
Lawrence Berkeley National Laboratory
LBL Publications

Title
An Adaptive Finite Difference Method for Hyperbolic Systems in One Space Dimension

Permalink
https://escholarship.org/uc/item/52n258r7

Author
Bolstad, John H, Ph.D. thesis

Publication Date
1982-06-01

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/52n258r7
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

" ,\ "1

" i 'i

I
I

I .•

~l ..
~)~

~',.
"

LBL-13287
c.-;:r-

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Physics, Computer Sciaa'~'e',Rf~!
Mathematics Division AUG'171982

LIBRARY AND
COCUMENTS SECTION

AN ADAPTIVE FINITE DIFFERENCE METHOD FOR HYPERBOLIC
SYSTEMS IN ONE SPACE DIMENSION

John H. Bolstad
(Ph.D. thesis)

June 1982

TWO-WEEK LOAN COpy

This is a Library Circulating Copy

which may be borrowed for two weeks.

For a personal retention copy, call .

Tech. Info. Division, Ext. 6782.

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

DISCLAIMER

This document was prepared as an account of wOrk sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

. .

AN ADAPrIVE FINITE DIl'TERENCE METHOD FOR
HYPERBOUC SYSTEMS IN ONE SPACE DIMENSION1

John H. Bolstad

Lawrence Berkeley Laboratory
University of California

Berkeley, California 94720

Ph.D. Dissertation.
Computer Science Department,

Stanford University

June, 19B2

LBL-132B7
(STAN-CS-B2-B99)

1 Supported in part by the Office of Naval Research under contract NOOO14-75-C-1132, and by the
Directo.r, Office of Basic Energy Sciences, Engineering, Mathematical, and Geosciences Division of the
U. S. Department of Energy under Contract DE-AC03-76SFO0096.

~I

i'

\

Table of Contents

1 Introduction .. .
1.1 Statement of the Problem .. .
1.2 Brief History of Adaptive Methods
1.3 Other Adaptive Methods for Time-Dependent Problems
1.4 Summary of Results

1
1
4
7

12

2 Mesh Structure and Solution Algorithm ... 16
2.1 The Continuous Problem.. 16
2.2 Mesh Structure - First Description .. 19
2.3 Mesh Structure-Second Description......... 23
2.4 Operations on Refinements .. 31
2.5 Difference Approximation .. 34
2.6. Solution Algorithm 40

3 Stability 50
3.1 Preliminaries ... 50
3.2 Need for a New Stability Definition 55
3.3 Stability of Refinement Algorithm ... 62

4 Error Analysis ... 64
4.1 Modes of Convergence 66
4.2 Interpolation Error .. 67
4.3 Rate of Convergence. I 70
4.4 Rate of Convergence, II 73

5 Estimation of the ,Local Truncation Error
5.1 Methods not Using Local Truncation Error
5.2 Four Methods .. .
5.2.1 Differences
5.2.2 Estimating an Interpolant with 'Small' Derivative
5.2.3 Two-Step Richardson Extrapolation
5.2.4 Three-Step Richardson Extrapolation .. .
5.3 Coarse/Fine Interfaces

81
82
83
84
85
87
87
94

5.4 Boundaries ... 95
5.5 Systems 99

6 Data Structures .. 102
6.1 Deques ... 102
6.2 Trees .. 105

iii

iv

6.3 Memory Repacking , .. . 108
6.4 Alternative Data Structures 109

7 Choice of Programming Language 114

8 Computational Results ~ ... : 120
~,

8.1 Model Problems 121
8.2 Qualitative Results .. . 123 f
8.3 Choosing Refinement Ratios and Maximum. Levels 156
8.4 Efficiency of the Method 161
8.5 Behavior as h ~ 0 ' 165
8.6 Estimating the Local Truncation Error in the Interior 167
6.7 Estimating the Local Truncation Error at Boundaries 167
8.8 How Often Shouldth.e Local Truncation Error Be Checked? 169
8.9 Linear VB. Quadratic Interpolation 171

9 Conclusions and Extensions 174
References , 178

A Appendix: Program Listing .. . 184

Abstract

Many problems of physical interest have solutions which are generally quite

smooth in a large portion of the region of interest. but have local phenomena

such as shocks. discontinuities or large gradients which require much more

accurate approximations or finer grids for reasonable accuracy. Examples are

atmospheric fronts, ocean currents, and geological discontinuities.

In this thesis we develop and partially analyze an adaptive finite difference

mesh refinement algorithm for the initial boundary value problem for hyperbolic

systems in one space dimension. The method uses clusters of uniform grids

which can "move" along With pulses or steep gradients appearing in the calcula

tion. and which are superimposed over a uniform coarse grid. Such refinements

are created. destroyed. merged. separated. recursively nested or moved based

on estimates of the local truncation errC?r. We use a four-way linked tree and

sequentially allocated deques (double-ended queues) to perform these opera

tions effiCiently. The local truncation error in the interior of the region is

estimated using a three-step Richardson extrapolation procedure. which can

also be considered a deferred correction method. At the boundaries we employ

differences to estimate the error. Our algorithm was implemented using a port

able. extensible Fortran preprocessor. to which we added records and pOinters.

The method is applied to three. model problems: the first order wave equa

tion. the second order wave equation. and the inviscid Burgers' equation. For

the first two model problems our algorithm is shown to be three to five times

more efficient (in computing time) than the use of a uniform coarse mesh. for

the same accuracy. Furthermore. to our lmowledge. our algorithm is the only

one which adaptively treats time-dependent boundary conditions for hyperbolic

systems.

v

Acknowledgments

I am grateful to my research advisor, Professor Joseph Oliger, for suggest

ing the topic of this thesis, and for his encouragement and advice during its

preparation. I would also like to thank Professor Gene Golub for his hospitality

and for bringing many numerical analysts from around the world to the numeri

cal analysis group at Stanford. I also wish to thank the other members of my

reading and oral committees, Professors John Herriot, Joseph Steger and

George Homsy.

1 wish to thank Dr. Paul Concus for encouragement and support. Also my

thanks to Marsha Berger, Phil Colella and Tony Chan for suggestions and techni

cal discussions. I also owe a debt of gratitude to fellow students in the numeri

cal analysis group at Stanford, from whom I learned a great deal, but who are

too numerous to mention.

I acknowledge computing facilities used: at the Stanford Linear Accelerator

Center, operated for the U. S. Department of Energy by Stanford University; and

at the Computer Center of the Lawrence Berkeley Laboratory, operated for the

Department of Energy by the University of California.

Finally, I gratefully acknowledge financial support provided by Stanford

University as a teaching assistant, by the Office of Naval Research under con

tract N00014-75-C-1l32, and by the Director, Office of Energy Resea,rch. Office of

Basic Energy Sciences, Engineering. Mathematical and Geosciences Division of

the U.S. Department of Energy under contract DE-AC03-76SF00098.

vi

,

'y'

CHAPI'ER 1

Introduction

In this chapter we will give a justification and motivation for developing a

finite difference mesh refinement algorithm, and then give a brief history of

adaptive methods for numerical computations. Next, we review some other

adaptive algorithms for time-dependent partial differential equations. Finally,

we will summarize what is contained in the rest of the thesis.

1.1. Statement of the Problem

Many problems of physical interest have solutions which are smooth in a

large portion of the region of interest, but have local phenomena such as shocks,

discontinuities or large gradients which require much more accurate approxi

mation or finer meshes for reasonable accuracy. Examples of this are atmos

pheric fronts, ocean currents, geological discontinuities, and storm surges.

When the pOSitions of the gradients are known a priori, and are independent

of time, one can use coordinate transformations, a technique used extensively in

aerodynamic computations, e.g., Steger and Chaussee [1980].

In more detail. the coordinate transformation technique is as follows. Sup

pose one wishes to study the two-dimensional flow around an airfoil, viewed in a

coordinate system fixed to the airfoil. It is known that steep gradients exist

near the surface. Hence a mesh is designed which follows the contours of the

airfoiL and in which the mesh size grows exponentially smaller as the surface of

the airfoil is approached. This irr.egular mesh is then mapped (sometimes con

formally) onto a rectangular region with uniform mesh. The differential equa

tions governing the flow are similarly transformed. The transformed differential

1

.,. ;

2

equations are then solved. on the uniform mesh. Finally. the results are

transformed back to the original coordinate system.

For a problem in which the position of the gradients is known. and fixed for

all time. this method is obviously advantageous. And. if the position of the gra

dients changes as an apriari function of time. the mapping function can change

with time (e.g .. flow past a helicopter blade). However. when the manner in

which the gradients move is not known in advance; this technique cannot be

used.

In such a case. one procedure is to use a fine mesh throughout the entire

calculation region. But such an approach usually requires too much computer

time and/or storage. An alternative method is to use an underlying coarse

mesh for the entire region. and to superimpose a fine grid. or grids. on the

region(s) where the solution is varying rapidly. The crucial difficulty is that the

refined region(s) must then move along with the rapidly varying portion of the

solution. at all times enclosing this portion.

The necessity for this is illustrated in Figure 1.1. taken from Browning.

Kreiss and Oliger [1973]. The figure illustrates the numerical solution of the ini

tial boundary value problem

1Lt = Uz.

u(x.O) = O.

u(1.t) = g(t).

-1 ~ x ~ 1, 0 ~ t I

-1 ~ x ~ 1,

o ~ t.

where g (t) is a rapidly oscillating sine wave. In Figure 1.1 we see the result of

the computation on a mesh which is divided into a coarse region on the interval

-1 ~ x ~ 0.495 and a fine region in the interval 0.495 ~ x ~ 1. The mesh width

(0.01) in the coarse region is five times the width in the fine region. The figure is

plotted after a time in which the influence of the initial condition has almost

completely "washed downstream".

rJ')
~ ~

~
Cl)

~ s
Cl)

Q ~
~
Cl)

~
0.0
~

.1""""1

:>-
a =s
~
a

0 X ~

~
~
.1""""1

rJ')
rJ')

Cl)
()
Cl)

Z
~ .

q ~

Cl) to 0 a to tOT
~

• • . - •
0 - - ;:j I I I

0.0 '.,

1\9n '1""""1

~
~j

3

4

It can be seen that the wave is accurately represented in the fine region (30

pOints per wave length) but has been mutilated in the coarse region (6 points

per wave length). From this it is clear that the rapidly varying part of the solu

tion must not be allowed to escape the refinement region

1.2. Brief History of Adaptive Methods

We see, then, that the mesh must "adapt" itself to the character of the solu

tion. This is very much in the spirit of recent trends in numerical analysis. A

brief, but necessarily incomplete, history of adaptive methods for the solution of

numerical problems is therefore in order.

An early and widely used type of algorithm employing adaptive principles

was the o.d.e. solver, which solves the initial value problem for a first order sys

tem of ordinary differential equations. This was perhaps due to the needs of the

U. S. space program in the late 1950's and early 1960's. The first such algo

rithms used a fixed step size throughout the interval of integration. It was later

realized that such a technique was wasteful, and the step size should be finer in

regions where the solution varies more rapidly, and conversely. The next step in

these programs was the incorporation of a mechanism to halve and double the

step size. Such a mechanism required a careful estimation of the local trunca

tion error, together with certain heuristics. Then, to gain further efficiency.

integration formulas of varying orders were incorporated, since, for smooth

solutions, higher order methods are more efficient than lower order ones. A

widely known program of this type is Gear's [1971] DIFSUB.

Still further refinements were the programs 'of Krogh (DVDQ) [1969] and

ODE IDE ISTEP of Shampine and Gordon [1975], which allowed truly variable step

size, and allowed still higher order integration formulas.

5

Another area of numerical /analysis to use the adaptive approach was qua

drature. The first published program of this type, which was written in Algol 60

and recursively subdivided the integration interval, was given by McKeeman

[1962]' A more sophisticated analysis by Lyness [1970] led to the program

SQUANK (using an adaptive Simpson algorithm) which was in turn superseded by

de Boor's CADRE [1971a, 1971b] (using "cautious" adaptive Romberg integra

tion). These methods obtain a sequence of approximations on finer and finer

meshes (which need not occupy the entire interval of integration) and use some

form of linear extrapolation to determine which parts of the interval to refine .

further. Also of interest in de Boor's routine is the use of a nontraditional (for

numerical analysis) data structure--a stack. This has been carried one step

further in QUADPACK [de Doncker, 1978], as typified by routine DQAGS. The

Gauss-Kronrod scheme is used, but with nonli:near, rather than linear extrapola

tion, using Wynn's epsilon algorithm. This enables the routine to handle some

singularities in the integrand.

A related area USing the adaptive .. approach is multi-dimensional quadra

ture. Although other workers have proposed adaptive algorithms in this area,

the one of greatest interest for our purposes was given by Kahaner and Wells

[1979]. The region of integration is divided into finer and finer Simplices (not

rectangles) and as usual a linear extrapolation is performed to estimate the

error. The new ideas that enter here are the use of sophisticated data struc

tures (i.e., heaps, queues, hashing) and programming language. Similar ideas

are used in our own algorithm.

An area with a more recent beginning is the adaptive approach to the

numerical solution of two-pOint boundary value problems in ordinary differential

equations, as typified by Ascher, Christiansen and Russell's COLSYS [1979] and

Lentini and Pereyi;'-;PASVA3 [1977]. Here again, an attempt is made to place

more mesh points where the solution varies more rapidly. In order to

6

implement PASVA3, Pereyra and Sewell [1975] introduced the concept of an

equidistributing mesh, and this idea, or a slight alteration of it, underlies many

of the adaptive algorithms for two-point boundary value problems and elliptic

and parabolic partial differential equations. In Section 4.4 we use this idea to

justify our own algorithm. The method of deferred corrections was used in

PASVA3 to estimate the local error, and in Section 5.2.3 we also use it (in a

somewhat disguised form) for the same purpose.

A tilth area using the adaptive approach is elliptic partial differential equa

tions. One adaptive algorithm for this problem was developed by Bank and Sher

man [1979] and incorporated in the package PLTMG. This package uses (two

dimensional) triangular finite elements. To decide where to refine, it uses a cri

terion of Babushka and Rheinboldt [1978]. This criterion requires that a (com

putable) estimate of the (global) error in the energy norm is approximately

equal for all elements. A tree is used to represent the refinement structure.

Another adaptive algorithm for elliptic equations is the multigrid (finite

difference) method of Brandt [1977a, 1977b]' Here the differential equation is

discretized in the usual manner, but on a sequence of ever-finer grids. Instead

of solving the approximations by relaxation independently on each grid, the

computation can proceed from one member of the sequence to another in a

complicated manner, and the results of one "level" are used to help in the solu

tion at other levels. Although this scheme in its original form did not automati

cally insert more points in regions where the solution changes rapidly, Brandt

has indicated how to modify the method (using estimates of the local truncation

error) to make it adaptive.

The last area in which adaptive methods are being used is our own of time

dependent partial differential equations.

,",'

A
"

I ..

7

1.3. Other Adaptive Methods for Time-Dependent Problems

Let us now comment on some other adaptive methods for the initial boun-

dary value problem for time-dependent problems. As in the previous section,

this survey is certainly incomplete.

Two other finite difference methods similar to our own are those of W. Gropp

[1980] and M. Berger [to appear]. Both of these are for hyperbolic equations in

two space dimensions.

Gropp calculated a shock satisfying the two-dimensional inviscid Burgers

equation. He used a uniform coarse mesh. with one uniform refinement (which

could "move" with time) superposed on it. All meshes were parailel to the coor-

dinate axes. The time step in the refinement was allowed to be smaller than in

the coarse mesh. He estimated the error by approximating spatial gradients.

Unfortunately. it is difficult to generalize this criterion to other situations (e.g ..

smooth solutions). (See Section 5.1.) But his results showed the feasibility of

this approach. We previously noted that the local truncation error criterion that

we use can also locate shocks (although it is probably not the best way to do

this).

Berger's algorithm is similar to ours, and is proceeding parallel to our own.

(However, she is not handling boundary conditions.) Like us. she uses a tree

structure, but her data structure is of necessity more complicated. Her

refinements need not be aligned along coordinate axes, but are free to rotate.

Her error estimation is the same as ours.

Another finite difference method was developed by Dwyer. Kee and Sanders

[1980] for parabolic problems in one and two space dimensions. In two dimen-

sions, they perform a. coordinate transformation in one of the spatial variables,

and adapt in that variable only. As a criterion for mesh placement, they use an

integral of one plus a constant times the absolute value of the first derivative of

8

the solution. In one space dimension they successfully compute solutions with

severe boundary layers.

Brackbill and Saltzman [to appear] have proposed another finite difference

method for parabolic problems in two and three dimensions. It also uses coordi

nate transformations. The criterion for mesh placement is based on a con

strained variational formulation. The constraints enforce orthogonality and

smoothness of the coordinate transformation. The variational form contains the

squared lengths of the gradients of the transformation variables and of the gra

dient of the (desired) solution. Forming the Euler equations (from the varia

tional formulation) then produces a coupled, time-dependent set of difference

equations for the solution and the coordinate transformation, which are then

solved. The authors have actually computed (e.g., the convective-transport

reaction-diffusion equation) with this method in two and three space dimensions.

The method of Rai and Anderson [1982] is for one and two dimensional para

bolic and hyperbolic equations. Once again, coordinate transformations are

used. Mesh pOints are considered to attract or repel each other; the former

where the local truncation error is high, and conversely. The authors then

determine the coordinate transformation by laws resembling Newton's laws, with

particles replaced by mesh points, charges (or masses) replaced by truncation

errors, and the resulting force replaced by the coordinate in the computational

plane. The number of mesh points is fixed during the duration of the computa

tion. The authors compute the laminar boundary layer over a flat plate, and flow

past a cylinder in a supersonic free stream with associated bow shock (the Euler

2-D gas dynamic equations). They use low order difference methods, and esti

mate the truncation error by higher order differences. They state that they

would like more accurate error estimates.

9

A striking feature of these adaptive difference methods, and many others, is

the wide variety of criteria used to determine the placement of mesh points. We

discuss this further in Section 5.1.

Other adaptive approaches use finite elements. Some of these are Gannon's

[1980], in two space dimensions for parabolic problems, Davis and Flaherty's

[1982] method in one space dimension, also for parabolic problems, and Miller's

"moving finite element" method [Gelinas, Doss and Miller, 1981], [Miller and

Miller, 1982], in one space dimension for parabolic and hyperbolic problems.

Davis and Flaherty's method is different from the other two. Instead of

expanding the solution in spatial basis functions with time-dependent

coefficients

n
v(x, t) = 2: a;(t)~;(X) (1.1)

;=1

as the other methods do, they use a finite element Galerkin method' on tra-

pezoidal space-time elements. The time step is uniform and constant. The

number of trapezoids is fixed for all time. Given two partitions of the interval

[a, b] at times tm and t m+1' respectively, each of which contains the endpoints a

and b and consists of n points, the trapezoids have as their vertices adjacent

members of the two partitions. The main problem. then. is choosing a partition

at time tm+l when one is known at time tm. The authors do this by approxi-

mately equidistributing the projection error, and hence the global error. Since

the partition can be nonuniform, this involves at each step solving a nonlinear

system of equations whose Jacobian is block tridiagonal. This method strikes us

as quite expensive. However, no computer times are given.

