Lawrence Berkeley National Laboratory
LBL Publications

Title
An Adaptive Finite Difference Method for Hyperbolic Systems in One Space Dimension

Permalink
bttgs:ééescholarshiQ.orgéucgitem452n258rzl
Author

Bolstad, John H, Ph.D. thesis

Publication Date
1982-06-01

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at bttgs://creativecommons.orq/licenses/bv/4.0,|

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/52n258r7
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

ILBL-13287
c. o

Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA
) — NIV
Physics, Computer Scienge &

[[} [RATOW
Mathematics Division augi7 158

LIBRARY AND
OOCUMENTSSECﬂON

~~w

AN ADAPTIVE FINITE DIFFERENCE METHOD FOR HYPERBOLIC
SYSTEMS IN ONE SPACE DIMENSION

John H. Bolstad
(Ph.D. thesis)

June 1982 a A
TWO-WEEK LOAN COPY

This is a Library Circulating Copy
| | which may be borrowed for two weeks.
~ 0 Y For a personal retention copy, call’
B [cch. Info. Division, Ext. 6782.

2

| Sves |)gT

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

—2

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
- University of California.

Yo -

LBL-13287
(STAN-CS-82-899)

AN ADAPTIVE FINITE DIFFERENCE METHOD FOR -
HYPERBOLIC SYSTEMS IN ONE SPACE DIMENSION!

John H. Bolst;ad

Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

Ph.D. Dissertation,
Computer Science Department,
Stanford University

June, 1982

! Supported in part by the Office of Naval Research under contract N0O0014-75-C-1132, and by the
Director, Office of Basic Energy Sciences, Engineering, Mathematical, and Geosciences Division of the
U. S. Department of Energy under Contract DE-AC03-76SF00098.

/[“\‘

-

Table of Contents

INErodUcion ... 1
1.1 Statement of the Problemcccccciiiininiiiiiiiiii, 1
1.2 Brief History of Adaptive Methodsc.cc.ooeeviiviiiiniiiiiiinni 4
1.3 Other Adaptive Methods for Time-Dependent Problems 7
1.4 Summary of Resultsc.oovivevrerinicineririiine e eee e et 12
Mesh Structure and Solution Algorithmc..ceeevviiiiiiiiiinnnn.. SO 186
2.1 The Continuomns Problermm ... cveiviee ettt vre e enee e ravenenas 16
2.2 Mesh Structure - First Descriptioncccoeeeeviiieirrirenriiiinisrerieins 19
2.3 Mesh Structure—Second Descriptionccccccvrvrurunviiiniiiicnniiiininnnn.. 23
2.4 Operations on Refinementscccccoeriviiieiiiiiiciineiinsicenei e 31
2.5 Difference Approximationccccceevvviiiiniiiiiriniiiiiiiiiniiiiniiiieniciiieinn, 34
2.8 Solution Algorithmcc..coiiiiriiiiiiiiier i e e 40

3 Stability et e ettt 50
3.1 Preliminaries e e 50
3.2 Need for a New Stability Definitionccoovvvvveveririiiniiiriiiiivernreen, 55
3.3 Stability of Refinement Algorithmc..ccccciviniiiiiiin 82
Error ADALYSISccouimiiiiiiiiieiriiiie et e e et e e e e e 64
4.1 Modes of Convergence ettt e e it e e ———— 66
4.2 Interpolation Error e e et oreetb b e e et et re et tn e abaeneenans 87
4.3 Rate of Convergence, | S ORI PPPPPI 70
4.4 Rate of Convergence, ITcccovmviniiiiniiennnnine DO OP PO P PR UPPRPRTRUOR 73
Estimation of the Local Truncation Errorccoooon. 81
5.1 Methods not Using Local Truncation Errorcooooooeeviiniinnin. 82
5.2 Four Methodscooeeiviiiiieiiiiiirc e 83
5.2.1 Differences PP 84
5.2.2 Estimating an Interpolant with 'Small’ Derivative 85
5.2.3 Two-Step Richardson Extrapolation e 87
5.2.4 Three-Step Richardson Extrapolationccooeovviiiiniiiciinnnn. 87
5.3 Coarse/Fine Interfacesc.ccoeeeriiiiiiiiiiiiiie e, s 94
5.4 Boundariescccoeeennn. PO SUUR U UPTTPP FORUURR 95
B0 S YO OIMIS iivii it 99
Data SErUCLULeScovviviiiiieiieriiiiiiiie et aaes e 102
6.1 Deques P PP PP PTRPPTDPPPPPPRPPON 102

L T~ A b -1 T RPN 105

il

iv

6.3 Memory Repackingc...ocevvvunenrnnns PRSI UPPRUPPURPURPURPR 1 ¢ | I
6.4 Alternative Data Structuresccimmiminiiiiiiciiinan, 109
7 Choice of Programming Language eeer e —— ettt et e ete e tsessrenen 114
8 Computational Resultscccieeen, e el evrieneenio. 120
8.1 Model Problemsccooiiiiiiiiiiiiccci e 121
8.2 Qualitative ReSUlLSccocuviiiiiiiiiiiireniiirei it ee sttt a e 123
8.3 Choosing Refinement Ratios and Maxunum Levelscc..cocovvnvvvvreennnnns 156
8.4 Efficiency of the Method .. 161
8.5 Behaviorash - 0 e —————————————ai——————————on ettt e s e ies e 165
8.6 Estimating the Local Truncation Error in the Interior s 167
8.7 Estimating the Local Truncation Error at Boundaries 187
8.8 How Often Should the Local Truncation Error Be Checked? 169
8.9 Linear vs. Quadratic Interpolationc.coovvvverieiiiiiniiniii 171
9 Conclusions and EXtensionscccovivuveriiiiniriiiveiiiiiree e eencieeceviinia e 174
References.....ccccoiiveiiiiniiiiircenniicinincenieencienenenens et ereeaer et aa et e ra s eeeeenas 178

A Appendix: Program Listingcccccovvimviiiiiiiiniiiiiii e e, 184

HUY

)

Abstract

Many problems of physical interest have solutions which are generally -quite
smooth in a large portion of the region of interest, but have local phenomena
such as shocks, discontinuities or large gradients which require much more
accurate approximations or finer grids for reasonable accuracy. Examples are

atmospheric fronts, ocean currents, and geological discontinuities.

ln‘th_is thesis we develop and partially analyze an adaptive finite difference

-mesh refinement algorithm for the initial boundary value 'problem toi- hyperbolic

systems in one space dimension. The method uses clusters of uniform grids
which can "move"” along with pulses or steep gradients appearing in the calcula-

tlon and which are superimposed over a uniform coarse grid. Such refinements

‘are created, destroyed, merged, separated, recursively nested or moved based

on estimates of the local truncation error. We use a four-way linked trée and
sequentially allocated deques (double-ended queues) to-perform these opera-
tions efficiently. The local truncation error in the interior of the region is
estimated using a three-step Richardson .ext.rabolation procedure, which can
also be considered a deferred correction method. At the boundaries we employ

differences to estimate the error. Our algorithm was implemented using a port-

able, extensible Fortran preprocessor, to which we added réc_ords and pointers.

The method is applied to three model problems: the first order wave equa-
tion, the second order wave equation, and the inviscid Burgers’ equation. For

the first two model problems our algorithm is shown to be three to five times

more efficient (in computing time) than the use of a uniform coarse mesh, for

the same accuracy. Furthermore, to our knowledge, our algorithm is the only

one which adaptively treats time-dependent boundary conditions for hyperbolic

systems.

Acknowledgments

I am grateful to my research édvisor, Professor Joseph Oliger, for suggest-
ing the topic of this thesis, and for his encouragement and advice during its
preparation.] would also like to thank Professor Gene Golub for his hospitality
énd for bringing many numerical ‘analysts from around the world to the numeri-
cal analysis group at Stanford. I also wish to thank the other memberé of my
reading and oral committees, Professors John Herriot, Joseph Steger and

George Homsy.

I wish to thank Dr. Paul Concus for encouragement and support. Also my
thanks to Marsha Berger, Phil Colella and Tony Chan for suggestions and techni-
cal discussions.] also owe a debt of gratitude to fellow students in the numeri-
cal analysis group at Stanford, from whom I learned a great deal, but who are

too numerous to mention.

I acknowledge computing facilities used: at the Stanford Linear Accelerator
Center, operated for the U. S. Department of Energy by Stanford University; and
at the Computer Center of the Lawrence Berkeley Laboratory, operated for the

Department of Energy by the University of California.

Finally, I gratefully acknowledge financial support provided by Stanford
University as a teaching assistant, by the Office of Naval Research under con-
tract NOO014-75-C-1132, and by the Director, Office of Energy Research, Office of
Basic Energy Sciences, Engineering, Mathematical and Geosciences Division of

the U.S. Department of Energy under contract DE-AC03-76SF00098.

+

7

o

CHAPTER 1

‘Introduction

" In this chapter we will ;give a justification and motivation for developing a
finite difference mesh refinement algorithm, and then give a brief history of
adaptive methods for numerical computations. | Next, we review some other
adaptive algorithms for time-dependent partial differential equations. Finally,

we will summarize what is contained in the rest of the thesis.

1.1. Statement of the Problem

Many problems of physical interest have solutions which are smooth in a
large portion of the region of interest, but have local phenomena such as shocks,
discontinuities or large gradients which require much more accurate approxi-
mation or finer meshes for reasonable accuraéy. Examples of this are atmos-

pheric fronts, ocean currents, geological discontinuities, and storm surges.

When the positions of the gradients are known a priori, and are independent

-of time, one can use coordinate transformations, a technique used extensively in

aerodynamic computations, e.g., Steger and Chaussee [1980].

In more detail, the coordinate transformation technique is as follows. Sup-
pose one wishes to study the two-dimensional flow around an airfoil, viewed in a
coordinate system fixed to the airfoil. It is known that steep gradients exist

near the surface. Hence a mesh is designed which follows the contours of the

“airfoil, and in which the mesh size grows exponentially smaller as the surface of

the airfoil is approached. This irregular mesh is then mapped (sometimes con-
formally) onto a rectangular region with uniform mesh. The differential equa-

tions governing the flow are similarly transformed. The transformed differential

equations are then solved on the uniform mesh Finally, the results are

transformed back to the original coordinate system.

For a problem in which the position of the gradients is known, and fixed for
all time, this method is obviously advantageous. And, if the position of the gra-
dients changes as an a priori function of time, the mapping function can change
with time (e.g., flow past a helicopter blade). However, when the manner in
which the gradients move is not known in advance, this technique cannot be

used.

In such a case, one procedure is to use A fine mesh throughout the entire
calculation region. But such an approach usually requires too much. computer
time and/or storage. An alternative method is to use an underlying coarse
mesh for the entire region, and to superimpose a fine grid, or grids, on the
region(s) where the solution is varying rapidly. The crucial difficulty is that the
refined region{s) must then move along with the rapidly varying portion of the

solution, at all times enclosing this portion.

The necessity for this is illustrated in Figure 1.1, taken from Browning,
Kreiss and Oliger [1973]. The figure illustrates the numerical solution of the ini-

tial boundary value problem

Uy = Uy, -l=z=1,0=<t,
u(z,0) =0, | -1<z<1,
u(1,t) = g(t), 0=<t,

‘where g(t) is a rapidly oscillating sine wave. In Figure 1.1 we see the result of
the computation on a mesh which is divided into a coarse region on the interval
—1 <=z < 0.495 and a fine region in the interval 0.495 <z < 1. The mesh width
(0.01) in the coarse region is five times the width in the fine region. The figure is
plotted after a time in which the influence of the initial condition has almost

completely "washed downstream".

STUaUWIaUY Y mﬁ>o§ I0] %ﬁmmmouz 1°1 2andry

o] | 0 0l=

Ly » # &

It can be seen that the wave is accurately represented in the fine region {30
points per wave length) but has been mutilated in the coarse region (6 points
per wave length). From this it is clear that the rapidly varying part of the solu-

tion must not be allowed to escape the refinement region.

1.2. Brief History of Adaptive Methods

We see, then, f.hat the mesh must "adapt” itself to the character of the solu-
tion. This is very much in the spirit of recent trends in numerical analysis. A
brief, but necessarily incomplete, history of adaptive methods for the solution of

numerical problems is therefore in order.

An early and widely used type of algorithm employing adaptive principles
was the o.d.e. solver, which solves the initial value problem for a first order sys-
tem of ordinary differential equations. This was perhaps due to the needs of the
U. S. space program in the late 1950's and early 1960’s. The first such algo-
rithms used a fixed step size throughout the interval of integration. It was later
realized that such a technique was wasteful, and the step size should be finer in
regions where the solution varies more rapidly, and conversely. The next step in
these programs was the incorporation of a mechanism to halve and double the
step size. Such a mechanism required a careful estimation of the local trunca-
tion error, together with certain heuristics. Then, to gain further efﬁciency,
integration formulas of varying orders were incorporated, since, for smooth
solutions, higher order methods are more efficient than lower order ones. A

widely known program of this type is Gear's [1971] DIFSUB.

Still further refinements were the programs of Krogh (DVDQ) [1969] and
ODE/DE/STEP of Shampine and Gordon [1975], which allowed truly variable step

size, and allowed still higher order integration formulas.

f

)

Another area of numerical ‘analysis to use the adaptive approach was qua-
drature. The first published program of this type, which was written in Algol 60
and recursivély subdivided the integration interval, was given by McKeeman
[1962]. A more sophisticated analysis by Lyness [1970] led to the program
SQUANK (using an adaptive Simpson algorithm) which was in turn superseded by
de Boor's CADRE [1971a, 1971b] (using 'cautious” adaptive Romberg integra-
tion). These methods obtain a Sequence of approximations on finer and finer
meshes (which need not occupy the entire interval of integration) and use some
form of linear extrapolation to determine which parts of the interval to refine
further. Also of interest in de Boor's foutine is the use of a nontraditional (for
numerical analysis) data structure--a stack. This has been carried one step
further in QUADPACK [de Doncker, 1978], as typified by routine DQAGS. The
Gauss-Kfoﬁrod scheme is used, but with nonlinear, rather than linear extrapola-
tion, using Wynn's epsilon algorithm. This enables the routine to handle some

singularities in the integrand.

A related area using the adaptive approach is multi-dimensional quadra-
ture. Although other woxfkers have proposed adaptive algorithms in this area,
the one of greatest interest for our purposes was'given by Kahaner and Wells
[1979]. The region of integration is divided intb finer and finer simplices (not
rectangles) and as usual a linear extrapolation is performed to estimate the
error. The new ideas that enter here are. the use of sophisticated data struc-
tures (i.e., heaps, queues, hashing) and programfning language. Similar ideas
are used in our own algorithm.

An area with a more recent beginning is the adaptive approach to the

numerical solution of twe-point boundary value problems in ordinary differential

equations, as typified by Ascher, Christiansen and Russell's COLSYS [1979] and

Lentini and Péréy;a_'EMIDASVAS [1977]. Here again, an attempt is made to place

more mesh points where the solution varies more rapidly. In order to

implement PASVA3, Pereyra and Sewell [1975] introduced the concept of an
equidistributiﬁg mesh, and this idea, or a slight alteration of it, underlies many
of the adaptive algorithms for two-point boundary value problems and elliptic
and parabolic partial diﬁeréntial equations. In Section 4.4 we use this idea to
justify our own algorithm. The method of deferred corrections was used in
PASVAS3 to estimate the local error, and in Section 5.2.3 we also use it (in a

somewhat disguised form) for the same purpose.

A fifth area using the adaptive approach is elliptic partial differential equa-
tions. One adaptive algorithm for this problem was developed by Bank and Sher-
man [1979] and incorporated in the package PLTMG. This package uses (two-
dimensional) triangular finite elements. To decide where to refine, it uses a cri-
terion of Babushka and Rheinboldt [1978]. This criterion requires that a {com-
putable) estimate of the (global) error in the energy norm is approxirriately

equal for all elements. A tree is used to represent the refinement structure.

Another adaptive algorithm for elliptic equations is the multigrid (finite
difference) method of Brandt [1977a, 1977b]. Here the differential equation is
discretized in the usual manner, but on a seciuence of ever-finer grids. Instead
of solving the approximations by relaxation independently on each grid, the
computation can proceed from one member of the sequence to another in a
complicated manner, and the results of one "level" are used to help in the solu-
tion at other levels. Although this scheme in its original form did not automati-
cally insert more points in regions where the solution changes rapidly, Brandt
has indicated how to modify the method (using estimates of the local truncation

error) to make it adaptive.

The last area in which adaptive methods are being used is our own of time-

dependent partial differential equations.

1.3. Other Adaptive Methods for Time-Dependent Problems

Let us now comment on some other adaptive methods for the initial boun-
dary value problem for time-dependent problems. As in the previous section,

this survey is certainly incomplete.

Two other finite difference methods similar to our own are those of W. Gropp
[1980] and M. Berger {to appear]. Both of these are for hyperbolic equations in

two space dimensions.

Gropp calculated a shock satisfying the two-dimensional inviscid Burgers
equation. He used a uniform coarse mesh, with one uniform refinement (which
could "move" with time) supérpbsed on it. All meshes were parallel to the coor-
dinate axes. The time step in the refinement was allowed to be smaller than in
the coa‘rse mesh. He estimated the error by approximating spatial gradients.
Unfortunately, it is difficult to generalize this criterion to other situations (e.g.,
smooth solutions). (See Section 5.1.) But his results showed the feasibility of.
this approach. We previously noted that the local truncation error criterion that
we use can aiso locate shocks (although it is probably ndt the best way to do

this).

Berger's algorithm is similar to ours, and is proceeding parallel to our own.
(However, she is not handling boundary conditions.) Like us, she uses a tree
structure, but her data structure is of necessity more complicated. Her
refinements need not be aligned along coordinate axes, but are free to rotate.

Her error estimation is the same as ours.

Another finite difference method was developed by Dwyer, Kee and Sanders
[1980] for parabolic problems in one and two space dimensions. In two dimen-
sions, they perform a coordinate transformation in one of the spatial variables,

and adapt in that variable only. As a criterion for mesh placement, they use an

integral of one plus a constant times the absolute value of the first derivative of

the solution. In one spacé dimension they successfully compute solutions with

severe boundary layers.

Brackbill and Saltzman [to appear] have proposed another finite difference
method for parabolic preblems in two and three dimensions. It also uses coordi-
nate transformations. The criterion for mesh placement is based on a con-
strained variational formulation. The constraints enforce orthogonality and
smoothness of the coordin&te transformation. The variational form contains the
squared lengths of the gradients of the transformation variables and of the gra-
dient of the (desired) solution. Forming the Euler equations (from the varia-
tionai formulation) then produces a coupled, time-dependent set of difference
equations for the solution and the coordinate transformation, which are then
solved. The authors have actually computed (e.g., the convective-transport-

reaction-diffusion equation) with this method in two and three space dimensions.

The method of Rai and Anderson [1982] is for one and two dimensional para-
bolic and hyperbolic equations. Once again, coordinate transformations are
used. Mesh points are considered to attract or repel each other; the former
where the local truncation error is high, and conversely. The authors then
determine the coordinate transformation by laws resembling Newton's laws, with
particles replaced by mesh points, charges (or masses) replaced by truncation
errors, and the resulting force replaced by the coordinate in the computational
plane. Tﬁe number of mesh points is fixed during the duration of the computa-
tion. The authors compute the laminar boundary layer over a flat plate, and flow
past a cylinder in a supersonic free stream with associated bow shock (the Euler
2-D gas dynamic equations). They use low order difference methc;ds, and esti-
mate the truncation error by higher order differences. They state that they

would like more accurate error estimates.

MY

A striking feature of these adaptive difference méthods. and many others, is
the wide variety of criteria used to determine the placement of mesh points. We

discuss this further in Section 5.1.

Other adaptive approachés use finite elements. Some of these are Gannon's
[1980], in two space dimensions for parabolic problems, Davis and Flaherty's
[1982] method in one space dimension, also for parabolic problems, and Miller's
“_nioving finite elernent..“ method [Gelinas, Doss and Miller, 1981], [Miller and

Miller, 1982], in one space dimension for parabolic and hyperbolic problems.

Davis and F‘laherty'é method is different from the other two. Instead of
expanding the solution in spatial basis functions with time-dependent
coefficients

v 6) = 3 as(t)es(z) (1.1)
as the other methods db. they use a finite element Galerkin‘_method‘ on tra-
bezoidal bspace-time elements. The time step is uniform and constant. The
number of trapezoids is fixed for all time. Given two partitions of the interval
[a, b] at times ¢,, and £, ,,, respectively, each of which contains the endpoints a
and b and consists of n points, the trapezoids have as théir vertices adjacent
members of the two partitidné. The main problem, then, is chbosing a partition
at time f,,,; when one is known at time £,,. The authors do this by approxi-
mately equidistributing the projection error, and hence the global error. Since
the partition can be nonuniform, this involves at each step solving a nonlinear

system of equations whose Jacobian is block tridiagonal. This method strikes us

as quite expensive. However, no computer times are given.

Gannon's Galerkin method uses the standard expansion (3.15), and is based

on the results of Babushka and Rheinboldt for elliptic problems. He uses time

_steps which are variable but uniform in space, and elements which are piecewise

10

uniform and always parallel to the coordinate axes. The number of elements is
not fixed. Unlike ours and Berger's approach, the finer elements are not con-
sidered to "overlay'" the coarse elements. He proceeds as we do in that an ele-
ment structure is kept until error estimation is performed; then the elements
are adjusted. To estimate error, elements are chosen as in Babushka-
Rheinboldt so that an approximation to the (global) error (in energy norm) is
approximately equidistributed on elements. At the next time the error is
checked, the elements are adjusted if the estimates deviate "too much" from
equality. As is usual for Galerkin methods, one uses a stiffly stable o.d.e. solver
to step forward in time. One needs to solve a system of equations at each time
step, but unlike the Davis-Flaherty method, the system is linear when the
differential equation is linear. A tree-type data structure is used to keep track

of refinements.

In Miller's moving finite element method, again the standard expansion {1.1)
is used. Instead of choosing the coefficients a; and fixing the basis functions g;,
the ¢; (which are, for example, piecewise linear "hat" or "chapeau” basis func-
tions) are allowed to have their centers vary (in space) as well. This leads to a
modified Galerkin method. Again, a stiffly stable o.d.e. solver is used to step for-
ward in time. Thus, a system of equations is solved at each time step, which is
(in general) nonlinear even when the differential equation is linear. The matrix
of the system may become singular, so further parameters ("'spring constants")
are introduced to regularize it. Furthermore, the minimization problem that
the Galerkin method solves is replaced by a weighted minimization problem, s0

the weights must be chosen. The time step is variable but uniform in space.

Gelinas, Doss and Miller illustrate their algorithm with a number of interest-
ing problems. One of them is similar to our P2 (the second order wave equation
with counter-streaming Gaussian pulses). Instead, they use square waves. Their

squares are resolved almost perfectly. The boundary conditions of this problem

«

11

are zero (and in fact disagree with the exact solution at £ = 0), and we believe
their method cannot handle time-dependent boundary conditions (2.3), (2.4) for
hyperbolic problems. In contrast, our ("open") boundary conditions for this
problem are time-dependent, and neither purely inflow or outflow. They allow

the pulses to pass in or out of the region.

Let us summarize a few features common to all these finite element
methods. All use a time step which is the same at every spatial pbint at a given
time. (Recent work of T. Dupont [to appear] is an exception.) This is largely due
to the use of an o.d.e. solver to advance in time (in two of the methods). All use
implicit tir.ﬁe-stepping methods. Since we use explicit methods, it is essential to
allow finer time steps in refinements than in the coarse mesh. (Otherwise, sta-

bility would force.us to use tiny time steps throughout the region.) So for hyper-

- bolic systems, the time step in our method is limited by accuracy, not stability.

A significant difference between our method and Miller's, Davis and
Flaherty's, Dwyer, Kee and Sander's, and Rai and Anderson’s (but not Gannon's)
is that we allow a variable number of refinement points as needed. Refinements
can be created or destroyed. In contrast, in the other methods, the number of
basis functions or mesh points is fixed for all time. In Miller's method, the basis
functions do indeed "bunch up' around steep’gradients or shocks, as desired.
But suppose one started with one steep gradient, and then two or thfee others
developed. In this case, the fixed number of basis functions would either be
insufficient or else excessive (and hence wasteful), at some times, but not oth-

ers.

Thus it is clear, even from this incomplete survey, that adaptive algorithms
are playing an increasingly important role in numerical computations. and will
continue to do so. Somewhat less clear but still discernible is a trend toward

more complicated data structures than vectors and matrices (such as deques,

12 . -

heaps, stacks and trees), and the need for more flexible programming languages

to implement them.

1.4. Summary of Resuits

We now summarize what is contained in the rest of this study, and point out

what we believe to be new and significant.

In Chapter 2 we describe our adaptive mesh-refinement algorithm in detail.
The general philosophy and methodology was given in Oliger [1978] and Budnik
and Oliger [1977], but we contributed some ideas not in these papers, such as
the necessity for recursive refinements and the choice of data structure. We
believe this is the first detailed description of the algorithm, and that ours was
the first implementation. We first describe the continuous problem, the usual
first order hyperbolic system on a strip in one space dimension. Next we
describe our mesh structure. We give two descriptions of this; the first is used
in the theoretical work in Chapters 3 and 4, and the second is used in describing
the algorithm in Chapters 2 and 5. In this second description we define a
refinement, and introduce the idea of recursive refinements. Next we state the
difference approximations we use. The fundamental restriction is to ezplicit
difference methods. For convenieﬁce in implementation and error estimation,
we also insist on two-(time) level schemes. A detailed description of the algo-
rithm is then provided, including techniques at boundaries and interfaces
between coarse and fine meshes. One part of the algorithm description--the

estimation of the local truncation error--is deferred until Chapter 5.

In Chapter 3 we give a brief discussion of stability. We show why the stabil-
ity definition of Gustafsson, Kreiss and Sundstrém [1972] cannot be used, and
state the stability definition of Berger, Gropp and Oliger [to appear]. We then

prove {Proposition 3.10) that, if a difference scheme is stable on one horizontal

",

13

strip in the z—t plane, then it is stable for any number of strips, under a few
weak assun'iptions (such strips are described in Section 2.2). We did not prove
that our algorithm was stable according to this definition, but there is good rea-

son to believe that it is.

Chapter 4 treats convergence of the difference scheme, and relates bounds
on the global truncation error to bounds on the local truncation error. We first
state (but do not prove) a proposition on the rate of convergence of difference
appfoximations to the solution of the differential equation. This Proposition 4.1

is the analogue of one given by Gustafsson [1975], but for a difference scheme

-which is stable according to the new stability definition mentioned above. Using

this proposition, and the theory of Pereyra and Sewell on equidistribution of

‘meshes arising in approximations to two-point boundary value problems, we

prove a relation between the global truncation error and the local truncation
errors (Proposition 4.2), which can be said to.provide a theoretical justification
for our algorithm. This proposition is new, but it is an analogue of a similar

theorem for the Cauchy problem given by Oliger [1978].

Chapter 5 discusses the estimation of the local truncation error, which is
crucial to the success of the algorithm. We first discuss alternatives to the local
truncation error in placing mesh refinements. Then four methods of local trun-
cation error estimation are described. One is totally impractical; ancther
(differences) is marginally successful, and the other two are successful. Only
the last one (three:step Richardson extrapolation), however, is general, and con-
venient to implement for interior approximations. (It was suggested by Oliger.)
F‘or‘ this method we prove a theorem (Theorérn 5.1) which indicates that this
method is valid under quite general circumstances. This theorem is new. The
proof of this theorem shows that this algorithm is simultaneously a deferred
correction method. We then give a very simple method for error estimation at

coarse/fine ' interfaces which do not abut boundaries. For boundary

14

approximations, we can sometimes use a modification of the Richardson
method. But the most convenient procedure is to rewrite the time derivatives
appearing in the local truncation error as spatial derivatives (using the

differential equation), and approximate the result by differences.

We believe that our work on adaptive boundary conditions (which can be
time-dependent) is not only new but unique. That is, no other algorithm of which
we are aware gives a systematic method for adaptively treating time-dependent

boundary conditions in hyperbolic systems.

Chapter 6 describes the data structure we used to implement the algo-
rithm. The data structure has two parts—a four-way linked tree of records to
hold structural information about refinements, and an array of sequentially allo-
cated deques to hold solution values for the hyperbolic system. We describe our
repacking strategies for the deques. The deque structure is a modification of a
similar structure for stacks in Knuth [1973]. M. Berger [Ph.D. thesis, to appear]
has earlier devised a similar tree structure. In a certain sense a tree structure
is "obvious" when recursive refinements are used, and other adaptive methods
also use them (e.g., Gannon [1980], Rheinboldt and Mesztenyi [198Q]). In each
case the tree is modified to suit the application at hand. However, our choice
and implementation of the sequentially allocated deques is new, and cannot be

generalized to more space dimensions.

Chapter 7 discusses the language used to implement our algorithm.
Because Fortran lacks both control structures and data structures, we rejected
it. But because of the portability and wide use of Fortran in scientific computa-
tion, we had to reject other languages as well. The compromise we chose was
Mortran, a macro preprocessor for Fortran [Cook and Shustek, 1975]. Because
Mortran is extensible (unlike many other Fortran preprocessors), we were easily

able to add records and pointers to it, which made implementation of the data

T

15

structures quite convenient. We believe we were the first to use a macro pre-

processor to develop adaptive mesh refinement algorithms; recently Gropp [to

appear] has done a much more systematic development of a language for these

algorithms.

Chapter 8 provides computational results of ouf algorithm. We first
describe three model problems: the first order wave equation (color equation)
with traveling pulse; the second order wave equation {rewritten as a first order
system) with two oppositely-traveling and interacting pulses, and the inviscid -
Burgers equation with a shock. In ‘particular, the refinements do properly
enclose the pulses or shock at all times. These calculations also show that ‘
refinements properly merge, separate, move, and are created and destroyed.
(We believe that the only other adaptive algorithm that can track crossing
pulses is that of M. Berger, who uses an approach similar to ours in two dirhen-

sions.)

Section 8.4 contains the most important result of this thesis, namely, the
efficiency of our algorithm. Our model problems show decreases in execution
times of factors of 3 to 5 for smooth solutions (compared with using a uniform
mesh which achieves the same level of accuracy). Storage savings are achieved

as well, but the gains are not so dramatic.

Section 8.5 experimentally shows the rate of convergence of the method as
the step size approaches zero, and thus confirms Proposition 4.1. Section B.6
compares three methods for estirnating the interior local truncation error. Sec-
tion 8.7 conipares diﬁer‘ent boundary approximations énd methods for estimat-

ing the error of these approximations. .

Chapter 9 gives our conclusions and suggestions for further research, and

the appendix gives a program listing for one of our model problems.

CHAPTER 2

Mesh Structure and Solution Algorithm

In this chapter we will state the class of partial differential equations to be
considered, together with assumptions about the behavior of the solution of the
equations. Next we describe, in two different ways, the m;esh structure on which
we will compute the difference approximation. We then introduce a scalar model
problem and describe our algorithm for advancing the solution in time. Finally,
we discuss the modifications riecessary for systems of equations. The underlying

approach throughout is that of Budnik and Oliger [1977] and Oliger [1978].

2.1. The Continuous Problem
Let (denote the spatial interval a <z <b. We will assume given a linear

first order, one (space)-dimensional, n X n hyperbolic system

Iu =u; — A(z t)u, — B(z .t)u = F(z,t), (R.1)

on a "vertical” strip Q x {¢£ > 0}, with initial condition

u(z,0) = f(z), ' z €Q, (2.2)

and boundary conditions
ul(a.t) = Sp(t)Yul{a t) + g,(t), t=0, ' (2.3)

ull(b t) = S(t)ul (b.t) + ga(t), t >0. : (2.4)

Here A and B are n X n maltrices and F is an n-vector. We have, as usual,
assumed that A has already been transformed into diagonal form by a nonsingu-

lar uniformly bounded similarity transformation T(z,t), so that

18

b

17

Ty
A=1g 4n

with T(z.t) and T(z,t)! uniformly bounded, and

Al = diag(k,, k2, ..., £7) <0,
Al = diag(s,1, K742, ..., £) > 0,
ul = (u (z.t), ux(z t), ..., us(z . £))7

I

wll = (u)1(2 £), w2z 8). o Un (2)T

and

SI c Ctn—J)xJ| SI] c CJX(n—J)'

By far the most important restriction is that our problem has only one

-space dimension. The problem even for two space dimensions has severe addi-

tional difficulties, such as irregular geometries. orientation of refinements, pat-
tern recognition, the need for more complicated data structures, and boun-
daries. (M .Berger's thesis [tp appear] is treating fhis problem.) The restriction
to hyperbolic behavior insures that we can use explicit time steps. This assump-
tion greatly simplifies both the error estimation and the manipulation of moving
meshes. . However, many computational prob‘lems in ﬁLﬁd dynamics and else-

where are of this type.

The assumption that the matrix A is in diagonal form is not necessary in
practice, as shown by computations on problem P2 in Chapter B. This assump-
tion makes it easier to develop the theory, and to write down boundary condi-

tions (2.3)-(2.4) which yield a well-posed problem.

For the theory in Chapters 3, 4 and 5, we will assume that (2.1), (2.3)-(2.4)
have ‘constant coefficients. But in practice, the type of problem can be léonsid—
erably more general than (2.1)-(2.4). For example, the system of equations can
be nonlinear. In Chapter 8 we will show computations for fhe inviscid Burgers’

equation

18

u; + uu, =0,

which even has shocks. Furthermore, the problem need not necessarily be

hyperbolic. For example, we can treat the Korteweg-de Vries equaticn

U+ UUy + VUyy, = 0.
The important restriction is to equations which allow explicit difference approxi-
mations for their efficient solution. Thus the heat equation is excluded. (Our

algorithm can accurately approximate the heat equation, but we doubt that it

would be more efficient than using an implicit method on a uniform grid.)

We next assume that the overall phenomena being studied are such that, |
except for relatively small regions, a coarse uniform mesh is sufficient to resolve
them. We further assume these small regions chah,ge with time in a way which

cannot conveniently be determined a priori.

We also assume that these small regions are the same for all solution com-
ponents. In other words, if the differential equations describe velocity ahd pres-
sure, then large pressure gradients occur in approximately the same regions
where large velocity gradients occur. (The assumptions in thiva péragraph are
necessary only for efficiency. The method will work without them, but'it might

refine too large a portion of the region.)

We assume that we have smooth solutions. This means, first of all, that

there are no corner discontinuities, i.e.,

ul(a,0) = f (a) = Sp(0)u(a.0) + g.(0)
and

ull(6,0) = f (b) = Si(0)u! (}, .0) + g2(0).

Furthermore, it means there are no shocks present. These assumptions enable
us to estimate the local truncation error using higher derivatives of the solution

of the differential equation. In practice, our algoriﬁhm will work even for shocks

19

(as mentioned above for Burgers' equation), but then the error estimation is not

theoretically justified, and should be done in a different manner for efficiency.

Before giving the difference approximations to our problem (2.1)-(2.4), we

must first describe the mesh system on which such a solution is computed.

We will compute on a basic rectangle # = 0 x [0, T}, We will think of this

rectangle as graphed in the z—t plane, with z horizontal and ¢ vertical.

~

2.2. Mesh Structure - First Description

We will now formally describe our mesh structure in a way suitable for
theoretical purposes. We will then describe it a second time in a manner more
suited to implementation.

Following Oliger [1978], we divide the rectangle R into "horizontal" strips
using time division points

0=t%<tl<s - <t l<tS=T (2.5)
and define a grid on each strip

S; =Qx [ttt i=1,2, ..., s,
as the set of points

A=Yz} tim)d =01 N.om =01,...,mf,

where hi, =z}, —z}>0, t},=t""1+mk} k}>0 (t'-t*"1)/k}j=m} an
integer, z§ = a, and :z:};,‘ =b fori =12, ...,s. When (z}, t}) is a point of 4
we will say that lc} corresponds to h.," See Figure 2.1. In each strip S5; we will
take time steps of equal length at each point z} (although these steps can be
different at different x}). We will now restrict our grid to be locally uniform in z:

we assume there are a finite set of intervals

Lcla, blv=12 ..., vy

02

XB8L 822170

Figure 2.1 Mesh Strﬁcture -

_1

whose endpoints are among the z#,
V.‘ .

urll=[a, b] (2.6)

v=1

any two I} intersect in at most one point, and the z} contained in any It are
equally spaced. Furthermore, all the k} occurring in /3 x [t*7!, t'] must be
equal. Such a grid is uniform over rectangles in the z—~t plane. For conveni-
ence; we shall assume that for 'each i the /%'s constitute a minimal set of inter-
vals withvthese properties. (That is, any other such set describing the same

mesh has more than v; members.)

To make this grid structure even easier to impleﬁent,_ we will make still
further restrictions. Since there are only a finite number of rectangles in the
region R, let Ay, hp, ... hy be a list of all the distinct space steps h,‘ listed in
descending order. Corresponding to each h} is a k;. We wil then obtain a
corresponding list k,, k3, ... ks which we will also assume has distinct

members in descending order. We then require
h-l{-l = Nkl , ICL+1 = Mk[. i=12_A'-l,

where N and M are integers greater than one. This restriction is not crucial,

but makes implementation easier.

Let us examine one of the decompositions (2.6). With each I}, is now associ-
ated an h}. If I}, is adjacent to I, we shall call their intersection a coarse /fine
interface, and will _require‘ that A}, = Nk} or kY = Nh},. That is, the transition in
spatial mesh size should be "smooth". No such restriction is made in time. In

Figure 2.1 we have illustrated thisfor N =3, M = 2.

We now modify the time steps at the coarse/fine interfaces. In the i-th
strip S;,1 =1, 2,...,s, we add grid points to any coarse/fine interface where a
fine mesh lies to the right of a coarser mesh. That is, let I, be any interval adja-

cent to, and to the left of, interval /,, such that h}, = Nh}. According to our '

_2

definition, the time steps k} on the interface are the same as those in /}, not 7},
(i.e., they are "coarse” rather than "fine'"). We add more points to this interface

so that the time steps k} on the interface are the same as those in /.

At the time division points t*,7 = 1,2, . . . ,s—1, there are two sets of spatial
mesh points: those belonging to A; and those belonging to A;;,. This is because
we readjust the (spatial) mesh at these times. We will introduce two sets of spa-
tial grid points at %= 0 also, by letting Ay denote the initial uniform coarse

mesh
5(2:1,0l O), zjo =a +jh, 7=01,... , Noi.

where h; = (b —a)/ No. We immediately readjust this mesh, getting the mesh in
A;. Therefore, we will ignore Aq in our theory, and measure quantities (such as

the initial error) with respect to the mesh points in A, with ¢ = 0.

An alternative implementation would allow fully variable h}, as is done in
programs for two-point boundary value problems for ordinary differential equa-
tions (e.g., PASVA3 and COLSYS, mentioned in Chapter 1.) However, there are
several compelling reasons for using our approach. The first is ease of imple-
mentation. The second is storage, although this is not as serious. One would
need to store a vector of z}'s. In our method only a few indices are used. The
third reason is that with such a general mesh, the only difference schemes that
can be used in two-point boundary-value problems are Keller's box scheme and
the trapezoidal rule (if second-order accuracy is desired). Although there do
exist second order approximations for the initial boundary value problem (par-
ticularly for conservation laws) on a nonuniform spatial mesh, this would
severely restrict our choice of available difference schemes. (As we shall see,
our method already imposes some other restrictions on the difference scheme.)
The final reason is that a general mesh would make analysis and estimation of

the local truncation error much more difficuit.

23

2.3. Mesh Structure—Second Description

We will now provide an alternate description of our grid structure. The
above description is more suited to the theory; the following one is more suited

to implementation and allows slightly more generality than the first description.

We will proceed recursively by "levels of reﬁnemeﬁt". The word level in this
context refers not to the time level, but to how fine a'grid spacing is. Finer gridé
will have highei‘ levels. We will use different notation for gridpoints (z,t) than in
the previous description. We regret the necessity for this, but certain formulas
(e.g., norms) which. are natural in one noﬁatio'n become extremely cumbersome

in the other.

On eachlevel ! =0, 1,...,A-1 we will introduce a finite number of space-
time refinement rectangles or boxes B, contained in're_ctangle R. (All such rec-
tangles will be solid, that is, they include both interior and boundary.) Each such
rectangle will have sides parallel to the coordinate axes, and for I = 1 each l-th
level rectangle must lie entirely in an I —1-st level rectangle. Furthermore, no
two l-th level rectangles can overlap. The boundary of each I-th level rectangle
will be ﬁhe boundary of a .uniforrn { +1-st level (spacé-time)”grid. All L +1-st level
grids will have the same space and time steps. Loosely speaking, an l+1-st level

refinement is one of these grids viewed at a fixed time.

To prime the recursive pump, we will deﬁne the zero-th level spatial divi-
sion poi’n.is of the interval [a, b] as the sequence of points <z =a, z? = b>.
Similarly, the zero-th level time division points of the interval [0, T] comprise
the sequence <t§ =0, t{ = T>. Let hg=b —a and kg = T be the zero-th level
space and time steps, respectively. We define U° és the set of four corner points

of the rectangle .

Forl =0,1,. .., A-1 we now prbceed recursively by levels of refinement.

We form the (-th level partition P, of [0, T], which is a subsequence of the time

24

division points <t},>:

Y) il i . 4 4 —
0=th <th <th, < < t,,,,‘_1 < tm,‘ =T (2.7)

Notice that the subsequence <m;> depends on {; this dependencé is omitted
from the notation. For ! =0, Pq is identical to the sequence <t%> of time divi-
sion points. Thus sq =1 and m,(0) = 1. For.l = 1, P, must contain as a subse-
quence the points in the partition F,_;.

