onto the scene,

and recording how the projected patterns deform from the object’s shape (denoted further with "o"). A



representative DFP experimental setup schematic is shown in Figure [I, The projected patterns are
often sinusoidally varying computer generated images, known as "fringes", with pixel value f assigned
according to

filx) = R(cos(2;x +9;) + 1), (1)

where R is a scaling factor related to fringe brightness, P is the fringe pitch, and N phase-shifted
images are generated and projected onto both reference and object with (equipartitioned) spatial shifts
of 0; = 2mi/N, i = 1...N (further referred to as "projections," where i is the projection index). Equation
creates a fringe pattern with varying intensity as a function of z, as it relates to Figure [I}

The camera records images of the incident fringes on both reference and object surfaces, where
the intensity I,y of any fringe incident on a surface (either the reference r or object o) at any given

measurement point x,., is given by [35] as
](T,o) = A(T,O) + B(r,o) CoSs (2W$(r70)/P> , (2)

where ¢(.o) = 2Tx(y. o) /P is the phase, and A(r0) and By, ,) are the background intensity due to projector
bias (combined with ambient light intensity) and the projected fringe contrast, respectively, at the
arbitrary point z(,). In order to recover differential information between object and reference phases,
which is functionally related to the object height [36], the measurement point’s "i-th" projection intensity
in Equation [2] may be each written as

I(r,o),i - A(r,o),i + B(r,o),i COs (¢(T’,o) + 52 + ¢c) ) (3)

where ¢, accounts for the phase offset of the point in relation to the carrier phase (undeformed phase of
the projected fringe pattern), and subscript "i" is the projection index. Once images are recorded of the

projected fringes on the reference and object, phase ¢,, (either on the reference or object), is found by

- Zi\il I(r,o),i sin 52
fil I(r.0),i COS O; ’

b(r,0) = arctan < (4)
where it is assumed that nonlinear projector gamma issues are negligible or appropriately cor-
rected/calibrated. The differential phase measurement ¢ between object and reference that ultimately

is used to determine the measurement point’s height above the reference surface is given by

qb = ¢o_¢r
B Ai[oz(sz - ]\11'”61
= arctan %:V’*l i S — arctan %“1 4 511 (5)
>imq Lo, cos d; Sty I cosd;
27 (zp — ;)
- p (6)

Geometrically, the height of a measurement point z from a reference point can be represented as a
function of the geometries of the DFP experimental setup and the scalar quantities z, and x,, seen in
Figure [1l This relationship can be written as

B d(xy — )
L4z, —ux,

(7)



where d and L are the distance between the projector and the reference plane, and the distance between
the projector and the camera, respectively. Combining Equations [6] and [7] we can express z as a
function of the measured differential phase ¢ and geometrical properties of the DFP system as

Pod

z(¢) = L+ Py’ (8)

Many applications of the DFP method use a linearized phase-to-height measurement model,
which assumes that the spacing between the projector and camera components is much larger than
the geometric distance between reference and object ray projections z, and x,, i.e. L >> (z, — x,).
Effectively, this assumption is valid for small height measurements. This assumption simplifies the
principal height measurement relationship to a linearized version, z;, given by

d(z, — x,)
L
Pdé
oL (9)

zZ] =

Comparing Equation [J] to Equation [§] we see that indeed the linearized version expresses a proportional
relationship between estimated height z; and differential phase measurement ¢.

2 Output Height Uncertainty Model

2.1 Fully Nonlinear Height Model

The measured differential phase ¢ inherently contains noise, x, which arises from a variety of
sources, and this noise will propagate through the phase-to-height transformation yielding uncertainty
in the estimated height measurement. We may then define the height measurement residual error y
by adding this noise x to the differential phase measurement ¢ and subtracting the true height value,
X = 2(¢ + k) — 2(¢). The noisy differential phase ¢ + « is then substituted from Equation [8] yielding

x = 2¢+r)—=20)

Plo+r)d  Pod
oL+ P(¢+r)  27L 1 Po
kP(d — z)?