Gannon's Galerkin method uses the standard expansion (3.15), and is based

on the results of Babushka and Rheinboldt for elliptic problems. He uses time

steps which are variable but uniform in space. and elements which are piecewise

10

uniform and always parallel to the coordinate axes. The number of elements is

not fixed. Unlike ours and Berger's approach, the finer elements are not con

sidered to "overlay" the coarse elements. He proceeds as we do in that an ele

ment structure is kept until error estimation is performed; then the elements

are adjusted. To estimate error, elements are chosen as in Babushka

Rheinboldt so that an approximation to the (global) error (in energy norm) is

approximately equidistributed on elements. At the next time the error is

checked, the elements are adjusted if the estimates deviate "too much" from

equality. As is usual for Galerkin-methods, one uses a stiffly stable o.d.e. solver

to step forward in time. One needs to solve a system of equations at each time

step, but unlike the Davis-Flaherty method, the system is linear when the

d:i.fierential equation is linear. A tree-type data structure is used to keep track

of refinements.

In Miller's moving finite element method, again the standard expansion (1.1)

is used. Instead of choosing the coefficients aj and fixing the basis functions rpj'

the rpj (which are, for example, piecewise linear "hat" or "chapeau" basis func

tions) are allowed to have their centers vary (in space) as well. This leads to a

modified Galerkin method. Again, a stiffly stable o.d.e. solver is used to step for

ward in time. Thus, a system of equations is solved at each time step, which is

(in general) nonlinear even when the differential equation is linear. The matrix

of the system may become singular, so further parameters ("spring constants")

are introduced to regularize it. Furthermore, the minimization problem that

the Galerkin method solves is replaced by a weighted minimization problem, so

the weights must be chosen. The time step is variable but uniform in space.

Gelinas, Doss and Miller illustrate their algorithm with a number of interest

ing problems. One of them is similar to our P2 (the second order wave equation

with counter-streaming Gaussian pulses). Instead, they use square waves. Their

squares are resolved almost perfectly. The boundary conditions of this problem

11

are zero (and in fact disagree with the exact solution at t = 0), and we believe

their method cannot handle time-dependent boundary conditions (2.3), (2.4) for

hyperbolic problems. In contrast, our ("open") boundary conditions for this

problem are time-dependent, and neither purely inftow or outflow. They allow

the pulses to pass in or out of the region.

Let us summarize a few features comIilon to all these finite element

methods. All use a time step which is the same at every spatial pOint at a given

time. (Recent work of T. Dupont [to appear] is an exception.) This is largely due

to the use of an o.d.e. solver to advance in time (in two of the methods). All use

implicit time-stepping methods. Since we use explicit methods, it is essential to

allow finer time steps in refinements than in the coarse mesh. (Otherwise, sta

bility would force us to use tiny time steps throughout the region.) So for hyper

bolic systems, the time step in our method is limited by accuracy, not stability.

A significant difference between our method and Miller's, Davis and

Flaherty's, Dwyer, Kee and Sander's, and Rai and Anderson's (but not Gannon's)

is that we allow a variable number of refinement points as needed. Refinements

can be created or destroyed. In contrast, in the other methods, the number of

basis functions or mesh pOints is fixed for all time. In Miller's method, the basis

functions do indeed "bunch up" around steepj gradients or shocks, as desired.

But suppose one started with one steep gradient, and then two or three others

developed. In this case, the fixed number of basis functions would either be

insufficient or else excessive (and hence wasteful), at some times, but not oth

ers.

Thus it is clear, even from this incomplete survey, that adaptive al.gorithms

are playing an increasingly important role in numerical computations, and will

continue to do so. Somewhat less clear but still discernible is a trend toward

more complicated data structures than vectors and matrices (such as deques,

12

heaps, stacks and trees), and the need for more flexible programming languages

to implement them.

1.4. Summary of Results

We now summarize what is contained in the rest of this study, and point out

what we believe to be new and Significant.

In Chapter 2 we describe our adaptive mesh-refinement algorithm in detail.

The general philosophy and methodology was given in Oliger [1978] and Budnik

and Oliger [1977], but we contributed some ideas not in these papers, such as

the necessity for recursive refinements and the choice of data structure. We

believe this is the first detailed description of the algorithm, and that ours was

the first implementation. We first describe the continuous problem, the usual

first order hyperbolic system on a strip in one space dimension. Next we

describe our mesh structure. We give two descriptions of this: the first is used

in the theoretical work in Chapters 3 and 4, and the second is used in describing

the algorithm in Chapters 2 and 5. In this second description we define a

refinement, and introduce the idea of recursive refinements. Next we state the

difference approximations we use. The fundamental restriction is to explicit

difference methods. For convenience in implementation and error estimation,

we also insist on two-(time) level scherp.es. A detailed description of the algo

rithm is then provided, including techniques at boundaries and interfaces

between coarse and fine meshes. One part of the algorithm description--the

estimation of the local truncation error--is deferred until Chapter 5.

In Chapter 3 we give a brief discussion of stability. We show why the stabil

ity definition of Gustafsson, Kreiss and Sundstrom [1972] cannot be used, and

state the stability definition of Berger, Gropp and Oliger [to appear]. We then

prove (Proposition 3.10) that, if a difference scheme is stable on one horizontal

'1r

' ..

13

strip in the x -t plane. then it is stable for any number of strips. under a few

weak assumptions (such strips are described in Section 2.2). We did not prove

that our algorithm was stable according to this definition. but there is good rea

son to believe that it is.

Chapter 4 treats convergence of the difference scheme. and relates bounds

on the global truncation error to bounds on the local truncation error. We first

state (but do not prove) a proposition on the rate of convergence of difference

approximations to the solution of the differential equation. 'This Proposition 4.1

is the analogue of one given by Gustafsson [1975]. but for a difference scheme

.which is stable according to the new stability definition mentioned above. Using

this proposition. and the theory of Pereyra and Sewell on equidistribution of

meshes arising in approximations to two-point boundary value problems. we

prove a relation between the global truncation error and the local truncation

errors (Proposition 4.2). which can be said to,provide a theoretical justification

for our algorithm. This proposition is new. but it is an analogue of a similar

theorem for the Ca~chy problem given by Oliger [1978].

Chapter 5 discusses the estimation of the local truncation error. which is

crucial to the success of the algorithm. We first discuss alternatives to the local

truncation error in placing mesh refinements. Then four methods of local trun

cation error estimation are described. One is totally impractical; another

(differences) is marginally successful. and the other two are successful. Only

the last one (three~step Richardson extrapolation). however. is general. and con

venient to implement for interior approximations. (It was suggested by Oliger.)

For this method we prove a theorem (Theorem 5.1) which indicates that this

method is valid under quite general circumstances. This theorem is new. The

proof of this theorem shows that this algorithm is simultaneously a deferred

correction method. We then give a very simple method for error estimation at

coarse/fine' interfaces which do not abut boundaries. For boundary

14

approximations. we can sometimes use a modification of the Richardson

method. But the most convenient procedure is to rewrite the time derivatives

appearing in the local truncation error as spatial derivatives (using the

differential equation). and approximate the result by differences.

We believe that our work on adaptive boundary conditions (which can be

time-dependent) is not only new but unique. That is. no other algorithm of which

we are aware gives a systematic method for adaptively treating time-dependent

boundary conditions in hyperbolic systems.

Chapter 6 describes the data structure we used to implement the algo

rithm. The data structure has two parts-a four-way linked tree of records to

hold structural information about refinements. and an array of sequentially allo

cated deques to hold solution vruuesfor the hyperbolic system. We describe our

repacking strategies for the deques. The deque structure is a modification of a

similar structure for stacks in Knuth [1973]. M. Berger [Ph.D. thesis. to appear]

has earlier devised a similar tree structure. In a certain sense a tree structure

is "obvious" when recursive refinements are used. and other adaptive methodS

also use them (e.g .. Gannon [1980]. Rheinboldt and Mesztenyi [1980]). In each

case the tree is modified to suit the application at hand. However. our choice

and implementation of the sequentially allocated deques is new. and cannot be

generalized to more space dimensions.

Chapter 7 discusses the language used to implement our algorithm.

Because Fortran lacks both control structures and data structures. we rejected

it. But because· of the portability and wide use of Fortran in sCientific computa

tion. we had to reject other languages as well. The compromise we chose was

Mortran. a macro preprocessor for Fortran [Cook and Shustek. 1975]. Because

Mortran is extensible (unlike many other Fortran preprocessors). we were easily

able to add records and pointers to it. which made implementation of the data

..

, ...

15

structures quite convenient. We believe we were the first to use a macro pre

processor to develop adaptive mesh refinement algorithms; recently Gropp [to

appear] has done a much more systematic development of a language for these

algorithms.

Chapter 8 provides computational results of our algorithm. We first

describe three model problems: the first order wave equation (color equation)

with traveling pulse; the second order wave equation (rewritten as a first order

system) with two oppositely-traveling and interacting pulses, and the inviscid

Burgers equation with a shock. In particular. the refinements do properly

enclose the pulses or shock at all times. These calculations also show that

refinements properly merge, separate, move, and are created and destroyed.

(We believe that the only other adaptive algorithm that can track crossing

pulses is that of M. Berger, who uses an approach similar to ours in two dimen

sions.)

Section 8.4 contains the most important result of this thesis, namely, the

efficiency of our algorithm. Our model problems show decreases in execution

times of factors of 3 to 5 for smooth solutions (compared with using a uniform

mesh which achieves the same level of accuracy). Storage savings are achieved

as well. but the gains are not so dramatic.

Section B.5 experimentally shows the rate of convergence of the method as

the step size approaches zero, and thus confirms PropOSition 4.1. Section B.6

compares three methods for estimating the interior local truncation error. Sec

tion B.7 compares different boundary approximations and methods for estimat

ing the error of these approximations.

Chapter 9 gives our conclusions and suggestions for further research, and

the appendix gives a program listing for one of our model problems.

CHAPrER 2

Mesh Structure and Solution Algorithm

In this chapter we will state the class of partial differential equations to be

considered, together with assumptions about the behavior of the solution of the

equations. Next we describe, in two different ways, the mesh structure on which

we will compute the difference approximation. We then introduce a scalar model

problem and describe our algorithm for advanCing the solution in time. Finally,

we discuss the modifications necessary for systems of equations. The underlying

approach throughout is that of Budnik and Oliger [1977] and Oliger [1978].

2.1. The Continuous Problem

Let 0 denote the spatial interval a ~ x ~ b. We will assume given a linear

first order, one (space)-dimensional, n x n hyperbolic system

L11. == 11.t - A(x,t)'U: - B(x,t)11. = F(x,t),

on a "vertical" strip 0 x ~t ~ OJ, with initial condition

11.(X,O) = f (x),

and boundary conditions

11. I (a, t) = S II(t)11. II(a, t) + g 1 (t),

uII(b,t) = SI(t)11.I(b,t) + g2(t),

x EO,

t ~ 0,

t ~ O.

. (2.1)

(2.2)

(2.3)

(2.4)

Here A and B are n x n matrices and F is an n-vector. We have, as u.sual.

assumed that A has already been transformed into diagonal form by a nonsingu

lar uniformly bounded similarity transformation T(x ,t), so that

16

.'It

17

with T(x.t) and T(x .t)-l uniformly bounded. and

AI = diag("l. "2 "J) < O.

All = diag("J+l. "J+2' "n) > O.

u I = (Ul(X.t). U2(X.t) uJ(x.t))T.

u ll = (UJ+l(X.t). UJ+2(X.t) Un(x.t))T.

and

By far the most important restriction is that our problem has only one

space dimension. The problem even for two space dimensions has severe addi

tional difficulties. such as irregular geometries. orientation of refinements. pat

tern recognition. the need for more complicated data structures. and boun

daries. (M. Berger's thesis [to appear] is treating this problem.) The restriction

to hyperbolic behavior insures that we can use explicit time steps. This assump

tion greatly simplifies both the error estimation and the manipulation of moving

meshes. ,However. many computational problems in fluid dynamics and else

where are of this type.

The assumption that the matrix A is in diagonal form is not necessary in

practice. as shown by computations on problem P2 in Chapter 8. This assump

tion makes it easier to develop the theory. and to write down boundary condi

tions (2.3)-(2.4) which yield a well-posed problem.

For the theory in Chapters 3. 4 and 5. we will assume that (2.1). (2.3)-(2.4)

have constant coefficients. But in practice. the type of problem can be consid

erably more general than (2.1)-(2.4). For example. the system of equations can

be nonlinear. In Chapter 8 we will show computations for the inviscid Burgers'

equation

18

ut + UUz = 0,

which even has shocks. Furthermore, the problem need not necessarily be

hyperbolic. For example, we can treat the Korteweg-de Vries equation

ut + uUz + ~ = O.

The important restriction is to equations which allow explicit difference approxi

mations for their efficient solution. Thus the heat equation is excluded. (Our

algorithm can accurately approximate the heat equation, but we doubt that it

would be more efficient than using an implicit method on a uniform grid.)

We next assume that the overall phenomena being studied are such that,

except for relatively small regions, a coarse uniform mesh is sufficient to resolve

them. We further assume these small regions change with time in a way which

cannot conveniently be determined a priori.

We also assume that these small regions are the same for all solution com

ponents. In other words, if the differential equations describe velocity and pres

sure, then large pressure gradients occur in approximately the same regions

where large velocity gradients occur. (The assumptions in this paragraph are

necessary only for efficiency. The method will work without them, but it might

refine too large a portion of the region.)

We assume that we have smooth solutions. This means, first of all, that

there are no corner discontinuities, i.e.,

and

uII(b ,0) = f (b) = S1 (0)u1 (b ,0) + g2(0).

Furthermore, it means there are no shocks present. These assumptions enable

us to estimate the local truncation error using higher derivatives of the solution

of the differential equation. In practice, our algorithm will work even for shocks

'.

19

(as mentioned above for Burgers' 'equation), but then the error estimation is not

theoretically justified, and should be done in a different manner for efficiency.

Before giving the difference approximations to our problem (2.1)-(2.4), we

must first describe the mesh system on which such a solution is computed.

We will compute on a basic rectangle R = n x [0, T], We will think of this

rectangle as graphed in'the x -t plane, with x horizontal and t vertical.

2.2. Mesh Structure - First Description

We will now formally describe our mesh structure in a way suitable for

theoretical purposes. We will then describe it a second time in a manner more

suited to implementation.

FollOwing Oliger [1978], we divide the rectangle R into "horizontal" strips

using time division points

(2.5)

and define a grid on each strip

Si = n x [t i - 1 , ti]. i = 1. 2 , s,

as the set of pOints

!::.;. = !(xJ, tf.m): j = 0,1. ... ,Ni , m = 0,1. ... ,mjl.

where IiJ+l = XJ+l - xJ > 0, t'i = t i - 1 + mk'i k'i > ° (ti - ti-1)1 k'i = m'i an J.m J' J' J J'

integer, Xb = a, and x1~ = b for i = 1.2, ... ,s. When (xJ, tJ.m) is a point of !::.;.

we will say that kJ corresponds to hJ. See Figure 2.1. In each strip Si we will

take time steps of equal length at each point xJ (although these steps can be

different at different xJ). We will now restrict our grid to be locally uniform in x:

we assume there are a finite set of intervals

It c [a, b], v = 1.2, .. , ,Vi

N
o

t3

t2

t I

to

t

I I I L t~ 1 I I I ~ll II I " I I _ I -1 1 'IIIIIU.... - t

l I II - -U-L-H--Hr-i-- 4
-<- - 1_

U-LtmtltHffl iHT- LW-+-+-;--, L-+-~ __ ~Im~$qJ~---t~HH±tr-lt~ - - 1 T.... I
• T II III I '-L

_+--t-iT _ t
l I 11--1 II 'II 2 - - I _

I I .- II"'" t
l

J- ,....1 II L :
I .J LI I , 0-", , I t6~ T t-t-I I I I I I I I I I I I - x

XBL822·110

Figure 2.1 Mesh Structure

~

~ "¥

21

whose endpoints are among the xJ.
v~

uIt=[a.b].
v=l

(2.6)

any two It intersect in at most one point. and the xJ contained in any It are

equally spaced. Furthermorl? all the ki occurring in It x [t i - l
• ti] must be

equal. Such a grid is uniform over rectangles in the x -t plane. For conveni

ence. we shall assume that for each i the It·s constitute a minimal set of inter-

vals with these properties. (That is. any other such set describing the same

mesh has more than IIi members.)

To make this grid structure even easier to implement. we will make still

further restrictions. Since there are only a finite number of rectangles in the

region R. let hI. h 2 • ...• hA be a list of all the distinct space steps hI. listed in

descending order. Corresponding to' each hI is a kj. We will then obtain a

corresponding list k l • k 2 •...• kA which we will also assume has distinct

members in descending order. We then require

hlH = Nkl . klH = Mkl • l = 1.2 1\-1,

where N and M are integers greater than one. This restriction is not crucial.

but makes implementation easier.

Let us examine one of the decompOSitions (2.6). With each It is now associ

ated an hj. If It is adjacent to It. we shall call their intersection a coarse /fine

interface. and will require that h~ = Nht or ht = Nh~. That is. the transition in

spatial mesh size should be "smooth". No such restriction is made in time. In

Figure 2.1 we have illustrated this for N = 3. M = 2.

We now modify the time steps at the coarse/fine interfaces. In the i-th

strip Si. i = 1, 2 s. we add grid points to any coarse/fine interface where a

fine mesh lies to the right of a coarser mesh. That is. let I jJ. be any interval adja

cent to. and to the left of. interval Iv. such that h~ = Nht. According to our

22

definition. the time steps kl on the interface are the same as those in I~. not It

(i.e .. they are "coarse" rather than "fine"). We add more points to this interface

so that the time steps k} on the interface are the same as those in ~.

At the time division points ti. i = 1,2 s -1, there are two sets of spatial

mesh points: those belonging to !:J.;, and those belonging to !:J.;,+l' This is because

we readjust the (spatial) mesh at these times. We will introduce two sets of spa

tial grid pOints at to = 0 also. by letting ~o denote the initial uniform coarse

mesh

Hxl.O). xl = a + jh l • j = 0.1 NoL

where hI = (b -a)/No. ' We immediately readjust this mesh. getting the mesh in

~I' Therefore. we will ignore ~o in our theory. and measure quantities (such as

the initial error) with respect to the mesh points in ~I with t = O.

An alternative implementation would allow fully variable hl.' as is done in

programs for two-point boundary value problems for ordinary differential equa

tions (e.g .. PASVA3 and COLSYS. mentioned in Chapter 1.) However. there are

several compelling reasons for using our approach. The first is ease of imple

mentation. The second is storage. although this is not as serious. One would

need to store a vector of xl's. In our method only a few indices are used. The

third reason is that with such a general mesh. the only difference schemes that

can be used in two-point boundary-value problems are Keller's box scheme and

the trapezoidal rule (if second-order accuracy is desired). Although there do

exist second order approximations for the initial boundary value problem (par

ticularly for conservation laws) on a nonuniform spatial mesh. this would'

severely restrict our choice of available difference schemes. (As we shall see.

our method already imposes some other restrictions on the difference scheme.)

The final reason is that a general mesh would make analysis and estimation of

the local truncation error much more difficult.

""

,

'.

23

2.3. Mesh Structure-Second Description

We will now provide an alternate description of our grid structure. The

above description is more suited to the theory: the following one is more suited

to implementation and allows slightly more generality than the first description.

We will proceed recursively by "levels of refinement". The word level in this

context refers not to the time level. but to how fine a grid spacing is. Finer grids

will have higher levels. We will use different notation for gridpoints (x, t) than in

the previous description. We regret the necessity for this, but certain formulas

(e.g. , norms) which are natural in one notation become extremely cumbersome

in the other.

On each levell = 0, 1, ... ,A-1 we will introduce a finite number of space

time refinement rectangles or boxes Bt contained in rectangle R. (All such rec

tangles will be solid, that is, they include both interior and boundary.) Each such

rectangle will have sides parallel to the coordinate axes; and for l ~ 1 each l-th

level rectangle must lie entirely in an l-l-st level rectangle. Furthermore, no

two l-th level rectangles can overlap. The boundary of each l-th level rectangle

will be the boundary of a uniform l + 1-st level (space-timeJgrid. Alil + 1-st level

grids will have the same space and time steps. Loosely speaking, an l+l-st level

refinement is one of these grids viewed at a fixed time.