This partition divides the region K into I-th level horizontal strips
Shi=1,2....,5. Forl =0 the only such strip S? is identical to the rectangle
R. Forl =1 each of these strips is contained in an [—1-st level strip, since F,_,
is a subsequence of F#;,. The partition points are the times when we adjust the
mesh. (The partitions and strips for ! > 1 could be dispensed with if we never

adjust the mesh befween coarse time steps.)

We will now introduce a set of zero or more nonoverlapping I-th level (solid)

refinement rectangles
EBL. v = 1, 2, o -gl;'

(If g, = 0 the recursion ends.) There is only one zero-th level rectangle B?, and
it is identical to the rectangle K. Forl = 1, each rectangle B!, is required to lie
entirely in some L —1-st level refinement rectangle BL™!. 'The latter will be called
a parent of the former. Each such rectangle B will have horizontal sides whose
t-coordinates are required to be adjacent members of the pﬁrtition P (R.7).
That is, the horizontal sides of the rectangle are the same as the the horizontal
sides of the I-th level strip in which it is contained. Since P,_, is é subsequence

of P, for I = 1, we are guaranteed that B is "vertically contained" in its parent.

For l = 1, the z-coordinates of the vertical sides of rectangle BY, can be any
I-th level spatial division point, so long as B! is "horizontally contained” in its

parent. In other words, let its parent B4™! have left and right vertical sides with

25

coordinates

z =zigh = z}v(‘_l)a(ﬂ) =a + hy_a(m)

and

z= -Tf.:f#) = x;v(a-l)u(ﬂ) =a + hyo(m),

respectively. (Here a{(m) and w(7) are nonnegative integers.) Then for the coor-
dinates zk(,) and zlg) of the left and right vertical sides of rectangle B!, we
require

-’L‘fx?#) < fo(u) < -”Ci;(v) < 2'2(1%). (2.8a)

i.e.,

NO-Da(n) < a(v) < w(v) < N¢Do(m). | (2.8b)

For 1=0, let N® and M®. (the (-th level spatial and‘ time
refinement ratios) be integers greater than one. (For N© we shall take the Ny
of the last section.) Let Ak, = h/N® and k;,, = Icl/M(")v be the I+1-st level
space and time steps, respectively. We now define the sequences of (uniform)

L+ 1-st level spatial and time division points

<zf*'=a+jhuj =01, [INW>,
#=0
and '
L+ = <trln+l . 77’1]6“.1: m=01, fIM(#))-

»=0
of the intervals (and [0, T]. respectively. They are respectively N® and #®
times as fine as the l-thlevel ones. The set of all points

Uil = ‘i(z}H, t,‘nﬂ);

occupies the entire rectangle R = Q@ x [0, T]. The subset of these points con-
tained in the (solid) refinement rectangle B is defined to be the (L +1)-st level

(space-time) grid G4*! occupying B. More specifically, if 5% occupies the l-th

26

level horizontal strip S}, then GL*! consists of that subset of U!*! whose z com-

ponents have subscripts
i =a(v)N®, a(p)N(‘>+1, o (NG,
and whose { components have subscripts |
m = my_ (MY, my (DOMB+1, ..., my() MO,

(Recall that the subsequence <m;> depended on the level l.) This completes our

recursive definition.

Now we come to the most important definition of this thesis.
Definition. Let GY*', 1 =0, 1,...,A—1, be an l+1-st level grid, occupying an I-
th level rectangle B, whose mesh points are as given above. Let ¢ be any time

such that:
th) =t <th), (2.9)

and let t}¥! be the greatest I +1-st level time division point not exceeding ¢£. An
U+ I-st level refinement at time t, corresponding to B, or G,*!, is a sequence of

ordered pairs
RUFV(t) = <(zh*!, vb () 5 = a(W)ND), a()NB+1, .., w(V)NG)>,

the first components comprise the sequence of l+1-st level spatial division
points contained in the horizontal sides of the refinement rectangle B!
(equivalently, the sequence. of x components‘ of the grid points in GL'!); the
second components are the approximate solution values (if any) evaluated at
these spatial points, but at time £,'. Here v}*!(t) is an approximation to the

vector u (z}*!, t).

An important property of our definition is that an {+1-st level refinement
exists not only at I+1-st level time division points 7**!, but also at "finer" time

division points T¢*2, ..., T* satisfying (2.9). (Alternatively, we could have

_27

defined refinements only for times »TA satisfying (2.9).) However, solution values
for an l+1-st level refinement are only updated at l+1-st level time division
points. In the next section we will see why we defined a refinement as a

sequence rather than a set.

For 1l =1 let B} be any refinement rectangle, and R.*! its corresponding
refinement. A vertical side of B!, which does not lie on the boundary of the
region R will be caﬂed a coarse /fine interface. Similarly, the left orv'right end-
point of BL*! will also be called a coarse/fine interface if it does not lie on the

left or right boundary of the region R.

The first level (or coarse) space-time grid occupies the whole rectangle
B = R. Hence, the first level, or coarse, refinement is present at all times, and
higher level refinements are considered to be su_perimposed on it. (Strictly
speaking, we should not call this a refinement, since it doesn’t refine anything.
We use this terminology to avoid special cases.) We will assume as given the larg-
est wave propagation speed. This is usually known by the problem 6riginator,

and determines the spacing of the coarse refinement.

Another factor which must determine the spacing of the coarsest:
refinement is the wavelength of any "background disturbances” to the
phencmenon of interest (see our model problem P1 later in this chapter for an
example). This too is assumed k-ndwn; for guides to the number of mesh points

needed per wave length, see Kreiss and Oliger [1972].

We will now discuss some further restrictions imposed on our refinement
rectahgles. We will require that no two I-th level refinement rectangles in the
same l-th level horizontal strip can intersect or abut. (But l-th level rectangles
in adjacent. strips may abut.) Assume an {-th level strip cpntains two I-th level

rectangles BL and B, having left and right vertical sides with z coordinates

28

Zow » Thu and Zaw). Thiy

respectively. Without loss of generality, assume that the left side of the former

is to the left of the left side of the latter, a{u) < a(v). Then

o(u) < a(v).

This is no restriction in practice; if two such rectangles overlap or abut, we sim-

ply consider them to be one rectangle.

In the last section we mentioned that the mesh should vary "smoothly” in
space -- i.e., an l-th level refinement can abut a l+1-st or I—1-st level
refinement, but not a refinement of any other level. This restriction is enforced
by inequality (2.8a or b), which says that the rectangle B is properiy ".horizon-
tally contained” in the parent rectangle BL!. Actually, this restriction is too
severe because of boundaries. In (2.B) we allow the leftmost inequality to

become "<" when the parent rectangle abuts the left boundary, i.e., a(m) = 0.

-2
Similarly, when the parent B4™! abuts the right boundary (w(m) = [[N®), we
=0

allow the rightmost inequality to become "<". In particular, if an {—1-st level
refinement occupies the whole spatial region and is too coarse over the whole
region (according to our error estimates), then the I-th level refinement will

occupy the entire region.

Let A\, =k;/h;. Then our construction ensures that A;.'= constant;. For
simplicity, our implementation restricts the refinement ratios for = 1 to be the
same, i.e., NO =N and MY =M, for L =1,2,...,A—1. This condition is not
essential, but it poses no real restriction, as we will see in Section 8.3. For con-
vergence studies, we shall in addition assume that # = N, so that A\; = constant,

independent of L.

Suppose we want both descriptions to characterize the same mesh points.

How. must we modify these deécriptions to achieve this? Let us consider the

29

situation in time first. We claim that the second description is more general
than the first. To see why this is so, consider the blackened rectangle in Figure
2.1 1t this rectangle contains no interior mesh point, the mesh of Figure 2.1
satisfies the .ﬁrst description. The time division points t°, ¢!, ¢ t3 are shown.

These points also comprise the partition P, of the second description.

However, if the blackened rectangle contains six subr_'ectangl_es, then this
mesh satisfies the second description but not the first. This illustrates the cri-
terion for the first description to coincide with the second: |
Proposition 2.1. In the second description of the grid structure, choose a first-

level partition P, of the interval [0, T]:

— 41 1 PN =
0=td <ty <tm, < | <t,,‘51-T.
If all succeeding partitions 7, 1 = 2,3, . .. ,A-1 (2.7) consist of exactly the same

points as P;, then the partition P, of the second description coincides with the

partition (2.5) of the first description.

For, the first description requires the £ coordinates of the horizontal sides
of all refinement rectangles to be adjacent members of the partition (2.5) of the
first description; this will be the case for the second description only if no new
points are introduced when constructing partition P from P,
{ =2, 3,...,A—-1. By the assumption in the first description that there are only
a finite number of step sizes k,, k2, . . .,k which are multiples of each other,
the partition points (2.5) are a subsequence of a set of equally spaced points,
just as P, is.

Our theory will assume the two descriptions coincide, and thus will use only
the first level partition, in the notation of (2.5). In this case, all horizontal strips
St of the sécond de’scrfption coincide with the first level strips S;'. Henceforth,
we shall drop the superscript 1 for strips, which is the notation used in the first

description. Also, s,, the number of strips, is shortened to s.

30

In practice, when we choose partitions as in this equivalence proposition, we
usually check the local error every ¥ coarse time steps, where ¥ is a small posi- -

tive integer. Thus every partition P; j = 1 is of the form
0=td <t} <ty < - <th_ s <ty =T

In Section B.8 we use the capability to check the error, and adjust refinements,
between coarse time steps. For the model problem studied there, we find that
this is no more efficient than using the partitions as above with 4 = 1. (But this-

conclusion may not be generally true; see Section 8.8.)

The partitions P; must be chosen a priori, before the solution of the prob-

lem.

Now consider the situation in space. We modify the second description as
follows. Let (z,t) € S; be any point which is a grid point of more than one grid
BY*!, each such grid (and its associated refinement rectangle B:) lying entirely
in strip S;. We shall say that the point (z,t) is covered by more than one mesh
point. Then all such grids (resp. refinement rectangles) must be at different lev-
els of refinement. At such a point, delete all but the grid point on the finest
level. Then, except possibly for times ¢t = t*, each point (z,t) € R is covered by

at most one grid point.

Since the first definition allows no overlapping mesh points except possibly
for times ¢ = t%, the grid. points of the first and second descriptions now coin-
cide. But how do the rectangles of the two descriptions relate? In strip S;,
1i=1,2,...,8, let thé highest level refinement rectangle be B7. (Note that y
depends on i.) Then B is identical to one of the rectangles I, x [t*7}, t*] in the
first description. If B?™! is a reflnement rectangle in this strip with the next
highest level, it will correspond to the union of three, two or one adjacent rec-
tangles I} x [t*7!, t*] of the first description (three if B abuts no boundary, two

if it abuts one boundary, and one if it occupies the whole strip S;).

31

In general, if no rectangle in the i-th étrip abuts a boundary, the l-th level
rectangle (of the second description) corresponds to the union of 2(y-1)+1 adja-
cent rectangles of the first description. If some rectangle (of the second
description) abuts a boundary, then the number of rectangles in the union will
be fewer. Thus, it is quite inconvenient to define refinements in the first

description.

2.4. Operations on Refinements

In the last section, we observed that l-th level refinement rectangles in the
strip S; may not intersect -or‘abut. but those in adjacent strips S; and 'S,;H may
abut. This leads to interesting consequences for refinements. For simplicity, we
shall assume that all partitions P, are thé same for l =1, and use the notation

(.5) for P,.

We shall say that two refinements are equivalent when their first cormn-
ponents (z coordinates) are the same, regardless of the time or the solution
values. Thus, for all times (2.9) encompassed by the refinement rectangle B,
the refinements RL*!(t) corresponding to B! are equivalent. In this sense, we
can say that to each rectangle B! or grid G.*!' there corresponds one
refinement. This equivalence concept is useful for describing refinement méni-
pulations which do not depend on the differential equation calculations. Clearly,

only refinements with the same level can be equivalent.

Suppose first that there is an ! -th level refinement rectangle Bf,, (I >0) con-

tained in the strip S; = Q x [¢*~}, t*]. Assume that the horizontal sides of B

I3

occupy the interval
xfx(,u) =z = .’L‘i,(#).

Also assume that no part of any I-th level refinement rectangle in strip S;_; lies

in this interval. Then we will say that the refinement RL“ corresponding to B,

32

has been created at time t = ti1, Similariy. if we replace S;_; by S;,; and t*!
by t*, we say that RL'! has been deleted at time t*.

Now suppose there are two l-th level refinement rectangles BLCSi and
BY,CSii1. According to our definition, the refinement R,‘f‘ corresponding to BL
only exists for t*"! <t < ¢, and the refinement R.*! corresponding to B} only
exists for t* <t < t‘*!, We will now examine the possible relationships between

these refinements.

Suppose the rectangles B, and B! have the same left and right sides,
a(w) = a(v) and w(u) = w(v). Then the first components of the refinements
corresponding to these rectangles are the same. By our definition, the
refinements corresponding to B}, and B! are equivalent. In this sense we may

say that a single refinement now exists for times ti~!1 < ¢ < #i*1,

Now suppose that the refinement rectangles are situated as before, but

a(u) < a(v) < co(u) < wlu),

(with at most one equality), and no part of any other I-th level refinement rec-

tangle in strip S;,, lies in the interval
Ifx(p) srs :ri,(“).

Then we will say that the refinement R4'! has contracted at t = t* to form the
refinement R.*!. By interchanging refinement rectangles and strips, respec-

tively, an analogous definition can be given for an expanding refinement.
If B}, and B}, are situated as before, but
a(p) < a(v) < o(u) <),

and no part of any other !-th level refinement rectangle in strips S; oi‘ N

occupies the interval

fo(ﬂ) =rxr< xi,(,),

33

then refinement RL'! has moved right at t = t* to become the refinement RL*!.

Analogously, we can define what it means for a refinement to move lefi.

F‘inally. suppose rectangle BL is in strip S; as before, but strip S;,; contains
two (disjoint) I-th level refinement rectangles B, and Bk, with the former to the

left of the latter. Assume that
a(v) < a(p) < w(v) <a(m) < w(u) < w(m),

and that no part of any other l-th level refinement rectangle in strips S; or S;43

lies in the interval
zfx(v) =Ir =< zﬁ,(,,).

Then the refinement R4'! is said to separate or split into refinements Ri'! and
Ri*1. Analogous definitions can be given for two refinements to merge into a

third.

The above are typical operations on refinements, but they do not exhaust
the possibilities (for example, a refinement could split' into three refinements,
although this is quite rare). Fortunately, however, an exhaustive listing is not
needed. " All that is required is an algorithm which takes a set of l-th level
refinements (I > 1) at time ¢t = £, i =0,1,. .., s—1 and produces a new set of
such refinements. For each I, once the left and right edges of the new v
refinements are determined (by local error estimates), this readjustment can

be done in a single left-to-right scan of the existing {-th level refinements.

One might ask why all this is necessary. The answer was given in Section

1.1, where we noted that we must not allow t.he information in "fine'" refinements

“to escape into "coarse’ ones. Thus, we cannot throw away any "information"

(the second components of refinements) from "fine" refinements (unless the

error estimates allow it).

34

In Section 2.6 we will see how these operations fit into our overall algorithm.

In Chapter 6 we will explain how these operations are implemented.

2.5. Difference Approximation

Having described the grid structure, we can now define our difference
approximations. We will first describe the general form of difference schemes
allowed, then give our first model problem, and finally specify the particular
difference schemes used on this problem. We will use the notation of Section 2.3

throughout.

In general, we will compute with explicit two (time)-level difference approxi-

mations to (2.1) in the interior of refinements,
v (t+k,) = Qoub(t) + k, FL(t), (2.10)

where t = t},,
Q0= Qo) = Y Aabrin. b h)E
j=-r

E = E(l) is the shift operator
Ejui(t) = vly(t),
g and 7 are nonnegative integers, v, (t) is an approximation to u(zl, t), and

FL(t) = F(z!, t). (By the interior of a refinement, we mean all its poihts except

the 7 leftmost and ¢ rightmost ones.) As initial condition we use
v}(0)=f(a +vhy), v=0,1,...,Nq : (2.11)
The coeflicients 4; are assumed to depend smoothly on their arguments.

The restriction to two-level schemes is necessary to simplify manipulations
with refinements. (When the spatial mesh is adjusted at time
t*,i=0,1,...,s-1, it would be awkward, and require more storage, to adjust

the mesh at previous time levels too.) This also simplifies error estimation. If a

35

three-level scheme were used with Richardson extrapolation-type error estima-
tion (to be discussed in Chapter 5), then several add.iti‘onal. past fime levels
would have .to be saved. This would be hlghly impractical in multidimensional
problems. Other than this storage limitation, there is no difficulty with error
estimation for multi-level explicit schemes. (This restriction does not exclude

two-level schemes with fractional time steps, such as two-step Lax-Wendroff.)

The restriction to explicit schemes is more fundamental. As we have
observed, this is no restriction for purely hyperbolic problems, but can be a res-
triction for more complicéted problems (e:g., co’ﬁpled heat and sbund). "As we
will see, our algorithm calculates solutions at a given time level piecewise in
various parts of the interval a < z < b. Obviously, then, the restriction to expli-

cit schemes is not merely for convenience.

~In orderj to use the most convenient form of error estimation given in
Chapter 5 (three-level Richardsoh extrapolation), we shall make an additional
restriction on the interior approximatiorﬁ The local truncation error (per unit
time step) must have the 'sdm.e order in both space and time. If this restriction
does not hold, or the approximation is implicit, we must use difference approxi-
mations to high-lew}el derivatives,” which is less convenient. Since we will most
often use interior aéproximations which are second order in space and time,
this restriction is not too severe.

At coarse-fine interfaces (between level 1 -1 and level refinements) we use
the same scheme as above on {—1-st level spatial mesh points, but with an
1 —1-st level spatial step and (an intege‘r fmﬂtiple of) an I-th level time step. This
will be explained in more detail in the next section.

Finally, boﬁndaries are treated the same as with a uniform mesh; at the left

boundary,

. - 36

. 0 '
vh(t+k) = leé“’vi(t-ok;) +gL(t), w=01,...,7-1, (2.12)
og=-
where
SPW) = 3 G (zteghy, t—aky, h)EY, o =0,-1
j=-F

t=th, r<r, and C%,,_, =0. The approximation at the right boundary is

analogous:

Once again we have restricted ourselves to two time levels, for the same
reasons as before. We allow ourselves implicit boundary conditions here
(S # 0) since we can first solve for the points on the right hand side of (2.12)

using the explicit interior approximation.

Notice that the boundary formulas apply on any refinement l.evel. If a level
! refinement abuts the left or right boundary, all the subscribts and operators

refer to the l-th refinement level, not the first level.

If we assume that the boundary approximation is explicit, and that its local
truncation error (per unit time step) has the same order in space and time,
then once again we can estimate the error using 3-level Richardson extrapola-
tion. But we do not do make this assumption, not only because it excludes too
many boundary approximations, but also because differences are less incon-

venient here.

We will now introduce our first model problem. It will be used both in our
computations in Chapter B, and to help describe our algorithm in the next sec-

tion. It is the first order wave equation ("'color equation’')

Uy = ~CU,, a<z=b,0<t, 0<c, - (P1)
u(z,0) =g(z), . a<z<b,
u(0,t) = g(-ct), . 0<t¢,

with exact solution u(z.t) =g(z~ct). We take a =0, b =4, and ¢ = 1. The

37

function g is taken to be a Gaussian pulse, traveling to the right with speed c,

superimposed on a sinusoidal background,

g (z) = exp(—af{z +%)?) + 0.1sin2n(z +%),
with a = 200. The parameter a control the steepness and thickness of the pulse.
For o = 200, the pulse occupies about B percent of the interval [0, 4]. Figure 2.2

gives an illustration of the trajectory of the pulse. This models more realistic

problems such as an atmospheric front or storm surge.

We will consider two different finite difference approximations to this prob-

lem. In the first method we use a second order method (Lax-Wendroff) on all
| refinements. In the second method, we use a fourth-order approximation
(Oliger, [1974]) on the coarsest refinement, and a second-order method (Lax-
Wendroff) on all other refinements. This is to better resolve the sinusoidal back-

ground.

‘We will need to define the forward, backward, and centered difference
operators D%, DY, and D}, operating on -th level refinements:

Dhuy(t) = ™U(E = 1uu(t) = (Vyei(t) = v(t))/ by,

DLy (t) = B7H (1 = BNy (t) = (u,(t) — v y(E))/ by,

Dhw,(t) = (Bh)HE = BN, () = (wyar(t) —vymn(t))/ 2,
where we have omitted the superscript { onv. More generaliy.

Db (GhYu(t) = (Rjhy) N E7 - ETYuy(t) = (Vs (t) — vu-j(£))/ Rjh,
forj =12 - Alsoforl=12, ... Alet A, =k /hy.

The Lax-Wendroff approximation to our model problem in the interior of a

refinement (with ¢t = £}, = mk;) is

vt +ky) = (I — cky Db + ¥e?kFDLDL Yul(t). (2.13)

We use the prescribed values

u(x,t)
Ty

Figure 2.2 Gaussmn Pulse Solution of

First Order Wave Equation

38

»> X

-39
'uJ@(t+k,) = g(—c(t+k})) (2.14)
at the left boundary; and upwind differencing .
vi(t+ky) = (I — ck, DL vk(t) (2.15)

at the right boundary.

The formulas (2.14) and (2.15) are only used if a reﬁnemén_t abuts a left or
right . boundary, respectively. We will explain later what to db at interfaces

between refinements.

The fourth order approximation (with kl =k, and omitting the superscript

lonw)is
g (£ k) = vyt ~k) ~ 20k (20§ (h,) ~ 10§ @RIYy(2)

= wj(t —k) = c Ay(vy2(t) = Busy(£) + Bussi(t) —v;4e(t))/ 6
in the interior of the coarse refinement. By using a four-point one-sided
difference approximation to u;, we obtain the (third-order in space, second
order in time) approximation at the right boundary (with j = Ng)
"Uj(if'f'k) = 'Uj(t —k) - CAI(—Z’UJ'._IS(t) + Q'Uj_g(t) + 18Uj_1(t)
’ + 5.5(u;(t +k) +u;(t —k)))/ 8. '
We use (2.14) at the left boundary, with I = 1. In addition, we have to use special
approximations for points which are a distance h, from the left and right boun-

daries. Again, these approximations result from usihg four-point uncentered

difference approximations to u;. They are

vy (t+k) = v,(t —k)—c'}\l(—l2vj_1(t) - 1.5(uw; (£ +k) + v;(t —k))

+ 6u;j 41 (t)—vj42(t))/ 3
for points a distance of h, from the left boundary (i.e., j = 1); and

'Uj(t +k) = 'UJ'(t —k) - CAI('UJ'_Z(t) - 6v,-_1(t) + l5('U,(t +k) + '!)J(t—k))

+ Ru;44(t))/ 3

for points at distance h, from the right boundary (i.e., j = No—1).

2.6. Solution Algorithm

We now describe ouf algorithm on the model problem. We will explain the
method which uses the Lax-Wendroff approximation on all refinements. For con-
creteness, assume we have the u'nderlyingA coarse relﬁnement‘ 1, on which is
superimposed one finer refinement 2. (Usually the spatial region covered by
refinement 2 is a proper subset of the region covered by the coarse mesh.)
Superimposed on refinement 2 (but covering only a part of the region occupied
by it) is a still finer refinement 3. This is an example of a recursive refinement.
The general case, in whic_:h there can be several refinements superimposed on

refinement 1, and even further recursive refinements, will then be clear.

As in the initial value problem for ordinary differential equations, we will
need to give a tolerance ¢ on the local truncation error, which will be used to
decide where to refine the mesh. (We have only used absolute error since all of
our example problems vary between 0 and 1. In general, one should use. a com-

bination of relative and absolute error, as in Shampine and Gordon [1975].)

For the initial value problem for o.d.e.'s, Stetter [1979], and others, have
shown how to estimate (bﬁt not control) the global error while the solution is |
being computed. This requires only a small amount of additional computation
and storage for that case. Further investigation would be needed to apply this
to the initial boundary value problern, But even if were done, ohe would still

need to prescribe a local error tolerance.

We have implemented the algorithm, and estimated the error for this model
problem in a way which applies to more complicated problems. For example, in

our model problem P1 one boundary is an inflow boundary and the other is an

41

outflow boundary. Our difference schemes and error estimation do not take
aanntage of this fact. The difference schemes on reﬁnemenf,s use the same
treatment at the left and right coarse/fine mesh interfaces (except when a
refinement abuts the left or right boundary of the region). A later model prob—
lem (P2 in Chapter 8) will show that our algorithm is indeed insensitive to the .

direction of characteristics.

Assuming we have a solution on all mesh points at time £ = nk,, we proceed
to time ¢t = (n+1)k, by advancing on the highest level refinements first, then the
next highest, etc. This can be described as working "inside out”. (One'can also
proceed from the coarsest level to the finest, and this may be advantageous for

some types of problems.)

1. If the time ¢ is a member of the partition P,, we first estimate the local
truncation error that would be made if we took one forward time step in the
level I refinement for [=3, 2, 1 (this estimation is discussed more fully in
Chapter 5), but we do not actually take the step. Mesh points whose advance-
ment would exceed the (absolute value of the) local error tolerance are marked
as needing refinement. These points are grouped into intgrvals. Several extra
"buffer” mesh points are added to both ends o.f each such interval. This will be

explained later.

For our discussion here, we will assume that the level 3 refinement pro-
duces no level 4 intervals, and levels 2 and 1 produce exactly one level 3 and

level 2 interval, respectively.

" In general, there may be more than one refinement at each level (except
the first). In that case, the operations are done for all refinements on a given

level, starting with the leftmost refinement.

2. For I =3, 2 compare the intervals produced in step 1 with the existing

refinements. If these are not identical, refinements may have to be "moved”,

42

created, deleted, merged or separated. If refinement ! moves into a region
formerly occupied only By refinement ! —1, we may need solution values that do
not yet exist at mesh points in refinement 1. Thesé are obtained by linear or
quadratic interpolation in space from solution values on the next coarser

(parent) L ~1-st level refinement.

Creation of a new refinement is done the same way, by spatial interpolation
from its parent refinement. At any mesh adjustment time, an {—1-st level
parent refinement can give birth to any number of {-th level refinements, but no
higher level ones. An exception is made at £ = 0. If refinement(s) of the coarse
mesh are needed at that time, we obtain the new solution values directly from
the initial function f rather than from interpolation. This allows us to add as
many levels of refinement as are necessary. Thus, the method performs prop-

erly even when the initial mesh is ""too coarse".

If a refinement occupies a spatial interval /, it can be deleted when it has
no éhjldren. and the local errér estimate of its parent in interval 7/ is below the

tolerance.

3. Advance the solution at interior points of the finest refinement 3 from

t = nk, to the next level 3 time level t = nk, + kg, using (2.13) with { = 3.

4. At the interfaces bétween refinements 2 and 3 use a hybrid method, the

coarse /fine approximation corresponding to (2.13):
v Wt +ky) = (I - cky Db + %cPRPDYID)t U(t), (2.186)

with { = 3, where the spatial operators act on the {—1-st refinement. We are
using the Lax-Wendroff formula with space step h;_; and time step k;. This
amounts to using the Lax-Wendroff method on mesh (-1 but replacing A;_; by
k;/ h;_,. This method was used by Ciment [1971]. Figure 2.3 shows the stencil in
the case when L = M =3 so that the third level space step hg = hy/ 3 and the

third level time step k3 = ka/ 3. Points A, B, and C are used to advance to point

t=nk|+2k2

f=nk|+k2'

W

t=nk

XBL 822-171

Figure 2.3 Coarse/Fine Interface

43

44

For a difference -scheme (2.10) whose stencil is more than three mesh
points wide, we will need to use the coarse/fine approximation = times in Figure
" 2.3 (and correspondingly g times at the right end of a refinement). This is done,
e.g., for r = 2, by using the stencil illustrated in Figure 2.3 to get vpoint D, then
shifting the stencil one finer mesh point to the right to get the point to the right
of D. (This involves a spatial interpolation in the coarser mesh, which is done as
in Step 2).
5. Repeat steps 3 and 4 until the next time level in refinement 2 is reached.
(In Figure 2.3, this would be M =3 times.) In formula (2.18), the quantity
k;, L = 3, must be replaced successively by 2k; (A, B, and C in Figure:2.3 are used
to obtain the value at E), 3k, (A, B, and C produce the value at F)
v MEy =Ry

8. At level t = nk, + Mkg = nk, + k3, certain points (z, t) are covered by
both a second and third level mesh point. We already observed in our second
description of the mesh structure that we allow this; it is done for simplicity.
For these points, copy the solution values from refinement 3 to the appropriate

positions in refinement 2.

7. For all points which are in the interior of refinement 2., but not in
refinement 3, advance the solution one time step ko fromt =nk,tot =nk, + k,
using (2.13) with I = 2. (We are proceeding "outward" by starting to advance on

coarser refinements.)

B. Now advance the solution one k; time step at the interface(s) between
refinement 1 and refinement 2 using the coarse/fine approximation (2.18) with

{ =2. Thistakesusfrom{ =nk,;tof =nk, + k,.

9. We now have all solution values on refinements 2 and 3 for & = nk, + k3.

If the partition Pz of [0, T] contained the time level £ = nk, + kp, it is time to

45

check refinements 2 and 3 for possible adjustment. We repeat steps 1 and 2, but
only for refinements with level greater than or equal 2. (Usually partition P,

contains the same time division points as P, so this step is omitted.)

10. Repeat steps 3 and 4, advancing successively M (= 3 in Figure 2.3) kg
time levels in the interior of refinement 3, from ¢ =nk;+k; to
t =nk,+kyg+ kg then to nk; +ky+R2kg, ..., finally to .t =nk; + ks + Mkg
=nk; + 2ks. Next we repeat step 6 at level £ = nk; + 2k, by copying solution
values from refinement 3 to refinement 2 here. Then we repeat step 7 to
advance at points which are in the interior of refinement 2 but not in refinement
3fromt = 'n.lc; + katot = nk, + 2k, Finally, we modify step B on the interface
between refinements 1 and 2 to advance one step. from { =nk, to nk, + Rk,.

This uses formula (2.16) with I = -2, but with k» replaced by 2k,.

11. We now have all solution values on refinements 2 and 3 at time
t =nk, + 2k, If it is time to adjust the spatial mesh (i.e., if partition P; con-

tains this time level), repeat step 9.

12. Apply steps 10 and 11 M -2 more times. At thé end of the first applica-
tion of step 10, we will have reached t = nk, + 3k, (from ¢ = h]cl + 2ky). We
then successively reach t = nk, + 4k;, . . ., nk, + Mk = (n+1)k,.

13. At level t = (n+1)k, certain points (z, t) are covered by both a point of
refinement 2 and a point of refinement 1. Copy the solution values at such

points from refinement 2 to refinement 1.

14. For points which are in the interior of refinement 1, but are not in
refinements 2 or 3, advance the solution one coarse (k;) time step from t =nk,
to (n+1)k,. -

15, “Finally, if refinement 2 does not abut the left boundary, advance the
solution at the left boundary using (2.14) with { = 1. If refinement 2 does not

abut the right boundary, advance the solution at the right boundary using (2.15)

46

withl =1 1If some refinement (with level greater than one) abuts a boundary,
we. treat this at the same time an interface is treated in the above steps, but -
instead of the coarse/fine approximation, we use (2.14) or (2.15) as appropriate,

with the appropriate level 1.

An extremely imporfant feature of thisl method is the use of a buffer on
either end of any refinement (except the coarsest one), as mentioned in Step 1.
If we are estihiating the truncation error for the refinement ix,‘-i and the error
tolerance is exceeded between j = a and j = w, then we instead refine from
j=a—-b toj —w+ b,, where b; is the buffer length for refinements of level
l+1. That is, both ends of the I +1-st level refinement are padded with b; extra
cells of width A;. In general, if our {-th level refinement requires several inter-
vals of I +1-st level refinement (according to the error estimate), then each such
interval is padded as above. (This may cause some ! +1-st level refinements to

merge.)

How do we choose b,? From Figure 2.3 on f.he use of the coarse/fine
approximation, it is clear that b; should be at least one. For safety we make it
two. Another consideration is, How often do we check the local truncation error
(how fine is the partition P,_;) and what is the largest wave speed? (As we said,
we are assuming the largest wave propagation speed is known. In our model
problem it.is ¢.) For simplicity we shall assume that all partitions P, L = 1, are
the same, and that we check the error every ¥ coarse time steps. Therefore, in
time k; a wave could travel left or right a distance of c¥k, = c9\h, =
c ANy, or c 9N N'T! cells of width k;. (Here the 1 -1 is an exponent, not a
superscript.) So we take b, = 2 + [c8A\;N'"!], where [z] is the ceiling function
(the least integer greater than or equal to z). (For difference approximation
(2.10), b, must be modified by replacing 2 by ¢ +1 at the left end of a refinement,
and by r+1 at the right end.) Obviously, higher level refinements have larger
buffers. '

47

The buffer mechanism has several beneficial consequences. First, and most
important, it insures that the rapidly varying part of the solution does not
escape into the coarser region. As we saw in Chapter 1, this is absolutely essen-
tial to the success of the algorithm. Secondly, this policy allows us to use
difference approximations at coarse/fine interfaces which would otherwise not
be accurate enough in the fine mesh. Wé can also estimate the local truncation
error at coarse/fine interfaces in a very simple manner (see Section 5.3). Third,
it allows "smooth” transitions in mesh width, as mentioned in Section 2.3. That
is, a level ! feﬁnement can abut a level l+1 or 1 -1 refinement, but not others.
This is | important when using recursivé refinements. Fourth, it keeps the
refinements from splitting into tiny pieces, because level I +1 level refinements
which are closer than 2b, level I cells apart {before buffering) are joined
together. (If the local truncation error were large in absolute value but sud-
denly changed sign. this might cause splitting into pieces.) We make this condi-
tion even more stringent by joining together any level I +1 refinements which are
less than 2b,+2 level ! cells (of length &;) apart (before buffering). Fifth,
buffering allows us to specify a priori the times to check the local error (and
adjust the mesh). in particular, wé need not check the error at every time étep
(Chapter B shows that this is very expensive)'. We can instead check at every
coarse time step, or even every ¥ coarse time steps, where 9 is a small positive
integer. Sixth, buffering contribﬁtes greatly to the robustness of the algorithm.
Buffers make the algorithm relatively insensitive to. small inaccuracies in the

local error estimation.

Let us comment on the storage required for this algorithm. If we use a
two-level method and perform the operations in the order given, then we need
two levels of solution values, just as for a uniform mesh. As soon as all the solu-
tion values in a refinement at a new time level are known, we can overwrite them

on the old solution values. (This would not have been quite the case if we had

48

advanced the coarsest mesh first, because of the use of the coarse/fine approxi-
mation. But even in this case, only a slight amount of additional storage would
be required.) Thus the storage requirement for solution values is no greater
than for a uniform mesh with a similar number of solution values. A slight
amount of additional storage is needed for pointers and indices; this is minus-
cule, compared to space for solution values. Next, free space is needed to
separate the solution values on refinements. The amount is variable, but can be.
chosen quite small. (This will result in more memory repacking; see Chapter 8.)
Finally, storage is needed for error estimates; but these can be done a
refinement at a time, so we only need two vecﬁors (when solving a scalar equa-
tion), each the size of the largest refinement. We should note that we did not

implement our algorithm in a way which minimizes the amount of storage.

So far we have described the algorithm for a single equation. What are the

modifications necessary for an n X n (coupled) system in one space variable?

For many problems that occur in applications, sharp gradients of different
components of the vector u tend to occur in approximately the same place, and
travel together. For such problems, a simple modification of the above scheme
will suffice. A refinement, instead of consisting of a scalar set of solution values
evaluated at L-th level mesh points {v}(t},)} is now a vector set of solution values
evaluated at these mesh points. So we simply store n times as many solution
values. Importantly, the refinements are the same for each component, so the
manipulation of refinements (creating, destroying, merging, separating, moving)
is unchanged. Furthermore, evaluating the difference equations for any mesh
point at spatial position x poses no difficulty, since all components of the
approximate solution will also be available at z. To decide where to refine, we
estimate the error at a position x for each component, and then compare the

maximum (absolute value) of these estimates to our tolerance.

49

When the components of the solutidn u have steep gradients é.t. different
positions, we can use our algorithm, but it may refine regions which are not
necessary for some components, and this may affect the efficiency of the algo-
rithm. To ameliorate this, two modifications would be needed in the algorithmi
The most irnportaht is that at a position z where v needs to be evaluated, not all
components of v will be available, since z may be in a refinement for oneb com-
poneﬁt, but not in a reﬁnefnent for another combonent. One must then interpo-
late (in space) to find v at z for the missing components. By assumption, this is

justified, because the missing components do not have large gradients at z.

The other modification is the need to account for n sets of refinements:
The amount of extra storage required (beyond space for solution values) would
be very small. But considerable additional complexity would be introduced into

the mesh manipulations. So we did not implement this extensibn,

CHAPTER 3

Stability

In this chapter we will examine the stability of our scheme. We will need the
stability of our scheme to justify computing with it, and also to use in conver-

gence results (stability plus consistency implies convergence).

The usual stability definition is Definition 3.3 of Gustafsson, Kreiss and
Sundstrém [1972] (hereafter referred to as the GKS definition). We show that
this definition does not lend itself to proving convergence on our refined mesh
system, and following Berger, Gropp, and Oliger [to appear] propose a new sta-
bility definition which does lend itself to proving convergence. We then show
that under mild assumptions, a method which is stable for a mesh consisting of
one strip (in.the sense of Section 2.2), is also stable for any number of strips.

We then state a stability proposition for our mesh refinement scheme.

3.1. Preliminaries

This section introduces some notation and definitions in what follows. We
will assume the coefficients A, B are constant. We will also use the notation of
Section 2.2 instead of Section 2.3 for mesh points and difference approxima-

tions.

We assume that there is an upper bound K on the ratio of spatial step sizes:
Let At = max; h,‘ and assume h' / min; h} < K. (This is automatically ensured by
our scheme because we select a maximum refinement level in advance. In fact,
K = N%-1) This will ensure that all A; have the same asymptotic order as h - 0.
Let h =h, =max; A, and k =k, = max; j k; We denote an approximation to

wu(z}, t}m) by vi(t:).

50

51

We can specify a uniform mesh by specializing our notations. Specifically,
there is only one horizontal strip, S, =[a, b]x [0, T], all A} are equal, and
denoted by h, all m} = 1, and all k} are equal, and denoted by k. The mesh point
(2}, t}) is.abbreviated to (z;, t,). The approximation ‘u}(t}m) is abbreviated to
v;i(tm).

We will now rewrite our difference approximations in the new notation. Our

left boundary approximation (2.12), with ¢ =th, =ti,, Kk =kL = k7,

i=1,2,...,s,m =0, 1....,»m}',is
vi(t+k) = Zojlsg#)v}(t—ak) +gu(t), w=01,....7-1, (3:1) |
o=z
where
sy =' §~Cg(#) (h-f+j- kﬁﬁ) E3, c=0-1
j==F

(The shift operator E tacitly depends on i and 7 also. Furthermore, S,
depends on i as well.) We assume C®,, | =0, u = 0.1,...,7—1. Note that all
the coefficients are the same as before (except we have assumed they are con-

stant); only the mimbering of the solution values has changed.

Similarly, the right boundary approximation, with i, m as before,

t = th pm k=Kl is

. 0 3 i }
vk (E+k) = 3 SEFufg(t=ok) + gLumi (). w=01.....9=1 (32)
==
where
SéH = _iAC}‘.E‘H’(h&—w- kk-qei) £, _ 0=0 -1
j=-r :

}
.

Here ¢ and r are nonnegative integers and fis g. If we had introduced “ficti-
tious" boundary points as Gustafsson, Kreiss, and Sundstrém did, we could have

written our boundary conditions in their form, or in the form of Gustafsson

52

[1981]. We did not do so because it simplifies our analysis in the next chapter.
It is important, both theoretically and practically, to confine the dependence

between strips S;'and S;;, to the points with ¢t = ¢t*.

At the 7 leftmost fine points at the left end of a refinement (which does not
abut the left boundary), and at the g rightmost fine mesh points at the right end
of a refinement, we use the coarse/fine approximation, as described in Section
R.5. At all other points our interior approximation (2.10), (with ¢ = thm).
becomes

vi(t+k}) = Qoub(t) + kiFL(t) (3.3)

7 .)
Qo = Qo(iv) = 3} Aj(hbay. kb)) EY.

j=-r
As initial conditions we will prescribe
'UJO(O) = fJ'j = O. l. A ,No, (34)
where the values f; are arbitrary.

We next need to define discrete {3 norms. This cannot be done exactly as
for a uniform mesh. The discrete ly(z) norm can only be defined at coarse grid
points (more generally, if we did not use an underlying coarse mesh, only at the
time division points t* of the strips S;). For, as is evident in Figure 2.3, if a point
in a level I refinement has coordinates (z, t), and is not a coarse mesh point,
there may exist no other grid points in other refinements with the same coordi-

nate t.

A similar difficulty occurs with the l3(¢t) norm. This can be defined for all
strips 0<t < T only on coarse grid points. If we did not use an underlying
coarse grid, the I5(¢) norm could be defined for 0=<¢ < T only at the boun-
daries. However, the l3(z,t) norm can be defined in a natural manner, by

adding lx(z, t) norms on each strip.