2rLd + kP(d — z)’ (10)
where we substitute in for ¢ from the inverse of Equation [§| to arrive at the form relating height
uncertainty x as a function of phase noise x, true height z, and DFP measurement system parameters
d, P, L.

Assuming the probability density function of the phase noise, p (k), is known or can otherwise
be modeled, we may use the change of variables technique to find the probability density function
associated with the single point height measurement uncertainty, p (x), as

p(k)



p(r)(2rLd + kP(d — z))?
2nLP(d — z)2d
27 Ldp(k)
P(x+z—d)?
2 Ldp (i) )
Pix+z—d)? ~’

where in the final form we have substituted in for x from the inverse of Equation [10]

Equation [11]is a very general form for any phase noise PDF model form, p (x). In previous work,
we derived a PDF for phase noise arising from pixel intensity noise, given in Equations 21-22 of [34].
Combining that previously-derived PDF with Equations [11 and substituting for x using the inverse of
Equation [10] yields

e s 8602 % (1 + \/EZQ@Zg (erf (22) :l:l)) Ld

p(x) = 7 (12
P(—d+ x + z)2z1m
where
o 0y — 2pxyoxoy tan #jﬁdx%) + 0% tan> %
1 oxoy (1= piy) ’
1y Ox (pxyay — ox tan %) + pxoy (aXpr tan % _ O.Y)
29 = |

\/§UXUY\/1 - P%{Y\/sz/ — 2pxy0x0y tan #Cm + 0% tan? #fiﬁz)

b = 1305 + P50y — 20X [y Ox Oy Pxy (13)
20%0% (1= pXy) ’

and where erf(x) is the standard error function. Quantities oy, ox, and pxy are functions of measured
pixel intensity noise shown in [34]. These quantities are intrinsically related to the standard deviation
and correlation of random variables functionally related to ensembles of measured image intensities
from experiment. Correlation in the noise structure may arise from periodic lighting fluctuations such
as overhead fluorescent lights, projector gamma error, or dust particle patterns on either optics lens. In
Section [3.2] we show an example of object and reference noise correlation, which contributes to the
formulation of quantities oy, ox, and pxy. Also shown in detail in our previous work, the evaluation of
p(k) required separation into two integration regions, where the minus sign (—) is used when |x| < 7/2,

and the plus sign (+) is used when 7 > || > 7/2. The change of variables technique requires updating
wP(d—z)?
2rLd+3mP(d—2))’

these conditions using Equation , requiring the minus sign (—) when |x| < o and

wP(d—z)>? wP(d—z)?
(2nLd+inP(d—z)) > x| > 2(2rLd+inP(d—2))
Equation (12| completely determines the single-point probability density function of height mea-

taking the plus sign (+) when

surement uncertainty for any arbitrarily-correlated Gaussian pixel intensity noise. A special case
occurs when the pixel intensity noise structure has no inter-projection correlations, no correlations
between reference object and test object data, and the noise standard deviations in each object and
each reference image are the same for all projections and zero-mean; in [34] Equation 24 we showed
the reduced form of p(x) for this case. Combining this form with Equation [11| results in a height



uncertainty distribution

p(x) =

N cos? 27 Lxd

P((dz Z)(z(;_x = 27 Lxd 1 \/NCOSZ P(d 27;<ded )
—N 4(of+oy 2 TLX 1 —z —X—Z
e S VAN cos? p ek erf { 02102 +1 (14)

+11,
P(=d+x +2)? 2,/02 + o2

where o, and o, are the noise standard deviations in the reference and object images scaled by fringe
contrast, respectively.