To prime the recursive pump, we will define the zero-th level spatial divi

sion points of the interval [a, b] as the sequence of points <x8 = a, xp = b >.

Similarly, the zero-th level time division points of the interval [0, T] comprise

the sequence <t8 = 0, tp = T>. Let he = b - a and ke = T be the zero-th level

space and time steps, respectively. We define UO as the set of four corner points

of the rectangle R.

For l = 0, 1. ... ,A-1 we now proceed recursively by levels of refinement.

We form the l-th level partition Pl of [0, T], which is a subsequence of the time

24

division points <t/n>:

o = tb < tt < tt < ... < t/n < t!n, = T.
ml m2 ~,-l --~, (2.7)

Notice that the subsequence <~> depends on l; this dependence is omitted

from the notation. For l = 0, Po is identical to the sequence <t~> of time divi

sion points. Thus So = 1 and m 1CO) = 1. For l ~ 1, PI must contain as a subse

quence the pOints in the partition PI~I'

This partition divides the region R into l-th level horizontal strips

sf, i = 1, 2, ... ,Sl' For l = 0 the only such strip Sp is identical to the rectangle

R. For l ~ 1 each of these strips is contained in an l-l-st level strip, since Pt-l

is a subsequence of PI' The partition points are the times when we adjust the

mesh. (The partitions and strips for l > 1 could be dispensed with if we never

adjust the mesh between coarse time steps.)

We will now introduce a set of zero or more nonoverlapping l-th level (solid)

refinement rec tangles

fB~, v = 1, 2, ... ,gd·

(If gt = 0 the recursion ends.) There is only one zero-th level rectangle BP, and

it is identical to the rectangle R. For l ~ 1, each rectangle B~ is required to lie

entirely in some l-l-st level refinement rectangle B~ -1. The latter will be called

a parent of the former. Each such rectangle B~ will have horizontal sides whose

t-coordinates are required to be adjacent members of the partition Pt (2.7).

That is, the horizontal sides of the rectangle are the same as the the horizontal

sides of the l-th level strip in which it is contained. Since Pt - 1 is a subsequence

of PI for l ~ 1, we are guaranteed that B~ is "vertically contained" in its parent.

For l ~ 1, the x-coordinates of the vertical sides of rectangle B~ can be any

l-th level spatial division point, so long as B~ is "horizontally contained" in its

parent. In other words, let its parent B~-1 have left and right vertical sides with

•

10'

c

25

coordinates

and

X - X t - 1 - xt - a + h ,,(...-) - Co/(lT) - N(I-l)Co/(lT) - t -1 II ,

respectively. (Here a(rr) and CJ(rr) are nonnegative integers.) Then for the coor

dinates X~(v) and xL(v) of the left and right vertical sides of rectangle Bt, we

require

t-1 < t t < t-1 Xa(lT) . xa(v) < xCo/(v) X Co/(lT) , (2.8a)

i.e.,

(2.8b)

For l ~ 0, let N(t) and M(t). (the l-th level spatial and' time

refinement ratios) be integers greater than one. (For N(O) we shall take the No

of the last section.) Let ht+1 = htl N(t) and kt+1 = ktl M(t) be the l+ l-st level

space and time steps, respectively. We now define the sequences of (uniform)

l+ l-st level Spatial and time division points

and

.
t

<xj+1 = a + jht+1: j = 0,1, ... , rrN~»,
;.0=0

Tt+1 = <tin,+1 = mkt+1: m = 0,1, ... : tr M(,u.» ,
~=O

of the intervals (} and [O~ T], respectively. They are respectively N(t) and M(t)

times as fine as the l-th level ones. The set of all pOints

Ut+1 - «(_~+1 tt+1)1
,-"(''''''J J m)

occupies the entire rectangle R = (} x [0, T]. The subset of these points con

tained in the (solid) re-finement rectangle B~ is defined to be the (l+l)-st level

(space-time) grid Gt+ 1 occupying Bt. More specifically, if Bt occupies the l-th

26

level horizontal strip sf, then G~+1 consists of that subset of Vt +1 whose x com

ponents have subscripts

and whose t components have subscripts

(Recall that the subsequence <7'7I-L> depended on the levell.) This completes our

recursive definition.

Now we come to the most important definition of this thesis.

Definition. Let dv+ 1 , l = D, 1. ... ,A-l, be an l+l-st level grid, occupying an l

th level rectangle B~, whose mesh pOints are as given above. Let t be any time

such that·

(2.9)

and let #;1 be the greatest l + l-st level time division point not exceeding t. An

l+ l-st level refinement at time t, corresponding to B~ or dv+ 1 , is a sequence of

ordered pairs

R~+1 (t) = «XJ+l, VJ+l(t!n+ 1»: j = a(v)N(t), a(v)N(I)+1. ... , c.;(v)N(I»:

the first components comprise the sequence of l + l-st level spatial division

pOints contained in the horizontal sides of the' refinement rectangle B~

(equivalently, the sequence of x components of the grid pOints in dv+ 1); the

second components are the approximate solution values (if any) evaluated at

these spatial points, but at time t!n+1. Here vj+1(t) is an approximation to the

vector U(xj+1, t).

An important property of our definition is that an l + l-st level refinement

exists not only at l + l-st level time division pOints Tt+ 1, but also at "finer" time

division points Tt +2, ... , TA satisfying (2.9). (Alternatively, we could have

'.

27

defined refinemep.ts only for times TA satisfying (2.9).) However, solution values

for an l + 1-st level refinement are only updated at l + 1-st level time division

points. In the next section we will see why we defined a refinement as a

sequence rather than a set.

For l ~ 1 let Bt be any refinement rectangle, and Rt+ 1 its corresponding

refinement. A vertical side of Bt which does not lie on the boundary of the

region R will be called a coarse /fine interface. Similarly, the left or right end

point of Rt+ 1 will also be called a coarse/fine interface if it does not lie on the

left or right boundary of the region R.

The first level (or coarse) space-time grid occupies the whole rectangle

BP = R. Hence, the first level, or coarse, refinement is present at all times, and

higher level refinements are considered to be superimposed on it. (Strictly

speaking, we should not call this a refinement, since it doesn't refine anything.

We use this terminology to avoid special cases.) We will assume as given the larg

est wave propagation speed. This is usually known by the problem originator,

and determines the spacing of the coarse refinement.

Another factor which must determine the spacing of the coarsest·

refinement is the wavelength of any "background disturbances" to the

phenomenon of interest (see our model problem Pi later in this chapter for an

example). This too is assumed known; for guides to the number of mesh points

needed per wave length, see Kreiss and Oliger [1972]'

We will now discuss some further restrictions imposed on our refinement

rectangles. We will require that no two l-th level refinement rectangles in the

same l-th level horizontal strip can intersect or abut .. (But l-th level rectangles

in adjacent strips may abut.) Assume an l-th level strip contains two l-th level

rectangles B~ and Bt, having left and right vertical sides with x coordinates

28

I I d I I xa(JJ.). xCJ(JJ.) an xa(v). xCJ(v),

respectively. Without loss of generality. assume that the left side of the former

is to the left of the left side of the latter. cx.(J.L) < cx.(v). Then

G)(J.L) < cx.(v).

This is no restriction in practice; if two such rectangles overlap or abut. wesim-

ply consider them to be one rectangle.

In the last section we mentioned that the mesh should vary "smoothly" in

space -- i.e .. an l-th level refinement can abut a l+l-st or l-l-st level

refinement. but not a refinement of any other level. This restriction is enforced

by inequality (2.8a or b). which says that the rectangle B~ is properly "horizon

tally contained" in the parent rectangle B;-l. Actually. this restriction is too

severe because of boundaries. In (2.8) we allow the leftmost inequality to

become "~" when the parent rectangle abuts the left boundary. i.e .. cx.(rr) = O.

1-2
Similarly. when the parent B;-l abuts the right boundary (G)(rr) = IT N(;4»). we

jJ.=o

allow the rightmost inequality to become "~". In particular. if an l-l-st level

refinement occupies the whole spatial region and is too coarse over the whole

region (according to our error estimates). then the l-th level refinement will

occupy the entire region.

Let AI = k l / h t . Then our construction ensures that At = constant/ . For ~

simplicity. our implementation restricts the refinement ratios for l ~ 1 to be the

same. i.e .. N(t) = Nand M(t) = M. for l = 1. 2 A-l. This condition is not

essential. but it poses no real restriction. as we will see in Section 8.3. For con-

vergence studies. we shall in addition assume that M = N. so that AI = constant.

independent of l.

Suppose we want both descriptions to characterize the same mesh pOints.

How must we modify these descriptions to achieve this? Let us consider the

..

' ..

29

situation in time first. We claim that the second description is more general

than the first. To see why this is so, consider the blackened rectangle in Figure

2.1. If this rectangle contains no interior mesh point, the mesh of Figure 2.1

satisfies the first description. The time divisi.on pOints to, tl, {2, t 3 are shown.

These points also comprise the partition PI of the second description.

However, if the blackened rectangle contains six subrectangles, then this

mesh satisfies the second description but not the first. This illustrates the cri

terion for the first description to coincide with the second: .

Proposition 2.1. In the second description of the grid structure, choose a first

level partition PI of the interval.[O, T]:

If all succeeding partitions PL, l = 2,3, ... ,A-1 (2.7) consist of exactly the same

points as PI, then the partition PI of the second description coincides with the

partition (2.5) of the first description.

For, the first description requires the t coordinates of the horizontal sides

of all refinement rectangles to be adjacent members of the partition (2.5) of the

first description; this will be the case for the second description only if no new

pOints are introduced when constructing partition PL from PL- l ,

l = 2, 3, ... ,A-1. By the assumption in the first description that there are only

a finite number of step sizes k 1, k2' ... ,kA which are multiples of each other,

the partition pOints (2.5) are a subsequence of a set of equally spaced points,

just as PI is.

Our theory will assume the two descriptions coincide, and thus will use only

the first level partition, in the notation of (2.5). In this case, all horizontal strips

sf of the second description coincide with the first level strips sl. Henceforth,

we shall drop the superscript 1 for strips, which is the notation used in the first

description. Also, s 10 the number of strips, is shortened to s.

30

In practice, when we choose partitions as in this equivalence proposition, we

usually check the local error every 19 coarse time steps, where 19 is a small posi

tive integer. Thus every partition Pj. j ~ 1 is of the form

0= td < tJ < ti" < ... < trs-l)" < ti" = T.

In Section B.B we use the capability to check the error, and adjust refinements,

between coarse time steps. For the model problem studied there, we find that

this is no more efficient than using the partitions as above with '19-= 1. (But this

conclusion may not be generally true; see Section B.B.)

The partitions Pj must be chosen a priori, before the solution of the prob

lem.

Now consider the situation in space. We modify the second description as

follows. Let (x ,t) E: S;. be any point which is a grid point of more than one grid

B~+l, each such grid (and its associated refinement rectangle Bt) lying entirely

in strip Si' We shall say that the point (x ,t) is covered by more than one mesh

pOint. Then all such grids (resp. refinement rectangles) must be at different lev

els of refinement. At such a point, delete all but the grid point on the finest

level. Then, except possibly for times t = t;', each point (x ,t) E: R is covered by

at most one grid point.

Since the first definition allows no overlapping mesh points except possibly

for times t = ti, the grid points of the first and second descriptions now coin

cide. But how do the rectangles of the two descriptions relate? In strip Si'

i = 1, 2, ... ,S, let the highest level refinement rectangle be BZ· (Note that 1

depends on i.) Then B Z is identic al to one of the re ctangle s It x [t i -1, t i] in the

first description. If B1-1 is a refinement rectangle in this strip with the next

highest level. it will correspond to the union of three, two or one adjacent rec

tangles It x [t i - 1, tiJ of the first description (three if BZ abuts no boundary, two

if it abuts one boundary, and one if it occupies the whole strip Si)'

31

In general, if no rectangle in the i-th strip abuts a boundary, the l-th level

rectangle (of the second description) corresponds to the union of 2(?,-l) + 1 adja

cent rectangles of the first description. If some rectangle (of the second

description) abuts a boundary, then the number of rectangles in the union will

be fewer. Thus, it is quite inconvenient to define refinements in the first

description.

2.4. Operations on Refinements

In the last section, we observed that l-th level refinement rectangles in the

strip Si may not intersect or abut, but those in adjacent strips Si and Si+l may

abut. This leads to interesting consequences for refinements. For simplicity, we

shall assume that all partitions Pt are the same for l ~ 1, and use the notation

(2.5) for Pl'

We shall say that two refinements are equivalent when their first com

ponents (x coordinates) are the same, regardless of the time or the solution

values. Thus, for all times (2.9) encompassed by the refinement rectangle B~,

the refinements R~+ 1 (t) corresponding to B~ are equivalent. In this sense, we

can say that to each rectangle B~ or grid G~+l there corresponds one

refinement. This equivalence concept is useful for describing refinement mani-

pulations which do not depend on the differential equation calculations. Clearly,

only refinements with the same level can be equivalent.

Suppose first that there is an l-th level refinement rectangle B~ (l > 0) con

tained in the strip Si. = [} X [ti -1, ti]. Assume that the horizontal sides of B~

occupy the interval

X l < X < Xl a(,u.) - - Col(,u.)·

Also assume that no part of any l-th level refinement rectangle in strip Si-1 lies

in this interval. Then we will say that the refinement R~+1 corresponding to B~

32

has been created at time t = t i - 1. Similarly, if we replace Si-l by Si+l and t i - 1

by ti, we say that R~+l has been deleted at time ti.

Now suppose there are two l-th level refinement rectangles B~CSi and

B~ CSi+l' According to our definition, the refinement Rt+l corresponding to Bt

only exists for t i - 1 ~ t ~ ti, and the refinement R~+1 corresponding to B~ only

exists for t i ~ t ~ ti+l. We will now examine the possible relationships between

these refinements.

Suppose the rectangles Bt and B~ have the same left and right sides,

a(J.L) = a(l/) and CJ(J.L) = CJ(I/). Then the first components of the refinements

corresponding to these rectangles are the same. By our definition, the

refinements corresponding to Bt and B~ are equivalent. In this sense we may

say that a single refinement now exists for times t i - 1 ~ t ~ ti+l.

Now suppose that the refinement rectangles are situated as before, but

(with at most one equality), and no part of any other l-th level refinement rec-

tangle in strip Si + 1 lies in the interval

X L < X < xL a(.u.) - - CoI(.u.)·

Then we will say that the refinement Rt+ 1 has contracted at t = ti. to form the

refinement R~+I. By interchanging refinement rectangles and strips, respec-

tively, an analogous definition can be given for an expanding refinement.

If Bt and B~ are situated as before, but

and no part of any other l-th level refinement rectangle in strips Si or Si+l

occupies the interval

X L < X < XL a(.u.) - - CoI(V) ,

,.

33

then refinement R~+l has moved right at t = ti to become the refinement R~+1.

Analogously, we can define what it means for a refinement to move left.

Finally, suppose rectangle B~ is in strip Si as before, but strip Si+l contains

two (disjoint) l-th level refinement rectangles B~ and B~, with the former to the

left of the latter. Assume that

and that no part of any other l-th level refinement rectangle in strips Si or Si+1

lies in the interval

X , < x < x' a(v) - - '-/(n)·

Then the refinement R~+l is said to separate or split into refinements R~+l and

R~+l. Analogous definitions can be given for two refinements to merge into a

third.

The above are typical operations on refinements, but they do not exhaust

the possibilities (for example, a refinement could split into three refinements,

although this is quite rare). Fortunately, however, an exhaustive listing is not

needed. All that is required is an algorithm which takes a set of l-th level

refinements (l > 1) at time t = ti. i = 0,1. s-l and produces a new set of

such refinements. For each l, once the left and right edges of the new

refinements are determined (by local error estimates). this readjustment can

be done in a single left-to-right scan of the existing l-th level refinements.

One might ask why all this is necessary. The answer was given in Section

1.1. where we noted that we must not allow the information in "fine" refinements

to escape into "coarse" ones. Thus. we cannot throwaway any "information"

(the second components of refinements) from "fine" refinements (unless the

error estimates allow it).

34

In Section 2.6 we will see how these operations fit into our overall algorithm.

In Chapter 6 we will explain how these operations are implemented.

2.5. Difference Approximation

Having described the grid structure, we can now define our difference

approximations. We will first describe the general form of difference schemes

allowed, then give our first model problem, and finally specify the particular

difference schemes used on this problem. We will use the notation of Section 2.3

throughout.

In general, we will compute with explicit two (time)-level difference approxi

mations to (2.1) in the interior of refinements,

(2.10)

where t = t!n.,

Qo = Qo(l) = t Aj(x~+jht, t, ht)E? ,
j=-r

E = E(l) is the shift operator

q and r are nonnegative integers. v~(t) is an approximation to u(x~, t). and

Ft (t) = F(xt, t). (By the interior of a refinement, we mean all its points except

the r leftmost and q rightmost ones.) As initial condition we use

v~ (0) = f (a + IIh t), II = 0, 1, ... ,No. (2.11)

The coefficients A; are assumed to depend smoothly on their arguments.

The restriction to two-level schemes is necessary to simplify manipulations

with refinements. (When the spatial mesh is adjusted at time

ti.. i = O. 1. s -1, it would be awkward. and require more storage, to adjust

the mesh at previous time levels too.) This also Simplifies error estimation. If a

35

three':'level scheme were used with Richardson extrapolation-type error estima

tion (to be discussed in Chapter 5), then several additional past time levels

would have to be saved. This would be highly impractical in multidimensional

problems. Other than this storage limitation, there is no difficulty with error

estimation for multi-level explicit schemes. (This restriction does not exclude

two-level schemes with fractional time steps, such as two-step Lax-Wendroff.)

The restriction to explicit schemes is more fundamental. As· we have

observed, this is no restriction for purely hyperbolic problems, but canbe a res

triction for more complicated problems (e;g., coupled heat and sound). As we

will see, our algorithm calculates solutions at a given time level piecewise in

various parts of the interval a ~ :r: ~ b. Obviously, then, the restriction to expli

cit schemes is not merely for convenience.

In order to use the most convenient form of error estimation given in

Chapter 5 (three-level Richardson extrapolation), we shall make an additional

restriction on the interior approximation: The local truncation error (per unit

time step) must have the same order in both space and time. If this restriction

does not hold, or the approximation is impliCit, we must use difference approxi

mations to high-level derivatives, which is less convenient. Since we will most

often use interior approximations which are second order in space and time,

this restriction is not too severe.

At coarse-fine interfaces (between levell-l and levell refinements) we use

the same scheme as above on l-l-st level spatial mesh points, but with an

l-l-st level spatial step and (an integer multiple of) an l-th level time step. This

will be explained in more detail in the next section.

Finally, boundaries are treated the same as with a uniform mesh; at the left

boundary,

36

o
v~(t +k,) = 2; S~)v:'(t -uk,) + g~(t). J.£ = 0.1 r-1. (2.12)

a=-l

where

sf/') (l) = t ... C;~ (:#+jht. t -uk,. ht)E;.
j=-r

u = 0.-1

t = tln. r ~ r. and CS!;)+~.-l = O. The approximation at the right boundary is

analogous .'

Once again we have restricted ourselves to two time levels. for the same

reasons as before. We allow ourselves implicit boundary conditions here

(Syt) ~ 0) since we can first solve for the points on the right hand side of (2.12)

using the explicit interior approximation.