53

Definition 3.1. Fori =1, 2, ..., s the discrete l,(z) inner product of two
vector grid functions v and w defined on our grid at a time division point ¢ = ¢*
in strip .S; is

| |)
(Wi (tS), wi(tD)), = 3

Riub(tr) wi(th) | (3.5)
Jj=0 .

where we have defined 2} = hY. The discrete I3(z) norm is given by
[(E9I2 = (vi(E), v*(tH))s.
_(There are two spatial meshes at the time division points ¢ = ¢*; the definition
above was for the mesh obtained before adjustment. The norm for the mesh
obtained after adjustment is [fw**!(¢*)||;.) As usual, * denotes the conjugate tran-
spose of a vector.
For certain purposes we will need an alternative definition of the la(z) .

norm. If w(z},t) is an approximation to v}(t), the above definition is the rectan-
b

gle rule O(h) approximation to flu(x, t*)*dzr. We could also have approxi-
a

mated this integral by the trapezoid rule, which provides an O(h?) approxima-
tion. |
Definition 3.1a. In the formula (3.5) for the I5(z) inner product of two gridfunc-

tions, replace A} by (h})', where

Yh} forj=0orj = N,
(h}) = {¥(h} + h},;) at coarse/fine interfaces z},
h} otherwise.

The norm corresponding to this inner product, called the trapezoidal l(z)
norm, will be denoted by ||| -||I;.
It is well-known that, for uniforrn'grids, both norms are equivalent, that is,

there exist constants ¢, and ¢, such that

54

coll -l < Il -lllz = cell [l

Definition 3.2. The discrete I3(t) inner product of two vector functions v and w

on the strip S; = [a, b] x [¢*7! t*] is given by
(Wi () wi(-)es = 2 kjui(tfm) witim).
m=0
The discrete I5(¢) norm on the i-th strip is given by

O RO [TRWESCHORA NS

Definition 3.3. The discrete {5(z,t) inner product of two vector functions v and

w on the strip S; is
. X mfl o o
() w(Naga = 3 8 MR) Wit m)
i=0m=0
The discrete l3(z,t) norm on the i-th strip is

b (-)”zz,[gt—l“i] = (U, V)zea -

The discrete lx(z.t) inner product for the entire region R =[a, b]x [0, T] is
then given by

s

('v- w)z.[O.T] = 2 (’U. w)z.t.i-

i=1

and the discrete I3(z,t) norm for the region is
wllZ 0.1y = IRollZggems e -
i=1

For certain purposes we will need a grid defined for —e < z < o, so on the
i-th strip S;, we extend our grid uniformly to the left of z = a, with space and
time steps h% and k%, respectively. On S; we similarly extend the mesh to the

right of z = b using space steps hf, and k},. These extensions produce no new

coarse/fine interfaces.

55

3.2. Need for a New Stability Definition

As we mentioned at the beginning of this chapter, to relate the local trunca;
tion error to the global truncation error, we need to use a variety of other‘
results. One such result is Gustafsson's [1975], work on the convergence rate

for approximations to the initial boundary vahie problem.

- This work was based on the Gustafsson-Kreiss-Sundstrém (GKS) [1972]
deﬁnition of stability. As usual, Gustafsson showed stability plue consistency
implied convergence on a uniform mesh. In this section, we show why the GKS

stability definition cannot be generalized for our refined grids, and present the

alternative stability definition of Berger, Gropp and Oliger [to appear].

In order to give our generalization of the GKS definition, we will need to

extend our integration to £ = «. To do this, we can add additional strips S;

beyond ¢t = T. We require that the "width" t**! — ¢* of these strips for tt> T be

the same. Then the following is a direct generalization of the GKS definition 3.3
for the right quarter plane [0, =) x [0, =), rather than our vertical strip

[a, 5] x [0, »). (We set a =0, remove the right boundary condition, use the

- extended mesh for 0 < z < =, and define the {3(x,t) norm on the extended mesh

in this definition only.) '

Definition 3.4. Assume that the initial data f j (3.4) in the difference approxima-
tion are zero. Let A = k;/ h; = constant, independent of {. The approximation is
stable if there are constants Ky > 0, ag = 0 such that, for all a > ag, for all k, all
mesh spacings of the type described, all left boundary functiens g, and all inho-

mogeneous terms F,

[
x—&g LS -at 2
e DIDIATIE

[

xX—0Qg

‘ —at 2
ak+1 lle =%l

z.[t"_l,t';]

< K¢,

i=1

o0

a—Qg =1 _ _
ok +1 20“9 a(‘+k)gu”[2‘i-‘-1.‘1] +le a(t+k)ﬂ|,2_[,t-1_,¢]
el w=

56

This definition seems plausible on the surface. We have merely applied the
GKS definition on each horizontal strip, and added. (We have tacitly assumed
that on each strip, the GKS definition applies even though our mesh is nonuni-
form. We will discuss this later.) But there are several problems with this

approach, if we wish to use this definition to prove convergence.

The first is the assumption that the initial data f are zero. This may be
acceptable for £ = 0, but after we integrate over the strip S;, we in effect start a
new initial boundary value problem at ¢ = t!, and now the "initial” data is not
zero. It is difficult to incorporate a nonzero f into the GKS definition, since it
was derived using Laplace transform. However, it is nevcess'ary if we wish to use
it to prove convergence. For, in an interval 0 <t < T the number of strips S;
becomes unbounded as h » 0. The solution at t® = T depends on the values of
the solution ("initial data") at all previous strips, but this dependence on values
at times £37!, to t572, .. . ,t!, has to be removed if we want to prove conver-

gence. This can only be done if f appears explicitly.

A second difficulty is related to the first. The GKS definition assures us that
exp(—at) times the solution is in I3(z,t), but for any fixed ¢ does not assure us
that the solution is unconditionéﬂy in I5(z). (Compare Theorem 3.1, GKS). In
order to integrate over a new strip S;, we wish to treat the solution values at_

t = t*~! as "initial” values, and this requires that they be in I(z).

A third (less important) difficulty is the Laplace transform parameter.
(Recall that « is the real part of the Laplace transform parameter s = a + 1w,
and the right half-plane in which the transform and its inverse converge abso-
lutely is §s: Re s > . Call ag the "abscissa of convergence".) If we apply the
GKS definition "stripwise’ and add, we would need to be assured that the abscis-
sas of convergence aq for each strip were uniformly bounded. (If we were deal-

ing with a quarter plane problem with constant coeflficients and no

57

undifferentiated terms, we could take ag = 0. Otherwise, ag may not be expli-
citly computable.)
The above remarks should not be taken as a criticism of the GKS definition;

only as pointing out that their definition is unsuitable for our purposes.

Motivated by these considerations, Berger, Gropp and Oliger [to appear]
have given a new stability definition. It applies to approximations in any number
of space dimensions, and is the discrete analog of the following well-posedness

condition for differential equations.

Definition 3.5. Let () be a region in real Euclidean n-space F™. Let K be the

space-time region (0 x [0, T]. In R, consider the differential equation
Iu = F, z €R,

where L = 6,- + P(z,t 8,), together with initial condition |
u{z, 0) = f(z), r e

and boundary conditions
Bu(z, t) =g{t), ' z €00,

where 30 denotes the boundary of Q. Let || -|l0. || -Haax(o.ry and |l -|laxe,r) denote
the usual L norms in space, time (evaluated at the boundary), and space-time,
respectively. This problem is said to be well-posed'if for any T = O there exists a

constant Ky > 0 such that, for all f, g and F, the estimate

lhe (- T, + The (2 - Mloaxto,ry < KF|IF |, + Hlglleaxto.r1 + 1 Fllaxte.7)

holds.

The analog for the discrete approximation (3.1)-(3.4) with for a uniform
mesh is then obvious.
Definition 3.6. Let A = k,/h, = constant. The difference approximation (3.1)-

(3.4) on a vertical strip [a, b] x [0, T] is stable for a uniform mesh if for any

58

T > 0 there exists a constant K7 > 0 such'that, for all 7, g,, and f, and for all
k; > 0such that 7 = mk,, m integer, an estimate

I (Tl + ’illhj,u[o.ﬂ + qi;”UNo—;M[o.T]S KAl + S 19 dlior + 171 o1
= M=

H=—q

holds. (It is well-known that K7 can be replaced by K,exp(aT) for some constant

K, > 0 and some a.)

It is not too difficult to extend this definition to our refined mesh scheme so
that it can be used to prove convergence. We proceed in two steps: (1) Extend

this definition to our refined mesh on one strip; (2) extend it to several strips.

To extend the definition to one strip, it is only necessary to examine the
coarse/fine interface between two refinements. The question is whether such an
interface introduces any additional terms into the stability definition given
above. The answer is no. The reasoning follows the work of Ciment [1971] and -
Oliger [1976]. To consider the stability near this interface, one extends the
mesh on the left side to —= (in space) and on the right side to =. Thus, one has
two quarter-plane problems. The left quarter plane is folded along the
coarse/fine interface, resulting in a right quarter plane problem for a coupled 2
x 2 system. The interface conditions become homogeneous (coupled) boundary
conditions. Since only inhomogeneous boundary conditions enter the stability
definition, the latter stays the same when a uniform mesh is replaced by one

strip of our refinement scheme.

(This discussion has assumed that the time steps in the two quarter planes
are equal. If they are not, then there is no analysis to support our discussion.
However, computations by Oliger, Ciment, ourselves, and others seem to indi-

cate the truth of the assertion even in this case.)

Next, we need to extend this definition to several strips. Before doing this,

we need to introduce an additional éomplicating,,factor for our refined grids.

59

Recall that at times t%,7 =0,1,...,5-1 we adjust' the spatial mesh by interpo-
lation. This produces an interpolatioﬁ error, which we will need to account for in
our arialysis. (Note that this error arises even if we ignore the differential equa-
tion we are approximating.) We will examine its magnitude in the next chapter.

Fori =0, 1,...,s—1 we will define this error /(t*) by
[(e =t + (2. (3.6) .
We will now -exiend the stability definition to two horizontal strips; the gen-
eral case then follows by induction. Fori =1,2, ... ,s and any g'rid function w

we first define the boundary sum of w at the left and right ends of the strip S;

as

Zw#m— Ewpm'*'qzw}\/-pm

C p=o »=0

(A similar definition holds for the 15(¢t) norm of w on S;.) Then for the strip S,
) r—1
W e + XAl = Kle““[lrv‘(O)llz AN, oy + 2 IIg,JI[o,l]]: (3.7)
. =0 w=-q
and similarly, on the stnp tl<t <t®*=T, using vz(t‘) as initial data,

PR+ Slvalin oy Koo 2N + 1, s + z: Ilq,JI[,lta]

Adding these, using (3.6) for i = 1 and then subtracting | !(¢!)}; from both sides

gives

()]s + Z)y llval[,f s

t=1p=08

=1
< Ko) A g + S ng,u[,l_,z]] 38)
u=-q) . . :

+ (Kye@* =t — (el + ket

: r—1
IO + 1Pl oy + 5 Il

We wish to eliminate the dependence on v!(t!), so we use inequality (3.7) to

replace that term on the right of (3.8), use (3.6) again with ¢ = 0, and use (3.4)

80

to obtain
2 r—1
[l2(E3)|. + 2 by ”'Up“[ti—l_ti] = Klea(‘a_‘l)[””L'[p_,z] +) ||9;J|[,1't2]
i=1u=0 p=—q

=1
+ [(tl)] + Klzeatleﬂ(ta—tl) [”«Ul(o)”z + ”F”z.[o.tl] + 2 “gﬂ”[o.t‘]]
=-q

2 r—1 . 2]
< KT[an, 1Al g+ 3T lgdlsen ey + zlm‘-l)].
1=l u=-q i=

where -
Ky = max (KPe? K,eat®=h)

It is now clear what the stability definition should be for any number s of strips:

Definition 3.7. Let A =k;/h = constant, independent of .. The difference
approximation (3.1)-(3.4) on a vertical strip [a, b] x [0, T] is stable for a refined
mesh (as described in Section 3.1) if for any T > 0, there exists a constant

Kr > 0 such that, for all positive integers s, all sets of time division points
0=t0ctl< - - <tslgts =T, (3.9)

allk, >0,1 =1,2,...,A satisfying our restrictions for refined meshes, and all

F,gu I, and f, an estimate

oo (Pl + 3 Tkl et
i=1 p=8

s r-—1

= Kr|llfll: + 1Al 0.y + .

]

S -
g dl g1 0y + 2 T,
i=1

1 u=-g
holds.

Our extension to several strips, then, will be complete if we show that K7 is.
uniformly bounded, independent of the number of strips s. For the general case

of s strips (3.9), the corresponding K7 will be a maximu:n of s expressions of the

form

Kiexp(a(ts—t*)),

61

for 1 = 1,2,...,s. If all (positive) powers of K, are bounded by a uniform
bound M3, then this maximum will be bounded uniformly for any number of

strips s in the interval 0 < ¢t < T by M4e®T if a = 0, and M3 if a < 0.

The following assumption will ensure the uniform boundedness of the
powers of K;:
Assumption 3.1. There exists ak; > Osothat,forO<k,;<k;and0<t < T,
(a) Ky = 1 + O(k,), that is, there exists ¥, >0sothat K, <1 + Mlklv;

(b) sk, = constant = C,.

Assumption (a) is natural if one defines the solutioﬁ operator E(t; t,),
Which takes a solution Iat time £, and produces a solution at time .tz >t;. When
tp=t,, £ is the identity operator. Assumption (b) ié only a very slight restric-
tion. It says that as the largest time step k, becomes small, the number of
strips s (in the same ﬁxed time interval 0 <t < T) becomes large. In practice,
when we halve h; (and hence k,), we can either keep the division points * the
same, or use twice as many division points. To control the ilocal 'truncat'ion
error; we do the latter, and this fulfills the assumption. (This assumptioh is an
analog of our restriction on spatial step sizes in Section 3.1, but is a milder res-
triction.) If we check the local truncation error every ¥ coarse time steps (with

¥ fixed), this will automatically fulfill the assumption.

If assumptions (a) and (b) are satisfied, then the product of any number of
factors K is bounded. For, -

CH,

<+ Mk) =1+ Mk)" 12 foro<k <k}

We have shown
Proposition 3.1. If the difference scheme (3.1)-(3.4) is stable in the sense of
Definition 3.? for one horizontal strip of a refined rﬁesh. and if Assumption 3.1
holds, then it is also stable in the sense of Definition 3.7 for any number of

strips.

62

We believe the GKS stability definition does not lend itself to a proposition of
this kind.

3.3. Stability of Refinement Algorithm

In this section we shall outline results which we believe are true for our

mesh refinement algorithm.

For a uniform mesh, a scheme is stable in the sense of Gustafsson, Kreiss,
and Sundstrém if it is stable in the sense of Definition 3.8, either for a quarter-
plane or strip problem. We believe that the converse is not true in general; that

is, the new definition is stronger.

This means that each individual difference scheme must be proved stable
ab initio. Certainly, however, a disstpative difference scheme such as we have
been using will be stable under almost any (reasonable) definition, for a uniform
mesh. In order to prove this for the new stability definition, one cannot use the
normal mode analysis as in the GKS approach. Instead, the energy method is

appropriate.

For a refined mesh, we showed in the last section that we need only con-
sider one horizontal strip. Then a question which arises naturally is stability
along a coarse/fine interface. This question already has been examined (using
the GKS definition) in Ciment [1971] and Oliger [1976] for the case of equal time
steps on both sides of the interface. Oliger found that if leap-frog was used on
both sides of the interface, certain restrictions on the refinement ratio needed
to be made. But if the difference scheme was dissipative on one side of the
interface, all stability problems vanished. Since we are using refinements

throughout the region, and possibly recursive ones, this suggests using a dissi-

pative scheme throughout the region.

63

Still to be examined is the stability (in the sense of either GKS or Definition

3.6) along a coarse /fine interface for unequal time steps.

Even though our analysis is far from complete, we believe that our scheme

is indeed stable in the sense of Definition 3.7.

CHAPTER 4

Error Analysis

It is clear frovm Chapter 2 that the success or failure of our algorithm will
hinge on the reliability and efficiency of the local error estimation process,
because this is what decides where to locate refinements. And in the next
chapter we will see that estimating the local error in turn demands a knowledge
of the behavior of the global error. Thus, this chapter. will answer the following
questions, which are of interest not vonly in their own right, but also for the suc-

cess of the algorithm:

1. How does the order of accuracy of the interior, boundary and coarse/fine

interface approximations, and the interpolation affect the global error?

2. Does mesh refinement increase the (global) order of accuracy of a
difference approximation (compared to using a similar approximation on a

uniform mesh)?
3. If not, can some theoretical arguments be given to justify mesh refinement?

Since our algorithm has two basic convergence-inducing pafameters (the
maximum step size h, and the local truncation error tolerance §) instead of one,
we first discuss different modes of convergence. Next we prove a theorem relat-

ing the pointwise interpolation error to its l;(z) norm.

The chief result giving the rate of convergence for difference approxima-
tions to the initial bound;ary value problem is due to Gustafsson [1975]. It
bounds a weighted I{3(z.t) norm of the global error in terms of the local errors.
We restate (but do not prove) his result for a scheme which is stable with
respect to the new stability definition introduced in the last chapter (Proposi-

tion 4.1). This proposition bounds the I3(z) norm of the global error in terms of

64

65

the local errors.

Based on this proposition, we prove another proposition, which assures us
that the same rate of convergence obtains even when we economize on. mesh
points by placing fewer in regions where the solution is not changing rapidly.
This result (Proposition 4.2) is based on the approach of de Boor [1973] which
was applied by. Pereyra and Sewell [1975] to solve bogndary value problems for
ordinary differential equations: at each time t* choose a mesh which (approxi-
mately) equidistributes the local truncation error. This result provides the
requir.ed theoretical justification for our method and also suggests where to

place refinements.

In order to oﬁtain a practical algorithm, still further‘ comprorﬁises must be
made. Although some numerical algorithms for boundary value problems in
o.d..e's actually do use the equidistribution criterion more or less directlsr
(Lentini-Pereyra [1977], White {1979]), this process is much too expensive to
implement at every time step of a time-dependent calculation. Furthermore,
for the reasons given in Section 2.2, we want to use piecewise uniform meshes.
By doing so, and by using recursive refinements, we can achieve the effect of
equidistribution.

A final compromise involves getting bounds for the local truncation error.
~de Boor [1975a, b] has given bounds for derivatives in terms of differences, and
in principle we could use these for our local error estimation. However, we shall
show in Chapter 5 that these bounds are hopelessly conservative. We are forced
to estimate, rather than bound, the local truncation error, and even then, We

estimate only leading terms of the asymptotic expansion of the local error.

Having made all these compromises, we then implemented four methods for
estimating the local truncation error. These are explained in Chapter 5. We

apply three of these methods to our model problems in Chapter 8.

66

4.1. Modes of Convergence

Let us first discuss what we mean by convergence.' In all cases we let
A =k;/h; = constant, independent of I. Throughout this chapter we shall
assume the exact solution is sufficiently smooth.. We shall also make Assumption

3.1 of the last chapter. There are several possibilities.

(a) We could hold our refined mesh and the local error tolerance 6 (Section
2.6) fixed, and let the maximum possible refinement level A increase without
bound. This will not produce convergence, since (for smooth solutions) increas-
ing A beyond a certain point will introduce no further actual refinements (as we
will see in Section B.3). We recommend computing with a large enough level of A
(say 10) so that the algorithm can refine as much as it pleases. In the rest of

this chapter we assume this has been done.

(b) Keep the local error tolerance § and the maximum refinement level A
fixed, and let the largest spatial step h, approach zero. If we take a sufliciently
large value for A as above, then the algorithm will refine as much as it needs to.
Furthermore, (for smoofh solutions) our method then has a property which
leads to simplified analysis: For sufficiently small h,, our refined mesh becomes
a uniform mesh. This is because of our local error tolerance. If it is held fixed
and h, approaches zero, then so do all ;. Hence, our local error estimates (to
be discussed in the next chapter) will ultimately become less than the tolerance
6 at every mesh point on every refinement level. Thus, no refinements will ulti-
mately be introduced in the first level (coarse) mesh. This type of convergence

is not desirable, since the advantages of refinement are ultimately lost. '

(c) One might object to the above procedure, on the grounds that the local
error tolerance 6 should not be held constant. After all, to study convergence in
o.d.e. initial value solvers, one gives a decreasing sequence of local error toler-

ances, and (until the round-off level of the machine is reached) this produces a

67

decreasing sequence of maximum mesh sizes. But our-algorithm is different.
Decreasing the tolerance does not directly decrease the largest mesh spacing
h,. However, for any refinement level ! and any fixed time, we can choose a
sufficiently small tolerance ¢ so that the entire spatial region will be covered at
that time by one l-th level refinement. Thus, the effect is as though the the larg-
est spatial mesh size has been reduced from h, to h; at that time. Hovéever, the
same 0 may not work for all times; this makes the method difficult to analyze.
In addiﬁion, this method does not satisfy Assumption 3.1, since the number of
strips § remains constant (instead of increasing) as ¢ is decreased, if we adjust
the mesh every ¥ coarse time steps. To overcome these problems we need to let

h, depend on 4.

(d) A fourth method would let A, » 0 and choose 6 as a function of h,, so
_that 6 - 0 also. (Altématively. we could let 6 » 0 and choose A, as a function of
6.) If one knows the order of the global error, one could choose § = C{h,)?P for
some constant C. This is certainly the theoretically most appealing method, and
we shall use it in our analysis of this chapter, and in our numerical experiments
. in Section B.5. If we use this method, then the grid does not approach a uniform
coarse grid as h, » 0, as in method (b). Rather, the ratio of the width of any
refinement to the width of its parent shovuld approach a constant as h, » 0.
However, for checking the asymptotic behavior of the program in Section 8.5 we
shall also use method (b), since it does not beg the question by assuming the

behavior of the global error.
4.2. Interpolation Error

As we mentioned in the last chapter, in addition to the usual truncation
errors, for a refined mesh we have another source of error—the interpolation
error /(t') at the time division points #*,7 = 0,1,...,s=1. How does the tra-

pezoidal norm ||[v*(¢t*)|]l; change when we readjust the mesh to produce

68

1 (eI ?

Theorem 4.1. Let our refined mesh be as in Section 2.2, with horizontal
strips S;,i=1,2,...,s. At time division points £*,% =0, 1,...,s—1, obtain
new approximate solution values v**!(t*) from the old ones v*(¢') by (a) linear or

(b) quadratic interpolation in space. Then for the method (d) of convergence,
I ENE = Ikt (LS + O(h®) ash -0,

regardless of the (two-level) difference scheme used. Here A is the maximum

mesh size, and A = &,/ k; = constant independent of {.

Proof. It is sufficient to assume we are dealing with one level I spatial inter-
val at time ¢ = t* for case (a), or two for case (b), in (each of) which are interpo-
lated N—1 (resp. 2N —2) new level {+1 approximate solution values. (N is the
spatial refinement ratio.) For, as described in Chapter 2, we are allowed to insert
‘only one level of refinement at each t*, except at ¢t = 0. (At £ = 0 we can use the
initial condition directly, producing no interpolation error.) We are allowed to
delete more than one level at a time, but in that case we can prove our theorem
recursively a level at a time. Without loss of generality, we shall assume that

new points are introduced but not removed.

Let us now examine linear interpolation. We will use a simplified notation.

On one level I interval [zq, zy] the contribution to the trapezoidal sum ||v|||2 is

Ty = Bhu(vd +uf] = BNr o [vE + uf].
(The 2's are now exponents, not superscripts.) For N = 2, we use linear interpo-
lation to obtain approximate solution values v,, vy, . . ., vy_;, and we form the
new contribution

Zo= moilof + L uf +]

J

to the trapezoidal rule sum. We wish to compare this to the previous sum ;. We

69
use the formula for linear interpolation
'UJ='U°+ #('UN—'UQ), j=1,2,....N—1,

and substitute in X;. Let u be the exact solution. Since the methed is conver-
gent, we can assume that the global error e = u> - v is O(hﬁ) ash -0, forg=1.
Therefore,
(vy —vo)® = (uy —uy +uy —uo + ug—vg)? = 0(h?).
After some elementary manipulations we obtain
helw8 +uB) + (N-Uveuy + O]
Since vouy = ¥(v§ + vf) + 0(R?), the last sum becomeé ., + O(RY).

Now let v be the number of level { intervals in which we interpolated. Then
the O(h®) term is multiplied by v. If we use method (d) of convergence, then
ultimately v is a fixed fraction of the region a <z <& (i.e., v/ Ng = constant as
h > 0). So vh = (v/ Ng)(b—a) and one power of h is lost. This proves the first
assertion. (If we had instead used method (b) of convergence, then v - 0 as

h > 0, and one power of h is not lost.)

For quadratic interpolation on two intervals [z, Zy], [Zn, Z2x] of the level

mesh, the contribution to the trapezoid rule sum is
T3 = BN [vd + 20 + viy].

We wish to compare it to the sum

N1
By = g + 8 vE + Bkl

1

where vy, V3, . . . ,UN-1, UN+1., - - -, UzN—) TesSUlt from quadratic interpolation
, (7 —N
Vi =vg+ “Huy —vg) +]—(J—L(vo —Ruy + vay).
J : JJ\T(_RN?

As before, vy —vg = 0(h?), and vy — 2uy + vy = O(h?), so our sum I, becomes

70 —

RN -1
Mnlid + RN-1E + Zvo(va —vo) 3 11+ O(%).
1

After simple manipulations, this becomes
Py [Ju§ + (RN-1)vf + Ywiéy] + O(R)..
Using

N-1

5 vg — 2uf + viy) = 0(h?),

we obtain £g + O(h3). By the same arguments as before, we lose one power of k.

If we use the rectangle rule for the l3(z) norm (|| -}|;). a similar proof shows
that we obtain O(h) instead of O(h?) for either type of interpolation. This latter

norm is more suited for our analysis to follow.

4.3. Rate of Convergence, 1

Before deriving our main convergence result (Proposition 4.2) we will state,
but not prove, the analogue of Theorem 2.1 of Gustafsson [1975], on the rate of
convergence of difference approximations to the initial boundary value problem
for hyperbolic systems in one space dimension. Our analogue uses the stability
definition given in Chapter 3 instead of the GKS definition. Thus the result is in
terms of the {3(z) norm of the solution instead of the weighted I5(z,t) norm.
Aside from this, the only differences in our proposition are the change from the
quarter plane to strip, the inclusion of interpolation error, and the compatibility
assumption (4.1), which is a weakening and generalization of a similar assump-

tion of Gustafsson's.

As an application of this proposition, suppose that one uses an O(h?) inte-
rior approximation and O(h) boundary approximations. Also suppose that we

use - linear. interpolation (O(h®)) to obtain solution values on [+1-st level

71
refinements from [-th level refinements, and an O(h?) approximation at
coarse/fine interfaces. Finally, suppose that this scheme is stable in the sense

of Definition 3.7. Then, subject to certain compatibility and smoothness assump-

tions, this proposition says that the global error is O(h?).

. For simplicity, we shall eliminate the initial error at £ = 0 by absorbing it
into the interpolation error there, since we are using a one-step (two time level)

method.

We now state the analog of Gustafsson's convergence result.
Proposition 4.1. Consider the differential equation (2.1)-(2.3) on the strip
[a,] x [0, T]. Approximate it by the difference scheme (3.1)-(3.4) on a grid as
described in Section 3.1. Suppose that Assumptions ,B.l(a) and {b) hold, and
that the approximation is stable with respect to Definition 3.7. Assume that the

boundary conditions (3.1), (3.2) can be solved boundedly for the left-hand side.

We assume thé local truncation error per unit time step is O(hP) in the
interior and at interfaces, the local truncation error is O(hP7!) for the initial
function and at the boundary, and the (pointwise) interpolation error is O(h?),
where p = 1. Thus, on the i-th strip, ¢ = 1,2, .. ., s, with the global truncation

errore =u —v, andt = tYm.
el (t+k}) = Qoel(t) + ki (RL)Pd (2} L)

in the interior (v =7, 7+1, ... ;Ni —q). We also assume the error at coarse/fine
interfaces is O(hi’); if we use the coarse/fine approximation mentioned in Sec-
tion 2.6, this can be subsumed in d,. At the boundaries: |

0.

| el (t +k1) = 3

o=-1

S{Mei(t—aki) + (RL)Pda(zd t), v=01, ... ,7-1,

ei(t4+ki) = 3 SETM ey o (t~oki) + (RLPdy(h t), v=N,-qg+1, ..., ;.

o=-1

72
For the interpolation error, let u = v at the "old" mesh points (z}™!,t*71),
and let v;(z,t*"!) be the (continuous) function obtained from interpolation at

these points. Given any "new" point z}, find its nearest surrounding "old" points

zj~' < z} < z};]. Then we assume the Lagrange interpolation error

wiah £571) —uy(ah £171) = (RPy(67) = (hE)Pdala.),

where z}7'< ¢ < z};]. Since £ is a function of z}, we have rewritten d, in the

alternate form di We assume d,, dj, dgj are uniformly bounded, and that

ki /R = A\ = constant, independent of i and v.

On the extended mesh described in Section 3.1, wé assume that the
difference approximation is stable for the Cauchy problem, i.e., for Fi(t) =0,
there exist constants K; > 0, oy =0 such that fori =12, ...,s

) ALl (t))2 < Kpe®t S Alfud (O)2

y=—c0 v=-—o

Finally, for compatibility between interpolated values at ¢t =t* and boundary

approximations, we require forv=0,1,...,r-1,1=1,2,....,8,

lda(zh 471 — (da(zd ti714kd) — D) SMdg(zh ti -gki)) = O(1), (4.1)

o=-1

(with a similar condition at the right boundary) where ds(z} t*"'+k}) is defined

on the extended mesh (for the Cauchy problem) by

da(z} . t* 7 +kL) = Qoda(zh £71) + kid,(z} 471,
(At times t = t* we extend the function dg smoothly to the left of z = a so that
dg =0forxz <a-1/h, Similarly, we extend d3 smoothly to the right of z = b so

that dg=0forz = b + 1/h;.) Then for any T > 0, there exists a constant K7 > 0

such that, for all positive integers s, all sets of time division points
0=t0%<tl< - <t571<ts =T,

all , >0, 1 =1,2, ..., A satisfying our restrictions on refined meshes, and all

73
d,, dy and dj,

lle (T + 5 T lleu Wi | (4.2)

=1 u=04

. . -

< KrhPlid, (-, o + -21 lda(- £ 0MF + Zalldz(x“,-)llﬁf-l,,;]
i=1]" - ops

Hence the convergence rate is O(hP) as h - 0.

4.4. Rate of Convergence, II

In this section we shall derive the result of Section 4.1 under somewhat
- different assumptions. Proposition 4.1 told us the rate of convergence achieved
when the local truncation errors were i,_miformly bounded. However, this result
did not tell us how many mesh points are required, or where they should be dis-

tributed, in order to obtain a given bound on the local truncation error.

Proposition {L.Z asserts the same rate of convergence as in Proposition 4.1
when we economize on the number of mesh points. Mdre specifically, we shall
assume that at each time division poinvtb £% the mesh is approximately equidistri-
buted. We shall follow the approach of Oliger [1978] for the Cauchy problem, and
use the results of Pereyra and Sewell [1975] on equidistribution of the iocal
truncation error. Proposition 4.2 in a sense gives a theoretical justification for

~our algorithm.
For our local truncation errors d, .'and ds we shall assume
(WP dy(z.t) = (R)VT(z.t) + (k)P U,(z.t) + O(RP*Y),

where z =z}, t = t},,, v=12 «a,and g, are positive integers, and T, and U, are
uniformly bounded. (1f 'Ué =0 then B;=«) We then assume

P = min(a,, B, ag, PB2). As before, we assume dj is also uniformly bounded.

74

We also assume that the time steps Ic} are chosen small enough so that the

spatial truncation error dominates the time error, that is,
[P U (2.t) < |[(RHMT(2.t), v=1.2 (4.3)
We will now define the hybrid local truncation error for z = z}, t = t},m as

di(z.t).j=7r.7+1,...,N;—gq
Az.t) = ()P

dz(z,t),j =0,1,...,r-1, Ni_q+1- Ni—q+2» o NG
(It is a hybrid of the boundary local truncation error and the interior local trun-
cation error per unit time step.) We define the interior error dl(z}.t) as zero for
7j=01 ..., 7r=1,N—g+1, ..., N;, and similarly define other functions as zero
outside their range of definition. We will then attempt to choose the mesh points
z} to minimize spatial errors, and assume that the time steps Ic} are chosen so

that temporal errors are no larger.
It has been suggested by de Boor [1973] that the (spatial) mesh be chosen
in such a way that at the i-th time division point,i =1, ... s,
h}l?(x},)2 = constanf. =E, j=012, - -

and such a mesh is called equidistributing. As we noted in Section 1.3, this
approach has been applied to boundary value problems for ordinary differential
equations by Pereyra and Sewell [1975]. Since this expression depends on the
mesh, Pereyra and Sewell introduced the idea of an approximately equidistribut-

ing mesh.

Let

sup (I7y(z)] [Ta(z t)]) = M,

and € = M,/ K'° where ¢=2/(Rp+1). (K relates the largest and smallest

values of h}.) Let

75

z(z.t) = max (|Ty(z.t)], |To(z t)l, &) (4.4)

and yH(t') = (h§)P2 (] t*™)). A mesh is said to be approzimately equidistribut-

ingovera <z <b att = t*7ljf
Ry = E(1 + O(hy))

fora < x} < b. The ¢ has the effect of disallowing excessively lafge step sizes h}
in the Pereyra—SeweH development. Our use of a uniform coarse mesh précludes
the (spatial) step size from exceeding hy.
Pereyra and Sewell show that if a mesh is equidistributed with respect to
b

E; = flz(z t:h)dz,

then such a mesh is also approximately equidistributing with.
f b : 2p+1
B = [N Jlz(z ti) dz

a

where N;_;+1 is the number of mesh points at time £*7! in the interval

a<z<b.

Our theoretical strategy, then, would be to assume the spatial mesh is
"approximately equidistributed” at time ¢ = t*7!, 1 =12, ...,s, compute for-
ward in time until thi‘s is "nearly violated” at time ¢t = t', and then approxi-
mately equidistribute again. In practice, it is probably more work to discover
when thié is "nearly violated” than it is to simply approximately equidistribu‘te
again, so we usually choose our "equidistribution” times a priori as some integer
multiple of the coarsest time stép k,. A somewhat similar strategy has been
used by Gannon [1980] for parabolic problems with finite elements in two space

dimensions.

Let us now make precise what we mean _vby "nearly violated”. That is, the

mesh shouldn't deviate too far from (approximate) equidistribution between

76

times t* when we check the local truncation error and adjust the mesh. We shall

assume that, fori = 1,2,....s. m = 12m,‘ and z = z},
|dy(z v‘t}.m)lz =(1+ Czk}) ldu(z't}.m—l)lz : (4.5)

here v=1,2,7 =0,1,....7r=1. Nj—=g+1, ... ,Nyforv=2,j =rr+1r+2,...,N;—q
for v = 1; and Cj is a nonnegative constant independent of the mesh spacing and

the d,.

Next, we define sets where the truncation error is excessive. For
i=0,1,...,5-1let M (t*) = {z:|z(z.t*) = L;, a =z < b}, where L, is chosen so
that

b

[le(z.t)dz = 1 flz(z.t*)°dz .
ML"(“) -

We let u(My (t*)) be the measure of the set My, (t*) and pmax = maxu(M (%)),

According to Pereyra and Sewell's Lernma 3.1, since the mesh is approxi-

mately equidistributed at time ¢t = ¢t*7!, 4 =1,2,....5,

s (- 87002 + 3 hjlda(zh 2702 < Couullz (- 27|12 + O(hY),
i=e

where Cg is a constant. Note that the norm for z is the continuous Ly(z) norm
on the interval Q) = [a, b].

We need to eliminate the'h.} factor on the left. We can do this by modifying
the Pereyra-Sewell argument, treating boundary and interior terms separately.
We use our assumption that the smallest step size is a bounded fraction of the -

largest step size. We obtain

. o + .
a2 + T (et = Ot + KD utelle (- 67912 + O(h). (26)
J:

This gives us an estimate at each time division point ¢*~! between adjacent hor-

izontal strips. Then on the i-th strip S; we obtain

7

”dl(T)'lf,[gi—l_g‘] + Jga”dz(z}- :)”[%i—llgi] : (4—7)
Ni—q . m%:—l . : . . -1 N{ mt—l X . .
= L H D EhEEIE [T+ Y | ke)

j=r m=0 =1 j=N;—-g+1}] m=0

< c(cz.<t='—tf-*)>{||dl< LEOIE + Tidaleh

where G is the Lipschitz function: G(a,t)=(exp(at)'—l)/rx. a >0, and

G(a,t) =t when a = 0.

We now apply the equidistribution inequality (4.6) to (4.7) for each
1 =12, ...,5 and add together the results. Then we assume the hypotheses of
Proposition 4.1, in particular, that ihe number of stripsis O(1/k,) ask; » 0. We
shall also assume that the interpolation error is O(hP*!) rather than O(hP).
Applying Proposition 4.1, we obtain the principal result of this chapter:
Proposition 4.2. Under the aséumptions of Proposition 4.1, together with the
assumptions that (a) the spatial truncation error dominates the tirﬁe error; (b)
‘the mesh is approxﬁnately equidistributed at times t*, i = O,l,...,s—l.; (c)
assumption (4.5) on the growth of the error inside a strip S;; and (d) the inter-
polation error is one order higher than the interior error; we obtain a conver-
gence rate of order p, and the following estimate holds for the global truncation
errore att =t° =T:
e = £r7ne S ot + LT e)12)12) + 0(he),

i=

where K'y is a constant independent of the number of stripé s, the meSh spac-
ing, and the local truncation error functions d,, d; and dj; it may depend on 7,

however. Here z is defined in (4.4).

A comparison of the above result with Gustafsson's [1975] theorem for a
uniform mesh shows that our algorithm does not provide any increase in the

order p of convergence, and our results in Section 8.5 confirm this. Instead, our

78

algorithm introduces the factor

pialt + BT

into the estimate. Loosely speaking, our method does not increase p but
instead multiplies the coeflicient of A? in the global error by this factor. When
the solution has rapid variations only in a small part of the (spatial) region, then
the local truncation error is small over most of the region, and pm.y is therefore
small. Thus our algorithm can use fewer mesh points in regions where the local
truncation is small (compared to using the same difference scheme on a uni-
form mesh which achieves the same level of accuracy) and this produces

significant econormies, as shown in Section 8.4.

Proposition 4.2 depends on Proposition 4.1, which we have not proved. We
believe it can be proved at least when the interior approximation is 0(kP), the
initial and boundary approximations are O(hP), and the interpolation error is
pointwise 0(hP*!) (hence, O(hP) in l5(z)), using the energy method. Our results
of Sections 8.5 and 8.9 show that the claimed rate of convergence (even with the
less accurate initial and boundary approximations) is indeed achieved. This

experimentally confirms Propositions 4.1 and 4.2.

Let us now comment on some of the assumptions used in deriving these
results. Many of these, such as the assumption that the number of strips s is
0(1/k;) as k, » 0, are quite natural. The asﬁmp;ion (4.5) on the growth of the .
truncation error between adjustments of the spatial mesh is natural but not a
priori verifiable. We try to enforce this assumption by allowing enough "buffer”
at either end of a refinement (see Section 2.5). We believe that the assumption

on the order of the interpolation error is unnecessary and can be relaxed.

The most tenuous assumption is (4.3) that the local truncation errors are

such that the spatial error dominates the time error, for both interior and boun-

79

dary approximations. For our interior scheme, Lax Wendroff. it is well-known
that the truncation error decreases (in general) as A = k,/ h, increases to the
upper stability limit. So this assumption is probably not satisfied in our model
problem P1 (the first order wave equation) for A = 0.8. Naturally, for fixed h; we
could in theory choose a A small enough so that the assumption was satisfied,

but this might entail wastefully small time steps.

It is clear that the reason for this assumption is technical .convenience.
Without it, we would have to consider equidistributing in both space and time
simultaneously. If we used uniform time steps throughout a horizontal strip S;,
we might be able to do this analysis by considering space-time rectangles with
horizontal sides lying on the lines £ = t*~! and ¢ = t*, the division points between
strips. As we mentioned earlier, however, it is necessary to use different time

steps in different parts of the spatial region.

Even when the assumption is not true, the qualitative result that follows
from it still is. We are looking for sets M; where the local truncation error is
much larger than that of the surrounding region. Even if the assumption is not
satisfied, it is likely that both time arid spatial truncation errors are much
larger in this set than outside it. At isolated points of M; the spatial and time

errors may cancel, but this is dealt with by the buffer mechanism.

We should emphasize that we do not approximately equidistribute in prac-
tice, as it would be too expensive. Our use of recursive refinements achieves a

primitive form of approximate equidistribution at much less cost.

It may be easier to prove Proposition 4.1 if we do not write our boundary
approximations as in (3.1)-(3.2), but instead use fictitious points outside the
region. Then we can assume the boundary approximations are all on one (time)
level and of extrapolation type. This form was used by Gustafsson [1981]. But -

this form would have complicated our equidistribution analysis because we

80

would have had to introduce constraints on the mesh points, so that two of them

wereatrz =a andz =b.

Having related the global to the local error, we next examine ways to esti-

mate the local error.

CHAPTER 5
Estimation of the Local Truncation Error

In Chapters 2 and 4 we saw that we needed a way to obtain estimates for the
local truncation error made in advancing the solution of the difference equation
one time step. In this chapter we étudy several methods for obtaining these
estimates in the interior of the region, at coarse/fine interfaces which do not
abut boundaries, and at boundaries. In Chapter 8 we will use numerical experi-

ments to illustrate the accuracy and efficiency of these methods.

We first examine methods for the placement of mesh points which do not
rely on the local truncation error. Next we describe our first three methods on
rmodel problem P1 (the first order wave equation; see section R.4), using Lax-
Wendroff in the interior of the region. These methods are differences, two-step
Richardson extrapolation, and bounding derivatives in terms of diflerences.
(The last is not practical.) We then explain the three step Richardson method,
and prove Theorem 5.1, which states that this procedure is justified under quite
gensral conditions. The fundamental restrictions ai‘e_ that the difference
approximation (interior or boundary) must have the samé order of accuracy in
both space and time, and be explicit. The proof also shows that this method is
simultaneously a deferred éorrection method. Then we propose a simple
scheme for estimétin_g the error at coarse/fine interfaces which do not abut
boundaries. -Next we examine our methods at the boundaries. The three-step
Richardson algorithm applies here only with modifications, but its range of appli-
cability is more limited, and it is considerably less convenient to use than
differences. Finally, we explain the modifications necessary for n Xn systems

of equations.