2.2 Linearized Height Uncertainty Model

Proceeding exactly as with the derivation in Section 2.1 we can derive a height uncertainty
model for the linearized height measurement case as well. We define the linearized residual height
measurement noise as x; = z(¢ + k) — z(¢), and combining with Equation [J] provides

P(¢+r)d P¢d rPd

Xi 27 L 2L 27 L ( 5)

The change of variables technique gives the height uncertainty distribution as

(k)
p(Xl) - ‘OXl/a"d
21 Lp(k)
Pd
2mLp (%LXZ>

= pd (16)

For the same specific phase noise model described in the previous subsection, we may similarly combine
Equation [16| with the PDF derived in [34] and substitute for s using the inverse of Equation (15| to get

e~ sec? 2L (1 + /T zae% (erf () j:l)) L

p(xi) = e )

(17)

where

— 2pxyoxoy tan ”LXZ + 0% tan? 27;)LXm

21 = )
oxoy (1 - pXY)
t 27rLXl t 2rLx;
Hyox (Pxy0Oy — Ox tan + pxoy (0Oxpxy tan =57+ — oy
29 = )
\/_O'Xay\/l — pr\/O'y — Qp)(yUXOY tan QWLXZ + CTX tan2 27;3LXm

b — 1y 0% + oy — 2MX/W<TX<7YPXY7 (18)

2050y (1= piy)

and the quantities oy, ox, and pxy are, as before. Similar to the fully nonlinear version in Section
, the derivation requires updating the conditions of the previously-derived p(k) distribution, using



Equation This results in using the minus sign (—) in Equation [17] when |x;| < %, and the plus

sign (+) when £¢ > |y;| > £¢. Equation [17is the linearized height measurement model analogue to
Equation [12]

Finally, for the special case of pixel intensity noise structure described above, the linearized model
analogous to Equation [14] is

Ncos2 F2’d 3L 1 NC082 2mnLxy
e oy 57| € Wroter) \/m\/ N cos? =5 | erf | 5 —rr | £
[ 9oy OoT0
= 1. 19
px) - e * (19

3 Model Verification

3.1 Monte-Carlo Simulation

Ensembles of MC simulated phase measurements ¢,;c were created in order to verify the derived
height uncertainty models from Section [2] with varying levels of pixel noise correlation and standard
deviation, each using 98304 samples. We created the MC ensembles by adding pixel intensity noise €,,
to the I, , terms in Equation [§| and combining Equations [§ and [J] for the full MC model and the linear
MC model, respectively, giving

N _ . . o
Pd (arctan (Zi_l(fo,z+ﬁo,z) Sm&) _ arctan < Zi_l(lr7l+er7l)sm5l>>

N — N —
Ei:1(107i+507i)cos 0; Ei:l(fr,i-i-er,i) cos 0;

N - ~ - ,
— Lo,i+€o,i)sind; - . (Irit+€r;)sind;

2rL+ P (arctan < ZNk:l( iFEoi) ) _ arctan ( ZJ:VM( itens) ))
i1 (o,ito,i) cosd; Y gy (Init+eri) cosd;

Pd - ]\i Ioi €o0.i i 61 - N_ [ri €rs i 57,
Zvey = = |arctan %:V’—l( ] 4:6 q)sindi\ arctan %:Vk—l( : ‘EG ) sin (D)
2rL Y1 (Lo + €) cO8 ; >oici (L +€4) cosd;

(20)

We define pixel intensity noise €,, for the reference and the object images with jointly normal dis-
tributions [37-39], allowing arbitrary image-to-image correlation, i.e., €.; ~ N ({4, 0ri, Xp i) and
€~ N (lois 004, 2045), © = 1...IN, where p is the pixel intensity noise mean, o is the pixel intensity
noise standard deviation, and ¥ is the image-to-image pixel intensity noise correlation. The j subscript
allows for the cross correlation between noise statistics at different projection indexes. We also assume
that the reference and object images could also be correlated with correlation matrix X, ;;; in other
words, this allows for the general possibility that the i-th projection object image noise could be
correlated with the j-th projection reference image noise (in addition to the earlier allowance that
individual reference and object images may be intra-correlated). In the MC simulations, a single
measurement point was modeled with a height z = 2.09cm and the simulated DFP geometries L and d
were selected as 5cm and 30cm, respectively, deliberately chosen to provide clear distinctions between
the full model and linear model height distributions in Figure [2] Fringe pitch P was selected as 8.5mm
and 4 projections were used. Table [1| shows the specific statistics of the pixel intensity noise used for
model verification.