Notice -that the boundary formulas apply on any refinement level. If a level

l refinement abuts the left or right boundary. all the subscripts and operators

refer to the l-th refinement level. not the first level.

If we assume that the boundary approximation is explicit. and that its local

truncation error (per unit time step) has the same order in space and time.

then once again we can estimate the error using 3-level Richardson extrapola-

tion. But we do not do make this assumption, not only because it excludes too

many boundary approximations. but also because differences are less incon-

venient here.

We will now introduce our first model problem. It will be used both in our

computations in Chapter 8. and to help describe our algorithm in the next sec

tion. It is the first order wave equation ("color equation")

ut = -cUz.

u(x.O) = g(x).

u(O.t) = g(-ct).

a~x~b.O~t.O<c. (Pi)

a~x~b.

O~ t.

with exact solution u(x.t) = g(x-ct). We take a = O. b = 4. and c = 1. The

37

function g is taken to be a Gaussian pulse, traveling to the right with speed c,

superimposed on a sinusoidal background,

g(x) = exp(-a(x+*)2) + 0.lsin21l'(x+*),

with a = 200. The parameter a control the steepness and thickness of the pulse.

For a = 200, the pulse occupies about 8 percent of the interval [0,4]. Figure 2.2

gives an illustration of the trajectory of the pulse. This models more realistic

problems such as an atmospheric front or storm surge.

We will consider two different finite difference approximations to this prob

lem. In the first method we use a second order method (Lax-Wendroff) on all

refinements. In the second method, we use a fourth-order approximation

(Oliger, [1974]) on the coarsest refinement, and a second-order method (Lax

Wendroff) on all other refinements. This is to better resolve the sinusoidal back

ground.

We will need to define the forward, backward, and centered difference

operators D~, D"-, and D~ ,operating on l-th level refinements:

D~vy(t) = h,,-l(E - l)v y(t) = (VY+l(t) - vy(t»/h",

D"-vy(t) =ht-
1(1-E-l)V y(t) = (vy(t) -vY-l(t»lht ,

D~vy(t) = (2ht)-1(E - E-l)Vy(t) = (V Y+l(t) -vv-l(t»/2ht,

where we have omitted the superscript l on v. More generally,

D~(jht)Vy(t) = (2jht)-1(E; - E-;)vy(t) = (vy+;(t) - v y_;(t»/2jh",

for j = 1.2, ... Also, for l = 1. 2, ... ,Alet At = ktl ht .

The Lax-Wendroff approximation to our model problem in the interior of a

refinement (with t = t!n. = mlct) is

vJ(t+kt) = (I - cktD~ + *c2kI2D~D"-)vJ(t). (2.13)

We use the prescribed values

t

U (X,t)

x= I \------------------~~--~x

Figure 2.2 Gaussian Pulse Solution of
.

First Order Wave Equation
38

'.

39

(2.14)

at the left boundary; and upwind differencing

vj(t+kt) = (I - cktD~)vj(t) (2.15)

at the right boundary.

The formulas (2.14) and (2.15) are only used if a refinement abuts a left or

right boundary, respectively. We will explain later what to do at interfaces

between refinements.

The fourth order approximation (with k I = k, and omitting the superscript

1 on v) is

Vj (t +k) = Vj(t -k) - 2ck (~d (hI) - ~d (2h 1»Vj(t)

:: Vj(t-k) - CAI(Vj-2(t) - 8vj - l(t) + 8vj +l(t) -Vj+2(t»/6

in the interior of the coarse refinement. By using a four-pOint one-sided

difference approximation to '11.,;, we obtain the (third-order in space, second

order in time) approximation at the right boundary (with j = No)

vj(t+k) = vj(t-k) - CAI(-2vj-s(t) + 9vj - 2(t) + 18vj_l(t)

+ 5.5(vj(t+k)+vj(t-k»)/3.

We use (2.14) at the left boundary, with l = 1. In addition, we have to use special

approximations for points which are a distance hI from the left and right boun

daries. Again, these approximations result from using four-point uncentered

difference approximations to Uz. They are

Vj(t+k) =Vj(t-k)-CAI(-2vj_l(t) -1.5(vj(t+k) + vj(t-k»

+ 6Vj+l(t)-Vj+2(t »/3

for points a distance of hI from the left boundary (i. e. , j = 1); and

40

+ 2vj +l (t »/3

for points at distance hl from the right boundary (i.e . . j = No-l).

2.6. Solution Algorithm.

We now describe our algorithm on the model problem. We will explain the

method which uses the Lax-Wendroff approximation on all refinements. For con

creteness. assume we have the underlying coarse refinement 1. on which is

superimposed one finer refinement 2. (Usually the spatial region covered by

refinement 2 is a .proper subset of the region covered by the coarse mesh.)

Superimposed on refinement 2 (but covering only a part of the region occupied

by it) is a still finer refinement 3. This is an example of a recursive refinement.

The general case. in which there can be several refinements superimposed on

refinement 1. and even further recursive refinements. will then be clear.

As in the initial value problem for ordinary differential equations. we will

need to give a tolerance 0 on the local truncation error. which will be used to

decide where to refine the mesh. (We have only used absolute error since all of

our example problems vary between 0 and 1. In general. one should use a com

bination of relative and absolute error. as in Shampine and Gordon [1975].)

For the initial value problem for o.d.e.'s. Stetter [1979]. and others. have

shown how to estimate (but not control) the global error while the solution is

being computed. This requires only a small amount of additional computation

and storage for that case. Further investigation would be needed to apply this

to the initial boundary value problem. But even if were done. one would still

need to prescribe a local error tolerance.

We have implemented the algorithm. and estimated the error for this model

problem in a way which applies to more complicated problems. For example. in

our model problem P1 one boundary is an intlow boundary and the other is an

41

outflow boundary. Our difference schemes and error estimation do not take

advantage of this fact. The difference schemes on refinements use the same

treatment at the left and right coarse/fine mesh interfaces (except when a

refinement abuts the left or right boundary of the region). A later model prob

lem (P2 in Chapter 8) will show that our algorithm is indeed insensitive to the

direction of characteristics.

ASSuming we have a solution on all mesh points at time t = nkl' we proceed

to time t = (n+1)kl by advancing on the highest level refinements first, then the

next highest, etc. This can be described as working "inside out". (One can also

proceed from the coarsest level to the fi:nest, and this may be advantageous for

some types of problems.)

1. If the time t is a member of the partition PI' we first estimate the local

truncation error that would be made if we took one forward time step in the

level l refinement for l = 3, 2, 1 (this estimation is discussed more fully in

Chapter 5), but we do not actually take the step. Mesh points whose advance

ment would exceed the (absolute value of the) local error tolerance are marked

as needing refinement. These pOints are grouped into intervals. Several extra

"buffer" mesh points are added to both ends of each such interval. This will be

explained later.

For our discussion here, we will assume that the level 3 refinement pro

duces no level 4 intervals, and levels 2 and 1 produce exactly one level 3 and

level 2 interval, respectively .

. In general. there may be more than one refinement at each level (except

the first). In that case, the operations are done for all refinements on a given

leveL starting with the leftmost refinement.

2. For l = 3, 2 compare the intervals produced in step 1 with the existing

refinements. If these are not identical. refinements may have to be "moved",

42

created. deleted. merged or separated. If refinement l moves into a region

formerly occupied only by refinement l-l. we may need solution values that do

not yet exist at mesh points in refinement l. These are obtained by linear or

quadratic interpolation in space from solution values on the next coarser

(parent) l--l-st level refinement.

Creation of a new refinement is done the same way. by spatial interpolation

from its parent refinement. At any mesh adjustment time. an l-l-st level

parent refinement can give birth to any number of l-th level refinements. but no

higher level ones. An exception is made at t = O. If refinement(s) of the coarse

mesh are needed at that time. we obtain the new solution values directly from

the initial function f rather than from interpolation. This allows us to add as

many levels of refinement as are necessary. Thus. the method performs prop

erly even when the initial mesh is "too coarse".

If a refinement occupies a spatial interval I. it can be deleted when it has

no children. and the local error estimate of its parent in interval I is below the

tolerance.

3. Advance the solution at interior points of the finest refinement 3 from

t = nk 1 to the next level 3 time level t = nk 1 + k s. using (2.13) with l = 3.

4. At the interfaces between refinements 2 and 3 use a hybrid method. the

coarse /fine approximation corresponding to (2.13):

(2.16)

with l = 3. where the spatial operators act on the l-l-st refinement. We are

USing the Lax-Wendrofi' formula with space step h t - 1 and time step k t . This

amounts to using the Lax-Wendrofi' method on mesh l-l but replacing At-I by

ktl ht-I' This method was used by Ciment [1971]' Figure 2.3 shows the stencil in

the case when L = M = 3 so that the third level space step hs = h2/3 and the

third level time step k3 = k2i 3. Points A. B. and C are used to advance to point

,.

.~ F
h3

k2 E

~ A B r--..
mesh 2

k
3

_

I"'---.. C

mesh :3

t

t=

t=nk
I

XBL822·171

Figure 2.3 Coarse IFine Interface

43

44

D.

For a difference scheme (2.10) whose stencil is more than three mesh

pOints wide, we will need to use the coarse/fine approximation r times in Figure

·2.3 (and correspondingly q times at the right end of a refinement). This is done,

e.g. , for r = 2, by using the stencil illustrated in Figure 2.3 to get point D, then

shifting the stencil one finer mesh point to the right to get the point to the right

of D. (This involves a spatial interpolation in the coarser mesh, which is done as

in Step 2).

5. Repeat steps 3 and 4 until the next time level in refinement 2 is reached.

(In Figure 2.3, this would be M = 3 times.) In formula (2.16), the quantity

k" l = 3, must be replaced successively by 2k, (A, B, and C in Figure 2.3 are used

to obtain the value at E), 3k, (A, B, and C produce the value at F)

, ... ,Mkt = k'-l'

6. At level t = nk 1 + Mk 3 = nk 1 + k2' certain points (x, t) are covered by

both a second and third level mesh point. We already observed in our second

description of the mesh structure that we allow this: it is done for simplicity.

For these points, copy the solution values from refinement 3 to the appropriate

pOSitions in refinement 2.

7. For all points which are in the interior of refinement 2, but not in

refinement 3, advance the solution one time step k2 from t = nkl to t = nkl + k2

using (2.13) with l = 2. (We are proceeding "outward" by starting to advance on

coarser refinements.)

8. Now advance the solution one k2 time step at the interface(s) between

refinement 1 and refinement 2 using the coarse/fine approximation (2.16) with

l = 2. This takes us from t = nkl to t = nkl + k 2.

9. We now have all solution values on refinements 2 and 3 for t = nk 1 + k 2.

If . the partition P2 of [0, T] contained the time level t = nk 1 + k 2, it is time to

45

check refinements 2 and 3 for possible adjustment. We repeat steps 1 and 2, but

only for refinements with level greater than or equal 2. (Usually partition Pz

contains the same time division points as PI, so this step is omitted.)

10. Repeat steps 3 and 4, advancing successively M (= 3 in Figure 2.3) k3

time levels in the interior of refinement 3. from t = nk 1 + k z to

t = nk1 + k z + k3' then to nk1 + k z + 2ks, ... , finally to. t = nk1 + k z + Mk3

= nk 1 + 2k z. Next we repeat step 6 at level t = nk 1 + 2k z by copying solution

values from refinement 3 to refinement 2 here. Then we repeat step 7 to

advance at pOints which are in the interior of refinement 2 but not in refinement

3 from t = nk 1 + k z to t = nk 1 +2kz. Finally. we modify step B on the interface

between refinements 1 and 2 to advance one step from t = nk 1 to nk 1 + 2k z.

This uses formula (2.16) with l = 2. but with k z replaced by 2k z.

11. We now have all solution values on refinements 2 and 3 at time

t = nkl + 2k z. If it is time to adjust the spatial mesh (i.e .. if partition P z con

tains this time level). repeat step 9.

12. Apply steps 10 and 11 M -2 more times. At the end of the first applica

tion of step 10. we will have reached t = nk 1 + 3k z (from t = nk 1 + 2k z). We

then successively reach t = nk1 + 4k z nk1 + Mkz = (n+1)k1'

13. At level t = (n + l)k 1 certain pOints (x. t) are covered by both a point of

refinement 2 and a point of refinement 1. Copy the solution values at such

points from refinement 2 to refinement 1.

14. For points which are in the interior of refinement 1. but are not in

refinements 2 or 3. advance the solution one coarse (k 1) time step from t = nk 1

to (n +1)k 1.

15. Finally. if refinement 2 does not abut the left boundary. advance the

solution at the left boundary using (2.14) with l = 1. If refinement 2 does not

abut the right boundary, advance the solution at the right boundary using (2.15)

46

with l = 1. If some refinement (with level greater than one) abuts a boUndary,

we treat this at the same time an interface is treated in the above steps, but

instead of the coarse/tine approximation, we use (2.14) or (2.15) as appropriate,

with the appropriate levell.

An extremely important feature of this method is the use of a butl'er on

either end of any refinement (except the coarsest one), as mentioned in Step 1.

If we are estimating the truncation error for the refinement ~xJ J and the error

tolerance is exceeded between j = ex and j = CJ, then we instead refine from

j= ex - bt to j= CJ + bt , where bt is the butl'er length for refinements of level

l + 1. That is, both ends of the l + 1-st level refinement are padded with bt extra

cells of width h t . In generaL if our l-th level refinement requires several inter

vals of l +l-st level refinement (according to the error estimate), then each such

interval is padded as above. (This may cause some l +l-st level refinements to

merge.)

How do we choose bt ? From Figure 2.3 on the use of the coarse/fine

approximation, it is clear that bl should be at least one. For safety we make it

two. Another consideration is, How often do we check the local truncation error

(how fine is the partition Pt - 1) and what is the largest wave speed? (As we said,

we are assuming the largest wave propagation speed is known. In our model

problem it.is c.) For simplicity we shall assume that all partitions Pt , l ~ 1. are

the same, and that we check the error every 'l9- coarse time steps. Therefore, in

time kl a wave could travel left or right a distance of C'l9-kl ::: c'l9-'''lh 1 =
C'l9-A1Nt-1h.t, orc'l9-A1Nt- 1 cells of width ht . (Here the l-l is an exponent, not a

superscript.) So we take bt = 2 + rc'l9-A1Nt-11. where rx1 is the ceiling function

(the least integer greater than or equal to x). (For difference approximation

(2.10), bt must be modified by replacing 2 by q + 1 at the left end of a refinement,

and by r+1 at the right end.) Obviously, higher level refinements have larger

bufiers.

47

The buffer mechanism has several beneficial consequences. First, and most

important, it insures that the rapidly varying part of the solution does not

escape into the coarser region. As we saw in Chapter 1, this is absolutely essen

tial to the success of the algorithm. Secondly, this policy allows us to use

difference approximations at coarse/fine interfaces which would otherwise not

be accurate enough in the fine mesh. We can also estimate the local truncation

error at coarse/fine interfaces in a very simple manner (see Section 5.3). Third,

it allows "smooth" transitions in mesh width, as mentioned in Section 2.3. That

is. a level l refinement can abut a level l + 1 or l-l refinement. but not others.

This is important when using recursive refinements. Fourth. it keeps the

refinements from splitting into tiny pieces. because level l + 1 level refinements

which are closer than 2b l level l cells apart (before buffering) are joined

together. (If the local truncation error were large in absolute value but sud

denly changed sign. this might cause splitting into pieces.) We make this condi

tion even more stringent by joining together any levell + 1 refinements which are

less than 2bl +2 level l cells (of length h l) apart (before buffering). Fifth.

buffering allows us to specify a priori the times to check the local error (and

adjust the mesh). In particular, we need not check the error at every time step

(Chapter 8 shows that this is very expensive). We can instead check at every

coa:rse time step, or even every ~ coarse time steps. where ~ is a small positive

integer. Sixth, buffering contributes greatly to the robustness of the algorithm.

Buffers make the algorithm relatively insensitive to small inaccuracies in the

local error estimation.

Let us comment on the storage required for this algorithm. If we use a

two-level method and perform the operations in the order given. then we need

two levels of solution values, just as for a uniform mesh. As soon as all the solu

tion values in a refinement at a new time level are known. we can overwrite them

on the old solution values. (This would not have been quite the case if we had

48

advanced the coarsest mesh first, because of the use of the coarse/fine approxi

mation. But even in this case, only a slight amount of additional storage would

be required.) Thus the storage requirement for solution values is no greater

than for a uniform mesh with a similar number of solution values. A slight

amount of additional storage is needed for pointers and indices; this is minus

cule, compared to space for solution values. Next, free space is needed to

separate the solution values on refinements. The amount is variable, but can be

chosen quite small. (This will result in more memory repacking; see Chapter 6.)

Finally, storage is needed for error estimates; but these can be done a

refinement at a time, so we only need two vectors (when solving a scalar equa

tion), each the size of the largest refinement. We should note that we did not

implement our algorithm in a way which minimizes the amount of storage.

So far we have described the algorithm for a single equation. What are the

modifications necessary for an n x n (coupled) system in one space variable?

For many problems that occur in applications, sharp gradients of different

components of the vector u tend to occur in approximately the same place, and

travel together. For such problems, a simple modification of the above scheme

will suffice. A refinement, instead of conSisting of a scalar set of solution values

evaluated at l-th level mesh points ~vj(t~)l is now a vector set of solution values

evaluated at these mesh pOints. So we simply store n times as many solution

values. Importantly, the refinements are the same for each component, so the

manipulation of refinements (creating, destroying, merging, separating, moving)

is unchanged. Furthermore, evaluating the difference equations for any mesh

point at spatial position x poses no difficulty, since all components of the

approximate solution will also be available at x. To decide where to refine, we

estimate the error at a pOSition x for each component, and then compare the

maximum (absolute value) of these estimates to our tolerance.

49

When the components of the solution u have steep gradients at different

positions. we can use our algorithm. but it may refine regions which are hot

necessary for some components. and this may affect the efficiency of the algo

rithm. To ameliorate this. two modifications would be needed in the algorithm.

The most important is that at a position x where v needs to be evaluate·d. not all

components of v will be available. since x may be in a refinement for one com

ponent. but not in a refinement for another component. One must then interpo

late (in space) to find v at x for the missing components. By assumption. this is

justified. because the missing components do not have large gradients at x.

The other modification is the need to account for n sets of refinements.

The amount of extra storage required (beyond space for solution values) would

be very small. But considerable additional complexity would be introduced into

the mesh manipulations. So we did not implement this extension.

CHAPTER 3

Stability

In this chapter we will examine the stability of our scheme. We will need the

stability of our scheme to justify computing with it, and also to use in conver

genceresults (stability plus consistency implies convergence).

The usual stability definition is Definition 3.3 of Gustafsson, Kreiss and

Sundstrom [1972] (hereafter referred to as the GKS definition). We show that

this definition does not lend itself to proving convergence on our refined mesh

system, and following Berger, Gropp, and Oliger [to appear] propose a new sta

bility definition which does lend itself to proving convergence. We then show

that under mild assumptions, a method which is stable for a mesh consisting of

one strip (in the sense of Section 2.2), is also stable for any number of strips.

We then state a stability proposition for our mesh refinement scheme.

3.1. Preliminaries

This section introduces some notation and definitions in what follows. We

will assume the coefficients A, B are constant. We will also use the notation of

Section 2.2 instead of Section 2.3 for mesh pOints and difference approxima

tions.

We assume that there is an upper bound K on the ratio of spatial step sizes:

Let hi :;: max; hJ, and assume hi I min; hj ~ K. (This is automatically ensured by

our scheme because we select a maximum refinement level in advance. In fact,

K :;: Nil-I.) This will ensure that all ~ have the same asymptotic order as h --+ O.