81

82 BT

The first important conclusion of this Chapter {and of the numerical results
in Chapter 8) is that several methods can be used to estimate the error, both in
the interior and at boundaries. Thus our algorithm is quite general as well as
robust. The second important finding is that for both interior and boundaries,
one of the methods is more convenient and general than the others. In the
former case this is three-step Richardson extrapolation, and in the latter it is

differences.

For simplicity, we shall write all approximations as occurring on a uniform
mesh, then consider modifications at coarse/fine interfaces and boundaries. We
will always assume that A=k/h = constant, and that the solution of the
differential equation has sufficiently many derivatives. When we speak of asymp-

totic estimates and leading terms, we shall always mean"ash - 0".

5.1. Methods not Using Local Truncation Error

Many other methods have been suggested for adaptive placement of mesh
points. A good survey of such methods for two-point boundary value problems is
given in Russell and Christiansen [1978]. This paper gives many references,

most of which will be omitted here.

Most of the alternative methods for two-point boundary value problems in
effect try to approximately equidistribute -a lower derivative of the solution than
that occurring in the expression for the local truncation error. For example, if a
second-order finite difference method is used, then the local truncation error
for a first order system usually depends on the third derivative. Alternative
methods attémpt to equidistribute the first or second derivative. A variation of
the first derivative method is to use arc length. An early method, used among
others by Pearson [1968], attempted to equidistribute the variation in the solu-

tion (for monotone solutions), and this can be considered as attempting to

83

equidistribute an approximation to the first derivative.

A method which does not fall into any of these categories is that of White
[1979]. He introduces a new variable and considers the mesh distribution as a
function of it. The equidistributing mesh and the solution are computed simul-
taneously by solving the nonlinear equations using a finite difference method
with equal mesh spacing. We believe this approach is too expensive to use in our

context, where we deal with explicit methods.

-Russell and Christiansen state that, in th_eif context, when one frequently
has a very crude first approximation to the solution, equidistribution using a
lower order derivative frequently produced a better mesh. But they conclude (if
one excludes methods such(as White's) "If high accuracy is required, the [mesh
selection] strategy should ... incorporate the asymptotic form of the error." In
‘our situation, where we (in principle) must find a spatial mesh which approxi-
mately equidistributes the error that would be made in taking the next time
step, we have a very good approximate solution at the current time. We agree
with Russell and Christiansen, because Proposition 4.2 shows that signiﬁcant
economies can be achieved by controlling the local truncation error. This
analysis also shows that we should control different order derivatives in the inte-
rior and at the boundary (if, as usual, we use first order boundary approxima-
tions and second order interior approximations). Additionally, the use of the
truncation error (third derivatives) in a sense contains the information of the
lower derivatives, but not conversely. Furthermore, the existing programs for
ordinary differential equations (both initial value problems and boundary value
problems), as well as our own results in Chapter 8, suggest the efficacy of this

approach in practice.

B84

5.2. Four Methods

To motivate what will be eht.ailed in producing an error estimate for the ini-
tial boundary value problem, let us examine a procedure for the initial value
problem for a first order system of ordinary differential equations. For a p-th
order linear p-step method on a uniform mesh with step size ~, the local trunca-

tion error is
Conrh?PHiy® Nz,) + O(RP*2), (5.1)

where Co+1 is a known constant, y is the exact solution, and
Zm_p. Em—p+1s - - - . T are the gridpoints involved in the method [Henrici, 1862].
Direct use of divided differences to approximate the first term of (5.1) generally

produces a poor estimate.

Instead one performs an eztra computation to estimate the local truncation
error. We assume that the local truncation error (5.1) is for an implicit mul-
tistep method called the corrector. Then we use another (explicit) linear mul-
tistep method called the predictor, which has the same form of local truncation
error, but with a different constant G;,,. (We assume the order p is the same,
for simplicity.)

If one makes reasonable smoothness assumptions about the solution (and
even if the corrector is not iterated to convergence), one obtains an estimate
for the first term in the asymptotic expansion of the local truncation error (5.1)
by subtracting the predicted and corrected values y,, and Ym at Zn,:

Gooah? Y (z) = ———(y, —y3) + O(he*2)
G+1 = G
[Henrici, 1962, p. 257]. This is called Milne's device. It obviates the need to

approximate the high order derivative in (5.1).

For the initial boundary value problem, we will also need extra computa-

tions to estimate the leading term of the asymptotic expansion of the local

85

truncation error. Consider the vinterior of a refinement, where the mesh is uni-
form. Later we will consider boundaries and coarse/fine interfaces. The local
‘ truncation error for the Lax-Wendroff ‘approximation to Pl on a uniform mesh

with stencil centered at (z,t) is
k .
j6_(.1‘,21,,"‘ (z.t) = hPu_ (z,t)) + O(h%), (5.2)

where k = At is the time step and h = Az is the spacé step.

We will now consider four methods for estimating the dominant terms of

this error.

5.2.1. Differences

We use the differential eciuation to replace t derivatives by z derivatives in

the expression (5.2) for the local truncation error. We then obtain

2.
ck%—um(x,t)(cw — 1) + O(rY). (5.3)
We may now approXximate u.; by a five-point divided difference at points in

the interior of a refinement. Specifically, with £ dependence omitted,
Upr (2) = (—2u(z—2h) + 4u(x—h) — 4u(z+h) + 2u(z +2h))/ 4h®
= hPup (£)/ 4,

where r—-2h < § < z+2h.

5.2.2. Estimating an Interpolant with *Small’ Derivative

The second method is based on a theorem of Favard [de Boor, 1975a, b].
Given a function defined on mesh points, how large can the k-th derivative of a
"smooth" ihterpolant to k+1 of these function values be? Favard gives this

bound in terms of certain divided differences. de Boor's contribution was to

greatly reduce the constant appearing in this inequality.

86

More specifically, let {z;i** be a seqﬁence of strictly increasing mesh
peints in the interval [a, b], and let {g;} be the given grid function values at
these points. We can certainly find an interpolant f to the gridfunction which
has k —1 continuous derivatives on the interval [a, b], whose k —1-st derivative is
absolutely continuous, and whose k-th derivative is in I,{a, b]. Favard's

theorem states that among such interpolants there exists one for which

S *W etz 2,1 < Kolk) max kt|[z;, ... 350191,

i-k=jgi
where [...]g denotes the k-th divided difference of g at the indicated points.
(The norm indicates that the supremum is taken for the interval z; < z < z;,,.)

This provides us with a method for bounding the k-th derivative of some interpo-

lant to the gridfunction in terms of (computable) divided differences.

We can use this to estimate the local error by again replacing t derivatives
by z derivatives to obtain (5.3). We assume that the third derivative of the
interpolant approximates the third derivative of the exact solution w. Using the
theorem, we then estimate v at a point z; by taking the maximum of the three
third-order divided differences which "include"” the point z;, and multiplying by
Ko(3), which is 6.854, |

Table 5.1 gives a typical result of this procedure. The computation was per-
formed on Pl (ﬁhe first order wave equation), with parameters as in Table 8.1
(Chapter 8), except that the maximum number of refinement levels was 5, and
the refinement ratios ¥ = N = 4. The values given weré at time t = 3.8, at loca-
tions z = 3.10, 3.15, 3.20, 3.25. Clearly, the bounds so obtained are hopelessly
conservative. (Bounds at other z were also typically off by factors of eight to

ten.) Therefore, this procedure was abandoned.

Third Derivative of u

Estimated (Bound) 38911 38848 22928 12842
Actual -24.8 9680.9 _-2185.4- -1614.3

Table 5.1 Estimatiﬁg Interpolant with 'Small’ Derivative
5.2.3. Two-Step Richardson Extrapolation

In this method we again replace t derivatives in the expression for the local
truncation error with z derivatives. Next we take a step forward in time, using a
stencil centered at (z,t) with spacing ¥ and h, and obtain expression (5.3) for

the local error.

We then perform a separate step forward in time, using a stencil centered

at (z,t) with spacing 2h and k, which has local error
k 20 Aye 4
c—6—(2h)2u=a(z,t)(c (5-) - 1) + 0(hY).

By subtracting these two estimates and rnu_ltipl_ying by (c?A\% - 1)/3, we obtain
an estimate for the local truncation error of the first calculation. This methed,
illustrated in Figure 5.1 (with stencﬂs not overlayed for clarity), uses values at
only the time levels ¢ and ¢ +k. It should be noted that the difference scheme -
used for this method (and the next method to be discussed) must have the sarﬁe
order of accuracy in both space and time. Excluded are schemes such as
Oliger's [1974] O(h* + k?) method. This is a mild restriction, as we usually take

second order methods anyway.

8.2.4. ThmeStép Richardson Extrapolation

This error estimation method is much more general than the preceding
ones. Here we do not rewrite t derivatives in the local truncation error in terms

of z derivatives. We shall apply it not only to our model problem, but to our

Figure 5.1 2- stepRichardson

n+
t

e

Figure52 3-step Richardson

XBL 822-165

88

89

linear hyperbolic operater
Iu =uy — A(z t)uy, — B{z,t)u = F(z,t). (2.1)

In the interior of a refinement we approximate this system by any linear multi-
(tirrie) level explicit difference scheme whose local truncation error per unit

time step has the same order p in space and time:

v t+k) = 3 Qult—ok) + kF(t), v=rr+l, ..., No=g. (5.4)

a=0

Herez =z,=a + vh, t = t, = mk,

Q= 3 Ajolz,+jh. t—ck, h)ES ¢=01,....p. (5.5)

j=-r
the 4;, are matrix coefficients, and £ is the shift operator. We shall write (5.4)
symbolically as Lyv{(z,t) = kF(z,t). If both the differential and difference equa-
tions have constant coefficients, we shall prove the validity of this method. In

practice, our interior difference approximation will always be two-level (p = 0).

The local truncation error is given by

w(z t+k) = 3 Qu(z.t—ok) + kF(z.t) + k(hRP Ty(z.t) + kP Uy(z.t))
o=0 .) (5.83.)
+ O(hP*?),

where T, and U, are sufficiently smooth functions of z and £. Symbolically,
Lyu(z.t) =kF(z,t) + kt(u,z,t). (5.6b)

In fact, we will define the local truncation error kT for any sufficiently smooth

function w by
Lyw(z,t) —kiw(z t) = kr(w,z,t). (5.7)

(For this purpose we assume that the difference approximation is defined for all
(z.t), not only at mesh points.) For the global truncation error

e{z,t) =u(z,t) —v,(t) we obtain the expansion

980

e(z t+k) = f Qae (z.t—ok) + k(RPT{(z,t) + kP U,(z .t)) + O(RP*?)

o=0
by subtracting (5.4) from (5.6).

In the three-step Richardson method, we take one (time) step of the
approximation (5.4) with z = z,, t = t,;, using mesh spacing h in space and k in
time. (See Figure 5.2 for a two-level scheme, with stencils shifted horizontally
for clarity.) We then repeat the step using (5.4) with £,, replaced by £,,,, and the
same mesh spacing. (Before performing this sécond step, we will need to gen-
erate more points on level t = (m+1)k by applying (5.4) with (z,.t,,) replaced
by (Zysjtm). J = b—'r,—;r+1,01,...,q. Thus in practice this estimation is
done for all interior points of a refinement at once.) We obtain the approxima-

tion v (¢ +2k) with error

e(z.t+2k) = 3 Qoe(z t+k—ak) + k(h? Ty(z t+k) + kP Uy(z £ +k))
o=0
(5.8)
+ O(hP*?),

Next, we take a step using (5.4) with (z,t) = (z,.t,), but with spacing 2h
and 2k (i.e., replace jh by 2jh and k by 2k in (5.5)). This difference approxima-
tion will be called v (¢ +2k). The error e®(z t +2k) = w(z t +2k) — v (¢t +2k)
is

e®@(z t+2k) = 3 Qe (z.t—20k) + 2k ((2R)P Ty(z.t) + (2)P Uy t))

o=0 (5.9)
+ O(hP*?),

(The superscript 2 denotes a double stencil.) Here we see that using a multi-level
scheme will entail storing many previous time levels of the solution. We also see

why the order of the method must be the same in both space and time.

In (5.8), we can change the arguments of 7, and U, to (z,t) (by Taylor

expansion) at the cost of an O(h?*?) error. We subtract the result from (5.9) to

91

obtain the computable quantity

A=u (t+2k) — v (t+2k) = e®z t+2k) —e(z,t+2k)

= go[Qéz)e (z.t—Rok) — Qe (z.t +k—ok)] + (BP+1=1)k (AP Tl(:::‘,t) (5.10)

+ kP U (z b)) + O(RP*?) = O + (P =Dk r{u,z.t).

We now need an expression for ©. | (It is tempting to supposé that
0 = O(r? *?), but this is not quite true.) If the undifferentiated term Bu in the
differential equation is zero, we can assume that the coeflicients A;, are
independent of h. But if B # 0, we shall assume that the 4;,(h) are sufficiently
“smooth functions of h. Subsf.ituting the definition (5.5) of @, in the expressibn

for @ yields

Y[Ajo(Rh)e (z +2jh t —20k) — Ajo(h)e(z +jh t +k —0k)].
a.))

We now expand the e's in a Taylor series in A and k about the point (i,t), and
the coefficients about h = 0. In the product we keep only terms up to (and
inclu_ding) the first order in h and k. Since e is 0(hP), the neglected terms

h2e_, hke,, and k®ey, h2e, etc., are O(hP*2). After an elementéry computation

we obtain

ZAja(O){jf?ez ~ (k +ok)e; + ch,f,,(o)é] + O(hP+?),
a.j i

By consistency, 3,4;,(0) =/,
o.J

(1 + To4;,(0))B = T 45, (0).
o, [% B
and
I + L oAio(0)A = Y54;5(0),
j.e a.j

where [is the identity matrix. (These relations are obtained by expanding both
sides of (5.6) in the same manner as above, replacing u; by using the differential

equation, equating coefficients of u and wu,, and finally equating coefficients of

92

h%and h!in the result.) Substituting these in ® yields

(I + Y 04;5(0))[Ahde, —key +kBe] + O(RP*?) = —k (I + Y04;4(0))Le + O(RP*?),
j.e je .

Using (5.7), we can write —kLe = k7{e) — [,e. But

L,,,e = Lhu - L,,'v :
= (Lyu - klu) + kLu — Lyv

= kr(u).

(These are the equations for the method of deferred corrections. Thus our
three-step Richardson method could also be congsidered as a deferred correction

method. See Pereyra [1973] or Keller [1968].) Therefore, ® becomes

k(I + 2 04;,(0))(T(e .z ,t) — T(u,z t)) + O(hP*%). (5.11)
J.C

Now e is O(h?), and, since the difference method is convergent, 7(e) is O(hP*?).

We can therefore substitute © into (5.10) and obtain

A =k[(2P*1=2)] — Y,0455(0)]7(u,z.t) + O(hP*?).
ej

We have shoWn
Theorem 5.1 Approximate the Hyperbolic operator (2.1) by the consistent mul-
tilevel explicit interior difference scheme (5.4). Assume that both operators
have constant coeflicients. If the undifferentiated term Bu in (2.1) is nonzero,
assume that the coefficients (5.5) in the difference operator are smooth func-
tions of h. Assume that the local truncation error per unit time step 7 (5.6) has
the éame order p in space and time, that the solution v of the differential equa-
tion and the global error e = u — v are sufficiently smooth functions of z and ¢,
and that A = k/h = constant. Also assume e is of order p. (For the initial boun-
dary value problem (2.1)-(2.4) Gustafsson [1975] or Proposition 4.1 gives
sufficient conditions for the latter to hqld.) Then we can estimate the (lowest

terms of the asymptotic expansion of the) local truncation error k7{u,z.t) at

93

the point (z,t) = (z,.t,) in the interior of a refinement using the three-step
Richardson method, and ‘

kr(u,z,t) = khPdy(z t) = k(AP T\(z.£) + kP Uy(z £)) + O(hP*?)
= [(2P*1-2)] — ¥,04;0(0)] (v (t +2k) — vP (t +2k)) + O(RP*?),
. x|

where T, and U, are sufficiently smooth functions of z and ¢, v, (¢+2k) is the
approximation obtained by applying one step of (5.4) with ¢ replaced by fn4;
and mesh spacing A and k, and v{? (t+2k) is the approximation obtained by

applying one step of (5.4) with (z,t) = (z,.t,,) and mesh spacing 2k and 2k.
In Chapter 9 we suggest possible generalizations of this theorem.

We have called these methods "Richardson extrapolation” and have men-
tioned that three-step Richardson is also a deferred correction method. How-
ever, we are using these methods in a non-traditional way. Both our method and
the traditional approaches (for o.d.e.’s and elliptic p.d.e.’s) improve the accu-
racy of the approximate solution by estimating the local truncation error. But
we use the estimate to decide where to refine; the traditional approaches add
the estimate to tpe approximate soiution. (Doing the latter would not be useful
to us, since our estimation is not being done at every time step.) As a conse-

quence, the traditional approaches improve the order of accuracy of the basic

difference scheme; as we pointed out in Section 4.4, our method does not.
In all three methods, the quantity we control in the interior is not the local
truncation error, but the local truncation error per unit time step

|T(uw.z.t) <6,

where § is the local error tolerance supplied to the program. This was shown in
the last chapter; one power of & in accuracy is lost in going from the local trun- -

cation error of the interior approximation to the global error [Gustafsson, 1975].

94

Our numerical results in Chapter 8 show that for our model problem P1, any
of the three methods produces approximately equally accurate estimates of the
local truncation error in the interior. Thus it is clear that three-step Richardson
is more expensive to compute than two-step Richardson. However, we recom-
mend the exclusive use of three-step Richardson in the interior of refinements
because of its greater generality and convenience. The other two methods
required us to write the ¢ derivatives as z derivatives. This frequently can be
done, but it may be extremely cumbersome. For example, the Lax-Wendroff

method applied to the inviscid Burgers’' equation
u +un, =0

has (after replacing t derivatives by z derivatives) local truncation error
f‘—z{kz(—suu,? - 15uPuyuy — 2udug,) + A%(Buguyy + Ruugg)] + O(hY).

This effectively excludes the use of differences; the situation could be much
worse for a system of equations. Even with the use of the symbol-manipulation
program MACSYMA, the coding of the expressions for the local truncation error

could be very tedious.

The great advantage of f.he three-step Richardson method is that we need
not rearrange or even calculate {(by hand or by MACSYMA) the local truncation
error of the difference scheme; one need only know the order p of the method
and the factor 2P*'-2 used to divide the difference.w, —v§? of the two approxi-

mations at time ¢ +2k.

5.3. Coarse/Fine Interfaces

Let us now discuss the modifications needed for coarse/fine interfaces
which do not abut boundaries. For concreteness, assume that an [-th level

refinement A; has a descendant I +1-st level refinement £;,, which does not abut

95
the left or right boundaries £ =a or z =b. This {htroduces two coarse/fine
interfaces, namely, the ends of Ry4y. (See Figure 2.3 for the left end of Ri+1.)
Recall that, the last time we estimated the error, we added enough padding or
buffering (see Section 2.6) to both.ends of ®;,, to ensure that waves could not
escape it, plus two extra level ! (spatial) cells. This guaréntees that we will not
need to refine the ends of refinement R4y .(unless they abut boundaries) and
assures "smooth” mesh transitions. Since our local truncation error estimates

are used only to decide where to refine, we can safely set our estimate at the

ends of R, to zero.

As a less attractive alternative, we could. set the estimate at the ends of
Ry 41 to the corresponding estimate at the same spatial position in £;. This would
require us to estimate the errors from the coarsest mesh to the finest, which is
somewhat inconvenient. But we implemented this and found it produces the

same results as the easier method given above."

The next question is the choice of estimator at mesh points which are one
(spatial) mesh point on the "fine" side of a coarse /fine interface, or one mesh
point away from a boundary. ‘('I'hisv is for the case of a stencil with three adja-
- cent spatial points, i.e., ¢ =7 =1 in (2.10) or (5.4). In the case where g or 7 is
greater than one, similar considerations apply to the ¢ or 7 points on the "fine”
side of the interface.) Figures 5.1 and 5.2 show that neither of the Richardson
methods yields an estimate here. We also set the estimate to zero here, for the

same reasons as before.

5.4. Boundaries

Let us consider local error estimation at boundaries. On the left boundary,
there are J boundary conditions specified for the differential equations (2.1)-

(2.4). We can approximate these in the obvious way with no local truncation

96

error. We will call these "exact"” boundary approximations.

When 7 = 1 in the interior difference approximation (2.10) or (5.4), then we
need n ~J "extra" boundary conditions at the left boundary,

v (t+k) = 3 SPu(t-ok) + g, (t). wp=0, (5.12)

o=—1

where S is as given in (2.12), but with the appropriate time level. If 7 > 1, we
" also need n(r—1) additional boundary conditions of type (5.12) for u = 1,...,r 1.
(Similar statements hold at the right boundary, with J replaced by n—J and r
replaced by ¢. We will only discuss the left boundary; the right is similar.) We
will first consider the extra conditions; at the end of the next section we shall

examine the "exact" boundary approximations.

The local truncation error k7T of (5.12) is

u(zr, t+k) = i Séi‘)u(x,,tjok) + kT(u.z.t), u=01,...,r=1

o=-1

For a restricted class of boundary approximations, it is tempting to recycle
Theorem 5.1 to produce the following false propbsition.

Proposition 5.1. Assume that the hypotheses of Theorem 5.1 apply instead to
the boundary approximation (5.12). That is, the centered difference operators
Q, are replaced by the uncentered difference operators S, and T,, U,, kd;, p
and T are replaced by T3, Up, dy, ;5 and T, respectively. Assume that the boun-
dary approximation is consistent with the differential equation, explicit (SQ{‘). =0
for all &), and its local truncation error per unit time step has the same order'ﬁ

in space and time
T(u,z,t) = (WP Ty(z t) + kP Up(z .t)) + O(RPY),
In addition, assume the global error e is smooth and of order p, wherep = 5 or

p =p+1. Then the local truncation error of the boundary approximation may

be estimated by three-step Richardson as in Theorem 5.1, using 5 in place of p.

g7

For the "proof"” we first note that Theorem 5.1 did not require that the sten-
cil be centered. Next we must examine the magnitudes of the terms 7(u) and
T(e) in (5.11). If the order of the boundary approximation is greater than p,
then the term T(e) has the same order as 7(u) and cannot be neglected. If the
order of the boundary approximation is-less than p—1, then it is known that
Gustafsson's theorem [1975] does not hold, and the global error e is not O(h?).

So even though this corollary holds here, this is of no interest.

Unfortunately, the proposition fails because the boundary operator was not
the only operator used to produce solution values at previous time levels. For
example, if we use the first order upwind boundary approximation and the Lax-
Wendroff interiof approkimatibn on our problem P1 (the first order wave equa-
tion), then, to obtain a boundary estimate, we apply upwind three times, and
Lax-Wendroff once. Nevertheless, the proposition can sometimes be used in
practice. A detailed calculation shoWs that, for problem P1, with Lax-Wendroff
and upwind differencing, we should divide the difference of the two estimates at
the boundary not by 25“—2 =2, buf by 2 + A, instead. Since the use of buffers
makes our method robust, this small change producés almost no difference in
practice. A similar change from 2 to 2 + A; is needed at both boundaries in

Problem P2, (the second order wave equation}, to be introduced in Chapter 8.

Thus, this Richardson method is not very useful at boundaries for several
rea.sons. First, we must do a tedious calculation of the local truncation error for
each different problerﬁ. Second, thefe are relatively few boundary approxima-
tions which have the same order spatial and time error. Third, we doubt that

this method works for implicit approximations.

Since two-step Richardson suffers from the same restrictions, differences
must be used for all other boundary conditions. In contrast to the interior

approximation, it is usually practicable to write down the local truncation error

98

for the boundary approximation. (Fuftherrnore, ‘the boundary approximation is
usu:illy of lower order accuracy than the interior one, so we can use lower order
differences.) Then we must rewrite derivatives in terms of ¢ derivatives. For
example, in our model first order wave equation, if we use upwind differencing at

the right boundary .

vt +k) = v (L) = cA(vy(t) = vy (2)),
the local truncation error is

Y% (kPuy — c MPug) + O(hY);
replacing ¢ derivatives by z derivatives yields
Yekh (c A=1)uge + O(RY). | (5.13)

If we are using differences, we simply replace the uz; term by a one-sided finite
difference. If we are using the two-step Richardson method, we obtain (5.13) for

the truncation error when using the stencil with spacing A and k. We obtain
Yock (RR)(c A/ 2=1)uz, + O(RD)

when we use the stencil centered at the same point but with spacing 2k and k.
We can then subtract these and multiply the result by (c A—1) to obtain an esti-

mate of the local truncation error at the boundary.
The local truncation error for extrapolation boundary conditions
(RD, Y vo(t +k) = 0, for fixed j = 1
can only be estimated by differences. For j = 2, we simply estimate the trunca-
tion error
h%u_, + O(hS)
by using four-point one-sided differences (since the three-point estimate yields

zero.)

99

In Section B.7 we numerically compare different methods of error estima-

tion at boundaries.

Gustafsson's [1975] analysis and our own Proposition 4.1 shpw that the
order of accuracy of the boundary approximation may be one order lower (but
not less) than that of the interior approximation, in order td preserve the global
order of accuracy, which is then the same as the order of the local error per
unit time step for the interior approximation. This means that when we are exa-
mining the truncation error at boundary points to see if refinement is neces-
sary, we should not control the local error per unit time step, but instead the

local error,
kT (uz t) <8,

where 4 is the local error tolerance input to the algorithm. Our computations in
Section 8.5 confirm that we can indeed use one less order of accuracy at the

boundaries, and still obtain the desired order for the global error.

5.5. Systems

So far our discussion has proceeded as though we were estimating the error
for a single differential equation. For a system, we simply estimate the error in
each c'omponent and take the maximum absolute value at each spatial mesh
point. Then we base refinement decisions for all solution components on this

maximum. Thus, the refinements are the same for all solution components.

This procedure is quite conservative, and will result in reﬁnemenfs not
being inserted in unnecessary regions if the assumption of Section 2.1 is
fulfilled: that steep gradients occur in approximately the same positions for all
solution componénts. This procedure also results in a simplification for our data

structures, as described in Section 6.3.

100

One final detail concerns the difference approximations corresponding to
boundary conditions in the differential equation (the so-called "exact” boundary
approximations). Using the obvious difference approximation for these condi-
tions yields zero local truncation error. But there is a difficulty with using Zero
in our error estimation procedure. This can be seen in our problem P1 (Section
2.5), the first order wave equation. The left boundary condition contains a fore-

ing (inhomogeneous) term g which results in the wave entering the region.

Clearly, we want to put refinements around any "large” wave entering the
left as soon as possible. If we set the truncation error estimate to zero at the
boundary, we will not detect the entering wave until it has already entered the
region. This can be remedied by treating the forcing term g, or g, of (2.3) or
(2.4) as generating a local truncation error. For our first order wave equation,
where w(0,t) = g (t), we write down the local truncation error (5.2) for the inte-
rior approximation, then replace z derivatives by t derivatives, using the
differential equation. Since uy(0,t) = gy, We can analytically differentiate g to
arrive at the result. This procedure was actually used in our computations with
P1 in Chapter 8. (Notice that we used an interior error for a boundary approxi-
mation, and then controlled the local error per unit time step. We could equally
well have used the boundafy error, which depends on uy and controlled the
local error. In either case we would control the same power of A.) For a system
of equations, the procedure is very simple if we use our assumption that gra-
dients occur -at approximately the same positions in different solution com-
ponents. Suppose that at no boundary do we use only "exact” boundary approxi-
mations. (This is not true for our first order wave equation, nor would it be true
when all components are prescribed by inflow boundary conditions on the same
boundary, as in supersonic inflow.) Then some of the components of the
diﬁerence appreximation have nonzero local truncation error, and our usual

error estimates for these component(s) will detect any incoming wave. This

101

technique was used in our problem P2 (the second order wave equation) in

Chapter 8.

If the boundary conditions are of the supersonic inflow type in all com-
ponents, then we may assume our problem (2.1)-(2.4) is in diagonal (characteris-

tic) form, and the left boundary condition
ul = sull + g, ’ (2.3)

has S =0 (since 4! has no components, i.e., © =u!). In this case, we can
proceed as in our first order wave equation. For a local truncation error of the

form
OUzzy + Pl (5.14)

we analytically differentiate g, to obtain the second term. The first term can be
épproximated by one-sided spatial differences or else rewritten in terms of ¢

derivatives using the differential equation,
u, = ANy, — Bu - f).

In practice, this rewriting may be cumbersome. (The right boundary is treated
similarly.)

The final case is for systems where gradients do not occur in the same posi-
tions in different solution components. We again need to estimate (5.14), with »

1

rep'lace by u'. We approximate the first term by one-sided spatial differences.

To get the second term, we differentiate the boundary condition, obtaining
Uy = Sufly + (91)eer

and use the differential equation to replace uly by Uz . Then we use analytic
differentiation for (g,)y:. and one-sided differences for u,. (We have tacitly
assumed that S was constant, but a nonconstant S introduces no additional

difficulties.)

CHAPTER 6

Data Structures

In this chapter, we discuss the choice of data structures appropriate for our
mesh refinement algorithms. The data structures used are not nearly so impor-
tant to our algorithm in one space dimension as are the other details, such as
- estimating the local truncation error. However, this choice becomes much more

important in two space dimensions.

We will see that the data structure has two parts: a structure to show the
relationships between refinements (a four-way linked tree of records), and a
mechanism for storing solution values (second components) of refinements
(sequential allocation of deques). Then we will discuss alternative implementa-

tions. We will describe the deques first.

6.1. Deques

Let us examine the operations to be performed on the solution values.
First, it is convenient to keep all fhe points in a single refinement together. We
also need to be able to "move" a refinement to the left or right. This is accom-
plished for a wave moving right by deleting points from the left of the mesh and
adding points on the right. Similarly, we need to be able to delete points from
the right and add them on the left. We also need to merge two refinements, and
to split them apart. (These operations are needed when two pulses "cross' each
other, that is, they are waves traveling in opposite directions.) Finally, we may

need to create a refinement or delete it.

102

103

The key operatiohs are'adding or deleting points from the left or right end
of a refinement. Points are never inserted in or deleted from the middle. A data
structure having these properties is called a "deque"”, or a double-ended queue
[Knuth, 1973]. We are then faced with the problem of storing a collection of

deques.

A natural way to store the solution values for refinements is sequentially, as
shown in Figure 6.1. Here we see a region with two refinements, and one of the
refinements itself contains a refinement. The solution values for the coarsest
mesh occupy a fixed region at the lower end of a vector which we will call v. The
refinements occupy contiguous sections of the remaining available memory,
with variable-width gaps of free space separating the memory occupied by
refinements. The gaps allow us to expand or contract refinements (to a limited
degree) without moving the function values in memory. The solution values

corresponding to refinements are ordered as follows.

The coarse mesh is labelled refinement 1, and its solution values always’
occupy the lbwest end of the vector v. It is followed in v by the "second le_vel"
refinements (labelled 2 and 3 in Figure 6.1), which are ordered in v in the same
order as the refinements are encountered in proceeding from left to right in the
computational region. Following these are the "third level” refinements (as is
refinement 4 in Figure 6.1), again in the same order as they occur in a left-to-
rvight scan of the computational region, and ignoring the positions of any éoarser
(second level) refinements encountered in the computatioﬁal region. Then
would éppear all fdﬁrth level refinements, and so forth. This scheme duplicates
certain solution values in the vector v, namely the ones which correspond to
mesh points which lie on different level refinements. However, doing this makes

the program much simpler.

P> =

Figure 6.1 Data Structure:

Computational
region
Coo(rf?c :\)esh Refinement Refinement Refinement
1xe 2 3 4
vt VMmmm' ; /
N / s (
w774 V7 V70 ¥
values /, A | / . A
| Levei! Level 2 Level 2 Level
3
.-i-.
d S
o————L’h
C — 1w Refinement
Refinement . \ l 4
*
: Leftmos? : »
Records for refinement —te Lon [N -—
refinements pointers d 2
Refinement
Fields of - 3
record:
base | fine - ¢
] o — >~
Ilink | r Hnk Tt
I .

| XBL 822172

Tree and Vector of Deques

104

.. - . 105

6.2. Trees

Next we will describe the (four-way linked) tree of records, which is neces-
sary to show relationships between reﬁnéments. Each node (record)
corresponds to a refinement. Trees are natural in this context, since we use
recursive refinements, and are used in all adaptive solvers fpr elliptic equations
described in Chapter One. In the following, we will identify a refinement with its
node (record), and use the term "refinement" to mean "the node corresponding
to a refinement”. We will sometimes call the coarsest mesh a "refinement” for
uniformity:

Obviously, a node has as many branches (descendants) as it has
refinements. The coarsest mesh corresponds to the root of the tree. The root
has level 1, its immediate sut:ceséors are at level 2, their successors have level
3, and so forth. Each node contains all the information about a refinement,
except its solution values. We will now describe some of this inforrnafion. We
first need to know where in the vector v the solution values for a refinement are
located. This is done by using two indices base and top. This is shown in F‘igure
6.1 for the fourth (level 3) refinement, but omitted for the other refinements to
avoid clutter. Also needed is a pointer to the parent of a refinement (shown in
Figure 6.1 as the fleld coarse) Furthermore, we need pointers to all
refinements of a refinement. We can avoid using a variable number of pointer
fields for this by using the usual device. We use one pointer to the leftmost des-
cendant (called fine in Figure 6.1) and then chain together all immediate des-
cendants (siblings) using fhe "right" pointers, called rlink in the figure. A
refinement other than the root also needs indices to denote its endpoints within

its parent, that is, which part of its parent it refines. These are not shown in the

figure.

108

Since we will often be adding or deleting nodes, we decided to implement
the record structure as a linked list. Up to this point our records form a triply
linked tree, exactly as in Knuth [1973, p. 352]. However, additional links are

needed.

The solution is advanced in time, and the error is estimated a level at a
time. Because we already have the rlink pointers, we can chain together all
refinements on the same level (not just those with a common parent) using
riink. Then we introduce an array of pointers pointing to the leftmost
refinement on each level. (These are shown in Figure 6.1.) This is related to the

level-order representation of a tree [Knuth, 1973, p. 350].

The last operation needed on our data strﬁcture is a repacking of the v
array, to be discussed shortly. This requires us to sweep through the v array in
both directions, as will be seen. Thus we also require our rlink pointers to point
from the rightmost refinement (node) on level ! to the leftmost refinement on
level L +1. To enable a leftward sweep, we introduce "left” pointers ilink, which
are inverse to the rlink pointers. That is, if node p has right pointef rlink point-

ing to node g, then g has left pointer Uink pointing to p.

The result of usingb all these pointers is a four-way linked tree: a triply
linked tree with the additional property that ail the leaves (nodes) are linked
together in a doubly linked list. The linked list starts at the root and proceeds
to the leftmost refinement of level 2, then through all the refinements of level 2
(in left-to-right order), next to the leftmost node of level 3, and so forth. This
structufe is similar to one that Knuth [1973, p. 356] suggests for manipulating
multi-variable polynomials. The difference is that in his scheme, the direct des-
cendants of any node are doubly linked together; this means that if level { has &
direct descendants, each descendant in turn having descendants, then level 1 +2

has exactly &k such doubly linked lists. In our scheme, all the nodes are linked in

107 o

one doubly linked list in level-order.

Because the space devoted to records is small relative to the space con-
sumed by solution values, the space for all the pointers in our scheme is incon-

sequential.

We now examine how the operations on refinements are effected using this
data structure. Advancing the difference approximation (in time) can be done a
level at a time, starting with the highest (most refined) level, using the llink and
rlink pointers and the leftmost pointers on each level. Here we also use the
"ancestor” or coarse pointers to copy solution values from finer meshes to
coarser meshes for points x which lie on more than one refinement. The error-

estimation is done in the same manner.

Similarly, we adjust the refinements level by level, starting with Fhe highest
(finest) level. The mesh adjustment operat;ions can be effected uéing’ four ele-
mentary operations. which are natural for a deque:. They are shorten left, shor-
ten right, extend left, and extend right. Shortening either end of a refinement is
a trivial operation, accomplished by moving a base or fop index. Deletihg a
refinement is the same, but also involves removing .a record from the tree. If
there is enough space available, extending_either end of a refinement involves
changing an index, copying solution values from the parent refinement, and
filling in new solution values using linear or quadratic interpolation in space.
Creation is the same,‘ plus the operation of inserting a new node in the tree.
Separation of a refinement into two refinements involves changing indices and
inserting ‘a new node. Finally, merging two refinements is easy because we
insisted on the left-to-right ordering of refinements in the solution value vector.
We move left the' solution values of the right refinement, if necessary, then
extend the left refinement to the right, change some indices, and delete the

right node. Complicating the last two operations is the need to adjust pointers

108

to descendant refinements.

6.3. Memory Repacking

A problem occurs during an "ektend" operation when there is insuflicient
expansion room between refinements. This calls for a repacking of memory, and
two algorithms for doing this are given by Knuth [1973, pp. 245-6] for the case of
a sequence of ‘stacks (rather than deques). We will therefore describe the

modifications to these algorithms for our data structure.

Wﬁen a refinement runs out of room in the v vector, moving only the adja-
cent refinement will probably vcause another repacking to occur soon, so it is
better to reallocate all available memory when a refinement runs out of room.
Knuth breaks this into two parts:. Algorithm G, which decides how to allocate the
free memofy to the refinements, and Algorithm R, which actually moves the
refinements into the positions dictated by Algorithm G. It is Algorithi’h R which
requires the forward and backward sweep of the v vector in order to avoid

overwriting any information.

Our Algorithm R differs from Knuth's only in that our refinements are
indexed from zero rather than one. So only Algorithm G is of interest. Knuth's
main idea is to share ten percent of the free memory equally among the
refinements, and the other ninety percent is divided proportionately to the
amount of increase in refinement size since the previous repacking. This:idea.is
not useful in our case. For a traveling wave, all refinements stay about the same
size, but "move”. However, we can modify this rule by awarding the ninety per-
cent of availa‘ble memory proportionately to the amount each refinement has
moved since the last repacking. We discover whether a refinement has moved
primarily left or right (in memory) since the last repacking, and award its share

of the ninety percent to its left or right, respectively.

N 109

This change to Knuth's algorithm greatly reduces the number of repackings-
compared to more naive allocation methods. Since the coarse mesh doesn't
move it receives none of the ninety percent allocation. Furthermore, the higher
level refinements move further (measured in number of mesh points, not physi—_
cal distance) than the lower level ones, so they are awarded more free space by

this scheme.

So far we have discussed the case of a single scalar equation. If we are
instead solving a system of n equations in one space dimension, only slight’
modifications are needed, given our crucial assumption that the reﬁnerﬁents for
all solution components are the same. We simply use the same tree-like recdr&
structure, and store the solution values in a matrix with n rows. Each row has
exéctl'y the same structure of solution values for refinements separated by gaps,
as illustrated in Figure 6.1. Now we repack memory whenever one (hence all) of

the components needs repacking.

An advantage of this organization is that the mesh-adjusting mechanism is
separated from the differential-equation-advancing and error-estimating
mechanism; to solve a different system of equations requires changes only in the

differential equation advancement and error-estimation calculations.

6.4. Alternative Data Structures

Having described the data structures we actually used, we will attempt to

justify our choice by examining some alternatives that we rejected.

One alternative that suggests itself is to store solution values in a matrix
(for the case of one differential equation) of dimensions u X v (w“here M is the
maximum number of refinements, and v is the maximum number of mesh points
in a refinement), instead of using deques. This is inconvenient, wasteful of

storage space, and inefficient in execution speed. It is inconvenient because the

110

size of refinements is unpredictable, and if one refinement exceeds v in size, the
computation stops, even though there may be much memory available for other
refinements. It is wasteful of storage space, fof the same reason. In addition, |
the maximum number of refinements is also unpredictable, and thus a great
deal of space is wasted for nonexistent refinements. (In our scheme, one
specifies the maximum number of refinements to be much larger than neces-
sary. The sequentially allocated deques and the repacking algorithm then
assure that all the memory allocated to solution values is used efficiently. The
only wasted memory is occupied by records corresponding to nonexistent
refinements, and this is small compared to the space occupied by solution

values.)

Finally, use of this scheme probably implies that a wave tha.t moves left of
right is being implemented (in at least one direction) by moving (in memory) all
the sclution values in a refinement. This is inefficient, because on many
machines (e.g., the CDC 7600) it costs almost as much to move an item as to add
two items. Furthermore, wé'then need a three-dimensional array for a system
of differential equations, and this, too, will lead to inefficiencies. If one decides
to avoid excessive memory moving by adding points to the left or right of a

refinement, one might as well abandon the array entirely, and use our scheme.

An alternative to our tree readily suggests itself -- a threaded tree [Knuth,
1973, pp. 332 fI.]. A threaded tree has links pointing back to ancestors, similar
to our coarse links, but only from rightmost desceindants. But as Knuth [1973, p.
352] points out, finding ancestc;rs of nodes is not as convenient with such a
scheme; a triply-linked tree is more convenient. Furthermore, we use the links
that are used for "threads' instead to chain together refinements on the same

level. .