Figure [2] shows the agreement between the analytically derived height uncertainty for both full



Parameter Variable | Quantity (Figure [2A) Quantity (Figure [2B)
Reference image | o, {0.175, 0.22, 0.145, 0.05} {0.175, 0.22, 0.145, 0.05}, {0.525,
pixel noise std. 0.66, 0.435, 0.465}
Object image pixel | o, {0.54, 0.36, 0.45, 0.36} {0.18, 0.12, 0.15, 0.12}, {0.54,
noise std. 0.36, 0.45, 0.36}
1. 0.203 0.143 0.1 1. 0.601 0.493 0.594
0.203 1. 0.043 0.302 0.601 1. 0.54 04
Reference image | p,
pixel noise correla- 0.143 0.043 1. 0.078 0.493 0.54 1. 0.768
tion matrices
0.1 0.302 0.078 1. 0.594 0.4 0.768 1.
1. 0.691 0.774 0.86
0.691 1. 0.855 0.696
0.774 0.855 1. 0.769
0.86 0.696 0.769 1.
1. 0.297 025 0.099 1. 0.597 0.501 0.599
0.297 1. 0.401 0.202 0.597 1. 0.401 0.5
Object image pixel | p,
noise correlation 0.25 0.401 1. 0.292 0.501 0.401 1. 0.503
matrices
0.099 0.202 0.292 1. 0.599 0.5 0503 1.
1. 0.886 0.751 0.785
0.886 1. 0.774 0.895
0.751 0.774 1. 0.65
0.785 0.895 0.65 1.

Table 1: Figure [2| Simulation Parameters
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Figure 2: p(x) and p(x;) from Equations |12 and [17| compared to Monte-Carlo simulations generated according to Equations
and (A) shows two levels of pixel noise correlation. (B) shows two levels of pixel noise standard deviation.

and linear models and MC noise simulations. Excellent agreement is observed between the derived
height uncertainty distributions and the MC simulations, across a variety of correlation cases and noise
standard deviations.

3.2 Experimental Verification

3.2.1 Experiment Overview

To further assess the validity of our model, we compared the linearized height uncertainty model
to experimental height measurement maps with a prototype DFP system. We evaluated our height
uncertainty model under assumed ergodic conditions, i.e. that the distribution of phase values of
many iterations of a measurement point would approach the inherent uncertainty of a single phase
measurement point. A DFP experiment was conducted 85 times (referred onward as 85 iterations)
using projections N = 10, 14, and 18, measuring an unmoved, identical surface for the object and
reference plane. This experiment was conducted using the standard 8-bit imaging capabilities of the
camera system, and then repeated using the "BaslerBG12" setting which captures three-channel color
images in 12-bit depth projections N = 10,and 14, which were converted to mono-color 16-bit depth
prior to image processing [40]. We chose to perform the experiment with camera capturing with two
different bit depths to observe the effects of pixel value quantization on phase error relative to pixel
intensity noise.

Using a single, unmoved surface ensured two factors; first, that the true height value z for each
measurement pixel is known as 0, and second, that the distribution of height noise across all iterations
on the height map provided by the DFP system was not caused by mismatched subtleties in the
height of the measured object. The known height map of 0 allowed the usage of the linearized height
uncertainty model from Equations |[17] and [19| (special case). The 85 iterations recorded for each phase
shifted projection, were used for statistical computation of the inputs for the model, (o, 7,, pr, po, and

Pro)- A height map was created from the phase map for each iteration using a calibration routine
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Figure 3: 2 combined photographs of prototype DFP system. Illumination is shown by splicing a second image with shorter
exposure to illustrate projected pattern.

described in [36,41]; this resulted in the measured value of L/(Pd) =1.54 mm/rad. The amount of
iterations was chosen to provide a middle ground between ability to accurately estimate noise statistics,
and ambient pixel intensity fluctuation between captures. A full field map of ¢. (describing the carrier
phase, and incorporated in terms oy, oy, and pxy) was constructed from the unwrapped reference
phase measurement ¢,. Using the unwrapped phase measurement to account for the carrier phase,
as opposed to simply using pixel index, allowed adaptation to possible mismatched viewing angle of
fringes (not perfectly horizontal or vertical). Finally, the distribution of all 85 height values at each
pixel in the measured area were compared to the linearized derived height uncertainty model p(y;) to
assess the accuracy of the derived model.