Let h :;: hI:;: maXi hi, and k :;: k I :;: maXi.; kJ. We denote an approximation to

u(xl. tl.m) by vJ(tJ.m).

50

51

We can specify a uniform mesh by specializing our notations. Specifically.

there is only one horizontal strip. S 1 = [a. b] x [0. T]. all hJ are equal. and

denoted by h. all mJ = 1. and all kJ are equal. and denoted by k. The mesh point

(xJ. tJ.m) is abbreviated to (Xj, tm), The approximation vJ(tJ,m) is abbreviated to

Vj(tm).

We will now rewrite our difference approximations in the new notation. Our

left boundary approximation (2.12). with t - t i - t i - p..m - r.m. k - k i - k i
- P. - r·

i = 1. 2 S • m = O. 1. mJ. is

o .
v~(t+k) = L: sfr)v~(t-ak) + g~(t). J-L = 0.1. r-l, (3.1)

a=-l

where

-
s~)

a = t elf) (Jt!.+j. k:+j) Ej.
j=-r

a = 0.-1.

(The shift operator E tacitly depends on i and r also. Furthermore. sfr),

depends on i as well.) We assume eS!;.)+P..-l = O. J-L = 0.1. r-1. Note that all

the coefficients are the same as before (except we have assumed they are con

stant); only the numbering of the solution values has changed.

Similarly. the right boundary approximation. with i. m as before.

t = tjy~-p.,m. k = kjy~_p.. is

o
vjyi-p.(t+k) = L: SJ-P.-l)vkcq(t-ak) + g~p.-dt). J-L = 0.1. ... ,q-l, (3.2)

a=-l

where

A

= ~ C!-P.-l) (hi- kl-)Ej I..J
A

).a Ni-q+j' Nj.-q+j • a = 0, -1.
j=-r

Here q and r are nonnegative integers and q ~ q. If we had introduced "ficti

tious" boundary points as Gustafsson, Kreiss, and Sundstrom did, we could have

written our boundary conditions in their form. or in the form of Gustafsson

52

[1981]' We did not do so because it simplifies our analysis in the next chapter.

It is important, both theoretically and practically, to confine the dependence

between strips Si· and S1.+1 to the pOints with t = ti.

At the T leftmost fine pOints at the left end of a refinement (which does not

abut the left boundary), and at the q rightmost fine mesh points at the right end

of a refinement, we use the. coarse/fine approximation, as described in Section

2;5. At all other points our interior approximation (2.10), (with t = tt.m),

becomes.

(3.3)

q

Qo = Qo(i,v) = 2: Aj(ht+j' kt+j)Ej.
j=-T

As initial conditions we will prescribe

vl(O) = Ij' j = 0, 1, ... ,No, (3.4)

where the values Ij are arbitrary.

We next need to define discrete l2 norms. This cannot be done exactly as

for a uniform mesh. The discrete l2(X) norm can only be defined at coarse grid

points (more generally, if we did not use an underlying coarse mesh, only at the

time division points t i of the strips Sd. For, as is evident in Figure 2.3, if a point

in a level l refinement has coordinates (x, t), and is not a coarse mesh point,

there may exist no other grid points in other refinements with the same coordi-

nate t.

A similar difficulty occurs with the l2(t) norm. This can be defined for all

strips 0 ~ t ~ T only on coarse grid pOints. If we did not use an underlying

coarse grid, the l2(t) norm could be defined for 0 ~ t ~ T only at the boun

daries. However, the l2(X, t) norm can be defined in a natural manner, by

adding l2(X, t) norms on each strip.

53

Definition 3.1. For i = 1. 2, ... , s the discrete l2(X) inner product of two

vector grid functions v and w defined on our grid at a time division point t = t1.

in strip S1. is

N

(vi(ti), w1.(ti))z = ~ hJvJ(t1.)·wf(ti) , (3.5)
j=O

where we have defined hb = h 1. The discrete l2(X) norm is given by

(There are two spatial meshes at the time division pOints t = ti; the definition

above was for the mesh obtained before adjustment. The norm for the mesh

obtained after adjustment is Ifu1.+l(t i)llz.) AJ3 usual, • denotes the conjugate tran-

sposeof a vector.

For certain purposes we will need an alternative definition of the l2(X)

norm. If u(xj~t) is an approximation to vj(t), the above definition is the rectan

II

gle rule O(h) approximation to Jlu(x,t i)1 2 dx. We could also have approxi-
II

mated this integral by the trapezoid rule, which provides an O(h2) approxima-

tion.

Definition 3.la In the formula (3.5) for the l2(X) inner product of two gridfunc

tions, replace hf by (hf)', where

for j = 0 or j = Ni ,

at coarse/ fine interfaces xi,
otherwise.

The norm corresponding to this inner product, called the trapezoidal l2(X)

norm, will be denoted by III . II~.

It is well-known that, for uniform grids, both norms are equivalent, that is,

there exist constants eland c 2, such that

54

Definition 3.2. The discrete l2(t) inner product of two vector functions v and w

on the strip 8 i = [a, b] x [ti-l. ti] is given by

mJ:-l
(vJ(·), wJ(.»t,i = L; kJvJ(tJ.mrwJ(ti.m).

m=O

The discrete l2(t) norm on the i-th strip is given by

Definition 3.3. The discrete l2(x ,t) inner product of two vector functions v and

w on the strip 8i is

The discrete l2(X ,t) norm on the i-th strip is

The discrete l2(X,t) inner product for the entire region R = [a, b] x [0, T] is

then given by

s

(v, w)z.[O.T] = L: (v, w)z.t.i'
i=1

and the discrete l2(X ,t) norm for the region is

For certain purposes we will need a grid defined for -00 < x < 00, so on the

i-th strip 8i , we extend our grid uniformly to the left of x = a, with space and

time steps hi and ki, respectively. On 8 i we Similarly extend the mesh to the

right of x = b using space steps h'k. and kj.,,(. These extensions produce no new

coarse I fine interfaces.

55

3 .. 2. Need for a New Stability Definition

As we mentioned at the beginning of this chapter. to relate the local trunca-

tion error to the global truncation error. we need to use a variety of other

results. One such result is Gustafsson's [1975]. work on the convergence rate

for approximations to the initial boundary value problem.

This work was based on the Gustafsson-Kreiss-Sundstrom (GKS) [1972]

definition of stability. As usual. Gustafsson showed stability plus consistency

implied convergence on a uniform mesh. In this section. we show why the GKS

stability definition cannot be generalized for our refined grids. and present the

alternative stability definition of Berger. Gropp and Oliger [to appear].

In order to give our generalization of the GKS definition. we will need to

extend our integration to t = 00. To do this. we can add additional strips Si

beyond t = T. We require that the "width" ti+l - ti of these strips for ti ~ T be

the same. Then the following is a direct generalization of the GKS definition 3.3

for the right quarter plane [0. 00) x [0. 00). rather than our vertical strip

[a. b] x [0. 00). (We set a = O. remove the right boundary condition. use the

extended mesh for 0 ~ x < 00. and define the l2(X.t) norm on the extended mesh

in this definition only.)

Definition 3.4. Assume that.the initial data f i (3.4) in the difference approxima-

tion are zero. Let A = kIf hI = constant. independent of l. The approximation is

stable if there are constants Ko > O. ao ~ 0 such that. for all a > ao. for all k. all

mesh spacings of the type described. all left boundary functions g J.I.' and all inho-

mogeneous terms F.

56

This definition seems plausible on the surface. We have merely applied the

GKS definition on each horizontal strip. and added. (We have tacitly assumed

that on each strip. the GKS definition applies even though our mesh is nonuni

form. We will discuss this later.) But there are several problems with this

approach. if we wish to use this definition to prove convergence.

The first is the assumption that the initial data f are zero. This may be

acceptable for t = O. but after we integrate over the strip S 1. we in effect start a

new initial boundary value problem at t = t 1. and now the "initial" data is not

zero. It is difficult to incorporate a nonzero f into the GKS definition. since it

was derived using Laplace transform. However. it is necessary if we wish to use

it to prove convergence. For. in an interval 0 ~ t·~ T the number of strips Si

becomes unbounded as h O. The solution at t S = T depends on the values of

the solution ("initial data") at all previous strips. but this dependence on values

at times t lS
-

1. to t s - 2 tl. has to be removed if we want to prove conver

gence. This can only be done if f appears explicitly.

A second difficulty is related to the first. The GKS definition assures us that

exp(-at) times the solution is in l2(X.t). but for any fixed t does not assure us

that the solution is unconditionally in l2(X), (Compare Theorem 3.1. GKS). In

order to integrate over a new strip Si. we wish to treat the solution values at

t = t i - 1 as "initial" values. and this requires that they be in l2(X),

A third (less important) difficulty is the Laplace transform parameter.

(Recall that a is the real part of the Laplace transform parameter s = a + iG),

and the right half-plane in which the transform and its inverse converge abso

lutdy is 1s: Re s > aoJ. Call ao the "abscissa of convergence".) If we apply the

GKS definition "stripwise" and add. we would need to be assured that the abscis

sas of convergence ao for each strip were uniformly bounded. (If we were deal

ing with a quarter plane problem with constant coefficients and no

57

undifferentiated terms. we could take o.~ = O. Otherwise. 0.0 may not be expli

Citly computable.)

The above remarks should not be taken as a criticism of the GKS definition;

only as pointing out that their definition is unsuitable for our purposes.

Motiv.ated by these considerations. Berger. Gropp and Oliger [to appear]

have given a new stability definition. It applies to approximations in any number

of space dimensions. and is the discrete analog of the following well-posedness

condition for differential equations.

Definition 3.5. Let n be a region in real Euclidean n-space Rn. Let R be the

space-time region n x [0. T]. In R. consider the differential equation

Lu = F. x E: R.

where L = at + P(x.t .az). together with initial condition

u(x. 0) = f (x). x E: n.

and boundary conditions

Bu(x. t) = g(t). x E: an.

where an denotes the boundary of n. Let 11·llo.II·IIIlO)([O.T]. 'and 1I·llo)([O.T] denote

the usual L2 norms in space. time (evaluated at the boundary). and space-time.

respectively. This problem is said to be well-posed if for any T ~ 0 there exists a

constant K; > 0 such that. for all f . g and F. the estimate

ltu (.. T)lIo + ltu (x . .)llllo)([O.T] ~ K;[llflio + Ilgllllo)([o.T] +IIFllo)([o.T])

holds.

The analog for the discrete approximation (3.1)-(3.4) with for a uniform

mesh is then obvious.

Definition 3.6. Let A. = k 1/ hi = constant. The difference approximation (3.1)

(3.4) on a vertical strip [a, b] x [0, T] is stable for a uniform mesh if for any

58

T > a there exists a constant KT > a such'that, for all F, g~, and f, and for all

k 1> a such that T = mk 10 m integer, an estimate

ltv (T)II: + ~~ltvJI[o.Tl + ~~IIVNo-JI[o.T]~KT[lIflb + :~qllgJI[o.Tl +IIFlb.[o.Tlj

holds. (It is well-known that KT can be replaced by K1exp(aT) for some constant

K1 > a and some a.)

It is not too ditIicult to extend this definition to our refined mesh scheme so

that it can be used to prove convergence. We proceed in two steps: (1) Extend

this definition to our refined mesh on one strip: (2) extend it to several strips.

To extend the definition to one strip, it is only necessary to examine the

coarse I fine interface between two refinements. The question is whether such an

interface introduces any additional terms into the stability definition given

above. The answer is no. The reasoning follows the work of Ciment [1971] and

Oliger [1976]. To consider the stability near this interface, one extends the

mesh on the left side to -00 (in space) and on the right side to "". Thus, one has

two quarter-plane problems. The left quarter plane is folded along the

coarse I fine interface, resulting in a right quarter plane problem for a coupled 2

x 2 system. The interface conditions become hnmogeneous (coupled) boundary

conditions. Since only inhomogeneous boundary conditions enter the stability

definition, the latter stays the same when a uniform mesh is replaced by one

strip of our refinement scheme.

(This discussion has assumed that the time steps in the two quarter planes

are equal. If they are not, then there is no analysis to support our discussion.

However, computations by Oliger, Ciment, ourselves, and others seem to indi

cate the truth of the assertion even in this case.)

Next, we need to extend this definition to several strips. Before doing this,

we need to introduce an additional complicating .. factor for our refined grids:

59

Recall that at times ti, i = 0, 1, ... ,s -1 we adjust the spatial mesh by interpo-

lation. This produces an interpolation error, which we will need to account for in

our analysis. (Note that this error arises even if we ignore the differential equa

tion we are approximating.) We will examine its magnitude in the next chapter.

For i = 0, 1. ... ,s -1 we will define this error I(ti) by

(3.6)

We will now extend the stability definition to two horizontal strips; the gen-

eral case then follows by induction. For i = 1,2, . . . ,s and any grid function w

we first define the boundary sum of w at the left and right ends of the strip Si

as

(A similar definition holds for the l2(t) norm of w on Si .) Then for the strip S 1

and similarly, on the strip tl ~t ~ t 2 = T, using V 2(t 1) as initial data,

Adding these, using (3.6) for i = 1 and then subtracting I~ l(t l)lIzfrom both sides

gives

2

Ilv2 (t
2)llz + .2: 2: IIvJllt~-l.til

l=l~a

~ Klea(tLtl)[I(tl) + 11F1lz.lt l,t 2 j + 1JlgJlltl.t21] (3.8)

+ (K,.a(t'-t ') - llllv l(t ' llb + Kleatl[lIvl(Olll% + 11FI1%.(o.t'] + ~E~IIg,.JI(o.t']]'

We wish to eliminate the dependence on V1(tl), so we use inequality (3.7) to

replace that term on the right of (3.8), use (3.6) again with i = 0, and use (3.4)

60

to obtain

where

It is now clear what the stability definition should be for any number s of strips:

Definition 3.7. Let X = k t I h t = constant, independent of l. The difference

approximation (3.1)-(3.4) on a vertical strip [a, b] x [0, T] is stable for a refined

mesh (as described in Section 3.1) if for any T > 0, there exists a constant

KT > 0 such that, for all positive integers s, all sets of time division points

0= to < t 1 < ... < t s - 1 < t S = T, (3.9)

all k t > 0, l = 1, 2, ... ,A, satisfying our restrictions for refined meshes, and all

F, g J." I, and f, an estimate

S

IIv S (T)11: + .L: L:1~JI[t~-l.t~]
\=1 }.'=fJ

~ KT[lIflb + IlFlb.[o.T] + i.~11qllg JI[t~-l.t'] + i.~1 I(ti.-1)).

holds.

Our extension to several strips, then, will be complete if we show that KT is

uniformly bounded, independent of the number of strips s. For the general case

of s strips (3.9), the corresponding KT will be a maximu:.n of s expressions of the

form

61

for i = 1. 2 s. If all (positive) powers of Kl are bounded by a uniform

bound Ms. then this maximum will be bounded uniformly for any number of

strips s in the interval 0 s-; t s-; T by Mseo. T if ex ~ O. and Ms if ex < O.

The following assumption will ensure the uniform boundedness of the

powers of K 1:

Assumption 3.1. There exists a k ~ > 0 so that. for 0 s-; k 1 s-; k~ and 0 s-; t s-; T.

(a) Kl = 1 + O(k 1). that is. there exists Ml > 0 so that Kl s-; 1 + M 1k 1;

(b) ski = constant = C1.

Assumption (a) is natural if one defines the solution operator E(t 2. t 1).

which takes a solution at time t 1 and produces a solution at time t 2 > t 1. When

t2 = t 1• E is the identity operator. Assumption (b) is only a very slight restric

tion. It says that as the largest time step k 1 becomes small. the number of

stripss (in the same fixed time interval 0 s-; t s-; T) becomes large. In practice.

when we halve hi (and hence k 1). we can either keep the division pOints t i the

same. or use twice as many division points. To control the local truncation

error; we do the latter. and this fulfills the assumption. (This assumption is an

analog of our restriction on spatial step sizes in Section 3.1. but is a milder res

triction.) If we check the local truncation error every". coarse time steps (with

". fixed). this will automatically fulfill the assumption.

If assumptions (a) and (b) are satisfied. then the product of any number of

factors Kl is bounded. For.

We have shown

" Proposition 3.1. If the difference scheme (3.1)-(3.4) is stable in the sense of

Definition 3.7 for one horizontal strip of a refined mesh. and if Assumption 3.1

holds. then it is also stable in the sense of Definition 3.7 for any number of

strips.

62

We believe the GKS stability definition does not lend itself to a proposition of

this kind.

3.3. Stability of Refinement Algorithm

In this section we shall outline results which we believe are true for our

mesh refinement algorithm.

For a uniform mesh, a scheme is stable in the sense of Gustafsson, Kreiss,

and Sundstrom if it is stable in the sense of Definition 3.6, either for a quarter

plane or strip problem. We believe that the converse is not true in general; that

is, the new definition is stronger.

This means that each individual difference scheme must be proved stable

ab initio. Certainly, however, a dissipative difference scheme such as we have

been using will be stable under almost any (reasonable) definition, for a uniform

mesh. In order to prove this for the new stability definition, one cannot use the

normal mode analysis as in the GKS approach. Instead, the energy method is

appropriate.

For a refined mesh, we showed in the last section that we need only con

sider one horizontal strip. Then a question which arises naturally is stability

along a coarse/fine interface. This question already has been examined (using

the GKS definition) in Ciment [1971] and Oliger [1976] for the case of equal time

steps on both sides of the interface. Oliger found that if leap-frog was used on

both sides of the interface, certain restrictions on the refinement ratio needed

to be made. But if the difference scheme was dissipative on one side of the

interface, all stability problems vanished. Since we are using refinements

throughout the region, and possibly recursive ones, this suggests using a dissi

pative scheme throughout the region.

,.

63

Still to be examined is the st?-bility (in the sense of either GKS or Definition

3.6) along a coarse I fine interface for unequal time steps.

Even though our analysis is far from complete, we believe that our scheme

is indeed stable in the sense of Definition 3.7.

CHAPI'ER 4

Error Analysis

It is clear from Chapter 2 that the success or failure of our algorithm will

hinge on the reliability and efficiency of the local error estimation process,

because this is what decides where to locate refinements. And in the next

chapter we will see that estimating the local error in turn demands a knowledge

of the behavior of the global error. Thus, this chapter will answer the following

questions, which are of interest not only in their own right, but also for the suc

cess of the algorithm:

1. How does the order of accuracy of the interior, boundary and coarse lfine

interface approximations, and the interpolation affect the global error?

2. Does mesh refinement increase the (global) order of accuracy of a

difference approximation (compared to using a similar approximation on a

uniform mesh)?

3. If not, can some theoretical arguments be given to justify mesh refinement?

Since our algorithm has two basic convergence-inducing parameters (the

maximum step size hI and the local truncation error tolerance 6) instead of one,

we first discuss different modes of convergence. Next we prove a theorem relat

ing the pOintwise interpolation error to its l2(X) norm.

The chief result giving the rate of convergence for difference approxima

tions to the initial boundary value problem is due to Gustafsson [1975]. It

bounds a weighted l2(X,t) norm of the global error in terms of the local errors.

We restate (but do not prove) his result for a scheme which is stable with

respect to the new stability definition introduced in the last chapter (Proposi

tion 4.1). This proposition bounds the l2(X) norm of the global error in terms of

64

,.

65

the local errors.

Based on this proposition, we prove another proposition, which assures us

that the same rate of convergence obtains even when we economize on mesh

pOints by placing fewer in regions where the solution is not changing rapidly.