111

Another alternative involves the method of storing solution values. Our
method is the one Knuth suggests for storing a sequence of stacks. But Knuth
suggests a different scheme for storing a sequence of deques [Knuth, 1973, p.
249]. As before, base and top point to the bottom and top, respectively, of the
memory available to the refinement in question. But this time the actual left of
the refinement is pointed to by front, which may be between base and fop (Fig-
ure 6.2a). Similarly, the actual right of the refinement is not at fop, but at .rear,
which is initially between front and top. Suppose now this refinement "moves"
right, but does not expand in area (this is the case for a traveling pulse). Then if
there is not enough room to the right of rear (between rear and top), the
refinement is stored in its available memory using circular wraparound, as illus-
‘trated in Figure 6.2b. Now the refinement has been split into two parts in its
available memory, with the free space intervening. A refinement always has one

of the two forms shown.

This scheme has the virtue of reducing the number of memory repackings,
since we répack memory only when the space available to an individual
refinement has run out, and not when a refinement "moves" too far left or right.
Thus, with a traveling pulse we need never repack memory. Despite this, how-
ever, we decided not to use the wraparound scheme. It greatly complicates the
differential equation calculation, in effect introducing still another interface, in
addition to all the coarse/fine interfaces. We instead wére willing to aliow extra

memory repackings, which occur infrequently anyway.

In sum, our data structures seem well-suited to manipulating refinements
in one space dimens'io_g. For two or more space dimensions, the: situation
becomes much more complicated. A tree structure to exhibit the relationship
between refinements is usually used, and additional structures may be neces-
sary. The storage of solution values cannot be generalized from our scheme.

See, e.g., Rheinboldt and Mesztenyi [1980], Gannon [1980], Berger, Gropp, and

Another [Another

refmemem—; Free spoce | refinement
Base Front Rear Top
Figure 6.2a

Another Another
[refinement [-Free space [refinement

7 7

Base Rear \—From Top

A Figure‘ 6 2b XBL 822-167

Alternative Storage for Deques

112

Oliger [1980].

113

CHAPTER 7

Choice of Programming Language

In this short chapter, we explain and justify our choice of implementation

method for the programs used in our computations.

Possible alternatives include Algol W, PL/I, Algol 60, Algol 68, Pascal, For-
tran, and Fortran with preprocessor. The arguments against the first four are
lack of availability of a compiler and/or lack of portability. Raw Fortran (even
Fortran 77) is cumbersome to use because of the lack of control and data struc-
tures, both of which are crucial for our task. However, most numérical software
is written in Fortran, and if one uses another language, there must be an inter-
face to Fortran. It was with some fegret that we were unable to use Pascal,
despite its excellent data and control structuring facilities. It does have a For-
tran interface, but it can be very awkward to use [Mohilner, 1977]. Further-
more, earlier versions of Pascal compilers required array bounds to be known at
compile time -- a restriction even more severe than Fortran imposes. Finally,
we are interested in portability, and using a Pascal/Fortran interface does not

lend itself to this.

Due to the des.ire for portability, two other approaches were rejected. The
first is Feldman's [1979] EFL, which is a Fortran preprocessor specifically
designed for numeric computations. It requires the writing of a sizable two-pass
translator. This translator is written in the language C, which is achieving wider
use, but cannot be said to be portable. The other approach is Grosse's [1978]
language T. T is implemented as a preprocessor which generates PL/I output;
unfortunately PL/I is far from portable. Both of these languages did merit con-

sideration, though, since their respective authors have devoted considerable

114

115

thought to the problem of appropriate language constructs with which to

‘express numerical algorithms.

The two portable Fortran preprocessors we examined were Kernighan's
[1975] Ratfor and Cook and Shustek's [1975] Mortran. Although we believe the
former is more widely used, we chose the latter because it is fax"'"‘more general
and flexible. Brandt [1977] has also decided to use a macro preprocessor for

Fortran to implement his software for the multigrid method.

The term Mortran, like Fortran, has several meanings. It can mean a struc-
tured source language, a translator for that language, or a macro-processor.
The structured language is implemented as a set of macros which are used by
the Mortran macro processor to translate the language into Fortran. The result-
ing Fortran program is then run like any other Fortran program. Figure 7.1

shows the mechanics of running a Mortran program.

In contrast to most other Fortran preprocessors, the Mortran preprocessor
is written in a portable subset of ANSI (standard) Fortran. Hem":e the Moftran
prepfocessor. and, more importantly, Mortran source programs, are portable
between different machines. Furthermore, Mortran source and Fortran source
can be intermixed, so the Mortran user has access to all existing Fortran

software.

We felt that there was one property of Mortran which made it especialiy
desirable for this project: extensibility. This means that new data structures,
operations on data structures, and control structures can be added to the
language (at rather small cost in implemental_:ion time) by adding additional
macros to the language.

Let us contrast this situation with other languages such as Fortran 6r Pas-

cal. Fortran is completely inextensible. Pascal is extensible only in the sense

that one can add additional data types. For example, Pascal has no complex

91T

Mortran
1 processor Fortran > Fortran '
Mortran (written in source compiler o
source —»{ ANS!I Fortran) ‘Relocatable;
| | binary |
(Can be intermixed : - ' T
with Fortran) 1
(The user can also q Loader
include his own macros) : .
. Mortran Subroutine l
_ macros library
u u -~ Absolute
binary
object
program
ready for
execution
XBL 822-168

— -

Figure 7.1 Running Mortran Programs |

117

data type. But one can be added to the language by defining records consisting
of two real fields. However, one is unable to extend Pascal by defining new
operations for data types, e.g., complex addition or multiplication.. One 'is forced
to use subroutine calls instead. Furthermore, in Pascal one is unable to define
new control structures, such as a loop with premature exit. By contrast, Mor-

tran {(but not T or EFL or Ratfor) permits all of these things.

Two applications of this extensibility are important to our algorithm. From
- our description of the data structures (four-way linked trees and deques) it is
obvious that we need records and pointers, in order to operate conveniently and
efficiently on refinements. Mortran allows us to define these new data tYPes -and
to deﬁne operations (such as following the pointer) on these data types. We did
this using a modification of the method in Zahn [1975]. Pascal-like notation is

used [Jensen and Wirth, 1974].

A second application of extensibility is to defining new control structures.
In contrast to many of the traditional numerical algoritﬁms (such as linear
equation solvers or eigenvalue routines) where operations with loops predom-
inate, in our programs (especially the sections involving merging, separating,
creating, destroying, and moving refinements) the use of decisions is extensive.
Mortran has adequate decision (or "conditional") statements (like if...then,
if...then...else), indeﬁm’te looping constructs (while...do, repeat...until, etc.)
and (nested) block structure within subroutines. The lack of these features in
Fortran would have resulted in code whose correctness would be exceedingly

difficult to verify by visual inspection.

Additional features of Mortran which are helpful but not essential are addi-
tional control structures (such as hext and exit to prematurely exit a loop),
alphanumeric statement labels (however, most labels disappear because of the

rich supply of control structures), free field format (column and card boun-

118

daries ignored), comments inserted anywhere in the text, conditional (alterna-

tive) compilation, and variable names of arbitrary length.

Of course, some of the restrictions of Fortran remain. Among these are
lack of dynamic storage allocation, lack of arrays with arbitrary subscripts, and
recursion. Although our refinements are nested recursively, we almost always
operate on them in "level order”" (one level at a time). The only exception is -
when we are graphing solutions. Then we need to search the tree in preorder, so
we need to simulate recursion. The subscript problem is harder to solve, and
requires modifying the Mortran preprocessor to accept macro-time expressions.
We did not do this. Instead, since we needed only zero array subscripts, we used
an extra dummy element preceding the array in common to achieve this effect.

The dynamic storage limitation is impossible to overcome, but is not crucial.

Another aspect of the macro preprocessor is the kind of (Fortran) code it
produces. For the while...do, repeat...until, if...then., and if...then...else con-
structs, the Fortran .code produced is as efficient as possible without using glo-
bal flow analysis. The only problem is with for loops.. The macro processor has
two stacks to allow nesting of loops, but there is no stack to remember symbols,
such as loop indices. Therefore, all testing and incrementing for for loops are
done at the top of the loop, and this is not quite as efficient as testing and incre-
menting at the bottom. Mortran does, however, (correctly) test the loop condi-
tion before initially entering (unlike-the Fortran do). Mortran allows the Fortran
do (with all its restrictions and generation of efficient code) so we compromised.
We kept the existiﬁg Mortran for state_ment. but redefined the do statement to
check the loop limits once before entering the loop (to test for a null loop) and

then generate the usual (efficient) Fortran do.

In sum, we felt that the use of Mortran greatly aided the development of the

programs for this project. For further details on Mortran, refer to Cook and

119

Shustek [1975] and Zahn [1975].- Reading Mortran programs is quite easy for
those familiar with modern block-structured languages. The only things to note
are that left angle bracket means begin and right angle bracket means end, as
in Algol or PL/I. Other notation (especially that dealing with records and
pointers) is similar to that of Pascal [Jensen and Wirth, 1974]. In particular, the
notation (p*.field) or (p~.field) denotes the field of the record pointed to by

the pointer p.

We finally remark that portability was indeed achieved by this method,
since our programs were run on an IBM 370/168, a CDC 7600, and a DEC VAX with

minimal conversion problems between them.

CHAPTER 8

Computational Results

In this chapter we answer the following questions about the method

described in the préceding chapters:

1

10.

11

12.

Does our method "work”, i.e., does it "follow" or "track’ steep gradients? Is

it fooled by background effects?

Is the algorithm sufficiently general to allow refinements to be created, des-

troyed, merged, separated, moved, and to abut boundaries?

Is the algorithm sensitive to the direction of characteristics, or dependent

on knowing that certain boundary conditions are inflow or outflow?
Will the method handle nonlinear problems?

How well will the method follow discontinuities or shocks?

Are recursive refinements worthwhile?

How should oﬁe choose the refinement ratios N and #?

How efficient is the method, both in execution time and memory?

Does the global error behave according to the theory of Chapter 4 as
h,k -»07?

How do the three methods of interior local error estimation of Chapter 5

compare in accuracy and efficiency?

How do different boundary approximations and methods of estimating their

error affect the solution?

How often should one monitor the local truncation error (and adjust

refinements)?

120

121

8.1. Model Problems

Since we believe it is impossible to answer these questions analytically, we
resort to numerical experiments on model problems. -We now introduce several
such problems. Problem P1, the first-order wave equation, was introduced in

Section 2.5. (We again use a = 200.)

PR is the second order wave equation, written as a 2 x 2 first order system,
with "open’' boundary conditions (i.e., the boundaries are "transparent” to trav-
eling waves)." As exact solution we use two counter-streaming Gaussian pulses,

superimposed on a sinusoidal backgrotmd[The differential equation is

u = Aug, asz<b 0<t0<c, (P2)
where
_|0¢c -
A= c O)

with initial conditions

u\(z.0) = f(z) +g(=z)

) a<z<b,
ug(z,0) = —=f (z) + g(z)
and open boundary conditions
u,(a,t) = uy(a,t) +2f(a —ct)
- t=>0.

U (b.t) = —us(b t) +2g(b +ct)|

Asin P1, we choosea =0,b =4, ¢ =1. The exact solution is

ul(;:,t) = f(zx —ct) +g(z +ct), |

uz(x,vt): —f(x —ct) +g(z +ct).

To produce our interacting pulses, we take f (z) exactly as in P1, and

122

g (z) = —exp(-a(z —4.5)%),
where a = 200 as before. Once again, each pulse occupies about 8 percent of the
region a <x < b. This problem decisively answers questions 2 and 3 above,
since the pulses start out outside the computational region (only the sinusoid
being present). They then enter the region, and two sets of recursive
reﬁnement,s.are set up. The pulses eventually cross, so the sets of refinements
must merge. and then separate. Finally, the pulses exit the region, so all
refinements (except the coarse mesh) are destroyed. Note that both boundaries
act aé inflow boundaries at some times and as outflow boundaries later on. This
problem thus shows that nothing we have dbne depends on the direction of wave

motion. It also shows that the method works for a system.
The difference approximation in the interior is again Lax-Wendroff
vj(t;-k,) = (I + Ak, Db + BARKRDL DY Yu;(t),
with coarse/fine approximation
v Ut +ky) = (1 + Ak DY+ BARRAD I DY ud ()

at interfaces, the obvious initial condition, and obvious boundary approxima-
tions for v,. For v,, we need extra boundary conditions at bothz =a and z =&,
and we use either

(a) upwind /downwind differencing:

i
|

'UJz(t +’C¢) = ([+ CleS.)'UJz(t) at z

vip(t+ky) = (I + cky D Yujp(t) at z

1]
o

where v;,(t) denotes an approximation to uy(z.t) at z = a + jh;, on an I-th level
refinement; or

(b) first-order extrapolation

(D4)20(t +k,) = 0 at z = a,

123

(DL)2u;p(t +k,) = 0 at z = b,

(The first 2'i_n each line is an exponent, not a superscript.) Gustafsson, Kreiss
and Sundstrém [1972] showed that both approximations (a) and (b) are stable

~ with Lax-Wendroff, according to their stability definition.

Let H(x) denote the Heaviside unit function, which is 0 for z < 0, and 1 for
=1, Our third problem is again a scalar equation, the inviscid Burgers equa-

tion
w + $Bu?), =0, O0<sz=<4,t=>0,
with boundary condition
u(0,t) =1, t=0,
and initial condition
u(z,0)=1-H(z —-0.1), . Ost4..
The exact solution is
u{z,t)=1~H(z-¥t -0.1),

a shock traveling to the right with speed %. We approximate this using the usual
two-step Lax-Wendroff method, as given in Richtmyer and Morton [1967, p. 302]
with F(u) = ¥u? Naturally we modify this by adding subscripts and super-
scripts ! in the appropriate places. The only dissipation in our scheme is that
inherent in the method itself. Since our previous calculations used time-
dependent boundary conditions, we use constant ones here. (Oficourse, at

coarse/fine interfaces, we make modifications as in P1 and P2.) 3

8.2. Qualitative Results

Figures 8.1(a) to B8.1(i) illustrate our algorithm when applied to problem P1,

the first order wave equation. We used a coarse mesh of Bl points, with

(e)1°8 @anS14

b0°0 = L ‘NOILYNOI 3NYM ¥3IQNO0 LSHIA
,amZm.,_wm - nmzH..._mmz_._ x

M 4 0s° 0s°t

I/ ANMYANMYANRMYAN

|

VA VA

otce-

r0°0

81°0

€€°d

16°0

50°%

()18 2an314
OF° 0 = L ‘NOILYNDI 3NYM d3IQNO LSAIJ

amszmm ———— nmzH.._mmz: X
00°r 0s°2 0s*1 05°0 000
VaNiva s wavauily
VARV W
.l . | r&% w“.o
”. - | | - ,“ £c'o
.l | | - .. o (X)N
.. | o
.. | .
,. N -
' A T TR T S SR S S . s0°1

125

9Z1

1.05

.91

9.76

9.62

U(X) oe.47

0.33

0.18

0.04

-] 3 2
T | v | Y | T T Y | v T

—I -
-' pun
{4 -
1) -
M -

\ —

\

>~\ /\ /\ /\
0.00 0.50 1.50 2.00 2.50 '
X UNREFINED ———— REF INED

FIRST ORDER WAVE EQUATION, T = 8.60

Figure 8.1(c)

ee‘y

(P)T°8 2an81J

b2 = L ‘NOILYND3I 3NUN ¥IQAO LSAIA

d3INISN

0s°€t [05°2

AINT 3NN

00°2 05°t

X

VANMVAN

~ L

eo°t 0s°e @
T \\\wﬂ/f/ '

7

N

I
|
]
]
]
]
\ |
I
]
I
]
]
I

)
\

N

o

A M

o1°0-
veo

810

€E°0

AXVD
290

9L'0

16°0

s0°t

127

(9)1°'g @andtyg

Ob*E = L ‘NOILUNDI 3NYM ¥3QNO LSWI4

AINI43Y

00°E 05°2

- owzH.._mmz__._ x

05°1 0°0

TR

\/\%

\ T O

ot1°o-

ro°o

810

€e'o

Lro

29°9

L0

16°9

S0t

128

6C1

1.5

.91
0.76
0.62
U(x) o.4?
0.33
0.18

.04

-0.10

4.00

e 3 3 e
v T v T v T 7] v T v ! v]
» / -
- /
/
- ’ g
- | \
b ' \\ -
i ! \h
f \,
f "
\ /\ /\ /\ |-
‘ 1.50 2.50 3.50
X B UNREFINED ———— REF INED

- FIRST ORDER WAVE EQUATION, T = 4.20

. Figure 8.1(f)

0tT

1.05

0.91

0.76

0.62

U(X) o.4?

.33

0004

-0.10

2 3 a
L] l | 4 [L ‘ 1 ' T] I L l L J
5 n 4
p +
A
. | \
!) \#
|
i I
|
- | ' _
. ‘\/ \/ \/ NUTA
: LN 1 N INA | N PN | VINUA
0.00 .50 1.00 1.50 2.00 2.50 3.00 3.50 4.00
X | UNREFINED ——~—— REFINED

FIRST ORDER WAVE EQUATION, T = 4.40

Figure 8.1(g)

00’

(W1°8 Es,wE
09°'F = L ‘NOILYNDI 3INUM 3ITN0 LSAIS
nmzHuum —_———— aquuumz: x

S°E 052 5°t 00'9

‘/ \/ \/ \/
NS\ /\

o1°0-

+r0°0

81°0

€Eco

we (XIN

a29°e

aL°e

16°9

50°t

131

A

1.05

0.91

0.76

U(X) o.47

.33

0.18

0.04

-6.10

L4 Y 1 L |) Y T L4 | T T
l -
- ~ ~ A
1 1 2 I 1 A i | i . 1 n‘A

0.00

X

1.00 1.59 .00 2.5e 3.00

UNREFINED ———— REFINED
FIRST ORDER WAVE EQUATION, T = 4.80

Figure 8.1(1)

3.5

4.90

£eT

1.10

0.82
0.55
0.27
U1(X) o.00
-0.28
-9.55

-0. 83

-1.10

T T T ' 1 T
N N NS N |
" | _
L 1 .) .] . i . 1 1 |
0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 400
‘ x UNREFINED ——-—— REFINED

SECOND ORDER WAVE EQUATION, T =0.04

Figure 8.2(a)

(9)z°g 2an31g
09°0= L °‘NOILUNDI 3nNYUM ¥30¥0 ANOI3IS

A3NI438 ———-— ({d3NI433NN X
ooy 0S°E (TN es°g 00°2 0s°t (T 0s'0 000
w | I Y T ' | ! T T | v |
. m b
T o
i < <
[1 L | A L L 1 1 | .] i

e 2 2 ecr @

ot°1-

€8 e-

§5°0-

gao-

e0e (X)IN

L2'0

§5°0

e28‘e

o1t

134

(2)z°g 2an31g
00°T= L ‘NOILUNDI 3NYM ¥3TN0 ANODI3IS

d3NI43y —-—-—-— (J3INIJ38NN X
9s‘E 0'c es'2 002 0s°t o't 050 ee‘e
J

T T T T T T 13-

-~ §5°@-

- g2 e-

- 2°0

N . B \B[.
> > # - e0ce (X)IN
| k
{
|
|
|

- s5°0

- ege

i 1] 2 . i 1 1 1 1 2 1 1 : L o1t

135

(p)z°g @andtg

00°2= 1L ‘NOILYND3 3nYM ¥30Y0 ANOI3S

d3NI43y ———— (d3NIARINN X
o0y es°E 00°c es°2 00°2 es°1 001 es e 00°9
T | T T ' T T 1 T ' | E— o1°1-
o ~ ese-
B q - ssve-
i /| i
_ !
- h . - s2ve-
\ L
A 1 i \ .
il hh 000 (X) TN
< Nt«\ : ,
i _| 3 ‘ A
\\ '
- , -y 4 2
! \ -
\) :
= : N | < ss0
- | - @80
. LU 4
I 1 4 | . 4 . | 2 | | 4 B 2 [28

136

(d)¢'g 2and1g

02°2= 1 ‘NOILYND3 3NUM ¥3IAYO ANOI3S

@3NI43¥ ———-— @3INIJFANN X
eo°y 0s°c eo't es°2 es°t 00°t es°9 009
' 7 ' 1 v T T | | ' T ™ ot -
i i
— - €8°0~
= | i 55°0-
X ‘ §
[
-~ \\ . - s2'e-
‘_ ‘)4 ’
YA A hi/\\/ ‘
e0-e (X)IN
11\ \ :
— . ; : ‘ : I P
l; ,
! \ |/ -
| ; |
- : . 19 - ss'e
L : _ .
- - =80
— a1 I IR I I N 1Y I P T R

g2EY | 20 4 €E ¢ LA]

137

8¢T

1.10

0.55

.27

Ul(X) e.ce

-0.28

-8.55

-0.83

~1.10

23

4

44 4

e

A 1

i

4

-

1.00

1.5

" UNREF INED
SECOND ORDER WAVE EQUATION, T =2.40

Figure 8.2(f)

3.00

REFINED

3.50

4.00

6ET

'0.82

0.55

0.27

| ’ UB(X)\'O-oo
| -6.28
-9.55

~0.83

-1.10

234 44 4232

T 7T T T T T
- -
~ : /C}L\ 3 ‘;)
. ,//’*\\\ 2 \ />’"‘\\ 7 N\
‘\~_;’//, ‘_—4’/‘ \ ‘\\\~_—///77 “\\
i : \ - |
| | ‘ -

P R P | I

0.00 9.50 1.00 1.50 2.50 3.00 3.50 4.00
X UNREFINED ———— REFINED

SECOND ORDER WAVE EQUATION, T =2.40

Figure 8.2(g)

(u)z-g @an3tg

99°2= L ‘NOILYND3I 3INYM ¥3IQNO0 ANOJI3S

@3NI438 ———— (d3NI433NN X

00y 0S°€E 00°€E 0s5°2 002 st 00t om.o. 00°9

L | ~) § - L] — — L - ¥ - L | — il OﬂO“'
- - €8°0-
L i -
— ~ ss‘e-

M\
L / \ .
- \ (r | - see-
-) , -
C— S | /n/\\/ 4 e (X)TN
/ "\

T \ \ —~ 2°0
L /\ -
— _ . -1 ss'o
s -
— . : - es8°e

1 | 1] 1] g] 4 | 2] Iy i | A.w) o1t

140

L 4

(1)z's 2an314g

@9°2= L ‘NOILYNDI 3nYN ¥3dH0 ANOJ3S

M

d3NI43d

052

dINIJFINN

002 0s°1

eo‘t 030

i

L4 — L) q L

o1°%-~

£8°0-

§5°0-

000 (X)2EN

l2°e

§5°0

or°t

141

0oy

0S°E

08°2= 1 ‘NOILYND3 3nYM d¥3IQNO0 ANOJ3IS

d3INI 43

1

es°2

(D)z g 2an814

a3NI 33NN

05t

o0t

eo°e

[ﬁ

T

v

EE *

14

€ 2

ot 1~

€8°0-

s5°e-

82’0~

e0'0 (X) 1IN

Lee

§5°0

er°t

142

(N)z'g @andrg
00°C= L ‘NOILYNDI 3nuM 33QY0 ANOIIS

@INI43¥ ———— Q@3INIJFANN X |
00°E es'2 00°2 es°t 00° 1 050 000
T J T i] T TT T T 1 v T T et°3-
-
~ es-e-
~ ss'e-
AN i
/
; - sere-
. [/
o 4 // \ ‘ '~ . .
> . \] / J e2'e (X)IN
X ! \Nv)
| \ ;‘ - 2o
/ J
//\ |
- a0
i 2 1 2 . 1 - —ld 1 s) U LA 0N 2

143

(1)7°8 @and14

02°'v= L ‘NOILYNDI INUM ¥IAYO ANOI3IS

d3NI438 ——-—— Jd3INI4FINN X
oo’y 03°¢c 00°c 0s°2 02 0s°t 001 050 00°0
. T T § 4 1 T T § | Y T T T Da
L3 A
. H R .
. / .
i IS
} _ /|
_\.T//f O\ AN \%l ¢
Lii il SN N_" N f X
,.1/. \ 7
MR ; 4
i /]
A 1 { R 1 . | N R i , | J
BEVrY v ece 2E VY veEE

o1 -

€8°0-

5§5°0-

60 (X)IN

L2°0

§5°0

[10 §

144

%1

1.10

.55

.27

U1(X) e.00

-0.28

'0-55

-0.83

-1.10

4.00

8 3a 23 4 @
T r T r T — ' T T T v T
r#
=
| N\ /.\
= ‘\\\-—4’/, ‘\\“"//, \
\\y i
H
i
L , | \ 1 , i \ 1 . 1 .]
.00 .50 1.00 1.50 a.ee 2.50 3.00 3.50
X UNREFINED ———— REFINED

SECOND ORDER WAVE EQUATION, T =4.40

Figure 8.2 (m)

91

1.40

9.55

.27

V1(X) e.c0

-0.28

-0.55

-0.83

'1010

a 38 23 38
| v |} ' 1 v ! v i M I)
- -
* j
L L
r\ /
SRV !
zl/\ 2~ O\, N IJ,
; (4)
—’ —
[
l-l -
V
1 N 1 " | N 1 : | 1 | [
9.00 0.50 1.00 - 1.50 2.00 2.50 3.00 3.50 4.0
X UNREFINED ~———— REFINED

SECOND ORDER WAVE EQUATION, T =4.60

Figure 8.2(n)

(0)z'g @an314d -

@8°F= L °NOILYNO3 3nYN ¥3QN0 ANOI3S

A3NIJ3y ———-— @3INI43FANN X
(YN% 0s°E 00°E es°2 002 o5°3 o't 050 000
' T N B T T T T T v T T _ ot 1-
- . : A . - €g o~
bo J
r | ,, . . — 86°0-
R . .
- | , -~ 82°0-

// N\ N AN .&Q& 0o (X)IN

= C - 2°'e
b= -

— _ — ss'e
L _ _ ; - 280

. 1 S | . 1 , 1 R 1 , 1 N i \ e1°t

147

8%1

1.30

1.12

.94

V(X) et

.39

e.21

9.93

-0.15

v I d I v I v | ' ¥ v I |
- -
m
| A ' A l '\ J . I l A ' 1 5 l l
0.0 0.50 1.00 1.50 2.00 e.5e 3.00 3.50
X UNREFINED ———— REFINED

INVISCID BURGERS EQUATION, T =0.08

Figure 8.3(a)

4.00

67T

1.3

0.94
0.76
U(X) o.5°
0.39
9.21

0.03

-0.15

INVISCID BURGERS EQUATION, T = 1.60
Figure 8.3(b)

"‘ | v | ' | ’ I Y | T
:
- 1} _
Jia |
~or
= | -
|
o ‘ -
|
- ‘ —
! l]
|
o | 4
|
i *1)
\
E \]
= \ 4
|\
1 L] A L i | A 1 |
0.00 ?.59 1.00 1.50 2.00 2.50 3.00 3.5¢ 4.00
' UNREFINED ———— REFINED

0ST

V(X)

1.30

1.12

0.94

e‘s?

e.39

0.21

0.3

'0015

| A 1 T 1T l T

‘ 5%

- fil 7

: i :

- | _
|

S l .
|

. | -

i ']
|

[\ _
It

L | 4

. Io

- | -

i |]

| | |

o \]

Py
L | .
| L R 1 : : ! \ l N i i
OfOO 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4,00
UNREFINED ———— REFINED

INVISCID BURGERS EQUATION, T =2.490

Figure 8.3(c)

va.dm 2an3T14
00°F = L ‘NOILYNDI Sd3DANG QIJSINNI

@3NIJ38 ———-— (d3INIJ3¥NN X
00’y 0S°E 00°€ 05°2 00°2 0s°1 o1 05'0 00°0
] - L — L — 1 B L] _ | - ¥ — ¥ m.H.°|
= \ - €eo
. A 4
if it
B ._ - 2o
- T | = -
|
o H_ﬂ -)
- i 4 = (XN
I l i
|
= ! - ece
.
i | g -
_.
[| - +6°0
Bl .
s i .\x »
— M\ - et
! {]
1 1 1 —, '] 1 ‘F\) 1 N ._ [] e et°?

2 & reE)

o

151

[AS

1.30

0.94

U(X) e.s?

6.39

6.21

0.03

~-9.18

e 4 Q 2

' L] I L [L ' 1 l '
/
’.
/ h
L J 4
~r
- | §i -
‘ :
b :'
{
- | 1
X |
!
L \ -
|
- IJ]
- | -
)
d ‘ —
‘ \
i \
o \ -
. i
L 1 A | 1 | N 1 |
0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

UNREFINED ———— REFINED

INVISCID"BURGERS EQUATION, T =5.60
Figure 8.3(e)

153

reﬁﬁement ratios N = M = 4 and maximum nufnber of refinement levels = 4.
(Only three levels were actually used in the calculation.) The local error toler-
ance was 0.01, A; = 0.8, and the wave speed ¢ = 1. Each graph plots the approxi-
mate solution v(z) versus z (at a fixed time) as a solid line, togéther with a
separate calculation done with no refinement (maximum refinement level = 1),
shown as a dotted line. Since the maximum error in this calculation was about 2

percent, the refined solution may be taken as the exact solution on the graph.

In Figure 8.'1(a) we see that the solution consists solely of £he sinusoidal
background--the pulse has not yet entered. (This graph is taken at t = 0.04
rather than ¢ = 0 since we use the exact solution at t = Af = 0.04 so we can
compare with the hybrid method later. This is true in all calculations.) In Figure
8.1(b) the pulse has started to enter the left boundary, and refinements have
been created at the second and third levels. (The small numbers at the top are
the level numbers of the refinements. Both refinements abut the left boundary.)
In Figure 8.1(c) the pulse has fully entered and the refinements have moved

right.

Figures 8.1(d) and (e) show the pulse moving across the region, and the
refinements following it. Note that the unrefined solution has become a very
poor approximation to the pulse--the unrefined peak has only half the height it
should. Note also that behind the pulse, the unrefined solution has a large

undershoot.

In Figure B8.1(f) the pulse has neared the right boundary, and the
refinements now abut this boundary. In Figure B.1(g) the pulsev is leaving the
region--this again shows the time-dependent boundaries at work. In Figure
8.1(h) the pulse has left the region, but the unrefined solution has developed a
phase error. Finally, Figure B8.1(i) shows that the second and third level

refinements have been deleted. Only the background sinusoid is present, but

154

there is still some "backwash' left in the unrefined solution.

\These calculations show that the method is not fooled by background oscil-
lations, and that the refinements do follow the steep gradients. Furthermore,
this problem and the next one show that our method is able to adapt to time-

dependent boundary conditions.

Figures 8.2(a) through 8.2(o) show our algorithm applied to the second-
order wave equation with counter-streaming pulses. This conclusively answers
questions 1 to 3, and shows that our method works on a system of differential
equations. It also shows the necessity for good data structures, since there are
from one to seven reﬁnements, and, as we shall see, they interact in.cornpli-
cated ways. In this calculation we again used Bl mesh points in the coarse
mesh, with refinement ratios N = ¥ =3 and maximum number of levels-= 5.
(Only four levels were actually used.) The local error tolerance was again 0.01,
A1 = 0.8, and the wave speed ¢ = 1. The same conventions about unrefined and
refined solutions, and the labeling of refinements are used. We usually show-the
first component v,(z,t) versus z, but in a few instances we show vy(z.t) versus

z (all at a fixed time).

Note that the graphs are plotted at the end of a time step, before the
‘refinements are adjusted in preparation for the next time step. Hence the

pulses will appear at one side of the fourth level refinements.

In Figure 8.2(a) the pulses have not yet entered the region and we see only
the sinusoidal background. In Figure 8.2{(b) both pulses have entered and
refinements on levels 2, 3 and 4 abut both boundaries. In Figure 8.2(c) both
pulses have left the boundaries and are moving towards each other. Already we

can see that the peak of the unrefined solution has decayed substantially.

In Figure 8.2(d) the second-level refinements are about to merge, and in

Figure 8.2(e) they have merged; however, the third and fourth level refinements.

185

have not yet merged. In Figure B.Z(f) the third level refinements have merged.
Figure 8.2(g) shows the second component of the solution at the same time. In
Figure B8.2(h) the fourth level refinements have merged. Figure B.2(i) shows the

second component of the solution at the same time.

In Figure B.2(j) the pulses have crossed, and the third and fourth level
refinements haﬁe separated. (Note that the pulses cross, but the refinements do
not.) In Figure 8.2(k) the second leVel refinements have separated as well. Note
the degradation in the unrefined solution at this point. Figure 8.2(1) shows the
pulses approaching the boundaries. Now the unrefined solution has phase errors
as well as amplitude errors. In Figure 8.2(m) the pulses are leaving the region,
and the refinements "bunch up' against the boundary. Figure B.2(n) shows that
the fourth level refinements have been deleted. Finally, Figure 8.2(o) shows thaﬁ
all refinements have been deleted. Only the sinusoidal backgrouhd remains.

Figures B.3(a) to B.3(e) show the algorithm applied to Burgers' equation
(P3). The purpose of this calculation is to show that our method can "follow"
shocks. This also shows that our method can handle a nonlinear problem. One
wodld not necessarily expect the former, since we mom‘tor. ﬁhe local truncation
error, which requires a continuous third derivative. We do not suggest this as a
practical method for computing with shocks. (But by modifying the error esti-
mation, we believe we can develop a viable method for doing this, v}hich will be
described in é later paper.) We used 41 points on the coarsest mesh, with ratios
N = M = 3, and maximum number of levels = 4. (In contrast to the smooth solu-
tion éase, the estimate of the local truncation error does not decrease on finer
meshes; hence our method will always use the maximum number of levels in this
case.) The local error tolerance was 0.01, and the wave speed i;lput to the pro-
gram was 0.5 (which is the shock speed). Again, A, = 0.8, and the dotted line

shows the unrefined calculation.

156

‘Figure B8.3(a) shows the shock at t = At = O.‘OB. given as the exacf solution.
Figure 8.3(b) shows the shock later, at time ¢ = 1.6. Notice that our method has
eliminated all the wiggles, leaving a very sharp shock, except for the Gibb's
phenomenon (whose height is 1.33). This can be eliminated by adding a small

amount of dissipation, but only on the highest level of refinement.

. Later graphs (Figures B.3(c), (d), (e)) show nothing new, except that the

refinements are following the shock, as desired.

We now proceed to more quantitative questions.

B8.3. Choosing Refinement Rat.ibs and Maximum Levels

Having answered the first five questions posed at the beginning of this
chapter, we now proceed to the questions of how to choose the refinement ratios

N and M (described in Chapter 2), and whether to use recursive refinements.

We used problem P1 (the first order wave equation) for this study.v We chose
B1 points for the coarse mesh; so hy = 0.05. We took Ay =h;/k; =08,¢c =1, and
recorded all errors at time £ = 3.6. This is the time just before the pulse leaves
the computational region 0=z < 4. As usual, the Lax-Wendroff method was

used.

If the exact solution is denoted by u and the approximation by v, then the
global truncation error is e =u — v. The l3(z) norm of v is given in Definition
3.1 of Chapter 3, in the notation of Section 2.2. The l3(z) norm of e is analogous.

The maximum norm of e is (in the same notation)

gt = it L =
€4t = max (N = 01,5,

where | -|. denotes the maximum absolute value of all the components of the

vector (for an n x n system).

157

In our tables, a maxirmum mesh level of 1 signifies that only the coarse
mesh is present (no refinement), 2 signifies one additional level of refinement,
and so forth. The times reported are CPU seconds on a CDC 7600. (Since this
machine runs only in batch, these times are highly reproducible between runs,
and we did not need to take average times.) The storage used is for solution
values only, and is the maximum storage used at the (refinement) level listed,
for all times. Since the coarse mesh is static, it always uses 81 locations. The

total listed is the sum over all levels.

Tables 8.1 and 8.2 show the results using threbe-'level Richardson extrapola-

" tion. Table 8.1 uses a local truncation error bound of é = 0.01 and Table 8.2 uses

0 = 0.001. Before examining the results, let us state our expectations regarding
the global truncation error. Let d be the pointwise local truncation error bound,

and E(t) = |le (t)|l; be the I5(z) norm of the error at time £.

Propositions 4.1 and 4.2 contain constants Ky', K7" which depend only on
the (time) interval of integration 0 <t < T. It is well-known that these can be
replaced by ngxp(agt), Kgsexp(agt), for some positive constants K, K3, and
some constants ag, ag, respectively. When the interior local truncation error per
unit step APd,, the boundary error APd,, and the interpolation error h?dgy are
all bounded (pointwise) by &, then these propositions assert that the E(T) is
bounded by Csexp(a; T)6[(b —a)T]*; wherev C4 is constant and i = 2 or 3. Compu-
tational evidence strongly suggests that for our probléms there is no exponen-
tial growth, a; = 0. (For the corresponding differential équation there is no
growth either. 1t is also well-known that the interior approximation alone for the
Caugh}; problem produces no growth.) By examination of our results, we deter-
mined that C, ® 0.5. Therefore, .for an input tolerance of §, we would expect
E(T) at T = 3.6 not to exceed 0.5-(4-3.6)%5 ~ 28. Hence we expect the l3(z)
norm of the error not to exceed 0.02 in Table 8.1 and 0.002 in Table B.2, if

enough levels of refinement are used.

86T

Maximum

L Maximum ¢ _.-norm Time

Maximum Storage

Refinement 2 2 by Levels
Level L M Error Error of Solution (sec.) 2 3 4 5 Total
H - - .198 .562 .268 .040 81
2 3 3 .102 .311 .317 .197 58 139
2 4 4 .0722 .230 .323 .233 73 154
2 5 5 .0524 .175 .325 .275 81 162
2 6 6 .0393 .131 .327 324 97 178
2 7 7 .0306 .101 .327 .400 113 194
2 8 8 .0247 .0790 .328 456 129 210
2 10 10 .0178 .0514 .328 .622 161 242
2 16 16 .0115 .0201 .329 1.35 257 338
3 3 3 .0207 .0628 .328 .505 49 94 224
3 4 4 .0115 .0201 .329 1.03 65 149 295
3 5 5 .0102 .0126 .329 2.04 - 81 216 378
3 6 6 .0100 .0126 .329 3.32 97 271 449
3 7 7 .0104 .0142 .329 4574 113 330 524
3 8 8 .0105 .0143 .329 6.95 129 353 563
3 10 10 .0103 .0125 .329 15.0 -161 471 713
4 3 3 .0107 .0139 . .329 1.66 49 94 130 354
4 4 4 .0115 .0201 .329 1.17 65 149) 0 295
4 5 5 .0102 .0126 .329 2.31 81 216 0 378
4 6 6 .0100 .0126 .329 3.57 97 271 0 449
5 3 3 .0107 .0139 .329 1.86 49 94 130 O 354
2 9 8 .0138 .0333 .328 0.49 145 226
2 18 16 .0101 .0125 .329 1.47 289 370

Table 8.1

Global Errors and Memory Used for Problem Pl Using 3-Level
= 0.01

Richardson Extrapolation and Local Error Tolerance

6GT

Maximum Q Maximum Storage

Refinement 2 Maximum Qz—norm ’ Time by levels
Level L M - Error Error of Solution (sec.) 2 3 4 5 Total
1 - - .198 .562 .268 .040 : 81
2 3 3 .101 .311 .318 .402 241 322
2 4 4 .0715 .230 .323 - .601 321 402
2 5 5 .0514 175 .326 .860 401 482
2 6 6 .0381 .131 .327 1.21 481 : 562
2 7 7 .0290 .101 .328 1.55 561 642
2 8 8 .0227 .0790 .329 1.97 641 : 722
2 10 10 .0148 .0514 .329 3.01 801 882
2 15 15 .00669 .0229 - .329 6.72 1201 1282
2 20 20 .00378 .0128 .330 11.8 1601 : 1682
.3 3 3 .0182 .0628 .329 971 241 109 431
3 4 4 .00592 .0201 .329 1.83 321 177 579
3 5 5 .00246 .00820 .329 3.31 401 266 748
3 6 6 .00120 .00398 .330 5.62 481 355 917
3 7 7 .000665 .00215 .330 9.45 561 463 1105
4 3 3 .00237 .00705 .329 3.02 241 109 247 678
4 4 4 .000746 .00126 .329 11.3 321 177 497 1076
5 3 3 .00124 .00192 .329 11.6 241 109 247 364 1042 -

Table 8.2 Same as Table 8.1, but with Local Error Tolerance = 0.001

160

Table B.1 illustrates one of the important features of our algorithm. It
shows what happens when the refinement process is (recursively) carried as far
as possible on smooth solutions. Compare N = ¥ = 4, maximum refinement lev-
els 3 and 4, or N = ¥ = 3, maximum refinement levels 4 and 5. In these cases,
allowing an additional level of refinement has resulted in no increase in memory
used, and no decrease in error. This illustrates that, for smooth solutions, when
the algorithm has satisfied the local error tolerance, it refuses to refine further,

as it should.

In many of the cases shown, our expected I error of 0.02 was not attained.
But in all such instances (and even in some instances where this error was
attained-- i.e., the program is slightly over-conservative) the program gave a
warning that the local error tolerance was not attained at some point. Thus, for
smooth solutions, we should always choose a large value for the maximum level
number (say 10) and let the program refine as much as possible. So choosing

the maximum number of levels is not a problem.

Choosing the refinement ratios N and M is more problematic. It appears
from the table that the most efficient combination of ratios which attains our
desired I, error of 0.02 is N = M = 4, maximum level = 3 (or 4). However, a very
close competitor is N = M = 16, maximum level = 2. Either one would do in this
case. However, there is a reason to prefer the former. This can be seen by look-
ing at the case N = M = 10, maximum level = 3. We see that the time goes up
drastically for "relatively large" (B or more) refinement ratios as the number of
levels actually used goes up. Since we recormmmend using as many levels as
necessary, if we ran the case N = # = 16, we couldn't be sure (in advance) tkat
it would use only two levels. (Indeed, the case N = M = 12 wants to use 3 levels,
but N = M = 13 uses only two.) Therefore, as Table 8.2 will also show, we recom-
mend N =M = 4, 5 or 6 in general, with lower factors for coarser local error

tolerances, and conversely. Using N = M = 3 is generally ineflicient, because it

161

requires too many levels, and the cost goes up quickly with the number of levels,

until no further levels are used.