The measurement system was comprised of a Vivitek Qumi Q5 handheld projector with the stock
lens removed and fitted with a sigma DLSR focusing lens, and a Basler ace acA4600-7gc color Gigk
camera equipped with 35mm fixed focal length lens. The modification of the projector lens allowed for
focusing the projection onto a smaller, higher resolution area for height measurement. A side effect of
using the custom projector lens was the addition of wavelength-based aberrations while using white
light fringe projection. These aberrations were mitigated by projecting green single-color fringes. We
were unable to synchronize the frames of the projector with the camera shutter which caused strong
"draw lines" in each image. We opted to mitigate these artifacts by increasing the exposure time of the
projector to approximately 500ms, tightening the camera aperture and using a neutral density filter
to further reduce illumination. A gamma calibration routine similar to that detailed in was used
to correct the nonlinear gamma effects of the projection and ensure more-sinusoidal fringe projection.
The experimental field of view was 460x460 pixels. We decided to use the large number of projections
to further mitigate the aberrations caused by the "draw lines" of the projector. The distance between
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Figure 4: (A) through (C) shows the images captures of reference fringe projections. (D) shows the unwrapped reference phase
map. (E) shows the height map of a single experiment iteration. (F) shows the distribution of pixel intensity noise with a fitted
normal distribution.

the camera and projector L was approximately 230 [mm] and the distance between the projector and
the measurement surface d was approximately 760 [mm]|. The projected fringe pitch P was set to be 80
pixels, which corresponded to a physical pitch of approximately 12 [mm].

Figure [4] shows examples of the DFP height measurement process using images with 8-bit depth
and 14 projections. We present the examples of the measurement process in the 8-bit depth range to
provide results that may be more representative of common DFP setups. Figure [4A-C shows a sample
of the captured incident fringes on the reference surface, each image having a unique phase shift ¢;.
Figure [dD shows an example wrapped phase map of the reference surface, before the spatial unwrapping
procedure is applied to remove 27 discontinuities. Figure dJE shows an example height map of a single
measurement iteration. Figure [@[F shows a sample distribution of raw pixel noise, with a fitted normal
distribution, verifying our selection to model pixel intensity noise as a normally distributed random
variable in our phase uncertainty derivation for p(x), and thus p(x). In this figure, the pixel noise is
shown with units of intensity not yet normalized by the fringe contrast. Pixel intensity units are by
nature integers quantized by the camera, and here we show them as the difference to their mean, which
is a decimal numerable, allowing for non-integer components in the histogram presented.

The images collected during the 85 iteration DFP height measurement procedure were used to
determine the noise statistics which are the input to our uncertainty model. Figure [5[shows a collection
of plots that illustrate the measured structure of pixel noise for the 14 projection DFP experiment.
Figure shows the pixel standard deviation, with the primary y-axis showing the pixel intensity
standard deviation (before normalizing to the fringe contrast), and the secondary y-axis shows the pixel
intensity standard deviation o, , normalized by fringe contrast, found by dividing the raw standard
deviation by the measured fringe contrast for each pixel. We observed that the standard deviation
was positively related to the pixel intensity which is significant due to its impact on the assumptions
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Figure 5: (A) shows the relationship between pixel intensity and pixel intensity noise. (B) shows the measured pixel intensity
of a single pixel across all projections and all 85 iterations. (C) through (E) shows the mean correlation matrices across all pixels
for the reference, object, and between reference and object, respectively.