This result (Proposition 4.2) is based on the approach of de Boor [1973Jwhich

was applied by Pereyra and Sewell [1975] to solve boundary value problems for

ordinary differential equations: at each time rio choose a mesh which (approxi

mately) equidistributes the local truncation error. This result provides the

required theoretical justification for our method and also suggests where to

place refinements.

In order to obtain a practical algorithm, still further compromises must be

made. Although some numerical algorithms for boundary value problems in

o.d.e's actually do use the equidistribution criterion more or less directly

(Lentini-Pereyra [1977], White [1979]), this process is much too expensive to

implement at every time step of a time-dependent calculation. Furthermore,

for the reasons given in Section 2.2, we want to use piecewise uniform meshes.

By doing so, and by using recursive refinements, we can achieve the effect of

equidistribution.

A final compromise involves getting bounds for the local truncation error.

de Boor [1975a, b] has giv'en bounds for derivatives in terms of differences, and

in principle we could use these for our local error estimation. However, we shall

show in Chapter 5 that these bounds are hopelessly conservative. We are forced

to estimate, rather than bound, the local truncation error, and even then, we

estimate only leading terms of the asymptotic expanSion of the local error,

Having made all these compromises, we then implemented four methods for

estimating the local truncation error. These are explained in Chapter 5. We

apply three of these methods to our model problems in Chapter B.

66

4.1. Modes of Convergence

Let us first discuss what we mean by convergence. In all cases we let

A = k t I h t = constant. independent of l. Throughout this chapter we shall

assume the exact solution is sufficiently smooth .. We shall also make Assumption

3.1 of the last chapter. There are several possibilities.

(a) We could hold our refined mesh and the local error tolerance 0 (Section

2.6) fixed. and let the maximum possible refinement level A increase without

bound. This will not produce convergence. since (for smooth solutions) increas

ing A beyond a certain point will introduce no further actual refinements (as we

will see in Section 8.3). We recommend computing with a large enough level of A

(say 10) so that the algorithm can refine as much as it pleases. In the rest of

this chapter we assume this has been done.

(b) Keep the local error tolerance 0 and the maximum refinement level A

fixed. and let the largest spatial step hi approach zero. If we take a sufficiently

large value for A as above. then the algorithm will refine as much as it needs to.

Furthermore. (for smooth solutions) our method then has a property which

leads to Simplified analysis: For sufficiently small hi. our refined mesh becomes

a uniform mesh. This is because of our local error tolerance. If it is held fixed

and hi approaches zero. then so do all h t . Hence. our local error estimates (to

be discussed in the next chapter) will ultimately become less than the tolerance

6 at every mesh point on every refinement level. Thus. no refinements will ulti

mately be introduced in the first level (coarse) mesh. This type of convergence

is not desirable. since the advantages of refinement are ultimately lost.

(c) One might object to the above procedure. on the grounds that the local

error tolerance 0 should not be held constant. After all. to study convergence in

o.d.e. initial value solvers. one gives a decreasing sequence of local error toler

ances. and (until the round-oft' level of the machine is reached) this produces a

67

decreasing sequence of maximum mesh sizes. But our -algorithm is different.

Decreasing the tolerance does not directly decrease the largest mesh spacing

hI' However, for any refinement level l and any fixed time, we can choose a

sufficiently small tolerance 0 so that the entire spatial region will be covered at

that time by one l-th level refinement. Thus, the effect is as though the the larg

est spatial mesh size has been reduced from hI to h" at that time. However, the

same 0 may not work for all times; this makes the method difficult to analyze.

In addition, this method does not satisfy Assumption 3.1, since the number of

strips s remains constant (instead of increasing) as 0 is decreased, if we adjust

the mesh every ~ coarse time steps. To overcome these problems we need to let

hI depend on o.

(d) A fourth method would let hI'" 0 and choose 0 as a function of hI' so

that 0 ... 0 also. (Alternatively, we could let 0 ... 0 and choose h I as a function of

0.) If one knows the order of the global error, one could choose 0 = C(hI)P for

some constant C. This is certainly the theoretically most appealing method, and

we shall use it in our analysis of this chapter, and in our numerical experiments

in Section 8.5. If we use this method, then the grid does not approach a uniform

coarse grid as hI ... 0, as in method (b). Rather, the ratio of the width of any

refinement to the width of its parent should approach a constant as hI ... O.

However, for checking the asymptotic behavior of the program in Section 8.5 we

shall also use method (b), since it does not beg the question by assuming the

behaVior of the global error.

4.2. Interpolation Error

As we mentioned in the last chapter, in addition to the usual truncation

errors, for a refined mesh we have another source of error-the interpolation

error I(t'i) at the time division points t'i, i = 0,1. ... ,s -1. How does the tra

pezoidal norm Illv 'i(t'i)lIb change when we readjust the mesh to produce

68

Theorem 4.1. Let our refined mesh be as in Section 2.2, with horizontal

strips Si' i = 1,2, ... ,s. At time division points ti, i = 0,1. ... ,s-l, obtain

new approximate solution values vi+l(fr:) from the old ones vi(ti) by (a) linear or

(b) quadratic interpolation in space. Then for the method (d) of convergence,

as h ... 0,

regardless of the (two-level) difference scheme used. Here h is the maximum

mesh size, and A = hl / kl = constant independent of l.

Proof. It is sufficient to assume we are dealing with one levell spatial inter-

val at time t = t i for case (a), or two for case (b), in (each of) which are interpo

lated N -1 (resp. 2N -2) new level l + 1 approximate solution values. (N is the

spatial refinement ratio.) For, as described in Chapter 2, we are allowed to insert

only one level of refinement at each ti, except at t = O. (At t = 0 we can use the

initial condition directly, producing no interpolation error.) We are allowed to

delete more than one level at a time, but in that case we can prove our theorem

recursively a level at a time. Without loss of generality, we shall assume that

new pOints are introduced but not removed.

Let us now examine linear interpolation. We will use a Simplified notation.

On one levell interval [xc, XN] the contribution to the trapezoidal sum IIlvlll1 is

(The 2's are now exponents, not superscripts.) For N ~ 2, we use linear interpo-

lation to obtain approximate solution values v l' V2, ... , VN-l' and we form the

new contribution

N-l
1:2 = h!+1[}~Vff + 2: v/ + J0;»]

j=1

to the trapezoidal rule sum. We wish to compare this to the previous sum 1:1, We

69

use the formula for linear interpolation

Vi = Vo + 1i<VN - Vo). j = 1, 2 N-l,

and substitute in ~2' Let u be the exact solution. Since the method is conver

gent. we can assume that the global error e = u - v is O(hfJ) as h 4 O. for (3 ~ 1.

Therefore.

After some elementary manipulations we obtain

Now let II be the number of levell intervals in -which we interpolated. Then

the O(h3) term is multiplied by II. If we use method (d) of convergence. then

ultimately II is a fixed fraction of the region a ~ x ~ b (i.e .. II/ No = constant as

h 4 0). So IIh = (II/ N 0)(b -a) and one power of h is lost. This proves the first

assertion. (If we had instead use~ method (b) of convergence. then II 4 0 as

h 4 O. and one power of h is not lost.)

For quadratic interpolation on two intervals [xo. XN]. [XN. X2N] of the levell

mesh. the contribution to the trapezoid rule sum is

We wish to compare it to the sum

2~1 ~ - 1,- [lL..2 + v
J
.2 + lL.'2N2]. ':'4 - "'I + 1 7£u 0 7£u

1

where v 1. V2 • ...• VN-1. VN+1• V2N-1 result from quadratic interpolation

. j(j-N)
Vi = Vo + ~N VN - vo) + 2 (Vo - 2VN + V2N).

2N

-1'0 -

After simple manipulations. this becomes

Using

we obtain ~3 + O(h 3). By the same arguments as before. we lose one power of h.

If we use the rectangle rule for the l2(X) norm (II ·11z). a similar proof shows

that we obtain O(h) instead of O(h 2) for either type of interpolation. This latter

norm is more suited for our analysis to follow.

4.3. Rate of Convergence, I

Before deriving our main convergence result (Proposition 4.2) we will state.

but not prove. the analogue of Theorem 2.1 of Gustafsson [1975]. on the rate of

convergence of difference approximations to the initial boundary value problem

for hyperbolic systems in one space dimension. Our analogue uses the stability

definition given in Chapter 3 instead of the GKS definition. Thus the result is in

terms of the l2(X) norm of the solution instead of the weighted l2(X.t) norm.

Aside from this. the only differences in our proposition are the change from the

quarter plane to strip. the inclusion of interpolation error. and the compatibility

assumption (4.1). which is a weakening and generalization of a similar assump-

tion of Gustafsson·s.

As an application of this proposition. suppose that one uses an O(h 2) inte

rior approximation and O(h) boundary approximations. Also suppose that we

use linear_ interpolation (O(h 2)) to obtain solution values on l + 1-st level

"

71

refinements from l-th level refinements, and an O(h2) approximation at

coarse lfine interfaces. Finally. suppose that this scheme is stable in the sense

of Definition 3.7. Then, subject to certain compatibility and smoothness assump

tions, this proposition says that the global error is O(h2).

For simpliCity. we shall eliminate the initial error at t = ° by absorbing it

into the interpolation error there, since we are using a one-step (two time level)

method.

We now state the analog of Gustafsson's convergence result.

Proposition 4.1. Consider the differential equation (2.1)-(2.3) on the strip

[Cl, b] x [0, T]. ApprOximate it by the difference scheme (3.1)-(3.4) on a grid as

described in Section 3.1. Suppose that Assumptions 3.1 (a) and (b) hold, and

that the approximation is stable with respect to Definition 3.7. Assume that the

boundary conditions (3.1), (3.2) can be solved boundedly for the left-hand side.

We assume the local truncation error per unit time step is O(hP) in the

interior and at interfaces, the local truncation error is O(hP - 1) for the initial

function and at the boundary, and the (pointwise) interpolation error is O(hP),

where p ~ 1. Thus, on the i-th strip, i = 1,2, ... ,S, with the global truncation

error e ~ u - v, and t = tt.m,

in the interior (1/ = r, r + 1, ... ,Ni. -q) . We also assume the error at coarse I fine

interfaces is O(hP): if we use the coarse/fine approximation mentioned in Sec

tion 2.6, this can be subsumed in d 1. At the boundaries

o
et(t+kt) = 2:. SJv)e~(t-akt) + (ht)Pd 2(xt,t), 1/ = 0,1, ... ,r-1,

u=-l

1/ = Ni. -q + 1, . . . ,Ni.'

72

For the interpolation error, let u = v at the "old" mesh pOints (xj-I,t i - I),

and let Vj(x ,ti-I) be the (continuous) function obtained from interpolation at

these pOints. Given any "new" point xt, find its nearest surrounding "old" pOints

xj-I ~ xt ~ xj;l. Then we assume the Lagrange interpolation error

where xj-I ~ ~ ~ xJ;I. Since ~ is a function of xt, we have rewritten d 4 in the

alternate form d 3 . We assume d I , d 2 , d 3 are uniformly bounded, and that

ktl ht = A = constant, independent of i and 1.1.

On the extended mesh described in Section 3.1, we assume that the

difference approximation is stable for the Cauchy problem, i.e., for fit(t) = 0,

there exist constants K2 > 0, exI ~ 0 such that for i = 1,2, ... ,s

11=-00 v=-«»

Finally, for compatibility between interpolated values at t = ti. and boundary

approximations, we require for 1.1 = 0, 1, ... ,r-l, i = 1, 2, ... ,s,

o .
Id 2(xt,ti.-I) - (d 3(xt,ti.-l+kt) - 2: SJv)d3(xt,ti.-I_akt))1 = 0(1), (4.1)

(7=-1

(with a similar condition at the right boundary)where d 3(xt,ti.-I+kt) is defined

on the extended mesh (for the Cauchy problem) by

d (1. t i - I ki.) Q d (1. ti.-I) + ki.d (1. ti.-I) 3 x v, +v = 03 x v, vlxv,'

(At times t = ti. we extend the function d 3 smoothly to the left of x= a so that

d 3 = 0 for x ~ a-1/ hI' Similarly, we extend d s smoothly to the right of x = b so

that d 3 = 0 for x ~ b + 1/ hd Then for any T > 0, there exists a constant Kr > 0

such that, for all positive integers s, all sets of time division points

o = to < t I < . .. < t S - 1 < t S = T,

all k t > 0, l = 1, 2, ... ,A. satisfying our restrictions on refined meshes, and all

73

(4.2)

Hence the convergence rate is O(h.P) as h O.

4.4. Rate of Convergence. II

In this section we shall derive the result of Section 4.1 under somewhat

different assumptions. Proposition 4.1 told us the rate of convergence achieved

when the local truncation errors were lJ,niformly bounded. However, this result

did not tell us how many mesh pOints are required, or where they should be dis-

tributed, in order to obtain a given bound on the local truncation error.

Proposition 4.2 asserts the same rate of convergence as in Proposition 4.1

when we economize on the number of mesh pOints. More specifically, we shall

assume that at each time division point t i the mesh is approximately equidistri-

buted. We shall follow the approach of Oliger [1978] for the Cauchy problem, and

use the results of Pereyra and Sewell [1975] on equldistribution of the local

truncation error. Proposition 4.2 in a sense gives a theoretical justification for

our algorithm.

For our local truncation errors d 1 and d 2 we shall assume

where x ::; xl, t ::; tJ.m' 1/ ::; 1.2, CXv and r3v are positive integers, and Tv and Uvare

uniformly bounded. (IfU2 == 0 then (12 = 00.) We then assume

p = min(cxl, (11, CX2,(12). As before, we assume ds is also uniformly bounded.

74

We also assume that the time steps kJ are chosen small enough so that the

spatial truncation error dominates the time error, that is,

l/ = 1.2.

We will now define the hybrid local truncation error for x = xJ, t = tJ.m as

ldI(X,t),j =r,r+1. ... ,Ni-q

7(x ,t) = (hJ}P·
d 2(x,t), j = 0,1, ... ,r-1. Ni -q+1. Ni -q+2, ... ,Ni .

(4.3)

(It is a hybrid of the boundary local truncation error and the interior local trun

cation error per unit time step.) We define the interior error dI(xJ,t) as zero for

j = 0, 1. ... ,r -1.Ni -q + 1. ... ,Ni , and similarly define other functions as zero

outside their range of definition. We will then attempt to choose the mesh points

xJ to minimize spatial errors, and assume that the time steps kJ are chosen so

that temporal errors are no larger.

It has been suggested by de Boor [1973] that the (spatial) mesh be chosen

in such a way that at the i-th time division point, i = 1, ... ,s,

hJI7(xJ, t i - I)1 2 = constant = Ei , j = 0,1.2, ...

and such a mesh is called equidistributing. As we· noted in Section 1.3, this

approach has been applied to boundary value problems for ordinary differential

equations by Pereyra and Sewell [1975]. Since this expression depends on the

mesh, Pereyra and Sewell introduced the idea of an apprOximately equidistribut

ing mesh.

Let

and g = MIl KI/a where a = 2/(2p+l). (K relates the largest and smallest

values of hJ.) Let

75

(4.4)

and I'J(f'-I) = (hJ)pz (xj,t i - I). A mesh is said to be approximatelyequidistribut

ing over a ~ x ~ b at t = t i - I if

for a ~ xJ ~ b. The t: has the effect of disallowing excessively large step sizes hj

in the Pereyra-Sewell development. Our use of a uniform coarse mesh precludes

the (spatial) step size from exceeding hi'

Pereyra and Sewell show that if a mesh is equidistributed with respect to

b

Ei = Jlz (x ,ti-I)IUdx,
II

then such a mesh is also approximately equidistributing with

where Ni - I +1 is the number of mesh pOints at time t i - I in the interval

a~x~b.

Our theoretical strategy, then, would be to assume the spatial mesh is

"approximately equidistributed" at time t = ti-I, i = 1,2, ... ,s, compute for

ward in time until this is "nearly violated" at time t = ti, and then approxi-

mately equidistribute again. In practice, it is probably more work to discover

when this is "nearly violated" than it is to simply approximately equidistribute

again, so we usually choose our "equidistribution" times a priori as some intt;ger

multiple of the coarsest time step k I' A somewhat similar strategy has been

used by Gannon [1980] for parabolic problems with finite elements in two space

dimensions.

Let us now make precise what we mean by "nearly violated". That is, the

mesh shouldn't deviate too far from (approximate) equidistribution between

76

times ti when we check the local truncation error and adjust the mesh. We shall

assume that, for i = 1,2, ... ,S, m = 1,2, ... ,mJ, and x = xJ,

(4.5)

here /.I = 1,2; j = 0,1, ... ,r -l,Ni -q + 1, ... ,Ni for /.I =2; j =r ,r +1.r +2, ... , Ni-q

for /.I = 1; and C2 is a nonnegative constant independent of the mesh spacing and

Next, we define sets where the truncation error is excessive. For

i = 0,1, ... ,s-llet M~(ti) = lx:lz(x,ti)1 ~ 4., a ~x ~ bL where 4. is chosen so

that

According to Pereyra and Sewell's Lemma 3.1, since the mesh is approxi

mately equidistributed at time t = t i - 1, i = 1,2, ... ,S,

IId 1(· ,t
i - 1)llz2 + 2: hJld2 (xJ,t i - 1)1 2 ~ Cs~llz (. ,ti-l)ll~ + O(h 1),

j=a

where Cs is a constant. Note that the norm for z is the continuous L2(X) norm

on the interval 0 = [a, b].

We need to eliminate the hJ factor on the left. We can do this by modifying

the Pereyra-Sewell argument, treating boundary and interior terms separately.

We use our assumption that the smallest step size is a bounded fraction of the

largest step size. We obtain

This gives us an estimate at each time division point t i - 1 between adjacent hor-

izontal strips. Then on the i-th strip S1. we obtain

77

(4.7)

~ G(C2.(ti_ti-1))(lld1(.. t i - 1)11} + ?: Id2(XJ.ti-1)12).
,=B

where G is the Lipschitz function: G(a.t)=(exp(at)-l)la. a>O. and

G(a.t) = t when a = O.

We now apply the equidistribution inequality (4.6) to (4.7) for each

i = 1.2 s and add together the results. Then we assume the hypotheses of

Proposition 4.1. in particular. that the number of strips is a (1/ k 1) as k 1 ~ O. We

shall also assume that the interpolation error is O(hP +1) rather than O(hP).

Applying Proposition 4.1. we obtain the principal result of this chapter:

Proposition 4.2. Under the assumptions of Proposition 4.1. together with the

assumptions that (a) the spatial truncation error dominates the time error: (b)

the mesh is approximately equidistributed at times ti. i = 0.1. s-1: (c)

assumption (4.5) on the growth of the error inside a strip Si: and (d) the inter-

polation error is one order higher than the interior error: we obtain a conver-

gence rate of order p. and the following estimate holds for the global truncation

error e at t = t S == T:

where X' T is a constant independent of the number of strips s. the mesh spac-

ing. and the local truncation error functions d 1. d 2 and d 3 : it may depend on T.

however. Here z is defined in (4.4).

A comparison of the above result with Gustafsson's [1975] theorem for a

uniform mesh shows that our algorithm does not provide any increase in the

order p of convergence. and our results in Section 8.5 confirm this. Instead, our

78

algorithm introduces the factor

~BX(1 + K(q +r) ~
(b -a)

into the estimate. Loosely speaking. our method does not increase p but

instead multiplies the coefficient of hP in the global error by this factor. When

the solution has rapid variations only in a small part of the (spatial) region. then

the local truncation error is small over most of the region. and J.kmax is therefore

small. Thus our algorithm can use fewer mesh points in regions where the local

truncation is small (compared to using the same difference scheme on a uni

form mesh which achieves the same level of accuracy) and this produces

Significant economies. as shown in Section 8.4.