At the end of Table 8.1 we showed that we are not confined to taking ratios
N and M equal. However, there is no advantage to choosing N # M. For exam-
ple, one of our -egtries has N =9, M = 8. Since A; = k,/h, = 0.8, this implies
N =ka/hy =08 If we took another level of refinement, we would have
Ag = 1.0125. and our difference scheme would be unstablé on the third level.

Thus we will in the future take N = M.

Table 8.2 shows results similar to Table 8.1, but with a srnalier tolerance.
Note vthat in Table 8.2 the second refinement level is the whole region. (This was
not the case in Table 8.1.) Taking only two refinement levels with large N and M
(N = M = 20) does not produce the desired I, error 0.002. And the maximum
error for this case is greater than 0.01, about ten times higher than desired.
Comparing the cost with case N = M = 6; maximum level = 3 shows conclusively
the necessity for recursive refinements. It furthermore aﬁirrns our policy of

choosing N and M between 4 and 6.

We next come to the most important question of this chapter (and perhaps

this thesis).

8.4. Efficiency of the Method

In Section B.2 we showéd that our method was able to résolve steep gra-
dients, and even shocks, in the solution. We showed this by comparing the solu-
tion obtained by our method with one obtained on a uniform coarse mesh. This
’ cléarly showed the qualitative superiority of our "refined” solution over the

"unrefined' one.

However, the '"unrefined" solution cost far less to compute than the

“refined" one. For example, in Figures B.1(a) to (i), it cost 1.17 seconds to

162

compute the "refined” solution up to time £ = 3.6 (without graphic output, etc.)
vs. 0.04 seconds to compute the "unrefined” solution up to the same time, as
shown in Table 8.1, This is a factor of 29 more expensive. But the unrefined

solution is worthless.

Thus, to study the efficiency of our method, we need to compare the com-
puting time taken by our method with the computing time taken to produce
(approximately) the same error on a uniform (fine) mesh. As a by-product, we

will also be able to compare the memory taken in the two approaches.

Because this is probably the most important result in this thesis, we made
this study on two of our model problems: P1, the first-order wave equation, and
P2, the second-order wave equation. The result is the same for both, and gives-

us confidence in extrapolating this to larger systems.

Cur method is simple. Instead of comparing a "refined" solution £ with a
solution computed on only its coarsest mesh, we compare Z with a solution com-
puted on a uniform fine mesh whose spacing is the same as the spacing of the
¥'s finest mesh. If these two produce: approximately the same error, then we

have a valid comparison.

Table 8.3 shows the results. In this table we have used two different
difference schemes: the first (LW) is Lax-Wendroff on all refinement levels; the
second (4th) is:a hybrid method which uses the fourth order methed (see Sec-
tion 2.5) on the coarsest mesh, and Lax-Wendroff on all others. For the ‘LW
method, we used A; = 0.8, but because of stability considerations, we had to use
A, = 0.6 for the hybrid method. We used three-level Richardson extrapolation
for the LW method, but had to use differences for the hybrid method. As usual,
the errors are at t{ = 3.6 and all other parameters for the refined examples are
as in Table B8.2. For P2, the maximum error is the maximum over both com-

ponents of the solution, and the I, error is the maximum of the I, errors of

€91

No. Intervals Maximum 2 Work

Problem on Coarsest Refinement _ 2 Maximum Time Memory per
No. Method A Mesh Level L M Error Error (sec.) Used. Point
P1 LW .8 1280 1 - = 5.89-3 2.01-2 7.67 1281 5.99-3
Pl LW .8 80 3 4 4 5.92-3 2.01-2 1.83 579 3.16-3
Pl LW .8 2000 1 - - 2.42-3 8.20-3 18.4 2001 9.20-3
P1 LW .8 80 3 5 5 2.46-3 8.20-3 3.31 748 4.43-3
P1 4th .6 1280 1 - - 5.89-3 2.02-2 11.1 1281 8.67-3
Pl - 4th .6 80 3 4 4 1.05-2 3.60-2 2.04 579 3.52-3
Pl 4th .6 2000 1 - - 2.42-3 8.22-3 27.1 2001 1.35-2
Pl 4th .6 80 -3 5 5 4.37-3 1.46-2 4.04 748 5.40-3
P2 Lw .8 1280 1 - - 8.33-3 2.01-2 13.0 1281 1.02-2
P2 LW .8 80 3 4 4 8.35-3 2.01-2 4.33 756 5.72-3
P2 LW .8 2000 1 - = 3.43-3 8.22-3 . 30.0 2001 1.50-2
P2 LW .8 80 3 5 5 3.45-3 8.24-3 8.50 1009 8.42-3
P2 LW .8 2880 1 - - 1.65-3 3.99-3 63.16 ~ 2881 2.19-2
P2 LW .8 80 3 6 6 1.67-3 4.00-3 15.19 1278 1.19-2

Table 8.3 Efficiency of the Method

164

either component. The memory given is the memory per solution component.

We used upwind/downwind boundary conditions (see Section 8. 1).

- We see that in terms of computer time’our method using.'LW is 3 to 5.5
times as efficient as using a uniform fine mesh_ﬂﬁch produces the same error.
In terms of rhemory. a factor of 1.7 to 2.2 is gained. At first it might seem
surprising that our method could be more efficient, since if requires much
greater overhead than. the uniforrr; mesh method. The overhead is needed to.
estimate the local truncation error and adjust the refinements. This is compen-
sated for, however, by being able to take large time steps in unrefined regions.

Using a uniform mesh, we must take fine time steps everywhere.

An additional aspect of efficiency that should be mentioned involves the
work per mesh point.; Our mesh refinement algorithm reduces the (maximum)
number of mesh points needed to achieve a given accuracy, and this naturally
reduces the amount of work, but does the amount of effort per mesh point

decrease?

Table 8.3 also gives this figure, obtained by dividing the computer time by
the maximum number of mesh points used. It is clear that in all cases the work
per mesh point is decreased by a factor of two (the notation n—m means
n-10™).

Our results also show that the hybrid LW/4th order method is not competi-
tive in efficiency with pure Lax-Wendroff. We also tried using the hybrid method
with A; = 0.2, all other A, =0.8. Though improved somewhat, the results still
were not competitive with pure Lax-Wendroff. In addition, the hybrid method

was quite cumbersome to implement.

In general, of course, one will not get a factor of three or any other specific
efficiency factor. This depends primarily on the fraction of the region needing

refinement, and other factors such as the local error tolerance, when (for which'

165

t) we are doing the comparison, the wave speed, and so forth.

It might be argued that we obtained our results only by adjusting or tuning
the parameters N, M. To refute this charge, we have shown several different
values of N and M. This shows that although we cannot easily determine the
optimal N, M, even subobtirnal choices still yield a significant savings in execu-

tion time.

8.5. Behaviorash - 0

As we pointed out in Chapter 3, we can study two types of convergence.i (In
all cases we hold the refinement ratibs N and M fixed.) In the first, we hold the
local error tolerance ¢ fixed and let A; -+ 0. In the second, we let h,; - Ovand let
6 = C(hy)~

We first keep the maximum number of refinement levels constant, and less
than necessary (for the method to refine as much as possible), and study the
first type of convergence.. Table 8.4 shows these results on Pl using pure Lax
We-ndroﬁ. AL =0.8, N = M =4, three-level Richardson extrapolation, and local
error tolerance = 0.001. For the smaller values of h, the 0(h?) behavior of the

errors (both maximum and l,) is apparent.

Next we do the same test, but choose the maximum number of levels large
enough so that the method réﬁnes as much as possible. The maximum levvel is 5
here. The convergence is O(hz) for the maximum error with the coarse mesh
size going fromv Ny =80 to 160. But as we saw in Chapter 3, the grid is approach-
ing a uniform mesh as A -» 0 and this sléws down the convergence. As h - 0 the

number of levels used approaches 1.

Finally, we let A » 0 and let 6 = 0(h?). Here we see the convergence is fas-
ter, and the maximum error is finally O(h?). The l; error does not behave as

well.

99T

No. of

Intervals ‘Maximum Local 2 Qz-norm Maximum Storage
on Coarse Refinement Error 2 Maximum of Time by Levels
Mesh Level L M Tol. Error - Error Solution (sec.) 1 2 3 4 Total
40 2 4 4 .001 144 .391 «304 .178 41 161 202
80 2 4 4 .001 .0715 .230 .323 .647 81 321 402
160 2 4 4 .001 .0228 .0790 .328 .782 161 122 283
320 2 N .001 .00592 .0201 . .329 2.74 321 157 478
40 3 4 4 .001 .0228 .0790 .328 .592 41 161 158 360
80 3 4 4 .001 .00592 .0201 .329 1.89 81 321 181 583
160 3 4 4 .001 .00296 .00503 .329 3.77 161 118 281 560
320 3 4 4 .001 .000756 .00126 .329 13.5 321 161 445 927
40 5 4 4 .001 .00240 .00325 g 33.8 41 161 121 349 672
80 5 4 4 .001 .000743 .00126 12.35 81 321 177 497 1076
160 5 4 4 .001 .00260 .00330 22.5 161 101 277 433 972
320 5 4 4 .001 .000756 .00126 13.46 321 157 433 O 911
640 5 4 4 .001 .000455 .00140 28.8 641 257 374 0 1272
1280 5 4 4 .001 .000418 .00126 43.9 1281 433 O 1714
40 5 4 4 .01 .00388 .0109 2,78 41 161 109 213 524
80 5 4 4 .0025 .00139 .00498 8.20 81 321 169 305 876
160 5 4 4 .,000625 .000438 .00139% 26.7 161 641 289 493 1584
320 5 4 4 .000156 .000134 .000354 93.6 321 1076 545 869 2811

Table 8.4 Behavior of Global Error as hl *> 0

187

8.6. Estimating the Local Truncation Error in the Interior

In this section we will consider the other ways of estimating the interior
" local truncation error that we examined in Chapter 9: differences and two-level
Richardson extrapolation. In all other tables in this chapter we used three-level
Richardson estimation {(except on the first level of the hybrid method) in the
interior of the region. |

~ Table B.5 shows these results for problem P1. As usual, the parameters not
listed in the table are the same as in the computations for Table 8.1 or 8.2. R3
signifies 3-level Richardson extrapolation, RR is two-level Richardson extrapola-
tion, and D signifies differences. Omitted entries are the s.ame as the entries

above them.

We see that there is very little difference in efficiency between these
methods for problem Pl1. The use of differences seems to be slightly more
efficient. But in our opinion, the greater convenience of three-level Richardson

for interior approximations far outweighs any small efficiency differences.

8.7. Estimating the Local Truncat.ibn Error at Boundaries

In this section we will fix our problem (P2), and our interior approximation
and error estimation methods (Lax Wendroff and three-step Richardson, respec-
tively). Then we will vary our boundary approximation and our method of error

estimation at the boundary.

We will use upwind/downwind differencing and first-order extrapolation (see
Section B8.1). For the former we will estimate the error both by using the
modified Richardson 3-step method (Section 5.4) and by replacing ¢ derivétives
by z derivatives in the truncation error and using differences. For extrapolation
we can only use differences. The results are shown in Table 8.6. In all cases, the

number of intervals on the coarsest mesh is 80, the maximum number of

89T

Maximum Local 2 Maximum

Refinement Error 2 Timé
Level L M Tolerance Method Error Error (sec.)
3 4 4 .01 R3 ,0115 .0201 1.03
R2 .0115 .0201 1.05
D ©.0115 .0201 .957
3 6 6 .01 R3 .0100 .0126 3.32
R2 .0099 .0126 3.65
D .00992 .0126 3.35
3 4 4 .001 R3 .00592 .0201 1.83
R2 .00592 .0201 1.74
D .00592 .0201 1.52
3 6 6 .001 R3 00120 .00398 - 5.62
R2 .00120 .00398 5.59
D .00120 .00398 5.28

Table 8.5 Using Different Methods to Estimate the Local Truncation Error

169

refinement levels is 5, and the reﬁnem_entv ratios L = M = 4. In all cases the fifth
refinement level was not used. U/D signifies upwind/downwind differencing, and
Rich. signifies the modified 3-step Richardson method. The memory occupied by
solution values is the maximum total over all refinement levels for one com-
ponent of the solution. As usual, all other paramef.ers not.shown are the same
as in the computatiori for Table 8.1, except that we use Problem P2 rather than

P1.

Clearly, the different Aboundary approximations and error estimation
methods produce approximately the same results. This supports our claim that

our method of adaptively handling boundaries is quite general.

B.8. How Often Should the Local Truncation Error Be Checked?

In Chapter 2 we used subsequences to describe the times at which we esti-
mate the local truncation error (and possibly alter refinements). In this section
we shall show that for Problem Pl it is unwise to monitor the local truncation

error more often than every coarse time step.

Table 8.7 shows the results of these computations for Problem P1. All
parameters not mentioned are the same as in the computations for Table 8.1.

The meaning of (a) under "tolerance frequency” in Table 8.7 is how mahy coarse

Boundary Error Local L, Maximum él‘ime) "~ Memory

: ; " Error Error Error sec. Used

Approx. »Estxmatlon Tolerance :
Uu/D Rich. .01 1.20-2 2.18-2 3.84 630
Us/D - diff. .01 1.21-2 2.18-2 3.87 . 830
extrap. diff. .01 1.18-2 2.18-2 3.93 842
Us/D Rich. .001 8.02-4 1.34-3 42.3 1774
U/sD diff. .001 8.02-4 1.34-3 41.9 1774
extrap. : diff. .001 . 8.00-4 1.84-3 42.6 1814

Table 8.6. Error Estimation at Boundaries

0LT

Maximum : 2 Maximum Storage
Refinement Tol. Freq. 2 Maximum Time by Levels
Level L M Tol. (a) (b) Error Error (sec.) 2 3 .4 Total
4 4 4 01 1 1 .0115 .0201 1.17 65 149 0 295
1 2 .0115 .0201 1.64 65 125- 0 271
1 3 .0115 .0201 3.10 65 125 0 271
2 1 0112 .0202 1.16 69 173 0 323
2 2 .0119 .0201 1.15 69 149 0 299
2 3 .0112 .0202 1.24 69 173 0 323
3 1 .0119 .0238 1.26 81 205 0 367
3 2 .0114 .0219 1.21 81 161 0 323
3 3 .0119 .0238 1.38 81 205 0 367
4 1 .0107 .0241 1.31 85 221 0 387
5 1l .0129 .0380 1.41 89 249 0 419
6 1 .0235 .0857 1.48 93 281 0 455
3 6 6 .001 1 1 .00120 .00398 5.62 481 355 917
1 2 .00120 .00398 7.86 481 313 875
1 3 .00120 .00398 7.90 481 313 875
2 1 .00120 .00398 6.10 481 415 977
2 2 .00120 .00398 5.68 481 355 917
2 3 .00120 .00398 6.06 481 415 977
3 1 6.52 481 475 1037

.00121 .00398

Table 8.7 How Often Should the Local Truncation Error Be Checked?

171

time steplsA occur between checi{s of the local error. The column (b) has two
different meanings, depending on column (a). If column (a) is 1 then we check
the truncation error at any time a refinement whose level is less than or equal to
(b) is about to be advanced. Thus, in these cases we check more often then
every coarse time step. Table B.7 shows that this is very costly and produces no

benefits whatever.

If (a) in Table 8.7 is greater tha.n one, a one in column (b) signifies that we
check all refinements every (a) coarse time steps. If column {a) is greater than
bne and (b) is greater than one, we check refinements with levels greater than
or equal to (b) every coarse time step, and all others every (a) coarse time
steps. Of course, in all cases in this table, the buffers mentioned in Section 2.6

have to be modified, in a way analogous to the argument given there.

Our results for these cases show very little difference from _checkirig every
coarse time step, until the checking frequency becomes too seldom (as in case
(a) = 6, (b) = 1). Then the accuracy starts to deteriorate, beéause a pulse may
enter the boundary before it is enclosed in refinement(s). (The algorithm could
easiiy be modified to check the boundaries at every coarse time step, but we did

not do this.) -

We conclude that for this problem we may as well check the local error
every coarse time step, although this may depend on factors such as the spacing
of the coarse mesh, the wave épeed, and the presence of forcing functions
(terms kF in (2.1)). Also, the results may be rédicall}; different in more than

one space dimension (M. Berger, Ph.D. thesis [to appear]).

8.9. Linear vs. Quadratic Interpolation

One final implementation detail we considered is whether to use linear or

quadratic interpolation when a level ! refinemment moves into a region formerly

172

occupied only by a level I~1 refinement. (This is relevant to the statement of
Pfopbsitions 4.1 and 4.2.) Table B.B shows that there is practically no difference.
(All parameters not mentioned are as in the corerutation for Table B.1. As usual,
omitted values are the same as the ones above.) We used quadratic interpolation
elsewhere in this chapter, but linear interpolation would be preferred because

it is easier to program.

Maximum Local Linear or

Refinement L M Error Quadratic L2 ng1mum Time
Level Tolérance Interp. Error rror (sec.)
3 4 4 01 Q .0115 .0201 1.03

L .0116 .0201 1.06

3 6 6 01 Q .0100 .0126 3.32
L .0100: - .0127 3.60

3 4 4 .00 Q .00592 .0201 1.83
. L .00593 .0201 1.87

3 6 6 .001 Q .00120 .00398 5.62
‘ L .00121 .00398 5.76.

4 3 3 .001 Q .00237 .00705 3.02
L .00240 .00705 3.13

Table 8.8 Linear VS.'Quédratic Interpolation

173

CHAPTER 9

Conclusions and Extensions

In this thesis we have developed and partially analyzed an adaptive finite
difference method for hyperbolic systems in one space dnnenéion. It is intended
for problems which are smooth in most parts of the spatial region, but which
have large gradients which require "moving"” refinement(s) for accurate approxi-

mation. The algorithm was described in Chapter 2.

Although our method was originally developed for problems with smooth
solutions, and the analyses hold only for that situation, we found in Section 8.2
that our method also works for problems with shocks, in the sense that the
refinement(s) follow the shock. However, the method is not yet efficient for that

case.

The most ifnportant result of this thesis is that our method can be much
more efficient (for a given level of accuracy) than using a uniform grid.
Specifically, in Section B.4 we found that our method was 3-5 times more
efficient (in computing time). Work by W. Gropp [1980] and M Berger [to
appear] in two spatial dimensions confirms this. We believe the efficiency of the
shock calculation mentioned above can bée greatly improved by changing the

method of error estimation, and we will do this in the future.

Our method also provides efficiencies in storage, but these are not as
dramatic as the execution time savings. We expect the savings to be greater for

more space dimensions.

Our algorithm is the only one of which we are aware which adaptively treats

time-dependent boundary conditions for hyperbolic systems (as was shown by

174

175

problem PR in Section 8.7) in a systematic and general way. -This is obviously

important for limited area weather forecasting, among other problems.

We saw that our algorithm does indeed accurately "track” moving pulses,
even when they merge, separate, or pass through boundaries, without being dis-

tracted by background "noise" {as appeared in our problems P1 and PR).

As explained in Chapter 3, our method of mesh refinement requires the use
of a stability definition different from the usual Gustafsson-Kreiss-Sundstrém
[1972] definition. In Chapter 4 we stated but did not prove a convergence propo-
sition analogous to Gustafsson's [1975] result, but using the new stability
definition. Using this, and the results of Pereyra and Sewell, we proved a result
(Proposition 4.2) which gives insight into why our algorithm can be expected to
produce economies. Our algorithm does not increase the order of convergence, .
but, loosely speaking, it can greatly decrease the constant multiplying A? in the
global error. Our computations in Section 8.5 confirm the rate of convergence

given in Proposition 4.2.

In Chapter 5 we examined methods for estimating the local truncation
~ error. Fof interior approximations we found that the three-step Richardsén
extrapolation method was the most versatile and easy to use. We proved that
this procedure was valid fof a large class of explicit difference schemes (namely
those whose local truncation error has the same order in both space and time).
We found that this scheme can sometimes be applied (with medifications) at the

boundaries, but that differences provide the most versatile method here.

In Chapter 6 we discussed the data structures necessary for an eflicient
implementation of the algorithm. The nested structure of recursive refinements
was indicated by a four-way linked tree of records, and the solution values were
contained in sequentially allocated deques. We used a maéro preprocessor for

Fortran to implement this, since Fortran lacks convenient facilities for data and

176

control structures.

Many addit.ional areas for research suggest themselves. The first is the
completién of the theoretical results using the new definition of stability in
Chapter 3. Al_though it is well-known that our difference scheme when applied to
problems -Pl and P2 on a uniform mesh is stable-according to the Gustafsson-
Kreiss-Sundstrém definition, we have not proved that it is stable according to
‘the new definition. For refined meshes with nonuniform time -steps, the. only
known stability result has recently been given in M. Berger's Ph.D. thesis [to
appear] for the GKS stability definition. Still needed is a similar result for the
new stability definition. Proposition 4.1 of Chapter 4 on the rate of convergence

also needs to be proved.

We believe Theorem 5.1 is true in mo’ré general circumstances although
whether it can be proved then is an open question. The first is variable
coefficients in one space dimension. The second is linear hyperbolic systems in
more than one space dimension (but here é theorem like Gustafsson's is lacking
to guarantee the order of the global error). Another generalization is to
difference schemes that depend nonlinearly on approximate solution values. We
believe that Theorem 5.1 holds for some of these cases, although we are unable
to state which ones. Evidence for this was provided by our shock calculation for -
the inviscid Burgers' equation in Chapter 8. On the other hand, we doubt that
this theorem generalizes to implicit methods, or to some other types of equa-

tions (such as parabolic equations). .

In proving Theorem 5.1, we assumed that not only the solution, but also the
global error was sufficiently smooth. That is, we assumed the existence of an
asymptotic expansion for the global truncation error. To our knowledge, the
best result for the initial boundary value problem is Gustafsson's [1975]

theorem, which only gives the size of the global error, but says nothing about its

177

smoothness. We believe this theoretical gap will be very difficult to overcome.

_ In the realm of implementation in one space dimension, the method of local
error estimation needs to be altered (for efliciency reasons) in shock calcula-
tions. It also needs to be extended to implicit difference schemes (this is more
difficult) 'a.nd possibly to conservative difference schemés. On the other hand,
we believe our algorithm applies without change to moving boundary layer prob-

lems.

In two space dimensions there are many more problems, but these are
being considered in M. Berger's Ph.D. thesis [to appear]. Some of the new prob-
lems are: more complicated data structures, orientation of refinements, and

clustering analysis.

References

vAscher, U., Christiansen, J., and Russell, R. D., "A Collocation Solver for Mixed
Order Systems of Boundary Value Problems," Math. Comp. 33 (1979), 659-
879.

Babushka, 1., and Rheinboldt, W., "Error Estimates for Adaptive Finite Element
Computations,” SIAM J. Numer. Anal. 15 (1978), 736-754.

Bank, Randolph, and Sherman, Andrew, "PLTMG Users' Guide," July 1979 Version,
Center for Numerical Analysis CNA 152, University of Texas at Austin (Sep-
tember 1979).

Berger, M., Stanford University Ph.D. thesis, to appear.

Berger, M., Gropp, W., and Oliger, J., "Mesh Generation for Time-Dependent Prob-
lems: Criteria and Methods," in Proc. Workshop on Numerical Grid Genera-
tion Techniques for Partial Differential Equations, NASA Langley Research
Center (October, 1980). |

Berger, M., Gropp., W., and Oliger, J., Stability Analysis, to appear.

Brackbill, J. U. and Saltzman, J., "Adaptive Zoning for Singular Problems in Two
Dimensions," to appear in J. Comp. Phys. '

Brandt, Achi, "Multi-Level Adaptive Solutions to Boundary Value Problems,"
Math. Comp. 31 (1977a), 333-390.

Brandt, Achi, "Multi-Level Adaptive Techniques (MLAT) for Partial Differential
Equations: Ideas and Software,” in Rice, John, ed., Mathematical Software
III, Academic Press, New York (1977b) 277-318.

Browning, G., Kreiss, H., and Oliger, J., "Mesh Refinement,” Math.. Comp. 27
(1973), 29-39.

Budnik, P., and Oliger, J., "Algorithms and Architecture,” in Kuck, D. J., Lawrie,
D. H. and Sameh, A. H., High Speed Computer and Algorithm Organization,

178

179

Academic Press, New York (1977), 355-370.,

Ciment, Melvyn, '"Stable Difference Schemes with Uneven Mesh Spacings,” Math.
Comp. 25(1971), 219-227.

- Cook, A. James‘, and Shustek, L. J., "A User's Guide to MORTRANR," Computation

Research Group, Stanford Linear Accelerator Center, Stanford, Calif. (June

1975). | |

~ Davis, Stephen, and Flaherty, Joseph, "An Adaptive Finite Element Method for
Initial Boundary-Value Problems for Partial Differential Equations," SIAM J.
Sci. Stat. Computing 3 (1982), 6-27. ‘

de Boor, Carl, "On Writing aﬁ Automatic Integration Algorithm,” in Rice, John,
ed., Mathematical Software, Academic Press, New York (1971a), 201-209.

de Boor, Carl, "CADRE: Cautious Adaptive Romberg Extrapolation,” in Rice, John,
ed., Mathematical Software, Academic Press, New York (1971b), 417-449.

de Boor, Carl, "Good Apprpxim-ation by Splines with Variable Knots. II," in Confer-
ence on the Numerical Solution of Differential Fquations, Lecture Notes in
Mathematics 363, Springer Verlag, New York (1973) 12-20.

-de Boor, Carl, "How Small Can One Make the Derivatives of an Interpolatmg Funec-
tion?" J. Approz. Theory 13 (1975a), 105-116.

~ de Boor, Carl, "A Smooth and Local Interpolant with 'Small’ k-th Derivative,” in
Numerical Solutions of Boundary Value Problems for Ordinary
Differential Equations, Academic Press, New York (1975b), 177-197.

de Doncker, Elise, "An Adaptive Extrapolation Algorithm for Automatic Integra-
tion," ACM SIGNUM Newsletter 13 (1978), 12-17. '

Dupont".. Todd, "Mesh Modiﬁéation for Evolution Equations,” to appear.

Dwyer, H A., Kee, R. J. and Sanders, B. R., "Adaptive Grid Method for Problems in
Fluid Mechanics aﬁd Heat Transfer," AJAAJ. 18 (1980), 1205-1212.

Feldman, Stuart, "The Programming Language E.}FL,." Bell Laboratories Comp.
Sci. Tech. Rep. No. 78 (1979).

180 -

Gannon, Dennis, "Self Adaptive Methods for Parabolic Partial Differential Equa-
tions,” Dept. of Computer Science, Univ. of Illinois {Aug. 1980).

Gear, C. William, Numerical Initial Value Problems in Ordinary Differential
Egquations, Prentice-Hall, Englewood Cliffs, N. J. (1971).

Gelinas, R. J., Doss, S. K., and Miller, K "The Moving Finite Element Method:
Applications to General Partial Differential Equations with Multiple Large
Gradients,” J. Comp. Phys. 40 (1981), 202-249.

Gropp, William D., "A Test of Moving Mesh Refinement for 2-D Hyperbolic Prob-
lems," SIAM J. Sci. Stat. Computing 1 (1980), 191-197.

Gropp, William D., Preprbcessor Language, to appear.

Grosse, Eric, "Software Restyling in Graphics and Programming Languages,”
Stanford Univ. Comp. Sci. Report STAN-CS-78-663 (1978).

Gustafsson, Bertil, "The Convergence Rate for Difference Approximations to
Mixed Initial Value Problems,” Math. Comp. 29 (1975), 396-406.

Gustafsson, Bertil, "The Converg;ence Rate for Differénce Approximations to Gen-
eral Mixed Initial Boundary Values Problems," SIAM J. Numer. Anal. 18,
(1981), 179-190.

Gustafsson, B., Kreiss, H.,, and Sundstrom, A., "Stability Theory of Difference
Approximations for Mixed Initial Boundary Value Problems. 11, Math.
Comp. 26 (1972), 649-686.

Henrici, Peter, Discrete Variable Methodé in Ordinary Differential Fquations,
Wiley, New York (196R).

Jensen, Kathleen, and Wirth, Niklaus, Pascal User Monual and Feport, 2nd ed.,
Springer Verlag, New York (1974).

Kahaner, D. K., and Wells, M. B,, An Experimental Algorithm for N-Dimensional
Adaptive Quadrature,” ACM TOMS 5 (1979), 86-96.

Keller, H. B., Numerical Methods for Two-Point Boundary-Value Problems, Blais-

dell, Waltham, Mass. (1968), 78-80.

181

Kernighan, Brian, "RATFOR - a Preprocessor for a Rational Fortran,” Softwa:ré -
Practice and Fxperience 5 (1975), 395-4086.

Knuth, Donald E., The Art of Computer Programming, vol. 1, 2nd ed., Addison-
Wesley, Reading, Mass. (1973).

Kreiss, H., and Oliger, J., "Comparison of Accurate Methods for the Integration of
Hyperbolic Equations,” Tellus XXIV(1972), 199-215.

Krogh, F. T., '"'VODQ/SVDQ/DVDQ - Variable Order Integrators for the Numerical
Solution of Ordinary Differential Equations,” TU Doc. No. CP-2308, NPO-
11643, Jef Propulsion Laboratory, Pasadena, Calif. (1969).

Lentini, M., and Pereyra, V., "An Adaptive Finite Difference Solver for Nonlinear |
"I‘wo-Point Boundary Value-Problems with Mild Boundary Layers," SIAM J.
Numer. Anal. 14 (1977), 91-111. '

Lentini, M., and Pereyra, V., "Boundary Problem Solvers for First Order Systems
Based on Deferred Corrections,” in Numerical Solutions of Boundafy
Value Problems for Ordinary Diﬁ‘erentv’al Equations, Academic Press, New
York (1975).

Lindberg, Bengt, "Error Estimation and Iterative Improvement for Discretization
Algorithms,"” BIT 20 (1980), 486-500.

Lyness, James, "Algorithm 379: SQUANK (Simpson Quadrature Used Ad&ptively -
Noise Killed)," CACHM 13 (1970), 260-263.

McKeeman, William, "Algorithm 145: Adaptive Numerical Integration by

 Simpson's Rule,” CACH 5 (1962), 604. |

Miller, K., and Miller, R., "Moving. Finite Elements,"” S/AM J. Numer. Anal., to
appear. ‘

Mohilner, Patricia, "Using Pascal in a Fortran Environment,” Soffware - Practice
and Ezperience 7 (1977), 357-362.

Oliger, Joseph, "Approximate Methods for Atmospheric and Oceanographic Circu-

lation Problems,” Proc. Third International Symposium on Computing

182

Methods in Applied Sciences and Engineering, Springer Verlag, New York
(1978).

Oliger, Joseph, "Fourth Order Difference Methods for the Initial Boundary-Value
Problem for Hyberbolic Equations,” Math. Comp. 28 (1974), 15-25.

Oliger, Joseph, "Hybrid Difference Methods for the Initial Boundary-Value Prob-
lem for Hyperbolic Equations," Math. Comp. 30(1978), 724-738.

Oliger, Joseph, "Constructing Stable Difference Methods on Piecewise Uniform
Grids,"” to appear.

Pearson, Carl E., "On a Differential Equation of Boundary Layer Type." J.
' Mathematical Phys. 47 (1968), 134-154. ,
Pereyra, V., "Higher Order Finite Difference Solution of Differential Equations,"

Stanford Univ. Comp: Sci. Report STAN-CS-73-348 (1973).

Pereyra, V., and Sewell, E. G., "Mesh Selection for Discrete Solution of Boundary
Problems in Ordinary Differential Equations,” Numer. Math. 23 (1975),
261-268. |

Rai, M. M. and Anderson, D. A., "Application of Adaptive Grids to Fluid-Flow Prob-
lems with Asymptotic Solutions,” AJAA J. 20 (1982), 496-502.

Rheinboldt, Werner C. and Mesztenyi, Charles, "On a Data Structure for Adaptive
Finite Element Mesh Refinements," ACM TOMS 6 (1980), 166-187.

Richtmyer, Robert and Morton, K. W., Difference Methods for nitial Value Prob-
lems, 2nd. ed., Wiley, New York (1967).

Russell, R. D. and Christiansen, J., "Adaptive Mesh Selection Strategies for Solv-
ing Boundary Value Problems," STAM J. Numer. Anal.. 15 (1978), 59-80.
Shampine, L. M. and Gordon, M. K., Computer Solution of Ordinary Differential
Fquations: the Initial Value Problem, Freeman, San Francisco (1975).
Steger, Joseph and Chaussee, Denny, "Generation of Body-Fitted Coordinates
Using Hyperbolic Partial Differential Equations,” SIAM J. Sci. Stat. Com-

puting 1 (1980), 431-437.

183

Stetter, Hans, "Global Error Estimation in Adams PC-Codes,” ACM TOMS 5 (1979),
 415-430.
White, Andrew; B., "On Selection of Equidistributing Meshes for Two-Point Boun-
dary Value Problems,” SIAM J. Numer. Anal. 16 (1979), 472-502.
Zahn, Charles T., Jr., "A User Manuai for the MORTRANZ Macro-Translator,” Com-
putation Research Group, Stanford Linear Accelerator Center, Stanford;

Calif. (August 1975).

APPENDIX A

Appendix: Program Listing

The following is the listing of the mesh refinement program for problem P2
(the second order wave equation with counter-streaming pﬁlses). We include it
both to resolve any small details which had to be omitted from the text, and to
show the advantages of using a preprocessor language for this type of algorithm.

As described in Chapter 7, the language used is an extension of Mortran [Cook

and Shustek, 1975].

184

1856

MORTRAN 2.0 (VERSIONOF 6/24/75) i PROCESSOR VERSION OF 06/24/75

$Us

" PROGRAM TO SOLVE THE INI TIAL BOUNDARY-VALUE PROBLEM FOR THE ONE-
DIMENSIONAL SECOND ORDER WAVE EQUATION

2

U -Cu =0, C GT.0,
TT XX

REWRITTEN AS THE 2 BY 2 FIRST ORDER SYSTEM, WITH V = C*DU/DX, AND

W = DU/DT,
V =Crw
T X
W =Ccxv
T X

{N THE STRIP A .LE. X .LE. B, T .GE. 0, WITH AUTOMATIC INSERTION
OF MESH REFINEMENTS IN REGIONS WHERE THE SOLUTION IS CHANGING
RAPIDLY. INITIAL CONDITION V(X, 0) = F(X) + G(X), W(X,0) =
-F(X) + G(X), WHERE F AND G ARE GIVEN BY SUBROUTINE EXACT.SOLUTION.
BOUNDARY CONDITIONS WA, T) = W(A, T) + 2F(A - C*T),
V(B T) = -W(B, T) + 2G(B + C*T).

EXACT SOLUTION V(X, T) = F(X - C*T) + G(X + C*T),

W(X, T) = -F(X - CXT) + G(X + C*T).

REFERENCE:
BOLSTAD, JOHN H., 'AN ADAPTIVE FINITE DIFFERENCE METHOD FOR
HYBPERBOLIC SYSTEMS IN ONE SPACE DIMENSION', LBL-13287 AND
STAN-CS-82-899, JUNE, 1982.

”

[XeNoNeNoNoNoReReNoNeoNoNoeNoRoNoNoNoNe oo NoNeoNoNoRoNo e o Noo oo Xe)

" SHORTEN IDENTIFIERS"
$ UINITIALIZE' = 'INITIA'
$ 'ADVANCE.SOLUTION' = ‘ADVSOL'

REAL TIME;
INTEGER HANDLE, MILSEC;
LOGICAL RUNNING;

HANDLE = 0; :
CALL LUB$INIT_TIMER(HANDLE);
RUNNING = .TRUE.;
WHILE RUNNING <
CALL INITIALIZE(RUNNING);
IF (.NOT. RUNNING) EXIT;
CALL ADVANCE.SOLUTION;
CALL LIB$STAT_TIMER(2, MILSEC, HANDLE);
TIME = 0.0 1*MILSEC; .
OUTPUT TIME; (* ELASED TIME = ', F9.3, ' SECONDS');
CALL LIBSINIT_TIMER(HANDLE) >
STOP;
END;

""MORTRAN MACROS"

COO0O0O0A a4t a2 aaD0O0O0COO0O0OOO0O0

$ 'ONE.TIME.STEP' = ‘ONETIM!

$ 'EXACT.SOLUTION' = 'EXTSOL'

$ 'INITIAL.CONDI TIONS' = 'INITCN' |

$ 'EXTEND.LEFT' = 'EXTLFT*

$ 'EXTEND.RIGHT' = 'EXTRGT'

$ 'DETERMINE.REFINEMENTS' = 'DETREF'
$ 'ADJUST.MESH' = 'ADJMES'

200000 [= X

000 OO0 000 © © o

o

[oXeNeNeNol

186

$ 'FILLIN' = 'FILLIN?

$ 'SEPARATE.REF' = 'SEPRAT'
$ "INTERPOLATE' = 'INTRPO'
$ 'ESTIMATE.ERROR' = 'ESTERR'
$ 'TOLERANCE' = 'TOLRNC'

$ 'TOLACHIEVED! = 'TOLACV'
$ 'TOLFREQ' = 'TOLFRQ'

$ 'DIFFERENCES' = 'DIFRNC'
$ 'DIFFERENCES2' = 'DIFRN2"
$ '‘RICHARDSONZ2' = 'RICHA2'
$ 'RICHARDSON3' = 'RICHA3'
$ 'LEFTMOST' = 'LFTMST"

$ 'ESTERROR' = '‘ESTRRAR'

$ 'MAXLEVEL' = '5¢ "MAXIMUM NUMBER OF LEVELS OF REFINEMENT"
$ 'MAXLEVELP1' = '6! "MAXLEVEL + 1"
$ 'MAXRFINE' ='15! "MAXIMUM NUMBER OF REFINEMENTS. THIS NUMBER: /

MUST BE .GE. MAXLEVEL + 1."

$ 'MEMAVAIL' ='3000' “MEMORY AVAILABLE FOR V AND REFINEMENTS"

$ 'HEIGHT' = '18' "VERTICAL HEIGHT OF CRUDE PLOTS”

$ 'HEIGHTP1' ="17! "HEIGHT + 1"

$ 'PAGEWIDTH ='120' “NO. OF CHARS. ON LINE OF OUTPUT"

$ ‘EMPTY' = *-1! "SIGNAL FOR RIGHT END OF EMPTY MESH"

$ 'NCOMP! = 12! "NUMBER OF EQUATIONS AND COMPONENTS IN
SOLUTION VECTOR”

$ 'USE SOLN;' = 'COMMON /SOLN/ ZVNEW, VNEW, ZV, V;
REAL ZVNEW(NCOMP), VNEW(NCOMP, MEMAVAIL), ZV(NCOMP), V(NCOMP,
MEMAVAIL);'
“"ZVNEW = VNEW(1,0), ZV = V(1,0).
THIS SIMULATES V(1:NCOMP, O:MEMAVAIL) IN ALGOL NOTATION.”
ARRAY RFIN(MAXRFINE) OF RECORD <
POINTER TO RFIN: LLINK, RLINK, COARSE, FINE;
INTEGER: BASE, TOP, OLDBASE, OLDTOP, LEFT, RIGHT; >
$ 'USE LFTMST;' = 'COMMON /LFTMST/ LEFTMOST;
POINTER TO RFIN: LEFTMOST(MAXLEVELP1);'
$ 'USE COM3;' = ‘COMMON /COM3/ A, B, N;
REAL A, B; INTEGER N;'
$ 'USE COM4;' = 'COMMON /COM4/ C, FACTOR, SCALE, TWOPI;
REAL C, FACTOR, SCALE, TWOP;'
$ 'USE COMS;' =
COMMON /COMS5/ NLEVEL, NPTSM, POWER, RIGHTB, BUFFER;
INTEGER NLEVEL, NPTSM(MAXLEVELP 1), POWER(MAXLEVELP1),
RIGHTB(MAXLEVEL), BUFFER(MAXLEVEL);'
$ 'USE STEPSZ;' =
COMMON/STEPSZ/ HO, H, K, LAMBDA; .
REAL HO, H(MAXLEVEL), K(MAXLEVEL), lAMBDA(MAXLEVEL),
$ 'USE COM7;' =
'COMMON /COM7/ C1,C2, C3, L2, L3, L6, NM1, NM2, NM3;
REAL C1,C2,C3, L2, L3, L6;.
INTEGER NM1, NM2, NM3;’
$ 'USE ZERO;' = 'COMMON /ZERO/ ZERO; - INTEGER ZERO;!
$ 'USE XRATIO;' = 'COMMON /XRATIO/ XRATIO; INTEGER XRATIO;'
$ 'USE COUNT;' = 'COMMON 7COUNT/ NSHRT, NSHL;
INTEGER NSHRT, NSHL;'
$ 'USE DEBUG;' = 'COMMON /DEBUG/ DEBUG; - INTEGER DEBUG;'
$ 'USE COM12;' = 'COMMON /COM12/ TOLERANCE, NTIME, SKIPPR, TRATIO,
QUADRAT, PRINT, RICHSN, TOLCHK, TOL.FREQ,
TOL.ACHIEVED, BDRY;
REAL TOLERANCE;
INTEGER BDRY, NTIME, RICHSN, SKIPPR, TOL.FREQ(2), TRATIO;
LOGICAL QUADRAT, PRINT, TOLCHK, TOL.ACHIEVED;'
$ 'USE METHOD;' = 'COMMON /METHOD/ METHOD; INTEGER METHOD;'
$ 'USE COM14;' = 'COMMON /COM14/ C8, C7, C8, C10;
REAL C6(MAXLEVEL), C7(MAXLEVEL), C8(MAXLEVEL), C 10(MAXLEVEL);'
$ 'USE ERROR;' =
COMMON /ERROR/ ZESTER, ESTERROR;
REAL ZESTER(NCOMP), ESTERROR(NCOMP, MEMAVAIL);'

S S22 A LA a a0 000000000000000000000O0000 2 wa0=uLdalaaula~000000000000000000

187

"THIS SIMULATES ESTERROR(1:NCOMP, 0:MEMAVAIL)"
SUBROUTINE INITIALIZE(RUNNING);

USE SOLN; USE LFTMST; USE COM3; USE COM4; USE COMS5; USE STEPSZ;
USE COM7; USE ZERO; USE XRATIO; USE COUNT; USE DEBUG; USE COM12;
USE METHOD; USE COM14; USE ERROR; DEFINE RFIN;

REAL S;

INTEGER |, J, L, NLEVP1;

POINTER TO RFIN: P;

LOGICAL RUNNING;

CHARACTER®S DAY;

DATA ZERO /0/;

INPUT NLEVEL, XRATIO, TRATIO, DEBUG, RICHSN, BDRY, TOL.FREQ, METHOD,
N, SKIPPR, NTIME, QUADRAT, TOLCHK, LAMBDA(1), SCALE, TOLERANCE, C;
(912, 314, 2L1, 4F7.3);
IFNLE.O < -
RUNNING = FALSE.;
GO TO :EXIT:>
IF NLEVEL .LE. O .OR. NLEVEL .GT. MAXLEVEL <
OUTPUT NLEVEL; (' INCORRECT INPUT, NLEVEL =, 15);
RUNNING = FALSE.;
GO TO :EXIT:>
{F MAXRFINE .LT. MAXLEVELP1 <
OUTPUT; (" ¥ MAXRFINE TOO SMALL');
RUNNING = FALSE.;
GO TO :EXIT:> :
IF TRATIO .LT. 2 .0R. XRATIO .LT. 2 <
OUTPUT XRATIO, TRATIO; (* XRATIO, TRATIO =, 214, ' TOO SMALL');
RUNNING = FALSE.;
GO TO:EXIT:>
TOL.ACHIEVED = .TRUE,;
NM1 =N-1;
NM2 =N - 2;
NM3 = N - 3;
A=0,
B=4,;
H(ZERO) = 1.;
H(1) = (8 - A)/N;
TWOP! = 62831853071796;
L2 = CXLAMBDA(1) / 2;
L3 = CXLAMBDA(1) / 3;
L6 = CXLAMBDA(1) / 6.;
K(1) = H(1)*LAMBDA(1) / C;
C1=1.-12;
C2=1.+12;
C3=1.+11..6;
FACTOR = 1,;
NSHL = 0;
NSHRT = 0;

“SET UP A PERMANENT EMPTY (NIL) REFINEMENT ON LEVEL NLEVEL+1."
MAKEAVAIL RFIN; .
NLEVP1 = NLEVEL + 1;

NEW(P);

LEFTMOST(NLEVP1) = P;

WITHP <

~BASE = MEMAVAIL + 1;

~TOP = ~BASE + (EMPTY);

~LEFT = 0O;

~RIGHT = EMPTY;

~RLINK = NiL;

~COARSE = NiL;

~FINE = NIL;

"SET UP COARSE (1ST LEVEL) REFINEMENT."”