13

required for the special case described in Section [2.1| Figure shows a single pixel’s intensity value
across all 14 fringe projection projections, for each iteration, on the object image. For each pixel, p,;;

n-n n_-n

was estimated by finding the correlation of intensity values of projection "i" and projection "j" on

the reference plane, and similarly for p,;; on the object plane. For each pixel, p,,;; was estimated

ll I

by finding the correlation of intensity values of projection ":" on the reference plane, and projection

"5" on the object plane. We observed that each off-diagonal term in p, and p, were approximately
normally distributed, allowing for their means and standard deviations to accurately summarize their
distributions. Figure [5IC-E show the standard mean of p,, p,, and p,, averaged across all pixels in the
measurement scene, respectively. For this 8-bit, 14 projection experiment, we observed a trend of low,
positive correlation of pixel intensity noise with nearest-to-diagonal terms approximately 0.07 — 0.08.
A slight structure can be observed in the off-diagonal terms of the correlation matrices; near-diagonal
terms (representing images captured temporary close), as well as farthest-from-diagonal (outermost),
exhibiting the highest correlation. The non-identity correlation structures measured in experiment are

significant due to their impact on the assumptions required for the special case described in Section

3.2.2 Experimental Results

Results comparing the experimental distribution of measured height values to the estimation of
height uncertainty, p(x;), are shown in Figure @ and a summary of the results in Table . Figures @A—D
shows results from the DFP experiment using 8-bit images, while Figures [(E-F show results using 12-bit
images. Figure [(JA shows a comparison of an example pixel’s height distribution across all experiment
iterations compared to p(y;) estimated using the pixel’s image intensity statistics o, g5, pr, po, and pre
measured from the experiment. In order to report the accuracy of our height uncertainty model for
every pixel in the measured area, a performance metric A was created that represents the normalized
difference of the estimated height uncertainty and the distribution of height measurements across all
iterations. Each pixel in X is calculated using A = (6., — 0¢)/0m, Where o, is the standard deviation
of the measured heights of each pixel, and o, is the standard deviation of p(x;). The error map is
constructed to provide positive values when p(y;) underestimates the standard deviation of the height
distribution. Figure shows the normalized difference map X for every pixel in the measured area,
using the linearized height uncertainty model p(y;) from Equation (17| and measured noise correlation
statistics. Figure @C shows the normalized difference map A when using the simplified model from
Equation [19] for the special case from Section [2.1} i.e. assuming no pixel noise correlation and using the
average pixel noise standard deviation across all projections. The example measurement noise statistics
provided in Figure [5] show that there was in fact noise correlation in our experiment, meaning that the
special case assumptions of Equation 19| will induce error. This causes the normalized difference map A
in Figure [6C to differ from Figure [6B, shifting from positive to negative mean.

Figure@D shows the distributions of normalized difference maps A for the full and special cases, for
all 3 8-bit experiments using N = 10, 14, 18 projections. We observed that our height error prediction
performed better in cases with higher N, a reason for this trend may be that projector gamma error is
reduced when using more projections [42]. The distributions of \ created from p(y;) using correlation
statistics were positively biased by 2.2%, 1.9%, 3.7% and with standard deviations of 8.2%, 8.0%,
and 7.8% for the experiments using 10, 14, and 18 projections, respectively. The distributions of A
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Figure 6: (A) shows a single pixel’s experimental distribution of heights from all 85 measurements compared to its estimated
height uncertainty p(x;) for the 8-bit image capture experiment. (B) shows the normalized difference map of all of the pixels in
the measurement area using all of the available noise statistics for the 8-bit image capture experiment. (C) shows the normalized
difference map of all of the pixels in the measurement area assuming that there is no pixel noise correlation and the standard
deviation of the pixel noise is constant throughout all of the projections, for the 8-bit image capture experiment. (D) shows
distributions of the error maps for N = 10, 14, and 18 projections in the 8-bit image capture experiment. (E) and (F) show the
14 projection normalized difference map and the distributions of error maps for N = 10 and 14, for the 12-bit image capture
experiment.
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Bias Standard Mean
deviation off-diagonal
Pr.oro Value
10 projections +2.2% 8.2% p ~ 0.08 —0.09
Full linear model | 14 projections +1.9% 8.0% p~ 0.07 —0.08
18 projections +3.7% 7.8% p =~ 0.02 —0.03
8-bit
10 projections -1.9% 10.5% p =~ 0.08 —0.09
Special case | 14 projections -1.4% 8.6% p~ 0.07—0.08
18 projections +3.6% 7.4% p =~ 0.02—-0.03
10 projections +0.9% 9.3% p~0.13-0.20
Full linear model
14 projections +2.5% 8.1% p~0.11-0.22
12-bit
10 projections -8.7% 14.5% p=0.13—0.20
Special case
14 projections -0.5% 10.7% p~0.11-0.22

Table 2: )\ distribution statistics

created from p(x;) predicting a tighter height uncertainty than measured in experiment, which we
hypothesize is due to other sources of error entering the height calculation such as external vibrations,
subtle environmental lighting fluctuations, gamma error, and projector draw lines.