Proposition 4.2 depends on Proposition 4.1. which we have not proved. We

believe it can be proved at least when the interior approximation is O(hP). the

initial and boundary approximations are O(hP). and the interpolation error is

pOintwise O(hp +1) (hence. O(hP) in l2(x». using the energy method. Our results

of Sections 8.5 and 8.9 show that the claimed rate of convergence (even with the

less accurate initial and boundary approximations) is indeed achieved. This

experimentally confirms Propositions 4.1 and 4.2.

Let us now comment on some of the assumptions used in deriving these

results. Many of these. such as the assumption that the number of strips s is

O(l/k 1) as kl ~ O. are quite natural. The assumption (4.5) on the growth of the.

truncation error between adjustments of the spatial mesh is natural but not a

priori verifiable. We try to enforce this assumption by allowing enough "buffer"

at either end of a refinement (see Section 2.5). We believe that the assumption

on the order of the interpolation error is unnecessary and can be relaxed.

The most tenuous assumption is (4.3) that the local truncation errors are

such that the spatial error dominates the time error. for both interior and boun-

79

dary approximations. For our interior scheme, Lax Wendroff, it is well-known

that the truncation error decreases (in general) as A = k 1/ h I increases to the

upper stability limit. So this assumption is probably not satisfied in our model

problem P1 (the first order wave equation) for·A = 0.8. Naturally, for fixed hi we

could in theory choose a A small enough so that the assumption was satisfied,

but this might entail wastefully small time steps.

It is clear that the reason for this assumption is technical convenience.

Without it, we would have to consider equidistributing in both space and time

simultaneously. If we used uniform time steps throughout a horizontal strip Si,

we might be able to do this analysis by considering space-time rectangles with

horizontal sides lying on the lines t = t i - I and t = ti, the division pOints between

strips. As we mentioned earlier, however, it is necessary to use different time

steps in different parts of the spatial region.

Even when the assumption is not true, the qualitative result that follows

from it still is. We are looking for sets ML where the local truncation error is

much larger than that of the surrounding region. Even if the assumption is not

satisfied, it is likely that both time and spatial truncation errors are much

larger in this set than outside it. At isolated points of ML the spatial and time

errors may cancel. but this is dealt with by the buffer mechanism.

We should emphasize that we do not approximately equidistribute in prac

tice, as it would be too expensive. Our use of recursive refinements achieves a

primitive form of approximate equidistribution at much less cost.

It may be easier to prove Proposition 4.1 if we do not write our boundary

approximations as in (3.1)-(3.2), but instead use fictitious points outside the

region. Then we can assume the boundary approximations are all on one (time)

level and of extrapolation type. This form was used by Gustafsson [1981]' But

this form would have complicated our equidistribution analysis because we

80

would have had to introduce constraints on the mesh points, so that two of them

were at x = a and x = b.

Having related the global to the local error, we next examine ways to esti

mate the local error.

'.

CHAPTER 5

Estimation of the Local Truncation Error

In Chapters 2 and 4 we saw that we needed a way to obtain estimates for the

local truncation error made in advancing the solution of the difference equation

one time step. In this chapter we study several methods for obtaining these

estimates in the interior of the region, at coarse lfine interfaces which do not

abut boundaries. and at boundaries. In Chapter 8 we will use numerical experi

ments to illustrate the accuracy and efficiency of these methods.

We first examine methods, for the placement of mesh pOints which do not

rely on the local truncation error. Next we describe our first three methods on

model problem Pi (the first order wave equation; see section 2.4). usihg Lax

Wendroff in the interior of the region. These methods are differences. two-step

Richardson extrapolation. and bounding derivatives in terms of differences.

(The last is not practical.) We then explain the three step Richardson method.

and prove Theorem 5.1. which states that this procedure is justified under quite

general conditions. The fundamental restrictions are that the difference

approximation (interior or boundary) must have the same order of accuracy in

both space and time. and be explicit. The I?roof also shows that this method is

Simultaneously a deferred correction method. Then we propose a simple

scheme for estimating the error at coarse/fine interfaces which do not abut

boundaries, 'Next we examine our methods at the boundaries. The three-step

Richardson algorithm applies here only with modifications. but its range of appli

cability is more limited. and it is considerably less convenient to use than

differences. Finally. we explain the modifications necessary for n x n systems

of equations.

81

82

The first important conclusion of this Chapter (and of the numerical results

in Chapter 8) is that several methods can be used to estimate the error, both in

the interior and at boundaries. Thus our algorithm is quite general as well as

robust. The second important finding is that for both interior and boundaries,

one of the methods is more convenient and general than the others. In the

former case this is three-step Richardson extrapolation, and in the latter it is

differences.

For simplicity, we shall write all approximations as occurring on a uniform

mesh, then consider modifications at coarse/fine interfaces and boundaries. We

will always assume that A = k I h = constant, and that the solution of the

differential equation has sufficiently many derivatives. When we speak of asymp

totic estimates and leading terms, we shall always mean "as h ... 0".

5.1. Methods not Using Local Truncation Error

Many other methods have been suggested for adaptive placement of mesh

points. A good survey of such methods for two-point boundary value problems is

given in Russell and Christiansen [1978]. This paper gives many references,

most of which will be omitted here.

Most of the alternative methods for two-point boundary value problems in

effect try to approximately equidistributea lower derivative of the solution than

that occurring in the expression for the local truncation error. For example, if a

second-order finite difference method is used, then the local truncation error

for a first order system usually depends on the third derivative. Alternative

methods attempt to equidistribute the firs~ or second derivative. A variation·of

the first derivative method is to use arc length. An early method. used among

others by Pearson [1968], attempted to equidistribute the variation in the solu

tion (for monotone solutions), and this can be considered as attempting to

83

equidistriblite an approximation to the first derivative.

A method which does not fall into any of these categories is that of White

[1979]. He introduces a new variable and considers the mesh distribution as a

function of it. The equidistributing mesh and the solution are computed simul-

taneously by solving the nonlinear equations using a finite difference method

with equal mesh spacing. We believe this approach is too expensive to use in our

context, where we deal with explicit methods.

Russell and Christiansen state that, in their context, when one frequently

has a very crude first approximation to the solution, equidistribution using a

lower order derivative frequently produced a better mesh. But they conclude (if

one excludes methods such as White's) "If high accuracy is required, the [mesh

selection] strategy should ... incorporate the asymptotic form of the error." In

our situation, where we (in principle) must find a spatial mesh which approxi

mately equidistributes the error that would be made in taking the next time

step, we have a very good approximate solution at the current time. We agree

with Russell and Christiansen. because Proposition 4.2 shows that significant

economies can be achieved by controlling the local truncation error. This

analysis also shows that we should control different order derivatives in the inte-

rior and at the boundary (if, as usual, we use first order boundary approxima

tions and second order interior approximations). Additionally, the use of the

truncation error (third derivatives) in a sense contains the information of the

lower derivatives, but not conversely. Furthermore, the existing programs for

ordinary differential equations (both initial value problems and boundary value

problems), as well as our own results in Chapter 8, suggest the efficacy of this

approach in practice.

84

5.2. Four Methods

To motivate what will be entailed in producing an error estimate for the ini

tial boundary value problem, let us examine a procedure for the initial value

problem for a first order system of ordinary differential equations. For a p-th

order linear p-step method on a uniform mesh with step size h, the local trunca-

tion error is

(5.1)

where Cp +1 is a known constant, y is the exact solution, and

%m-p, Xm - p+1, ... , xm are the gridpoints involved in the method [Henrici, 1962]'

Direct use of divided differences to approximate the first term of (5.1) generally

produces a poor estimate.

Instead one performs an extra. computa.tion to estimate the local truncation

error. We assume that the local truncation error (5.1) is for an impliCit mul-

tistep method called the corrector. Then we use another (explicit) linear mul-

tistep method called the predictor, which has the same form of local truncation

error, but with a different constant C;+1' (We assume the order p is the same,

for simplicity.)

If one makes reasonable smoothness assumptions about the solution (and

even if the corrector is not iterated to convergence), one obtains an estimate

for the first term in the asymptotic expansion of the local truncation error (5.1)

by subtracting the predicted and corrected values y;" and Ym at Xm:

c. hp+1y(P+l)(x) == Cp+1 (y - Y·) + O(hP+2) 1'+1 m r. r m m ,
""p + 1 - vp +l

[Henrici, 1962, p. 257]. This is called Mune's device. It obviates the need to

approximate the high order derivative in (5.1).

For the initial boundary value problem, we will also need extra computa-

tions to estimate the leading term of the asymptotic expansion of the local

85

truncation error. Consider the interior of a refinement, where the mesh is uni-

form. Later we will consider boundaries and coarse/fine interfaces. The local

truncation error for the Lax-Wendroff approximation to Pl on a uniform mesh

with stencil centered at (x ,t) is

(5.2)

where k = t::.t is the time step and h = t::.x is the space step.

We will now consider four methods for estimating the dominant terms of

this error.

5.2.1. Di1ferences

We use the differential equation to replace t derivatives by x derivatives in

the expreSSion (5.2) for the local truncation error. We then obtain

(5.3)

We may now appr:oximate 'U.:r:= by a five-point divided difference at points in

the interior of a refinement. Specifically, with t dependence omitted,

Uu:(x) = (-2u(x-2h) + 4u(x-h) -4u(x+h) + 2u(x+2h»/4h3

_h2~(O/4,

where x-2h < t < x+Zh.

5.2.2. Estimating an Interpolant with 'Small' Derivative

The second method is based on a theorem of Favard [de Boor, 1975a, b].

Given a function defined on mesh points, how large can the k -th derivative of a

"smooth" interpolant to k + 1 of these function values be? Favard gives this

bound in terms of certain divided differences. de Boor's contribution was to

greatly reduce the constant appearing in this inequality.

86

More specifically, let ~x.dr+k be a sequence of strictly increasing mesh

points in the interval [a, b], and let ~gd be the given grid function values at

these points. We can certainly find an interpolant f to the gridfunction which

has k -1 continuous derivatives on the interval [a, b], whose k -l-st derivative is

absolutely continuous, and whose k -th derivative is in ~ [a, b]' Favard's

theorem states that among such interpolants there exists one for which

where [...]g denotes the k-th divided difference of 9 at the indicated points.

(The norm indicates that the supremum is taken for the interval Xi ~ X 5; Xi+1')

This provides us with a method for bounding the k -th derivative of some interpo

lant to the gridfunction in terms of (computable) divided differences.

We can use this to estimate the local error by again replacing t derivatives

by x derivatives to obtain (5.3). We assume that the third derivative of the

interpolant approximates the third derivative of the exact solution u. Using the

theorem, we then estimate u at a point Xi by taking the maximum of the three

third-order divided differences which "include" the point ~, and multiplying by

Ko(3), which is 6.854.

Table 5.1 gives a typical result of this procedure. The computation was per

formed on P1 (the first order wave equation), with parameters as in Table 8.1

(Chapter 8), except that the maximum number of refinement levels was 5, and

the refinement ratios M= N = 4. The values given were at time t = 3.6, at loca-

tions X = 3.10, 3.15, 3.20, 3.25. Clearly, the bounds so obtained are hopelessly

conservative. (Bounds at other x were also typically off by factors of eight to

ten.) Therefore, this procedure was abandoned.

87

Third Derivative of u

Estimated (Bound) 38911
Actual' -24.8

38848 22928 12842
9680.9 -2185.4 -1614.3

Table 5.1 Estimating Interpolant with 'Small' Derivative

5.2.3. Two-Step Richardson Extrapolation

In this method we again replace t derivatives in the expression for the local

truncation error with x derivatives. Next we take a step forward in time, using a

stencil centered at (x ,t) with spacing k and h, and obtain expression (5.3) for

the local error.

We then perform a separate step forward in time, using a stencil centered
-

at (x ,t) with spacing 2h and k, which has local error

By subtracting these two estimates and multiplying by (c 2,),,2 - 1)/3, we obtain

an estimate for the local truncation error of the first calculation. This method,

illustrated in Figure 5.1 (with stencils not overlayed for clarity), uses values at

only the time levels t and t + k. It should be noted that the difference scheme

used for this method (and the next method to be discussed) must have the same

order of accuracy in both space and time. Excluded are schemes such as

Oliger's [1974] O(h4 + k 2) method. This is a mild restriction, as we usually take

second order methods anyway.

5.2.4. Three-Step Richardson Extrapolation

This error estimation method is much more general than the preceding

ones. Here we do not rewrite t derivatives in the local truncation error in terms

of x derivatives. We shall apply it not only to our model problem, but to our

t

L:x
Figure 5.1 2- step Richardson

n+I--~~--~--~--~-+--~--~

t

L:x
Figure 5.2 3- step Richardson

XBL 822·165

88

89

linear hyperbolic operator

Lu ==1Lt -A(x,t)Uz -B(x,t)u = F(x,t). (2.1)

In the interior of a refinement we approximate this system by any linear multi

(time) level explicit difference scheme whose local truncation error per unit

time step has the same order p in space and time:

vv(t +k) = t QI1V v(t -ak) + kFv(t),
a:O

Here x = x v == a + Ilk, t = t"" == mlc.

eta = t Ajl1(xv+jh, t -ak, h)E;
;=-r

II = r,r+1, ... ,No-q.

a = 0,1, ... ,p,

(5.4)

(5.5)

the A;11 are matrix coefficients, and E is the shift operator. We shall write (5.4)

symbolically as Lhv (x ,t) = kF(x ,t). If both the differential and difference equa-

tions have constant coefficients, we shall prove the· validity of this method. In

practice, our interior difference approximation will always be two-level (p = 0).

The local truncation error is given by

u(x,t+k) = tQl1u(x,t-ak) +kF(x,t) +k(hPT1(x,t) +kPU1(x,t»
a=O (5.6a)

where T 1 and U1 are sufficiently smooth functions of x and t. Symbolically,

LhU(X,t) = kF(x,t) + kT(U,x,t). (5.6b)

In fact, we will define the local truncation error kT for any sufficiently smooth

function w by

LhW(X,t) - kLw(x,t) = kT(W,x,t). (5.7)

(For this purpose we assume that the difference approximation is defined for all

(x ,t), not only at mesh points.) For the global truncation error

e (x ,t) = u (x, t) - vv(t) we obtain the expansion

90

e(x,t+k) = t Qae(x,t-ak) + k(hP T1(x,t) + kP U1(X,t» + O{hP+2)
u=O

by subtracting (5.4) from (5.6).

In the three-step Richardson method, we take one (time) step of the

approximation (5.4) with x = XVI t = tm I using mesh spacing h in space and k in

time. (See Figure 5.Z for a two-level scheme, with stencils shifted horizontally

for clarity.) We then repeat the step using (5.4) with tm replaced by tm+l and the

same mesh spacing. (Before performing this second step, we will need to gen-

erate more points on level t = (m+l)k by applying (5.4) with (x".tm) replaced

by (xlI+j .tm), j = -r ,-r+l , ... ,0,1, ... I q. Thus in practice this estimation is

done for all interior points of a refinement at once.) We obtain the approxima

tion v,,(t +2k) with error

e (x It +Zk) = t Que (x ,t +k -uk) + k{hP Tl(X ,t +k) + kP U1{x ,t +k»
(1=0

(5.8)

Next, we take a step using (5.4) with (Xlt) = (x",tm), but with spacing Zh

and Zk (i.e. I replace jh by Zjh and k by Zk in (5.5». This difference approxima

tion will be called vS2) (t +Zk). The error e (2)(x It +2k) = u. (x It +2k) - v~2) (t +2k)

is

e(2)(x ,t+2k) = f:QJ2)e(x ,t-Zak) + 2k({2h)PTI (x,t) + (2k)PU1(x,t»
(1=0 (5.9)

(The superscript 2 denotes a double stencil.) Here we see that using a multi-level

scheme will entail storing many previous time levels of the solution. We also see

why the order of the method must be the same in both space and time.

In (5.8), we can change the arguments of TI and UI to (x,t) (by Taylor

expansion) at the cost of an O(hp +2) error. We subtract the result from (5.9) to

91

obtain the computable quantity

/). = v 1I(t + 2k) - v £2) (t + 2k) = e (2) (X ,t + 2k) - e (x ,t + 2k)

= t [Q~2)e (x ,t -2ak) - Qae (X,t +k -uk)] + (2P+1-1)k(hP T1(x ,t)
a=O (5.10)

We now need an expression for 0. (It is tempting to suppose that

o = O(hP +2), but this is not quite true.) If the undifferentiated term Bu in the

differential equation is zero, we can assume that the coefficients A;a are

independent of h. But if B ~ 0, we shall assume that the AjaUL) are sufficiently

smooth functions of h. Substituting the definition (5.5) of Qa in the expression

for e yields

l:[Aja(2h)e (x +2jh ,t -2ak) - Aja(h)e (x +jh ,t +k -ak)].
a.j

We now expand the e' s in a Taylor series in hand k about the point (x, t), and

the coefficients about h = O. In the product we keep only terms up to (and

including) the first order in hand k. Since e is O(hP), the neglected terms

h 2e;z:, hke:t, and k2ett, h 2e, etc., are O(hP+2). After an elementary computation

we obtain

and

l:Aja(O)[jhe: - (k+ak)et + kAja(O)e] + O(hP+2).
a,j

By consistency, l:Aja(O) = I,
a.j

(I + l:aA;a(O»B = l:Aja(O),
a.j a.j

"A(I + l:aAja(O))A= l:jAja(O) ,
j,a a.j

where I is the identity matrix. (These relations are obtained by expanding both

sides of (5.6) in the same manner as above, replacing Ut by using the differential

equation, equating' coefficients of U and U:, and finally equating coefficients of

92

hO and hI in the result.) Substituting these in e yields

(I + 2: crAja(O»[MAe:/: -ket +kBe] + O(hP+2) = -k (I + 2:crAja(O»Le + O(hP +2).
j.a j.a

Using (5.7), we can write -kLe = k'T(e) - Lhe. But

= (4,. U - kLu) + kLu - 4,. v

= k'T(u).

(These are the equations for the method of deferred corrections. Thus our

three-step Richardson method could also be considered as a deferred correction

method. See Pereyra [1973] or Keller [1968].) Therefore, e becomes

k (I + 2: crA;u(0»('T(e ,x ,t) - 'T(u ,x, t» + O(hP +2).
j.a (5.11)

Nowe is O(hP), and, since the difference method is convergent, i(e) is O(hP+l).

We can therefore substitute 9 into (5.10) and obtain

!J. = k[(2P+ I -2)I - 2:crAju(O)]'T(u,%,t) + O(hP+2).
a.j

We have shown

Theorem 5.1 Approximate the hyperbolic operator (2.1) by the consistent mul

tilevel explicit interior difference scheme (5.4). Assume that both operators

have constant coefficients. If the undifferentiated term Bu in (2.1) is nonzero,

assume that the coefficients (5.5) in the difference operator are smooth func

tions of h. Assume that the local truncation error per unit time step i (5.6) has

the same order p in space and time, that the solution u of the differential equa-

lion and the global error e = u - v are sufficiently smooth functions of % and t,

and that A = k / h = constant. Also assume e is of order p. (For the initial boun

dary value problem (2.1)-(2.4) Gustafsson [1975] or Proposition 4.1 gives

sufficient conditions for the latter to hold.) Then we can estimate the (lowest

terms of the asymptotic expansion of the) local truncation error ki(U,X.t) at

93

the point (x, t) = (x II' t m) in the interior of a refinement using the three-step

Richardson method,and

kT(U,X ,t)" == khP d 1(x ,t) = k (hP T I(X ,t) + k P U1(x ,t» + O(hP +2)

= [(2p +I-2)I - ~aA;a(O)]-I(vII(t +2k) - v~2) (t +2k» + O(hP+2),
a.;

where Tl and U1 are sufiiciently smooth functions of x and t, vlI(t +2k) is the

approximation obtained by applying one step of (5.4) with t replaced by tm+l

and mesh spacing h and k, and vS2) (t +2k) is the approximation obtained by

applying one step of (5.4) with (x,t) = (xII,tm) and mesh spacing 2h and 2k.