COO0O L0200 RO awad0uw000000 - udmwdudadOaANARND@ULARAdAUdaaadadOONN—SOOOOOO & b cd b = b b b b ok wb b o

188

NEW(P);
LEFTMOST(1) = P;
~LEFT = 0;

~RIGHT = 1;

~TOP = I;

~0OLDTOP = ~TOP;
~BASE = 0;
~OLDBASE = ~BASE;
~LLINK = NIL;
~RALINK = NIL;
~COARSE = NIL;
~FINE = NIL;
(LEFTMOST(NLEVP1)~.LLINK) = P>

RIGHTB(1) = 1;
POWER(1) = 1;
S = CXLAMBDA(1);
BUFFER(1) = METHOD + 2 + TOL.FREQ(1)*S;
DO J = ZERO, MEMAVAIL <
DO =1, NCOMP <
VNEW(I, J) = O.;
ESTERROR(I, J) = 0.>>

DOL = 2, NLEVEL <
IF L .EQ. 2 <RIGHTB(2) = N>
ELSE <RIGHTB(L) = XRATIO®RIGHTB(L-1)>
H(L) = H(L-1)/XRATIO;
K(L) = K(L-1)/ TRATIO;
LAMBDA(L) = (LAMBDA(L-1)*XRATIO)/ TRATIO;
LEFTMOST(L) = NiL;
S = XRATIO®S;
IF (TOL.FREQ(1) .EQ. 1 .AND. L .LE. TOL.FREQ(2))
S = 5/ TRATIO;
IF TOLFREQ(1) .GT. 1 AND. L .LT. TOLFREQ(2) .OR.
TOL.FREQ(2) .EQ. 1 <
BUFFER(L) = 3 + SXTOL.FREQ(1)>
ELSE <
BUFFER(L) = 3 + S>
>
DOL = 1, NLEVEL <
C6(L) = CRH(L)™*2%(1. - CXCXAMBDA(L)*™*2)/6.;
C7(L) = (1. - CXCXLAMBDA(L)®™2)/ (3.2K(L));
c8(L) = 1./(6.2K(L));
C10(L) = 0.5*%C*LAMBDA(L)*H(L)**2;
NPTSM(L+1) = 0;
POWER(L+1) = POWER(L)*TRATIO>

OUTPUT;(* 1SOLUTION OF SECOND-ORDER WAVE EQUATION WITH OPEN ¢,
'BOUNDARY CONDITIONS USING LAX-WENDROFF MESH REFINEMENT");
IF METHOD .EQ. 2 < OUTPUT; (" FOURTH ORDER (SPACE) ON COARSE MESH')>
ELSE <OUTPUT; (" LAX-WENDROFF ON COARSE MESH')>
IF RICHSN .EQ. 1 <
OUTPUT; (' ERROR ESTIMATION USING DIFFERENCES')>
ELSE IF RICHSN .EQ. 2 < .
OUTPUT; (* ERROR ESTIMATION USING 2-LEVEL RICHARDSON '
'EXTRAPOLATION')>
ELSE <
OUTPUT; (* ERROR ESTIMATION USING 3-LEVEL RICHARDSON '
'EXTRAPOLATION') >
IF BDRY .EQ. 1 < OUTPUT; (* EXTRAPOLATION BOUNDARY CONDITIONS')>
ELSE IF BDRY £Q. 2 <
QUTPUT; (' UPWIND B.C. WM TH ESTIMATION BY DIFFERENCES')>
ELSE <
OUTPUT; (* UPWIND B.C. WITH ESTIMATION BY RICHARDSON EXTRAP.')>
OUTPUT N, H(1), K(1), LAMBDA(1), C; (/' NO. OF INTERVALS ON ',
'COARSE MESH', 16, ' HCOARSE ', F8.5, ' KCOARSE ', F8.5,' LAMBDA ',
F8.5,' C', F10.2);

CO000O0O0O0OROO0OO0DOO0O0O0O0OCO0OO0O0ODOOO0DOO0DOOOON-AwN2I2200000000000000200000000000

189

QUTPUT NLEVEL, XRATIO, TRATIO, TOLERANCE; (* HIGHEST LEVEL ',
'REFINEMENT", 14, ' H RATIO *, I3, ' K RATIO *, 13,
' LOCAL TRUNCATION ERROR BOUND', 1PE15.7);
OUTPUT SKIPPR, DEBUG, NTIME, SCALE, QUADRAT, TOLCHK, TOL. FREQ,
(* SKIPPR =*, 14, ' DEBUG =, {4, ' NTIME = ', |5,
' SCALE =', E15 7 QUADRATIC INTERPOLATION =12,
¢ CHECK ERROH =, 12 /' TOL FREQUENCY =', 213);
CALL DATE(DAY);
OUTPUT DAY; (' DATE = ', A9);
OUTPUT (BUFFER(J), J = 1, NLEVEL); (* BUFFER, 2015);
DOL =1, NLEVEL <
LAMBDA(L) C"LAMBDA(L)>
EXIT:
RETURN;
END; "INITIALIZE"

SUBROUTINE INITIAL.CONDI TIONS(BASE, V, VNEW);
“FIND EXACT SOLUTION AT FIRST TWO LEVELS"

USE COM3; USE STEPSZ; USE ZERO;
REAL TEMP(NCOMP), V(NCOMP, 1), VNEW(NCOMP, 1), X;
INTEGER BASE, I;

DO J =ZERO, N <
X = A+ MH(1);
CALL EXACT.SOLUTION(X, 0., TEMP);
DO = 1, NCOMP < .
VNEW(!, BASE+) = TEMP(1)>
CALL EXACT.SOLUTION(X, K(1), TEMP);
DO | = 1, NCOMP <
V(I, BASE+J) = TEMP(1)>>
RETURN;
END; “INITIAL.CONDITIONS"

SUBROUTINE EXAC T.SOLUTION(X, T, TEMP);
USE COM4;
REAL PHASE, T, TEMP(NCOMP), X;
PHASE = X - CXT +0.5;
F= FACTOR"EXP(-SCALE'PHASE"‘Z)*—O1"SIN(TWOPI'PHASE)
PHASE = X + CXT - 4.5;
= -FACTOR®EXP(-SCALE*PHASE™*2);
TEMP(1) = F + G;
TEMP(2) =G - F;
RETURN;
END;

SUBROUTINE UXX(X, T, TEMP);
USE COM4;
REAL F, G, PHASE, SP2, T, TEMP(NCOMP), X;
PHASE = X - C*XT + 0.5;
SP2 = SCALE*PHASEXPHASE;
F = 2 XSCALEXFAC TOR®EXP(-SP2)*(2.XSP2 - 1.)
- 0.1%(TWOP|*x2) x SIN(T\NOPI*PHASE);
PHASE = X + CXT - 4.5;
SP2 = SCALE*PHASEXPHASE;
G = -2 XSCALEXFACTOR*EXP(-SP2)*(2.%SP2 - 1.);
TEMP(1) =F +G;
TEMP(2) =G - F;
RETURN;
END;

SUBROUTINE UXXX(X, T, TEMP);

GOWBELBWWWWRNNSL 220400000222 NNN2242000000000000000C00C0000000000O0O0O00OO0OO0

190- — -

USE COM4;
REAL PHASE, SP2, T, TEMP(NCOMP), X;
PHASE = X - C*T + 0.5;
SP2 = SCALEXPHASEXPHASE;
F=FAC TORXEXP(-SP2)*8 .*SC ALE*SCALEXPHASEX(3.-2 XSP2)
- 0.1%(TWOP|**3) X COS(TWOPI*PHASE);
PHASE = X + CXT - 4.5;
SP2 = SCALE*PHASEXPHASE;
G = -FACTORXEXP(-SP2)*4 XSC ALEXSCALE*PHASEX(3.-2.XSP2);
TEMP(1) = F + G;
TEMP(2) = G - F;
RETURN;
END;

SUBROUTINE ADVANCE.SOLUTION; -

“ADVANCE THE SOLUTION IN TIME. USE THE EXACT SOLUTION AT
THE FIRST TIME LEVEL (NECESSARY FOR THE FOURTH ORDER METHOD, BUT
NOT NECESSARY FOR LAX WENDROFF, EXCEPT FOR COMPARISON PURPOSES)”

USE SOLN; USE LFTMST; USE COMS; USE STEPSZ; USE COUNT; USE DEBUG;
USE COM12; DEFINE RFIN;

REAL T, TIME;

INTEGER BOTTOM, HLEVEL, L, LM, LT, M, NTIME1, NEWHIL, SUM, TLEVEL,
TOP, TOTPTS, TOUT;

POINTER TO RFIN: P;

CALL INITIAL.CONDITIONS(0, V, VNEW)
T =K(1);
PRINT = SKiPPR .EQ. 1;
IF (DEBUG .GT. 0) CALL PLOT(1, T);
IF TOLCHK <TOP = NLEVEL> ELSE <TOP = NLEVEL - 1>
L=1;
WHILE L .LE. TOP .AND. LEFTMOST(L) NE.NIL <
P = LEFTMOST(L);
TOTPTS = 0;
REPEAT < -
CALL ESTIMATE.ERROR(P, L, 1, T);
CALL DETERMINE.REFINEMENTS(P, L, 1, TOTPTS);
P = (P~.RLINK)>
UNTIL P .EQ. LEFTMOST{(L+1);
NPTSM(L+1) = MAXO(NPTSM(L+1), TOTPTS);
L=L+1>
"FIND LEVEL OF FINEST MESH"
HLEVEL = L - 1;
IF (LEFTMOST(L) .NE. NIL) HLEVEL = L;
NTIME?1 = NTIME - 1;
DO TLEVEL = 1, NTIME1 <
"ADVANCE THE SOLUTION FROM T = K(1)*TLEVEL TO K(1)%(TLEVEL+1),
STARTING WITH THE HIGHEST LEVEL (FINEST) MESH."”
PRINT = MOD(TLEVEL+1, SKIPPR) .EQ. 0 .OR. TLEVEL .EQ. NTIME1;
M=1;
REPEAT <
L = HLEVEL;
REPEAT <
LT = M/POWER(HLEVEL+1 -L);
LM = MOD(LT-1, TRATIO) + 1;
TIME = T + LT*K(L);
P = LEFTMOST(L);
REPEAT <
CALL ONE.TIME.STEP(P, L, LM, LAMBDA(L), TIME, 1, FALSE.,
V, VNEW);
P = (P~RLINK)>
UNTIL P EQ. LEFTMOST(L+1);
CALL MOVE(L);
L=L-1>

0DO0OO0VOOO0O0O00DO0000O0 =000 4 Ua udNWLDLANLOLLBLLBOOLONIIOONOODELLWWWWOWWLONNNNOWWONNN

191

UNTIL MOD(M, POWER(HLEVEL+1-L)) .NE. O;
L=L+1; i
FLEQ. 1<
TOUT = TLEVEL + 1;
IF (PRINT) CALL PLOT(TOUT, TIME);
IF (TLEVEL .EQ. NTIME1) GO TO :FiNi:>
ELSE <TOUT = TLEVEL>
IF TOLLFREQ(1) .EQ. 1 .AND. L .LE. TOL.FREQ(2) .OR.
TOL.FREQ(1) .GT. 1 .AND. L. .EQ. 1 .AND. (MOD(TLEVEL,
TOL.FREQ(1)) EQ. O .OR. TOL.FREQ(2) .NE. 1) <
“"CHECK TRUNCATION ERROR INSIDE OR AT COARSE TIME STEP*
IF TOLCHK .AND. TOL.ACHIEVED <TOP = NLEVEL>
ELSE <TOP = NLEVEL-1>
TOP = MINO(TOP, HLEVEL);
IF (TOLFREQ(1) .GT. 1 .AND. MOD(TLEVEL, TOLFREQ(1))
.NE. 0) L = TOL.FREQ(2);
{F L .LE. TOP <
BOTTOM = L;
L = TOP;
WHILE L .GE. BOTTOM <
‘P = LEFTMOST(L);
TOTPTS = 0;
REPEAT < ’ .
CALL ESTIMATE.ERROR(P, L, TOUT, TIME);
CALL DETERMINE.REFINEMENTS(P, L, TOUT, TOTPTS);
P = (P~RLINK)>
UNTIL P .EQ. LEFTMOST(L+1);
NPTSM(L+1) = MAXO(NPTSM(L+1), TOTPTS);
L=L-1>
"FIND LEVEL OF FINEST MESH"
NEWHIL = BOTTOM;
UNTIL LEFTMOST(NEWHIL+1) .EQ. NIL <
NEWHIL = NEWHIL + 1>
IF NEWHIL GT. HLEVEL <
M = M X TRATIO™(NEWHIL - HLEVEL)>
ELSE {F NEWHIL .LT. HLEVEL <
M =M/ TRATIO®™(HLEVEL - NEWHIL)>
HLEVEL = NEWHIL>
>
M=M+1>
WHILE M .LE. POWER(HLEVEL);

T = K(1) * (TLEVEL+1);
> "END OF ONE COARSE TIME STEP"

:FINI:
OUTPUT; (/' MAXIMUM STORAGE FOR SOLUTION VALUES (PER COMPONENT) ');
SUM = (LEFTMOST(1)~.TOP) + 1;
DO L = 2, NLEVEL <
TOP = NPTSM(L);
SUM = SUM + TOP;
OUTPUT L, TOP; (* LEVEL', 216)>
OUTPUT SUM; (* TOTAL', I5);
OUTPUT NSHL, NSHRT; (' MESH SHIFTED LEFT', 14, ' TIMES, RIGHT',
14, ' TIMES");
RETURN;
END; "ADVANCE.SOLUTION"

SUBROUTINE ONE.TIME.STEP(P, L, LM, LAMBDAL, T, STENCIL, EXTRAP, V,

VNEW);
"ADVANCE THE SOLUTION ONE LEVEL L TIME STEP ON A LEVEL L REFINE-
MENT. THESE REFINEMENTS ARE CHAINED TOGETHER USING THE RLINK
POINTERS. WHILE ADVANCING REFINEMENT P, WE SKIP OVER ANY
REFINEMENTS OF P. IF METHOD .EQ. 1, USE LAX WENDROFF, WITH FIRST
ORDER ACCURATE BOUNDARY APPROXIMATION, WHILE If METHOD .EQ. 2,
USE OLIGER'S FOURTH ORDER METHOD IN SPACE (LEAP FROG IN TIME) WITH

~O0O0OO0OCOONWWNNNNNAL 222 uaaduwaeD00000000004a20~00000000000000000000000000C0

192

THIRD ORDER ACCURATE BOUNDARY CONDITIONS. AT INTERFACES, USE THE
'‘COARSE-FINE' LAX-WENDROFF APPROXIMATION. THIS ROUTINE IS ALSO
USED TO ESTIMATE THE LOCAL TRUNCATION ERROR USING RICHARDSON
EXTRAPOLATION."

USE COM3; USE COM4; USE COMS5; USE STEPSZ; USE COM?7; USE ZERO;
USE XRATIO; USE COM12; USE METHOD; DEFINE RFIN;

REAL LAMBDAL, LAMBCF, LCF2, LF2, MULT, PHASE, T, V(NCOMP, 1),
VNEW(NCOMP, 1);

INTEGER BASE, BJ, 1, J, L, LAST, LEFTR; LM, NPTSP2, OFFSET, PBASE,
RIGHTR, S, STENCIL, TOP, TS;

POINTER TO RFIN: P, PARENT, UP;

LOGICAL EXTRAP;

IF STENCIL .EQ. 2 <MULT = 1.> ELSE <MULT = 0.>
S = STENCIL;
TS = 2%STENCIL;
LF2 = LAMBDAL®0.5;
LAMBCF = LM*LAMBDAL/XRATIO;
LCF2 = LAMBCF*0.5;
OFFSET = XRATIOX(P~,LEFT);
BASE = (P~.BASE);
TOP = (P~.TOP);
NPTSP2 = TOP - BASE + 2;
LAST = TOP - BASE - S;
UP = (P~.FINE);
IF UP .EQ. NIL .OR. EXTRAP <
LEFTR = NPTSP2>
ELSE <
LEFTR = (UP~LEFT) - 1 - OFFSET;
RIGHTR = (UP~.RIGHT) + 1 - OFFSET>
PARENT = (P~.COARSE);
PBASE = (PARENT~.BASE) - XRATIOX(PARENT~.LEFT);

"FOURTH ORDER METHOD - COARSEST MESH ONLY”
"NOT IMPLEMENTED FOR THIS PROBLEM"

“USE A SECOND ORDER LAX-WENDROFF METHOD (N THE INTERIOR
OF REFINEMENT P.”
J = MINO(S, LEFTR+1);
GO TO :L.23;
REPEAT <
BJ = BASE + J;
VNEW(1,BJ) = W(1,BJ) + LF2 * ((V(2,BJ+S) - V(2,8J-S))
+ LAMBDALX(V(1 ,BJ+S) - 2.2V(1,84) + V(1,8J-5))) - MULT*
VNEW(1,84);
VNEW(2,BJ) = W(2,8J) + LF2 * ((V(1,BJ+S) - V(1,84-9))
+ LAMBDALX(V(2,BJ+S) - 2.%V(2,BJ) + V(2,BJ-8))) - MULTX
VNEW(2,8U);
J=sd+1;

iL2: 1F J EQ. LEFTR+1 <

"THE FOLLOWING SKIPS OVER ALL REFINEMENTS OF THIS
REFINEMENT."”
J = AIGHTR;
UP = (UP~.RLINK);
IF (UP~.COARSE) .EQ. P <
LEFTR = (UP~.LEFT) - 1 - OFFSET;
RIGHTR = (UP~.RIGHT) + 1 - OFFSET>
ELSE <LEFTR = NPTSP2>>>
WHILE J LE. LAST;

“IF THE LEFT EDGE OF REFINEMENT P TOUCHES THE LEFT BOUNDARY OF
THE REGION, USE REFLECTION FOR V AND UPWIND DIFFERENCING FOR W.
OTHERWISE, USE LAX-WENDROFF WITH COARSE SPACE STEP AND FINE
TIME STEP."
IF (P~.LEFT) .EQ. 0 <

IF BDRY .£Q. 1 <

4 2NOWOBONNNINMNNNS 2220000000000 0000000O0NNS0CLaAadacdODaNNaONSQOOO0O0 44 uaauOaaahN=N

193

VNEW(2,BASE) = 2 XVNEW(2,BASE+1) - VNEW(2,BASE+2)>
ELSE <
VNEW(2,BASE) = V(2,BASE) + LAMBDAL*(V(1,BASE+S) - V(1,BASE))
- MULT*VNEW(2,BASE) >
PHASE = A - CXT + 0.5;
VNEW(1,BASE) = VNEW(2,BASE) + 2 XFAC TOR*EXP(-SCALEXPHASEX®2) +
0.2%SIN(TWOPIXPHASE) >
ELSE <
J = PBASE + (P~.LEFT);
VNEW(1,BASE) = V(1,J) + LCF2X((V(2,J+1) - V(2J-1)) +
LAMBCFX(V(1,J+1) - 2.35v(1) + V(1 J-1))
VNEW(2,BASE) = V(2,J) + LCF2X((V(1 J+1) - V(1 J-1)) +
LAMBCFX(V(2,J+1) - 2.50(2 J) + V(2,J-1)))>

“IF THE RIGHT END OF REFINEMENT P TOUCHES THE RIGHT EDGE
OF THE REGION, USE REFLECTION FOR V AND DOWNWIND DIFFERENCING
FOR W. OTHERWISE USE COARSE-FINE LAX-WENDROFF."
IF (P~.RIGHT) .EQ. RIGHTB(L) <
IF BDAY .EQ. 1 <
VNEW(2,TOP) = 2. %VNEW(2,TOP~1) - VNEW(2,TOP- 2)> _
ELSE <
VNEW(2,TOP) = V(2,TOP) + LAMBDAL®(\(1,TOP)-\V(1,TOP-S))
~ MULT®*VNEW(2,TOP)>
PHASE = B + C*T - 4.5;
VNEW(1,TOP) = -WNEW(2,TOP) - 2 XF ACTORXEX P(-SCALEXPHASEX*2) >
ELSE <
J = PBASE + (P~.RIGHT);
WNEW(1,TOP) = V(1,J) + LCF2X((V(2,J+1) - V(2,J-1)) +
LAMBCF*(V(1,J+1) ~ 2.2v(1,d) + V(1 J-1)));
VNEW(2,TOP) = V(2,J) + LCF2X((V(1 ,J+1) - V(1 J-1)) +
LAMBCFX(V(2,+1) - 2.8V(2,d) + V(2J-1)))>
IFS.EQ.2<
DO 1= 1, NCOMP <
VNEW(I BASE+1) = 0,;
VNEW(I,TOP-1) = 0.>>

RETURN;
END; "ONE.TIME.STEP"

SUBROUTINE MOVE(L);
“MOVE SOLUTION VALUES FROM REFINEMENT(S) ON LEVEL L+1 (IF ANY) TO
THE CORRESPONDING POSITIONS ON LEVEL L. ALSO MOVE SOLUTION VALUES
ON LEVEL L FROM WNEW TO V IN PREPARATION FOR NEXT TIME STEP.”

USE SOLN; USE LFTMST; USE XRATIO; DEFINE RFIN;
REAL TEMP;

INTEGER BC, BF, |, J, L, LEFT, PBASE, RIGHT, TOP;
POINTER TO RFIN: P, PARENT;

PARENT = LEFTMOST(L).
REPEAT <
PBASE = (PARENT~.BASE);
TOP = (PARENT~.TOP);
P = (PARENT~.FINE);
WHILE (P~.COARSE) .EQ. PARENT <
LEFT = (P~.LEFT);
RIGHT = (P~.RIGHT);
BC = PBASE - XRATIO% PARENT~, LEFT) + LEFT;
BF = (P~.BASE);
DO J = LEFT, RIGHT <
DOl =1, NCOMP <
VNEW(, BC) = V(I, BF)>
BC =BC + 1;
BF = BF + XRATIO>
P = (P~.RLINK)>

—lNNN—ANN—ANNN-tQN-l-l—l—~—l-4—'-‘—'-‘OO_OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO()OOOO--*OON-‘-D

194

“SHIFT MESH VALUES FOR NEXT TIME STEP"
DO J = PBASE, TOP <
DO = 1, NCOMP <
V(1,J) = VNEW(,J)>>

PARENT = (PARENT~.RLINK)>
UNTIL PARENT .EQ. LEFTMOST(L+1); -

RETURN;
END; "MOVE"

SUBROUTINE ESTIMATE.ERROR(P, L, TLEVEL, T);
"ESTIMATE LOCAL TRUNCATION ERROR.”

USE COM12; REAL T;
INTEGER L, TLEVEL;
POINTER TO RFIN: P;

QO TO (:DIFF:, :RICH2:, :RICH3:), RICHSN;
:DIFF: CALL DIFFERENCES(P, L, TLEVEL, T);
GO TO :0UT:;

:RICH2: CALL RICHARDSON2(P, L, TLEVEL, T);
GO TO :0UT:;

:RICH3: CALL RICHARDSON3(P, L, TLEVEL, T);.

:OUT: RETURN;
END;

SUBROUTINE DIFFERENCES(P, L, TLEVEL, T);
"ESTIMATE LOCAL TRUNCATION ERROR USING DIFFERENCES"

USE COM3; USE COMS5; USE STEPSZ; USE ZERO; USE DEBUG; USE COM12;
USE COM14; USE ERROR; DEFINE RFIN;

REAL EXACT(10), T, TEMP(NCOMP), XLEFT;

INTEGER BASE, 1, J, L, M, NM1, NPTS, TLEVEL, TOP;

POINTER TO RFIN: P, PARENT;

LOGICAL XPRINT;

WITHP <
XPRINT = PRINT .AND. MOD(DEBUG, 4)/2 .EQ. 1;
CALL DIFFERENCES2(P, L);
PARENT = ~COARSE;
BASE = ~BASE;
TOP = ~TOP;
NPTS = TOP - BASE;
NM1 = NPTS - 1;
XLEFT = A 4 H(L-1)%~LEFT;
"COMPONENTS OF ESTIMATED ERROR ARE INTERCHANGED."
DOJ =1, NM1 <
DO | = 1, NCOMP <
ESTERROR(I,BASE+J) = C6(L)*ESTERROR(I,BASE+J)>>
IF ~LEFT .EQ. O < "LEFT BOUNDARY" _
ESTERROR(1,BASE) = C10(L)*(LAMBDA(L)*ESTERROR(2,BASE)
- ESTERROR(1,BASE));
ESTERROR(2,BASE) = 0.>
ELSE <
DO | = 1, NCOMP <
ESTERROR(!,BASE) = 0.>>
IF ~RIGHT .EQ. RIGHTB(L) < “RIGHT BOUNDARY"
ESTERROR(1,TOP) = C10(L)*(LAMBDA(L)*ESTERROR(2,TOP)
+ ESTERROR(1,TOP));
ESTERROR(2,TOP) = 0.>
ELSE < .

OOOONNN—b—l-lNN'N—h—lNN—'OOOOOOOOOOOOOOOOOQOOO_OOIVV\IOJQOI&QO)QOIUI&&&&UO)(A’NO)OON-ﬂWN

1986

DO 1= 1, NCOMP <
ESTERROR(I,TOP) = 0.>>
IF XPRINT <
DO | = 1, NCOMP <
OUTPUT I, TLEVEL, P, L; (/' ESTIMATED LOCAL TRUNCATION *,
‘ERROR OF V(', 11, ') AT T =, 15, ' DELTA T, REFINEMENT",
13, ' LEVEL', 14);
OUTPUT (ESTERROR(I,J), J = BASE, TOP); (1X, 1P10E12.4);
OUTPUT; (* LOCAL TRUNCATION ERROR USING EXACT DERIVATIVES');
DO J = ZERO, NPTS <
M = MOD(J, 10) + 1;
CALL UXXX(XLEFT + JxH(L), T, TEMP)
EXACT(M) = C6(L)XTEMP(3-1);
IFJ EQ.0 <
IF 1" EQ. 1 <EXACT(M) = 0.>
ELSE <
CALL UXX(A, T, TEMP);
'EXACT(M) = C10(L)*(LAMBDA(L)XTEMP(2) -
TEMP(1))>>
IF M .EQ. 10 .OR. J .EQ. NPTS <
IF J .EQ. NPTS .AND. ~RIGHT .EQ. RIGHTB(L) <
IF 1 .EQ. 1 <EXACT(M) = 0.>
ELSE <
CALL UXX(B, T, TEMP);
EXACT(M) = C10{L)*(LAMBDA(L)XTEMP(2) +
TEMP(1))>> .
OUTPUT (EXACT(M2), M2 = 1, M); (1X, 1P10E12.4)>>>>>

RETURN;
END; "DIFFERENCES"

SUBROUTINE DIFFERENCES2(P, L);
"COMPUTE A DIFFERENCE APPROXIMATION TO UXXX AT EACH INTERIOR POINT
ON THE LEVEL L MESH, AND TO UXX AT BOUNDARIES.”

USE SOLN; USE COMS; USE STEPSZ; USE ERROR; DEFINE RFIN;
REAL D3 VDX(NCOMP, 1), HCUBE4, HSQ;

INTEGER BASE, BASEP2, BJ, |, L, TOP, TOPM2;

POINTER TO RFIN: P;

EQUIVALENCE (ESTERROR, D3VDX);

HSQ = H(L)**2;

HCUBES = 4 XH(L)*x3;

BASE = (P~.BASE);

BASEP2 = BASE + 2;

TOP = (P~.TOP);

TOPM2 = TOP - 2;

DO = 1, NCOMP <

DO BJ = BASEP2, TOPM2 <

D3VDX(1,BJ) = 2.%(-V(1,8J-2) + 2.%(V(1,BJ-1) - V(I,BJ+1))
+ V(1,BJ+2))/ HCUBE4 >

IF (P~.LEFT) .EQ. 0 <
D3VDX(!,BASE) = (2.%V(1,BASE) - 5.XV(1,BASE+1) + 4 X
V(1,BASEP2) - V(1,BASE+3))/HSQ;
IF (L"GT. 1) D3VDX(I,BASEP2) = 0.>
D3VDX(I,BASE+1) = 0
D3VDX(1,TOP-1) = 0.;
IF (P~.RIGHT) .EQ. RIGHTB(L) <
D3VDX(I,TOP) = (-V(I,TOP-3) + 4 XV(I,TOPM2) -5.%(I,TOP-1)
_+ 2.2%(1,TOP))/ HSQ; _
IF (L .GT. 1) D3VDX(I,TOPM2) = 0.5>>

RETURN;
END; "DIFFERENCES2"

NNNOOOPLROITROODLDLWWWWWWONSNNSWONSONDNNAWON = L ad o cdd b b Db B b DOO0O0O0000O000O0DOOO

196

SUBROUTINE RICHARDSON2(P, L, TLEVEL, T);

"ESTIMATE LOCAL TRUNCATION ERROR USING RICHARDSON EXTRAPOLATION.
THIS METHOD USES TWO TIME STEPS OF LENGTH DELTA T AND (S SUITABLE
ONLY WHEN T DERIVATIVES IN THE DIFFERENTIAL EQUATION CAN BE
REWRITTEN IN TERMS OF X DERIVATIVES."

USE SOLN; USE COM3; USE COMS; USE STEPSZ; USE ZERO; USE DEBUG;
USE COM12; USE COM14; USE ERROR; DEFINE RFIN;

REAL EXACT(10), NEXTT, T, TEMP(NCOMP), XLEFT;

INTEGER BASE, |, J, L, M, M2, NM1, NPTS, TLEVEL, TOP;

POINTER TO RFIN: P, PARENT;

LOGICAL XPRINT;

WITHP <

NEXTT = T + K(L);

CALL ONE.TIME.STEP(P; L, 1, LAMBDA(L), NEXTT, 1, .TRUE; V,
ESTERROR);

CALL ONE.TIMESTEP(P, L, 1, 0.5%LAMBDA(L), NEXTT, 2, .TRUE,, V,
ESTERROR);

XPRINT = PRINT .AND. MOD(DEBUG, 4)/2 .EQ. 1;
PARENT = ~COARSE;
BASE = ~BASE;
TOP = ~TOP;
NPTS = TOP - BASE;
NM1 = NPTS - 1;
XLEFT = A + H(L-1)%~LEFT;"
DO =1,NCOMP <
DOJ=1,NM1 <
ESTERROR(I,BASE+)) = C7 (L) ESTERROR(l,BASE+J)>>
IF ~LEFT .EQ. O < "LEFT BOUNDARY"
ESTERROR(1,BASE) = 0.;
ESTERROR(2,BASE) = ESTERROR(2,BASE)/3.>
ELSE < :
DO = 1, NCOMP <
ESTERROR(I,BASE) = 0.5>>
IF ~RIGHT .NE. RIGHTB(L) <
DO =1, NCOMP <
ESTERROR(I,TOP) = 0.>>
ELSE < "RIGHT BOUNDARY"
ESTERROR(1,TOP) = 0.;
ESTERROR(2,TOP) = ESTERROR(2,TOP)/3.>
IF XPRINT <
DO =1, NCOMP <
OUTPUT |, TLEVEL, P, L; (/' ESTIMATED LOCAL TRUNCATION ',
'ERROR OF V(', 11, ") AT T =, 15, ' DELTA T, REFINEMENT",
13, ' LEVEL', 14);
OUTPUT (ESTERROR(!,J), J = BASE, TOP); (1X, 1P10E12.4);
OUTPUT; (' LOCAL TRUNCATION ERROR USING EXACT DERIVATIVES');
DO J = ZERO, NPTS <
M = MOD(J, 10) + 1;
CALL UXXX(XLEFT + J(L), T, TEMP);
EXACT(M) = C6(L)XTEMP(3-1);
IFJ EQ.0 <
IF 1 .EQ. 1 <EXACT(M)=0.>
ELSE <
CALL UXX(A T, TEMP);
EXACT(M) = C 10(L)*(LAMBDA(L)STEMP(2) -
TEMP(1))>>
IFM .EQ. 10 .OR. J .EQ.NPTS <
IF J .EQ. NPTS .AND. ~RIGHT .EQ. RIGHTB(L) <
IF 1 .EQ. 1 <EXACT(M) =0.>
ELSE <
CALL UXX(B, T, TEMP);
EXACT(M) = C10(L)*(LAMBDA(L)*TEMP(2)
+ TEMP(1))>>

(»)O)NNO)NNwwN—hO)N—iUN—‘QOON@N@@NQQNNA(»N—-l-l-l-A-‘—‘-\-h—h-d-l-l—l-l-‘OOOOOOOOOOOOOOYOOOOOO!

197

OUTPUT (EXACT(M2), M2 = 1, M); (1X, 1P10E12.4)>>>>>

RETURN;

END; "RICHARDSON2"

SUBROUTINE RICHARDSON3(P, L, TLEVEL, T);

"ESTIMATE LOCAL TRUNCATION ERROR USING RICHARDSON EXTRAPOLATION.
THIS METHOD USES TWO TIME STEPS OF LENGTH DELTA T (ON THE

APPROPRIATE MESH) AND ONE OF LENGTH 2 DELTAT. IT IS THUS SUITABLE

FOR ANY SYSTEM OF EQUATIONS."

USE SOLN; USE COM3; USE COMS5; USE STEPSZ; USE ZERQ; USE DEBUG;
USE COM12; USE COM14; USE ERROR; DEFINE RFIN;

REAL EXACT(10), NEXTT, T, TEMP(NCOMP), XLEFT;

INTEGER BASE, |, J, L, M, M2, NM1, NPTS, TLEVEL, TOP;

POINTER TO RFIN P, PARENT

LOGICAL XPRINT;

WITHP <

NEXTT = T+ 2.%K(L); .

CALL ONE.TIMESTEP(P, L, 1, LAMBDA(L), T+K(L), 1, .TRUE., V, VNEW);
CALL ONE.TIME.STEP(P, L, 1, LAMBDA(L), NEXTT, 1, .TRUE., VNEW,
ESTERROR);

CALL ONE.TIMESTEP(P, L, 1, LAMBDA(L), NEXTT, 2, .TRUE,, V,
ESTERROR);

XPRINT = PRINT .AND. MOD(DEBUG, 4)/2 .EQ. 1;
PARENT = ~COARSE;
BASE = ~BASE;
TOP = ~TOP;
NPTS = TOP - BASE;
NM1 = NPTS - 1;
XLEFT = A + H(L-1)'*LEFT
DOJ=1, NM1 <
DOt = 1, NCOMP <
ESTERROR(I,BASE+J) = C8(L)*ESTERROR(I,BASEHJ)>>
IF ~LEFT .EQ. O < "LEFT BOUNDARY"
ESTERROR(1,BASE) = 0.;
IF BDRY .NE. 3 <
ESTERROR(2,BASE) = 2.%V(2,BASE) - 5 "V(2 BASE+1) + 4.%
V(2 BASE+2) - V(2,BASE+3)>
IF BDRY .EQ. 2 <
ESTERROR(2,BASE) = 0.5XLAMBDA(L)*(LAMBDA(L)*ES TERROR(2 ,BASE)-
2.0/(1,BASE) + 5.%V(1,BASE+1) - 4.%(1,BASE+2) + V(1,BASE+3))>
ELSE IF BDRY .EQ. 3 <
ESTERROR(2 BASE) = ESTERROR(2,BASE)/ (2.+LAMBDA(L))>
IFL.GT. 1<
 ESTERROR(1,BASE+2) = 0.;
ESTERROR(2,BASE+2) = 0.>>
ELSE <
DO | = 1, NCOMP <
ESTERROR(I,BASE) = 0.>>
IF ~RIGHT .NE. RIGHTB(L) <
DO | = 1, NCOMP <
ESTERROR(I,TOP) = 0.>>
ELSE < “RIGHT BOUNDARY"
IFL.GT. 1<
ESTERROR(1,TOP-2) = 0.;
ESTERAOR(2,TOP-2) =0.>
ESTERROR(1,TOP) = 0.; .
IF BDRY .NE. 3 <
ESTERROR(2.TOP) = 2.%V(2,TOP) - 5.%(2,TOP-1) + 4 X
V(2,TOP-2) - V(2,TOP-3)>
IF BDRY .EQ. 2 <
ESTERROR(2,TOP) = 0.5%LAMBDA(L)*(LAMBDA(L)*ESTERROR(2,TOP) +
2.%V(1,TOP) - 6.XV(1,TOP-1) + 4 XV(1,TOP-2) - V(1,TOP-3))>

2L DaANNOOBNNSLOCODOO0OOOO00000000000O0OO0DO0O0OOOOOOOOLINNOCIIOMBLOIRALNDLDAEAELLWWWWLONSWN

198

ELSE IF BDRY .EQ. 3 <
ESTERROR(2,TOP) = ESTERROR(2,TOP)/ (2 +LAMBDA(L))>>
IF XPRINT <
DO I = 1, NCOMP <
OUTPUT I, TLEVEL, P, L; (/' ESTIMATED LOCAL TRUNCATION ',
'ERROR OF V(', 11, ') AT T =, 15, ' DELTA T, REFINEMENT",
13, ' LEVEL', 14);
OUTPUT (ESTERROR(I,J), J = BASE, TOP); (1X, 1P10E12.4);
OUTPUT; (* LOCAL TRUNCATION ERROR USING EXACT DERIVATIVES');
DO J = ZERO, NPTS <
M = MOD(J, 10) + 1;
CALL UXXX(XLEFT + J%H(L), T, TEMP);
EXACT(M) = C6(L)*TEMP(3-1); -
IFJ Q.0 <
IF | .EQ. 1 <EXACT(M) = 0.>
ELSE <
CALL UXX(A T, TEMP);
EXACT(M) = 2.%C 10(L)*TEMP(2)>>
IF M .EQ. 10 .OR. J .EQ. NPTS <
IF J .EQ. NPTS .AND. ~RIGHT .EQ. RIGHTB(L) <
IF 1 .EQ. 1 <EXACT(M) = 0.>
ELSE <
CALL UXX(B, T, TEMP);
EXACT(M) = 2.XC10(L)XTEMP(2)>>
OUTPUT (EXACT(M2), M2 = 1, M); (1X, 1P10E12.4)>>>>>

RETURN;
END; "RICHARDSONS "

SUBROUTINE DETERMINE.REFINEMENTS(PARENT, L, TLEVEL, TOTPTS);

"DETERMINE WHERE TO REFINE THE LEVEL L REFINEMENTS.
REFINE THEM WHENEVER THE INTERIOR LOCAL TRUNCATION ERROR
PER UNIT TIME STEP, OR THE BOUNDARY LOCAL TRUNCATION ERRCR
(BOTH PROPORTIONAL TO H*H) IS GREATER THAN TOLERANCE.
THE DESIRED INTERVAL(S) OF REFINEMENT WILL EXTEND FROM THE
LEFTN(J)-TH MESH POINT TO THE RIGHTN(J)-TH POINT (RELATIVE TO
THE LEFT SIDE OF THE REGION) ON THE PARENT REFINEMENT,
Jd =1, .., NRFIN.”