A distributions created from ignoring noise correlation (special case) for 8-bit experiments using
10 and 14 projections were slightly negatively biased by -1.9% and -1.4%,with standard deviations
of 10.5% and 8.6%, respectively. We hypothesize that this is because the introduction of correlation
reduces height uncertainty, as shown in Figure 2JA, and assuming no correlation exists increases the
height uncertainty estimation made by our model. A distributions from the 18 projection experiment
created from ignoring noise correlation was positively biased by 3.6%, with a standard deviation of
7.4% and considerably closer to the full model’s error distribution; we hypothesize that this is due to
very low levels of correlation during the 18 projection experiment (averages of the near-diagonal terms
of the p matrices were approximately 0.02 during the 18 projection experiment as opposed to 0.08 for
both 10 and 14 projection experiments).

Figures [(E and F show the effects of using 12-bit imaging. We observed similar model height
estimation error for these experiments compared to the 8-bit image capture experiments, suggesting
that our uncertainty model’s performance is independent of pixel quantization effects. A key difference
in the experiment was that our observed pixel noise correlation was much higher when using 12-bit
images (see Table[2). A formal analysis of the quantization occurring within the camera was considered,
but deemed out of the scope of this paper. Figure [ is positively biased, similar to its 8-bit counterpart
in Figure [(B, and Figure [0 shows similar distributions to its 8-bit counterpart in Figure [6D. The
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model estimation accuracy bias for 12-bit full cases for N = 10 and 14 are 0.9% and 2.5%, and standard
deviations of 9.3% and 8.1%, respectively. For the special case, estimation biases were recorded as
-8.7% and -0.5% and with standard deviations of 14.5% and 10.7%, for N = 10 and 14, respectively. We
attribute the large negative bias for the 10 projection special case to be the large amount of correlation
observed through the experiment (off-diagonal terms averaging around 0.15) We were unable to perform

an 18 projection experiment using 12-bit imaging depths due to memory and hardware constraints.

4 Conclusions

A height-converted image intensity noise uncertainty model (Equation was derived as a
continuation of the phase-converted image intensity noise uncertainty model from [34]. As the DFP
height profiling process is often linearized during practice, a linearized model (Equation was also
derived. Additionally, simplified versions of the full and linear height uncertainty models (Equations
and Were proposed according to special assumptions regarding pixel intensity noise statistics. The
full and linearized height uncertainty models were verified against a variety of noise structures with
varying levels of correlation and noise standard deviation. Excellent agreement was achieved between
the model and simulations, shown in Figure 2 The height uncertainty model was also compared to
an ensemble of 85 real DFP experiments each with 8-bit and 12-bit camera images, where an area of
30x30mm (460x460 pixels) was measured. Noise statistics were recorded and used as inputs for the
height uncertainty model, and the distribution of height measurements was compared to the height
uncertainty model for each pixel, shown in Figure [6] In general, our full statistical model was observed
to predict the height measurement uncertainty with error below 11% for the 8-bit depth images, and
below 9% for the 12-bit depth images. The effect of ignoring correlation increased our model error
proportionally to the amount of correlation observed.

The significance of this research is to provide a probability density function model which estimates
the height measurement uncertainty of the DFP technique using observable pixel intensity fluctuation
statistics in the pixel field domain; from such a density function, any order statistics may be computed.
Advancement of this model currently includes work involving (1) verifying this model against three-
dimensional objects with known height profiles, (2) using this model to quantify existence of small
surface features with non-zero height profiles, (3) establishing optimization in the DFP measurement
process to determine which averaging methods, exposure settings, and projection number will minimize

height uncertainty.
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