$ 'MAX.INTERVALS' = '10!

USE COMS5; USE XRATIO; USE DEBUG; USE COM12; USE ERROR; DEFINE RFIN;

INTEGER BASE, GAP, |, J, L, LEFT, LEFTN(MAX.INTERVALS), LP1, N,
NRFiN, OFFSET, RIGHTN(MAX.INTERVALS), RT, TLEVEL, TOTPTS;
POINTER TO RFIN: P, PARENT;

LOGICAL COND;

GAP = BUFFER(L) + 2;
LP1=L+1;
OFFSET = XRATIO*(PARENT~.LEFT);
BASE = (PARENT~.BASE) - OFFSET;
N = (PARENT~.TOP) - BASE;
NRFIN = 0;
LEFT = OFFSET;
WHILE LEFT .LE. N <
REPEAT <
COND = .FALSE.;
DO = 1, NCOMP <
COND = COND .OR. ABS(ESTERROR(I,BASE+LEFT)) .GT.
TOLERANCE>
IF (COND) GO TO :BEGIN INTERVAL:;
LEFT = LEFT + 1;>
WHILE LEFT .LE. N;
EXIT;
:BEGIN INTERVAL:
RT = LEFT;

o

-

COO0OO0OO0OOOOOO0O0OOO0OO0OO0OO0OO0OOOCOOONNANNN=D 4L 0a0O0ONNSNN2L2004 2D dNN—=2ADANNOWONN=®W-

199

IF NRFIN .GE. 1 <IF RIGHTN(NRFIN) + GAP .GE. LEFT<
LEFT = LEFTN(NRFIN) + BUFFER(L);
NRFIN = NRFIN - 1>>
REPEAT <
COND = .FALSE,;
DO1=1,NCOMP < .
COND = COND .OR. ABS(ESTERROR(I,BASE+RT)) .GT.
TOLERANCE>
IF (.NOT. COND) EXIT;
RT=RT + 1;>
UNTIL RT .GT. N;
RT=RT-1;
NRFIN = NRFIN + 1;.
tF NRFIN .GT. MAX.INTERVALS <
OUTPUT TLEVEL, LP1; (' TOO MANY REFINEMENTS', 217);
STOP> .
LEFTN(NRFIN) = MAXO(OFFSET, LEFT - BUFFER(L));
- IF (LEFTN(NRFIN) .EQ. OFFSET + 1) LEFTN(NRFIN) = OFFSET;
RIGHTN(NRFIN) = MINO(N, RT + BUFFER(L));
IF {RIGHTN(NRFIN) .EQ. N-1) RIGHTN(NRFIN) = N;
LEFT=RT+2>

IF DEBUG GT. 0 <
IF NRFIN .EQ. 0 < .
OUTPUT TLEVEL, L, PARENT;
(* TLEVEL, LEVEL, REF, NO REFINEMENTS ', 15, 213);>
ELSE <
OUTPUT TLEVEL, L, PARENT, (LEFTN(J), RIGHTN(J), J = 1, NRFIN);
(* TLEVEL, LEVEL, REF, N(LEFTN, RIGHTN)', 15, 213, 1215);>>

IF NRFIN EQ.0 <
IF ((PARENT~.FINE) .NE. NIiL) GO TO :ALPHA:>
ELSE <
IF ((LEFTN(1) .EQ. OFFSET .AND. (PARENT~.LEFT) .NE. 0) .OR.
(RIGHTN(NRFIN) .EQ. N .AND. (PARENT~.RIGHT) .NE. RIGHTB(L)))
OUTPUT TLEVEL, LP1, PARENT;
(* TLEVEL', 15, ' DANGER, LEVEL', 14, ' REFINEMENT ABUTS *
'LEFT OR RIGHT SIDE OF REFINEMENT', 14);
IF L .EQ. NLEVEL <
OUTPUT TLEVEL, PARENT; (* TLEVEL', i5, * REFINEMENT",
13, ' DANGER, LOCAL ERROR TOLERANCE NOT ACHIEVED.');
TOL.ACHIEVED = .FALSE.>
ELSE < v
:ALPHA: CALL ADJUST.MESH(PARENT, NRFIN, LP1, TLEVEL, LEFTN,
RIGHTN, TOTPTS)>>

N

RETURN;
END; "DETERMINE.REFINEMENTS”

SUBROUTINE ADJUST.MESH(PARENT, NRFIN, L, TLEVEL, LEFTN, RIGHTN,
TOTPTS); _
"IF THE DESIRED L-TH LEVEL INTERVALS PRODUCED BY DETERMINE.
REFINEMENTS DIFFER FROM THE EXISTING REFINEMENTS OF THE
(L-1)-ST LEVEL PARENT, WE MUST ADJUST THE REFINEMENTS.
THIS IS DONE IN A SINGLE LEFT-TO-RIGHT SCAN OF THESE
REFINEMENTS. THIS MAY INVOLVE CREATION, DELETION, SEPARATING
OR MERGING OF REFINEMENTS. USUALLY, HOWEVER, IT
INVOLVES ONLY THE MANIPULATION OF THE INDICES LEFT, RIGHT,
BASE, AND TOP BELONGING TO A REFINEMENT. ONLY SELDOM ARE
SOLUTION VALUES ACTUALLY MOVED IN MEMORY."

USE SOLN; USE COMS; USE XRATIO; USE DEBUG; USE COM12; DEFINE RFIN;
INTEGER BASE, 1, J, L, LEFTN(1), M, NPTS, NRFIN, RIGHTN(1), TLEVEL,

TOP, TOTPTS;

POINTER TO RFIN: P, PARENT, Q, UP;

LOGICAL COND;

MNNNNOOENNROOOTOO OO LLLBWWWONNOWWRALBBRBONNROORWRWIOOLONOABEBROOAONOTOOLWONWNWLON+«00

200

WITHP <
P = (PARENT~.FINE);
FOR J = 1 TO NRFIN <
UNTIL LEFTN(J) .LE. ~RIGHT .OR. ~COARSE .NE. PARENT <
CALL DELETE(P, L);
P = ~RLINK;>
IF RIGHTN(J) .LE. ~LEFT .OR. ~COARSE .NE. PARENT <
CALL CREATE(PARENT, P, L, LEFTN(J), RIGHTN(J), 0, P)>
IF RIGHTNQJ) .LT. ~RIGHT <
Q = ~RLINK;
IF (Q~.COARSE) .EQ. PARENT .AND. J .NE. NRFIN <
IF LEFTN(J+1) .LT. ~RIGHT .AND. RIGHTN(J+1) .GT. (Q~.LEFT) <
“THE REFINEMENT Q TO THE RIGHT HAS MOVED LEFT."
CALL FILLIN(P, Q, L, TLEVEL);
CALL SEPARATE.REF(P, Q, RIGHTN(J));
(Q~BASE) = (Q~.BASE) - XRATIOX((Q~.LEFT) - LEFTN(J+1 »:
(Q~LEFT) = LEFTN(H+1)>>
IF J NE. NRFIN < ,
IF (RIGHTN(J+1) .LT. (Q~.LEFT) .OR. (Q~.COARSE) .NE. PARENT)
AND. LEFTN(J+1) .LT. ~RIGHT <
“SEPARATE REFINEMENTS"
BASE = ~BASE + XRATIOX(LEFTN(J+1) - ~LEFT);
CALL CREATE(PARENT, Q, L, LEFTN(J+1), ~RIGHT, BASE, Q);
(Q~RIGHT) = ~RIGHT;
(Q~TOP) = ~TOP;
CALL SEPARATE.REF(P, Q, RIGHTN(J))>>

"DELETE RIGHT END OF REFINEMENT P”
~RIGHT = RIGHTN(J);
~TOP = ~BASE + XRATIOX(~RIGHT ~ ~LEFT)>

IF LEFTN(J) .NE. ~LEFT <
IF LEFTN(J) .GT. ~LEFT <
"DELETE LEFT END OF REFINEMENT P."
~BASE = ~BASE + XRATIOXLEFTN(J) - ~LEFT);
~LEFT = LEFTN(J)>
ELSE
<CALL EXTEND.LEFT(P, LEFTN(J), L, TLEVEL)>>

IF RIGHTN(J) .GT. ~RIGHT <
Q = ~RALINK;
WHILE (Q~.COARSE) .EQ. PARENT .AND. RIGHTN(J) .GT.
(Q~.LEFT) <
CALL FILLIN(P, Q, L, TLEVEL);
~RIGHT = MINO(RIGHTN(J), (Q~.RIGHT));
~TOP = ~BASE + XRATIO®(~RIGHT - ~LEFT);
IF ~RIGHT EQ. (Q~.RIGHT) <
CALL MERGE(P, Q);
Q = (Q~.RLINK)>
ELSE <
IF J .NE. NRFIN <COND = LEFTN(J+1) .GT. (Q~.RIGHT)>
ELSE <COND = .TRUE.>
IF COND <CALL MERGE(P, Q)>
ELSE < "REFINEMENTS P AND Q HAVE MOVED RIGHT. CHECK
tF SOME OF Q'S REFINEMENTS NOW BELONG TO P.”
UP = (Q~FINE);
IF UP .NE. NIL <
WHILE (UP~.COARSE) .EQ. Q .AND. (UP~.RIGHT) .LE.
XRATIO® ~RIGHT <
(UP~.COARSE) = P;
UP = (UP~.RLINK)>
IF (UP .NE. (Q~.FINE) .AND. ~FINE .EQ. NIL)
~FINE = (Q~.FINE);
IF (UP~.COARSE) .EQ. Q <(Q~FINE) = UP>
ELSE <(Q~.FINE) = NIL>>>
GO TO :EXIT:>>

B

OONN=2 200000000000 O0OOOONNA24NOO00000000000RO0O0O0UNNaLUNDPRWRWWWWOWWNNNMNNNN GO

201

CALL EXTEND. B|GHT(P RIGHTN(J), L, TLEVEL THUE))
:EXIT:
NPTS = XRATIO*(~RIGHT - *LEFT)
~TOP = ~BASE + NPTS;
TOTPTS = TOTPTS + NPTS +1;

IF PRINT .AND. DEBUG/8 .GE. 1 <
OUTPUT TLEVEL, P, L; (/* TLEVEL', 15, ' REFINEMENT', 14,
' LEVEL', 18);
BASE = ~BASE;
TOP = ~TOP;
OUTPUT ~RLINK, ~LLINK, ~FINE, ~COARSE, BASE, TOP, ALEFT,
~RIGHT; (* RLINK, LLINK, FINE, COARSE, BASE, TOP, LEFT, *
'RIGHT' / 815);
DO 1 = 1, NCOMP <
OUTPUT I; (" (', 11, '));
OUTPUT (V(1, M), M = BASE, TOP); (1P8E15.7)>>
= ~RLINK; >

UNTIL ~GOARSE .NE. PARENT <
CALL DELETE(P, L);
= *RUNK >

HETURN
END; “ADJUST.MESH"

SUBROUTINE SEPARATE.REF(P, Q, PRIGHT);
"GIVEN TWO REFINEMENTS P AND Q, WITH P TO THE LEFT OF Q, WHICH MAY
HAVE MOVED OR BEEN SEPARATED. CHECK IF SOME OF P'S REFINEMENTS NOW
BELONG TO Q."

USE XRATIO; DEFINE RFIN;
INTEGER PRIGHT;
POINTER TO RFIN: P, Q, UP;

UP = (P~.FINE);
IF UP .NE. NIL <
* WHILE (UP~.COARSE) .EQ. P .AND. (UP~. RIGHT) .LE. XRATIO®PRIGHT <
UP = (UP~.RLINK)>
IF (UP .EQ. (P~.FINE)) (P~FINE) = NIL;
IF ((UP~.COARSE) EQ. P) (Q~FINE) = UP;
WHILE (UP~.COARSE) .EQ. P <
(UP~.COARSE) = Q;
UP = (UP~ALINK)>>

RETURN;
END; "SEPARATE.REF"

SUBROUTINE MERGE(P, Q);
"MERGE TWO ADJACENT REFINEMENTS POINTED TO BY P AND Q. THE P
REFINEMENT IS ASSUMED TO BE SPATIALLY TO THE LEFT OF Q.”

USE DEBUG; DEFINE RFIN;
POINTER TO AFIN: P, Q, R, UP;

“CHAIN TOGETHER THE REFINEMENTS OF P AND THE REFINEMENTS OF Q."
UP = (Q~.FINE);
IF UP .NE. NIL <
IF ((P~.FINE) £Q. NIL) (P* FINE) = (Q* FINE);
WHILE (UP~.COARSE) .£Q. Q <
(UP~.COARSE) = P;
UP = (UP~.RLINK)>>

"UNCHAIN THE RECORD FOR THE Q REFINEMENT."”

HAAANSANNNN2O0CO0O0 L AN 4200000000000 0CO00000 42 WN—42aaDO0O000000000000 22000000

202

R = (Q~.RLINK);
(P~.RLINK) = R;
(R~.LLINK) = P;
DISPOSE(Q);

WITHP <
IF (DEBUG .GT. 0) OUTPUT Q, P, ~LEFT, ~RIGHT, ~FINE, ~BASE, ~TOP;
(' DELETE', 14, ' MERGE', 14, ' LEFT, RIGHT, FINE, BASE, TOP',
515);>
RETURN;
END; "MERGE"

SUBROUTINE FILLIN(P, Q, L, TLEVEL);
"FILL IN THE AREA BETWEEN TWO REFINEMENTS P AND Q, BY INTERPOLATION.”

USE SOLN; DEFINE RFIN; ’
INTEGER BASE, DELTA, 1, J, L, TLEVEL, TOP;
POINTER TO RFIN: P, Q;

CALL EXTEND.RIGHT(P, (Q~.LEFT), L, TLEVEL, .FALSE.);
BASE = (Q~.BASE);
IF BASE .NE. (P~.TOP) <
"SHIFT Q MESH.VALUES DOWN."
TOP = (Q~.TOP);
DELTA = BASE - (P~.TOP);
DO = 1, NCOMP <
DO J = BASE, TOP <
V(l, J-DELTA) = V(I, J)>>
(Q~.BASE) = (P~.TOP);
(Q~.TOP) = (Q~.TOP) - DELTA>

RETURN;
END; "FiLLIN"

SUBROUTINE CREATE(PARENT, Q, LEVEL, LEFTN, RIGHTN, BASE, NEW);
"CREATE A NEW REFINEMENT AT LEVEL LEVEL, WITH PARENT POINTED TO BY
PARENT. INSERT IT TO THE LEFT OF REFINEMENT Q. RETURN THE POINTER
'NEW' TOIT."

USE LFTMST; USE XRATIO; USE DEBUG; DEFINE RFIN;
INTEGER BASE, LEVEL, LEFTN, RIGHTN, TOP;
POINTER TO RFIN: L, NEW, P, PARENT, Q;

P=Q;
IF P .EQ. NIL <
"PARENT HAS NO DESCENDANTS; FIND THE FIRST REFINEMENT TO THE
RIGHT OF PARENT WHICH HAS A DESCENDANT."
P = (PARENT~.BLINK);
WHILE (P~.FINE) .EQ. NIL .AND. P .NE. LEFTMOST(LEVEL) <
P = (P~.RLINK)> :
IF P .NE. LEFTMOST(LEVEL) <P = (P~.FINE)>
ELSE <P = LEFTMOST(LEVEL+1)>>
L = (P~LLINK);
NEW(NEW);
WITH NEW <
|F BASE .EQ.C <
""BASE NOT SPECIFIED, FIND IT.”
TOP = (L~.TOP) + 1;
~BASE = TOP + MAX0(0, ((P~.BASE) - TOP - XRATIOX(RIGHTN - LEFTN))
12);>
ELSE <
~BASE = BASE>

IF (P .EQ. LEFTMOST(LEVEL)) LEFTMOST(LEVEL) = NEW;
IF ((PARENT~.FINE) .EQ. P .OR. (PARENT~.FINE) .EQ. NIL)

Y

bt 220000000000 OQCOCOOO0CONNMNNNNNNORAVLWNWWNINNS2DO000O0O0CO0OO0O0O0OCD b b b b b ch b bt b b b b

203

(PARENT~.FINE) = NEW; :
"INSERT IN HORIZONTAL DOUBLY LINKED LIST.”
(L~.RLINK) = NEW;
(P~.LLINK) = NEW;
~RLINK = P;
~LLINK = L
~LEFT = LEFTN;
~RIGHT = LEFTN;
~TOP = ~BASE;
~OLDBASE = ~BASE;
~OLDTOP = ~BASE;
~COARSE = PARENT;
~FINE = NIL;
IF (DEBUG .GT. 0) OUTPUT NEW, ~BASE, ~OLDTOP; (' CREATE', 14,
' BASE, TOP', 215);>

RETURN;
END; "CREATE"

SUBROUTINE DELETE(P, LEVEL);
“CHECK TO SEE IF REFINEMENT P HAS ANY CHILDREN. IF NOT, DELETE IT.”

USE LFTMST; USE DEBUG; DEFINE RFiN;
INTEGER LEVEL;

POINTER TO RFIN: L, P, PARENT, R;
EQUIVALENCE (PARENT, L);

WITHP <
IF ~FINE .£Q. NIL <
PARENT = ~COARSE;
R = ~ALINK;
IF (PARENT~.FINE) .EQ. P <
“SEE IF P HAS ANY SIBLINGS, OR IF THERE ARE ANY OTHER
REFINEMENTS TO THE RIGHT OF P ON THIS LEVEL."
IF (R~.COARSE) .EQ. ~COARSE <
(PARENT~.FINE) = R>
ELSE <
(PARENT~.FINE) = NIL>
IF (P .EQ. LEFTMOST(LEVEL)) LEFTMOST(LEVEL) = R>

"UNCHAIN REFINEMENT P."

L = ~LLINK;

(L~RLINK) = R;

(R~.LLINK) = L;

DISPOSE(P);

IF (DEBUG .GT. 0) OUTPUT P; (' DELETE', 14)>>

RETURN;
END; "DELETE"

SUBROUTINE EXTEND.RIGHT(P, NEWEND, L, TLEVEL, LASTPT);
“EXTEND THE REFINEMENT POINTED TO BY P TO THE RIGHT. IF LASTPT IS
TRUE, DO NOT FILL IN THE EXTREME RIGHTMOST POINT.. THIS IS
IMPORTANT TO AVOID MEMORY REPACKINGS DURING A MERGE."

USE XRATIO; USE COUNT; DEFINE RFIN;
INTEGER EXTENT, L, NEWEND, RIGHT, TLEVEL;
LOGICAL LASTPT;

POINTER TO RFIN: P, PARENT, Q;

WITH P <

Q = ~RLINK;

RIGHT = ~RIGHT;

EXTENT = XRATIOX(NEWEND - RIGHT);

IF (NOT. LASTPT) EXTENT = EXTENT - 1; .

NPOONN4ALN20000000000000000CO0000000000O0=4=00000000000V0VOVO=LADaad NNNWWHLWN =

204

IF ~TOP + EXTENT .GE. {(Q~.BASE) <
IF ~BASE .EQ. ~TOP <
"A PREVIOUSLY EMPTY REFINEMENT IS A SPECIAL CASE."
EXTENT = EXTENT + 1;
~TOP = ~TOP - 1>
CALL REALLOC(P, EXTENT);
IF (~BASE .GT. ~TOP) ~TOP = ~TOP + 1;
NSHL = NSHL + 1>
PARENT = ~COARSE;
CALL INTERPOLATE(PARENT, ~TOP, RIGHT, NEWEND, L, TLEVEL, LASTPT);
~RIGHT = NEWEND;
~TOP = ~BASE + XRATIO*(~RIGHT -~ ~LEFT)>

RETURN;
END; "EXTEND.RIGHT"

SUBROUTINE EXTEND.LEFT(P, LEFTN, L, TLEVEL);
"EXTEND THE REFINEMENT POINTED TO BY P TO THE LEFT”

USE XRATIC; USE COUNT; DEFINE RFIN;
INTEGER EXTENT, L, LEFT, LEFTN, TLEVEL;
POINTER TO RFIN: P, Q;

Q = (P~.LLINK);
LEFT = (P~.LEFT);
EXTENT = XRATIOLEFT - LEFTN);
IF (P~.BASE) - EXTENT .LE. (Q~.TOP) <
" CALL REALLOC(P, -EXTENT); "
NSHRT = NSHRT + 1>
(P~.BASE) = (P~BASE) - EXTENT;
CALL INTERPOLATE((P~.COARSE), (P~.BASE), LEFTN, LEFT, L, TLEVEL,
.TRUE.);
(P~.LEFT) = LEFTN;

RETURN;
END; "EXTENO.LEFT"

SUBROUTINE INTERPOLATE(PARENT, BFINE, LEFT, RIGHT, L, TLEVEL, LASTPT);
“COPY SOLUTION VALUES IN LOCATIONS LEFT TO RIGHT-1, INCLUSIVE, OF THE
REFINEMENT POINTED TO BY PARENT, TO ITS (DESCENDANT) REFINEMENT.

IF LASTPT = TRUE, DO THE SAME FOR THE RIGHT POINT. THEN
INTERPOLATE SOLUTION VALUES BETWEEN THE COPIED VALUES IN THE
DESCENDANT."

USE SOLN; USE COM3; USE STEPSZ; USE XRATIO; USE COM12; DEFINE RFIN;
REAL FRAC, TEMP (NCOMP);

INTEGER BC, BF, BFINE, I, J, L, LEFT, M, RIGHT, RM1, TLEVEL, XAM1;

POINTER TO RFIN: PARENT;

LOGICAL LASTPT;

RM1 = RIGHT - 1;
XRM1 = XRATIO - 1;
BC = (PARENT~.BASE) - XRATIOX(PAPENT~.LEFT) + LEFT;
BF = BFINE;
DO J = LEFT, RM1 <
DOt = 1, NCOMP <
V(l, 8F) = V({i, BC)>
BF = BF + 1;
DOM=1,XBM1 < -
FRAC = FLOAT(M)/XRATIO;
IF TLEVEL .EQ.1 <
CALL EXACT.SOLUTION(A + (XRATIO®S + M)*H(L), K(1), TEMP);
DO = 1, NCOMP <
V(i, BF) = TEMP()>>
ELSE IF QUADRAT <

208

"QUADRATIC INTERPOLATION, USING TWO CLOSEST COARSE MESH
POINTS AND ONE TO THE LEFT EXCEPT AT LEFT BOUNDARY"
DO =1, NCOMP <
IFJ.NE.O <
V(1,BF) = V(1,BC) + FRAC*(V(1,BC) - V(I,BC-1) + 0.5%
(FRAC + 1.)%(V(1,BC+1) - 2.xV(1,BC) + V(I,BC-1)))>
ELSE <
V(1,BF) = V(1,BC) + FRAC*(V(I,BC+1) - V(I,BC) + 0.5%
(FRAC - 1.)%(V(1,BC+2) - 2.%(I,BC+1) + V(I,BC)))>>>
ELSE < “LINEAR INTERPOLATION"
DO =1, NCOMP <
V(1,8F) = V(1,BC) + FRAC®(V(1,BC+1) - V(1,BG))>>
BF=BF +1>
BC=BC+1>

IF LASTPT < »
DO 1= 1, NCOMP <
V(1,8F) = V(I,BC)>>

RETURN;
END; "INTERPOLATE"

SUBROUTINE REALLOC(Q, EXTENT);

"THE REFINEMENT POINTED TO BY POINTER Q HAS RUN OUT OF ROOM ON
ITS RIGHT (IF EXTENT .GT. 0) OR ITS LEFT (IF EXTENT .LT. 0).
REALLOCATE MEMORY. SEE D. E. KNUTH, THE ART OF COMPUTER PROGRAM-
MING, VOL. 1, PP. 240-249. THIS IS A MODIFICATION OF ALGORITHM G,
P.245. WE AWARD THE AVAILABLE FREE SPACE TO THE REFINEMENTS AS
FOLLOWS. APPROXIMATELY 10 PERCENT OF THE AVAILABLE MEMORY WILL BE
SHARED EQUALLY AMONG THE REFINEMENTS. THE OTHER 90 PERCENT IS
AWARDED PROPORTIONATELY TO THE AMOUNT OF MOVEMENT SINCE THE LAST
REPACKING. IF THE RIGHT END OF A REFINEMENT HAS MOVED RIGHT SINCE
THEN (COMPARE TOP AND OLDTOP), THE AWARD IS TO THE RIGHT OF THAT
REFINEMENT. IF THE LEFT END HAS MOVED LEFT SINCE THE LAST
REPACKING (COMPARE BASE AND OLDBASE), THE AWARD IS TO THE LEFT."

USE LFTMST; USE COMS; USE DEBUG; DEFINE RFIN;

REAL ALPHA, BETA, SIGMA, TAU;

INTEGER D(MAXRFINE), EXTENT, FREESP, INC, LEFT, NEWBASE(MAXRFINE),
NRFINE, RT;

POINTER TO RFIN: LAST, P, &

EQUIVALENCE (NEWBASE, D);

WITHP <
LAST = LEFTMOST(NLEVEL+1);
IF DEBUG GT.0 <
OUTPUT Q, EXTENT; (* REPACK; REF. NO', 15,' EXTENT ', IS
/ * REF. NO, BASE, TOP ');
P = LEFTMOST(1);
REPEAT <
OUTPUT P, ~BASE, ~TOP; (316),
P = ~RLINK; >
UNTIL P .EQ. LAST;>

IF EXTENT .GT. 0 <(Q~.TOP) = (Q~.TOP) + EXTENT>
ELSE <(Q~BASE) = (Q~. BASE) + EXTENT>
FREESP = MEMAVAIL + 1;
INC = 0;
NRFINE = 0;
P = LAST;
D(LAST) = 0;
REPEAT <
NRFINE = NRFINE + 1;
P = ~LLINK;
D(P) = 0;
FREESP = FREESP - (~TOP - ~BASE + 1);

NANNNA L L adaaaddaNOWONIOIIIN=2 2000000000000 000000000C000C0O00ONAOO0ANBOUNOOBOIOBWW®W

Nt OO0 O000O0O0O0OO0COCOOOOOANWWNNN=D 9 2 aNNNCaa N2 aNNNNNA2aaNDNAaNNSNDNaaaNNDNNONNDN

206

RT = MAXO(O, ~TOP - ~OLDTOP);
LEFT = MAXO(O, ~OLDBASE - ~BASE);
INC = INC + MAXO(RT, LEFT);
IF AT .GT. LEFT <D(~RLINK) = D(~RLINK) + RT>
ELSE <D(P) = LEFT>>
UNTIL P EQ. LEFTMOST(1);

IF FREESP .LT.O <
OUTPUT; (' *** MEMORY OVERFLOW. PROGRAM ENDED. *);
STOP> :
IF INC .GT.0 <
ALPHA = (0.1*FREESP)/ NRFINE;
BETA = (0.9*FREESP)/INC>

ELSE < -
ALPHA = FLOAT(FREESP)/NRFINE;
BETA=0.> ‘

P = LEFTMOST(1);
NEWBASE(P) = ~BASE;
SIGMA = 0.
UNTIL ~ALINK .£Q. LAST <
TAU = SIGMA + ALPHA + D(~RLINK)*BETA;
NEWBASE(~RLINK) = NEWBASE(P) + ~TOP - ~BASE + 1 + INT(TAU)
- INT(SIGMA);
SIGMA = TAU;
P = ~RLINK;>

IF EXTENT .GT. 0 <(Q~.TOP) = (Q~.TOP) - EXTENT>
ELSE <(Q~.BASE) = (Q~.BASE) - EXTENT;
"~ NEWBASE(Q) = NEWBASE(Q) - EXTENT>
CALL REPACK(NEWBASE);
P = LEFTMOST(1);
REPEAT <
~OLDBASE = ~BASE;
~OLDTOP = ~TOP;
P = ~RLINK;>
UNTIL P £Q. LAST;

IF EXTENT .GT. 0 <(Q~.OLDTOP) = (@~.OLDTOP) + EXTENT>
ELSE <(Q~.OLDBASE) = (Q~.OLDBASE) + EXTENT>
IF DEBUG GT.0 <
OUTPUT; (' REF. NO, BASE, TOP =');
P = LEFTMOST(1);
REPEAT <
OUTPUT P, ~BASE, ~TOP; (316);
P = ~RLINK; >
UNTIL P .EQ. LAST;>
>

RETURN;
END; "REALLOC”

SUBROUTINE REPACK(NEWBASE);
"RELOCATE SEQUENTIAL TABLES. THIS 1S ALGORITHM R OF KNUTH, VOL.
1, P. 246. THE ONLY CHANGE IS BECAUSE OUR ARRAY V STARTS FROM 0
INSTEAD OF 1.”

USE SOLN; USE LFTMST; USE COMS5; DEFINE RFiN;
INTEGER BASE, DELTA, |, J, NEWBASE(MAXRFINE), TOP;
POINTER TO RFiN: LAST, P, SECOND;

WITH P <
SECOND = LEFTMOST(2);
LAST = LEFTMOST(NLEVEL+1);
P = SECOND;
UNTIL P EQ. LAST <

IF NEWBASE(P) .LT. ~BASE <

NNWNOWEINNNNRNNNSOOCOO0=SNN-200000000000000000

COOQCOLWLRARWWLOWUNN AL ANWIOBWOOWLOW

207

"SHIFT DOWN.”
BASE = ~BASE;
TOP = ~TOP;
DELTA = BASE - NEWBASE(P);
DO J = BASE, TOP <
DO1 = 1, NCOMP <

V{1, J-DELTA) = V(l, J)>>
~BASE = NEWBASE(P);
~TOP = ~TOP - DELTA>
= ~ALINK; >

“FIND START OF SHIFT.”
P = LAST;
UNTIL P .EQ. SECOND <
= ~LLINK;
[F NEWBASE(P) .GT. ~BASE <
"SHIFT UP.”
DELTA = NEWBASE(P) - ~BASE;
FOR J = ~TOP BY -1 TO ~BASE <
DO =1, NCOMP <
V(1, J+DELTA) = V(I, J)>>
~BASE = NEWBASE(P);
~TOP = ~TOP + DELTA>>>

RETURN;
END; "REPACK"

$ 'USE COM16;' = 'COMMON /COM16/ L2NORM, MAX, MIN;

REAL L2NORM(NCOMP 2), MAX (NCOMP,2), MIN(NCOMP);'
SUBROUTINE NORM(T);

"COMPUTE MAXIMUM AND MEAN SQUARE ERROR AT ONE
TIME LEVEL. COMPUTE L2 NORM OF SOLUTION"

USE SOLN; USE LFTMST; USE COM3; USE STEPSZ; USE XRATIO; USE COM16;
USE ERROR; DEFINE RFIN; .

REAL DIFF(NCOMP, 1), EXACT(NCOMP), MAXREAL, T, TEMP(NCOMP,2),
XLEFT;

INTEGER BASE, |, J, L, LEFTR, M, NPTS, NPTSP2, OFFSET, RIGHTR;

POINTER TO RFIN: P, UP; '

EQUIVALENCE (ESTERROR, DIFF);

MAXREAL = 1.E30;
DO1 =1, NCOMP <
DOM=1,2<
L2NORM(I, M) = Q.;
MAX (1, M) = - MAXREAL>
MIN() = MAXREAL>
L=1;
P = LEFTMOST(1);
REPEAT <
REPEAT <
BASE = (P~.BASE);
NPTS = (P~.TOP) - BASE;
NPTSP2 = NPTS + 2;
OFFSET = XRATIOX(P~.LEFT);
XLEFT = A + H(L-1)*(P~LEFT);
UP = (P~.FINE);
IF UP .NE. NIL <
LEFTR = (UP~.LEFT) - OFFSET;
RIGHTR = (UP~,RIGHT) - OFFSET>
ELSE <
LEFTR = NPTSP2>
Jd=0;)
GO TO :L33;

OQO0OO00CO0OO0O0OO0NVO0OO0OOOOO0OON20000000 OCOOON—SOAWNN=OOOO“NNOOBEIWWOLLELONLABDWWN

208

REPEAT <
CALL EXACT.SOLUTION(XLEFT + J®H(L), T, EXACT);
DO = 1, NCOMP <
TEMP(1,1) = V(1, BASE+J);
EXACT(!) = EXACT(!) - TEMP(I,1);
IFL.EQ.1 <
DIFF(1,J) = EXACT()>
TEMP(1,2) = ABS(EXACT());
MINQ) = AMINT (MINQ), TEMP(I,1));
DOM=1,2< ,
L2NORM(!,M) = L2NORM(I,M) + H(L)XTEMP (I, M)**2;
MAX (I,M) = AMAX 1(MAX(1,M), TEMP(I M))>>
Jzd+1;
:L3: IF J .EQ.LEFTR <
J = RIGHTR + 1;
UP = (UP~.RLINK);
IF (UP~COARSE) .EQ. P <
LEFTR = (UP~.LEFT) - OFFSET;
RIGHTR = (UP~.RIGHT) - OFFSET>>>
WHILE J .LE. NPTS;
P = (P~.RLINK)>
UNTIL P .EQ. LEFTMOST(L41);
L=L+1>
UNTIL (P~COARSE) .EQ. NIL;

P = LEFTMOST(2);
WHILE (P~.COARSE) .EQ. LEFTMOST(1) <
FOR J = (P~.LEFT) TO (P~.RIGHT) <
CALL EXACT.SOLUTION(A + J*H(1), T, EXACT);
DO I = 1, NCOMP <
DIFF(1,J) = EXACT(I) - W(1,J)>>
P = (P~RLINK)>
DO = 1, NCOMP <
DOM=1,2<
L2NORM(I,M) = SQRT(L2ZNORM(I,M))>>

RETURN;
END; "NORM"

$'USECOM17;' =
‘COMMON /COM17 / ZZPAGE, ZPAGE, PAGE, BLANK;
INTEGER ZZPAGE, ZPAGE(HEIGHTP 1), PAGE(HEIGHTP 1, PAGEWIDTH),
BLANK;'

SUBROUTINE CLEAR;
USE COM3; USE ZERO; USE COM17;
DO | = ZERO, HEIGHT <
DO J = ZERO,N <
PAGE(l, J) = BLANK>>
RETURN; END;

INTEGER FUNCTION ROUND(X);
REAL X;
IF X .GE. 0. <ROUND = X + 0.5> ELSE <ROUND =X - 05>
RETURN; END;

SUBROUTINE PLOT (TLEVEL, T);
"PRINT AND PLOT SOLUTION AND ERROR MEASURES.”

USE SOLN; USE LFTMST; USE COM3; USE STEPSZ; USE ZERO; USE XRATIO;
USE DEBUG; USE COM16; USE COM17; USE ERROR; DEFINE RFIN;

REAL DIFF(NCOMP, 1), RANGE, T, XJ, XLEFT, XRIGHT;

INTEGER BASE, |, J, L, LEFTR, M, NCUT, NPTS, NPTSP2, NRF, OFFSET,
RIGHTR, ROUND, TLEVEL, TOP, TOTPTS;

INTEGER PERIOD, ZEROCH, LABEL(NCOMP);

POINTER TO RFIN: P, UP;

;]

NBLVWONNOBBWNNINNNNNA S a2 adNNN A4 a0 a0 aNNOLARLALRWONS 2 OOO0ONNAO LdauaOaa000000

209

EQUIVALENCE (ESTERROR, DIFF); .
DATA BLANK /1H /, PERIOD /1H./, ZEROCH /1HO/, LABEL / 1HV, 1HW/;

CALL NORM(T);
OUTPUT T, TLEVEL; (/' T =*, 1PE15.7," =',15, ' DELTA T");
DO} = 1, NCOMP < ,
OUTPUT 1, LZNORM(1,1), MAX(1,1), MIN(1); (' NORM OF V(*, 11,
') =, 1PE15.7, ' MAX =', 1PE15.7,' MIN =', 1PE15.7)>
DO = 1, NCOMP <
OUTPUT I, L2NORM(1,2), MAX(1,2); (' V(' 11, ') MEAN SQUARE'
* ERROR', 1PE15.7, ' MAXIMUM ERROR', 1PE15.7)>
IF TLEVEL .NE. 1 .AND. MOD(DEBUG, 2) .EQ. 1 <
DO 1= 1, NCOMP <
OUTPUT I, T; (/' W', 11,") ERRORS AT T =, 1PE15.7);
OUTPUT (DIFF(1,J), J = ZERO, N); (1X, 1P10E12.4)>>

"PRINT SOLUTION AT NEW T-LEVEL"
IF MOD(DEBUG, 8)/4 .EQ. 1 <
L=1;
P = LEFTMOST(L);
REPEAT <
REPEAT <
BASE = (P~.BASE);
TOP = (P~.TOP);
DO =1, NCOMP < -
QUTPUT I, P, L; (/' V(", 11, ') REFINEMENT ', 14,
' LEVEL, 14);
OUTPUT (W1,J), J = BASE, TOP); (1X, 1PBE15.7)>
P = (P~.RLINK)> v
UNTIL P .EQ. LEFTMOST(L+1);
L=L+1>
UNTIL (P~.COARSE) .EQ. NIL;
> .

IF DEBUG .GT. 0 <
“COUNT NUMBER OF DISTINCT MESH POINTS. ALSO COUNT NUMBER OF
(NONEMPTY) REFINEMENTS, EXCLUDING THE COARSEST MESH."
P = LEFTMOST(2); ‘
TOTPTS =0;
NRF = 0;
WHILE (P~ COARSE) .NE. NiL <

TOTPTS = TOTPTS + (P~RIGHT) - (P~.LEFT);

NRF = NRF + 1;

P = (P~RLINK)>
TOTPTS = N + 1 + TOTPTS*(XRATIO ~ 1);

"PLOT SOLUTION ON PRINTER AND GRAFPAC"
NCUT = MINO(N, PAGEWIDTH);
DO1 = 1, NCOMP <

CALL CLEAR;

RANGE = MAX(1,1) - MIN(I);

-IF RANGE .EQ. 0. < RANGE = 1.>

"INSERT DOTS ON PRINT PLOT TO DENOTE REFINED REGION"
P = LEFTMOST(2);
WHILE (P~.COARSE) .EQ. LEFTMOST(1) <
DO M = ZERO, HEIGHT <
PAGE(M, (P~.LEFT)) = PERIOD;
PAGE(M, (P~.RIGHT)) = PERIOD>
P = (P~.ALINK)>

IF ROUND(MIN(1)) .LE. O .AND. 0. .LE. MAX(1,1) <
“INSERT A LINE OF ZEROES INTO THE V PLOT"
M = ROUND(-MIN(I) X HEIGHT/ RANGE);

DO J = ZERD, NCUT <
PAGE(M, J) = ZEROCH>>
DO J = ZERO, NCUT <

210

M = ROUND((V(1,J) - MIN(1)) X HEIGHT / RANGE);
PAGE(M, J) = LABEL(I)>

OUTPUT; (1H);

FOR M = HEIGHTBY -1 TO 0 <
OUTPUT (PAGE(M, J), J = ZERO, NCUT); (1X,
PAGEWIDTHA1)>

“PUT QUT NUMBERS FOR GRAFPAC"
WRITE (7, :FORM1:) TOTPTS, |;
WRITE (7, :FORM2:) T;

WRITE (7, :FORM2:) A, B, -1.1, 1.1;
WRITE (7, :FORM1:) NRF;

“PLOT REFINEMENT BCUNDARIES"
P = LEFTMOST(2);

L=2;

WHILE (P~.COARSE) .NE. NIL <
REPEAT < _
XLEFT = A + H(L-1)%(P~.LEFT);

XRIGHT = A + H(L-1)X(P~.RIGHT);
WRITE (7, :FORM3:) L, XLEFT, XRIGHT;
P = (P~.RLINK)>

UNTIL P EQ. LEFTMOST(L+1);

L=L+1>

"PLOT ALL POINTS ON ALL LEVELS IN STRICT LEFT-TO-RIGHT ORDER
BY USING A DEPTH-FIRST SEARCH OF THE TREE.”
P = LEFTMOST(1);
L=1;
:RECURSE:
J =03
upP = (P~.FINE);
REPEAT <
OFFSET = XRATIOX(P~.LEFT);
XLEFT = A + H(L~1)%(P~.LEFT);
BASE = (P~.BASE);
NPTS = (P~.TOP) - BASE;
NPTSP2 = NPTS + 2;
IF (UP~.COARSE) .NE.P <
LEFTR = NPTSP2>
ELSE < ‘
LEFTR = (UP~.LEFT) - OFFSET;
RIGHTR = (UP~.RIGHT) - OFFSET>
GO TO :L4:;
REPEAT <
XdJ = XLEFT + J¥H(L);
WRITE (7, :FORM2:) XJ, V(I,BASE+J);
J=Jd+1;
:L4: IF J .EQ. LEFTR <
P = UP;
L=L+1;
GO TO :RECURSE: >>
WHILE J .LE. NPTS;
UP = P;
P = (P~.COARSE);
J = (UP~.RIGHT) + 1 - XRATIO*(P~.LEFT);
UP = (UP~.RLINK);
L=L-1> ’
UNTILL .LT. 1;>>

:FORM1: FORMAT (15, 12);
:FORM2: FORMAT (4E15.7);
:FORM3: FORMAT (11, 2E15.7);
RETURN;
0 END; "PLOT"
$3
$3
0 MORTRAN ERRORS ENCOUNTERED

OO0 OONWWWWWWOLOTODLLELPWVWLRRBUWAWOWWWWONNNNNNNNNWREDLBHEWNNNMNNMNMNNNONMNNNWONN ®®

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or produci name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.

) o

TECHNICAL INFORMATION DEPARTMENT

- LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

w