In Chapter 9 we suggest possible generalizations of this theorem.

We have called these methods "Richardson extrapolation" and have men-

tioned that three-step Richardson is also a deferred correction method. How-

ever, we are using these methods in a non-traditional way. Both our method and

the traditional approaches (for o.d.e.'s and elliptic p.d.e.'s) improve the accu

racy of the approximate solution by estimating the local truncation error. But

we use the estimate to decide where to refine: the traditional approaches add

the estimate to the approximate solution. (Doing the latter would not be useful

to us, since our estimation is not being done at every time step.) As a conse-

quence, the traditional approaches improve the order of accuracy of the basic

difference scheme; as we pOinted out in Section 4.4, our method does not.

In all three methods, the quantity we control in the interior is not the local

truncation error, but the local truncation error per unit time step

1 T(U ,x .t)1 ~ <5,

where <5 is the local error tolerance supplied to the program. This was shown in

the last chapter: one power of h in accuracy is lost in going from the local trun

cation error of the interior approximation to the global error [Gustafsson, 1975].

94

Our numerical results in Chapter 8 show that for our model problem Pi. any

of the three methods produces approximately equally accurate estimates of the

local truncation error in the interior. Thus it is clear that three-step Richardson

is more expensive to compute than two-step Richardson. However, we recom-

mend the exclusive use of three-step Richardson in the interior of refinements

because of its greater generality and convenience. The other two methods

required us to write the t derivatives as x derivatives. This·· frequently can be

done, but it may be extremely cumbersome. For example, the Lax-Wendroff

method applied to the inviscid Burgers' equation

1Le + u'U.: = 0

has (after replacing t derivatives by x derivatives) local truncation error

This effectively excludes the use of differences; the situation could be much

worse for a system of equations. Even with the use of the symbol-manipulation

program MACSYMA.the coding of the expressions for the lo.cal truncation error

could be very tedious.

The great advantage of the three-step Richardson method is that we need

not rearrange or even calculate (by hand or by MACSYMA) the local truncation

error of the difference scheme; one need only know the order p oLthe method

and the factor 2P+1-2used to divide the difference.v ... - v52) of the twoapproxi-

mations at time t +2k .

5.3. Coarse/Fine Interfaces

Let us now discuss the modifications needed for coarse lfine interfaces

which do not abut boundaries. For concreteness, assume that an l-th level

refinement Ht has a descendant l + l-st level refinement Rl+l which does not abut

95

the left or right boundaries x = a or x = b. This introduces two coarse lfine

interfaces, namely, the ends of Rl +1. (See Figure 2.3 for the left end of Rl +1.)

Recall that, the last time we estimated the error, we added enough padding or

buffering (see Section 2.6) to both ends of Rl+l to ensure that waves could not

escape it. plus two extra levell (spatial) cells. This guarantees that we will not

need to refine the ends of refinement Rl +1 (unless they abut boundaries) and

assures "smooth" mesh transitions. Since our local truncation error estimates

are used only to deCide where to refine, we can safely set our estimate at the

ends of R l +1 to zero.

As a less attractive alternative, we could set the estimate at the ends of

Rl +1 to the corresponding estimate at the same spatial position in Rl . This would

require us to estimate the errors from the coarsest mesh to the finest, which is

somewhat inconvenient. But we implemented this and found it produces the

same results as the easier method given above ..

The next question is the choice of estimator at mesh pOints which are one

(spatial) mesh point on the "fine" side of a coarse lfine interface, or one mesh

point away from a boundary. (This is for the case of a stencil with three adja

cent spatial points, i.e., q = r = 1 in (2.10) or (~.4). In the case where q or r is

greater than one, similar co~iderations apply to the q or r pOints on the "fine"

side of the interface.) Figures 5.1 and 5.2 show that neither of the Richardson

methods yields an estimate here. We also set the estimate to zero here, for the

same reasons as before.

5.4. Boundaries

Let us consider local error estimation at boundaries. On the left boundary,

there are J boundary conditions specified for the differential equations (2.1)

(2.4). We can approximate these in the obvious way with no local truncation

96

error. We will call these "exact" boundary approximations.

When r ~ 1 in the interior difference approximation (2.10) or (5.4), then we

need n -J "extra" boundary conditions at the left boundary,

vJ6(t+k) = t S~)vr(t-uk) + gJ'(t), fJ- = 0, (5.12)
(7=-1

where S/r) is as given in (2.12), but with the appropriate time level. If r > 1, we

also need n (r -1) additional boundary conditions of type (5.12) for fJ- = 1, .. . ,r-1.

(Similar statements hold at the right boundary, with J replaced by n -J and r

replaced by q. We will only discuss the left boundary; the'right is Similar.) We

will first consider the extra conditions; at the end of the next section we shall

examine the "exact" boundary approximations.

The local truncation error k T of (5.12) is

U(xJ6,t+k) = t S/r)u(xr,t-uk) + kT(u,x,f),
(7=-1 '

p, = O. 1 r-1.

For a restricted class of boundary approximations. it is tempting to recycle

Theorem 5.1 to produce the folloWing false proposition.

Proposition 5.1. Assume that the hypotheses of Theorem 5.1 apply instead to

the boundary approximation (5.12). That is, the centered difference operators

Q(7 are replaced by the uncentered difference operators SJj.J.); and T 1• U1• kdi, P

and 7" are replaced by T2 • Ue, d 2• P and T, respectively. Assume that the boun

dary approximation is consistent with the differential equation, explicit (s9t) = 0

for all p,). and its local truncation error per unit time step has the same order p
in space and time

....
In addition, assume the global error e is smooth and of order p, where p = p or

p = p + 1. Then the local truncation error of the boundary approximation may

be estimated by three-step Richardson as in Theorem 5.1, using p in place of p.

.-

97

For the "proof" we first note that Theorem 5.1 did not require that the sten

cil be centered. Next we must examine the magnitudes of the terms '7-(u) and

'7-(e) in (5.11). If the order of the boundary approximation is greater than p,

then the term r(e) has the same order as r(u) and cannot be neglected. If the

order of the boundary approximation is less than p -1, then it is known that

Gustafsson's theorem [1975] does not hold, and the global error e is not O(hP).

So even though this corollary holds here, this is of no interest.

Unfortunately, the proposition fails because the boundary operator was not

the only operator used to produce solution values at previous time levels. For

example, if we use the first order upwind boundary approximation and the Lax

WendrofI interior approximation on our problem P1 (the first order wave equa

tion), then, to obtain a boundary estimate, we apply upwind three times, and

Lax-Wendroff once. Nevertheless, the proposition can sometimes be used in

practice. A detailed calculation shows that, for problem Pl, With Lax-Wendroff

and upwind differencing, we should divide the difference of the two estimates at

the boundary not by ;#+1-2 = 2, but by 2 + ~ instead. Since the use of buffers

makes our method robust, this small change produces almost no difference in

practice. A similar change from 2 to 2 + ~ is needed at both boundaries in

Problem P2, (the second order wave equation), to be introduced in Chapter 8.

Thus, this Richardson method is not very useful at boundaries for several

reasons. First, we must do a tedious calculation of the local truncation error for

each different problem. Second, there are relatively few boundary approxima

tions which have the same order spatial and time error. Third, we doubt that

this method works for implicit approximations.

Since two-step Richardson suffers from the same restrictions, differences

must be used for all other boundary conditions. In contrast to the interior

approximation, it is usually practicable to write down the local truncation error

98

for the boundary approximation. (Furthermore. the boundary approximation is

usually of lower order accuracy than the interior one. so we can use lower order

differences.) Then we must rewrite :x derivatives in terms of t derivatives. For

example. in our model first order wave equation. if we use upwind differencing at

the right boundary

v,,(t+k) = v,,(t) - CA(V,,(t) -VV-l(t».

the local truncation error is

replacing t derivatives by :x derivatives yields

(5.13)

If we are using differences. we simply replace the 'U:z term by a one-sided finite

difference. If we are using the two-step Richardson method. we obtain (5.13) for

the truncation error when using the stencil with spacing h and k. We obtain

when we use the stencil centered at the same point but with spacing 2h and k.

We can then subtract these and multiply the result by (c A-1) to obtain an esti

mate of the local truncation error at the boundary.

The local truncation error for extrapolation boundary conditions

for fixed j ~ 1

can only be estimated by differences. For j = 2. we simply estimate the trunca-

tion error

by using four-point one-sided differences (since the three-point estimate yields

zero.)

99

In Section 8.7 we numerically compare different methods of error estima

tion at boundaries.

Gustafsson's [1975] analysis and our own Proposition 4.1 show that the

order of accuracy of the boundary approximation may be one order lower (but

not less) than that of the interior approximation, in order to preserve the global

order of accuracy, which is then the same as the order of the local error per

unit time step for the interior approximation. This means that when we are exa

mining the truncation error at boundary points to see if refinement is neces

sary, we should not control the local error per unit time step, but instead the

local error,

Ikr(u,x,t)1 ~ 0,

where <5 is the local error tolerance input to the algorithm. Our computations in

Section 8.5 confirm that we can indeed use one less order of accuracy at the

boundaries, and still obtain the desired order for the global error.

5.5. Systems

So far our discussion has proceeded as though we were estimating the error

for a single differential equation. For a system, we simply estimate the error in

each component and take the maximum absolute value at each spatial mesh

point. Then we base refinement decisions for all solution components on this

maximum. Thus, the refinements are the same for all solution components.

This procedure is quite conservative, and will result in refinements not

being inserted in unnecessary regions if the assumption of Section 2.1 is

fulfilled: that steep gradients occur in apprOximately the same positions for all

solution components. This procedure also results in a Simplification for our data

structures, as described in Section 6.3.

100

One final detail concerns the difference approximations corresponding to

boundary conditions in the differential equation (the so-called "exact" boundary

approximations). Using the obvious difference approximation for these condi

tions yields zero local truncation error. But there is a difficulty with using zero

in our error estimation procedure. This can be seen in our problem Pi (Section

2.5), the first order wave equation. The left boundary condition contains a forc

ing(inhomogeneous) term g which results in the wave entering the region.

Clearly, we want to put refinements around any "large" wave entering the

left as soon as possible. If we set the truncation error estimate to zero at the

boundary, we will not detect the entering wave until it has already entered the

region. This can be remedied by treating the forcing term gl or gz of (2.3) or

(2.4) as generating a local truncation error. For our first order wave equation,

whereu(O,t) = g(t), we write down the local truncation error (5.2) for the inte

rior approximation, then replace x derivatives by t derivatives, using the

differential equation. Since um (O.t) = gm, we can analytically differentiate g to

arrive at the result. This procedure was actually used in our computations with

Pi in Chapter 8. (Notice that we used an interior error for a boundary approxi

mation, and then controlled the local error per unit time step. We could equally

well have used the boundary error, which depends on Utt and controlled the

local error. In either case we would control the same power of h.) For a system

of equations, the procedure is very simple if we use our assumption that gra

dients occur at approximately the same positions in different solution com

ponents. Suppose that at no boundary do we use only "exact" boundary approxi

mations. (This is not true for our first order wave equation, nor would it be true

when all components are prescribed by inflow boundary conditions on the same

boundary, as in supersonic inflow.) Then some of the components of the

difference approximation have nonzero local truncation error, and our usual

error estimates for these component(s) will detect any incoming wave. This

101

technique was used in our problem P2 (the second order wave equation) in

Chapter B.

If the boundary conditions are of the supersonic inflow type in all com

ponents. then we may assume our problem (2.1)-(2.4) is in diagonal (characteris

tic) form. and the left boundary condition

(2.3)

has S = 0 (since un has no components. i.e .. u = u I). In this case. we can

proceed as in our first order wave equation. For a local truncation error of the

form

(5.14)

we analytically differentiate 9 1 to obtain the second term. The first term can be

approximated by one-sided spatial differences or else rewritten in terms of t

derivatives using the differential equation.

In practice. this rewriting may be cumbersome. (The right boundary is treated

similarly.)

The final case is for systems where gradients do not occur in the same posi

tions in different solution components. We again need to estimate (5.14). with u

replace by u I . We approximate the first term by one-sided spatial differences.

To get the second term. we differentiate the boundary condition. obtaining

utk = SuNt + (g l)ttt .

and use the differential equation to replace ut~t by 'l.I.z:= . Then we use analytic

differentiation for (g l)ttt. and one-sided differences for Uz=. (We have taCitly

assumed that S was constant. but a nonconstant S introduces no additional

difficulties.)

CHAPI'ER 6

Data Structures

In this chapter, we discuss the choice of data structures appropriate for our

mesh refinement algorithms. The data structures used are not nearly so impor

tant to our algorithm in one space dimension as are the other details, such as

estimating the local truncation error. However, this choice becomes much more

important in two space dimensions.

We will see that the data structure has two parts: a structure to show the

relationships between refinements (a four-way linked tree of records), and a

mechanism for storing solution values (second components) of refinements

(sequential allocation of deques). Then we will discuss alternative implementa

tions. We will describe the deques first.

6.1. Deques

Let us examine the operations to be performed on the solution values.

First, it is convenient to keep all the pOints in a single refinement together. We

also need to be able to "move" a refinement to the left or right. This is accom

plished for a wave moving right by deleting pOints from the left of the mesh and

adding pOints on the right. Similarly, we need to be able to delete pOints from

the right and add them on the left. We also need to merge two refinements, and

to split them apart. (These operations are needed when two pulses "cross" each

other, that is, they are waves traveling in opposite directions.) Finally, we may

need to create a refinement or delete it.

102

"

103

The key operations are adding or deleting points from the left or right end

of a refinement. Points are never inserted in or deleted from the middle. A data

structure having these properties is called a "deque", or a double-ended queue

[Knuth, 1973]. We are then faced with the problem of storing a collection of

deques.

A natural way to store the solution values for refinements is sequentially, as

shown in Figure 6.1. Here we see a region with two refinements, and one of the

refinements itself contains a refinement. The solution values for the coarsest

mesh occupy a fixed region at the lower end of a vector which we will call v. The

refinements occupy contiguous sections of the remaining available memory,

with variable-width gaps of free space separating the memory occupied by

refinements. The gaps allow us to expand or contract refinements (to a limited

degree) without moving the function values in memory. The solution values

corresponding to refinements are ordered as follows.

The coarse mesh is labelled refinement 1, and its solution values always

occupy the lowest end of the vector v. It is followed in v by the "second level"

refinements (labelled 2 arid 3 in Figure 6.1), which are ordered in v in the same

order as the refinements are encountered in proceeding from left to right in the

computational region. Following these are the "third level" refinements (as is

refinement 4 in Figure 6.1), again in the same order as they occur in a left-to

right scan of the computational region, and ignoring the positions of any coarser

(second level) refinements encountered in the computational region. Then

would appear all fourth level refinements, and so forth. This scheme duplicates

certain solution values in the vector v, namely the ones which correspond to

mesh points which lie on different level refinements. However, doing this makes

the program much simpler.

t

Computational
~~-+--~~+4--+-~-4~+H+r~~+ r89ioA

~ •

Refinement
2 Memory

ovoiloble l.-..:.:.:.:.:;.:.::;:.!:;:.!;...;.....,......----.,...,....,-+~ --"._~~~_r_-__r.,..:)....".._:r____.
to solution

values

Records for
refinements

f"letds of
recorda

bose fiM

I link , Ii""
coarse top

Leftmost,
refinement

pointers

Figure 6.1 Data Structure:

Tree and Vector of Deques
104

; XBL 822-172

",

J05

6.2. Trees

Next we will describe the (four-way linked) tree of records, which is neces-
\

sary to show relationships between refinements. Each node (record)

corresponds to a refinement. Trees are natural in this context, since we use

recursive refinements, and are used in all adaptive solvers for elliptic equations

described in Chapter One. In the following, we will identify a refinement with its

node (record), and use the term "refinement" to mean "the' node corresponding

to a refinement". We will sometimes call the coarsest mesh a "refinement" for

uniformity:

Obviously, a node has as many branches (descendants) as it has

refinements. The coarsest mesh corresponds to the root of the tree. The root

has level 1, its immediate successors are at level 2, their successors have level

3, and so forth. Each node contains all the information about a refinement,

except its solution values. We will now describe some of this information. We

first need to know where in the vector v the solution values for a refinement are

located. This is done by using two indices base and top. This is shown in Figure

6.1 for the fourth (level 3) refinement, but omitted for the other refinements to

avoid clutter. Also needed is a pointer to the parent of a refinement (shown in

Figure 6.1 as the field coarse). Furthermore, we need pointers to all

refinements of a refinement. We can avoid using a variable number of pointer

fields for this by using the usual device. We use one pointer to the leftmost des

cendant (called fine in Figure 6.1) and then chain together all immediate des

cendants (siblings) using the "right" pOinters, called rlink in the figure. A

refinement other than the root also needs indices to denote its endpoints within

its parent, that is, which part of its parent it refines. These are not shown in the

figure.

=

106

Since we will often be adding or deleting npdes, we decided to implement

the record structure as a linked list. Up to this point our records form a triply

linked tree, exactly as in Knuth [1973, p. 352]' However, additional links are

needed.

The solution is advanced in time, and the error is estimated a revel at a

time. Because we already have the rlink pOinters, we can chain together all

refinements on the same level (not just those with a common parent) using

rli:nk. Then we introduce an array of pOinters pointing to the leftmost

refinement on each level. (These are shown in Figure 6.1.) This is related to the

level-order representation of a tree [Knuth, 1973, p. 350].

The last operation needed on our data structure is a repacking of the v

array, to be discussed shortly. This requires us to sweep through the v array in

both directions, as will be seen. Thus we also require our rlink pOinters to point

from the rightmost refinement (node) on level l to the leftmost refinement on

level l + 1. To enable a leftward sweep, we introduce "left" pointers llink, which

are inverse to the rlink pointers. That is, if node p has right pointer rlink point

ing to node q , then q has left pOinter Uink pointing to p .

The result of using all these pointers is a four-way linked tree: a triply

linked tree with the additional property that all the leaves (nodes) are linked

together in a doubly linked list. The linked list starts at the root and proceeds

to the leftmost refinement of level 2, then through all the refinements of level 2

(in left-to-right order), next to the leftmost node of level 3, and so forth. This

structure is similar to one that Knuth [1973, p. 356] suggests for manipulating

multi-variable polynomials. The difference is that in his scheme, the direct des

cendants of any node are doubly linked together; this means that if levell has k

direct descendants, each descendant in turn having descendants, then levell +2

has exactly k such doubly linked lists. In our scheme, all the nodes are linked in

"

107

one doubly linked list in level-order.

Because the space devoted to records is small relative to the space con

sumed by solution values, the space for all the pointers in our scheme is incon

sequential.

We now examine how the operations on refinements are effected using this

data structure. Advancing the difference approximation (in time) can be done a

level at a time, starting with the highest (most refined) level. using the llink and

rlink pointers and the leftmost pointers on each level. Here we also use the

"ancestor" or coarse pOinters to copy solution values from finer meshes to

coarser meshes for points x which lie on more than one refinement. The error

estimation is done in the same manner.

Similarly, we adjust the refinements level by leveL starting with the highest

(finest) level. The mesh adjustment operations can be effected using four ele

mentary operations, which are natural for a deque. They are shorten left, shor

ten right, extend left, and extend right. Shortening either end of a refinement is

a trivial operation, accomplished by mOving a base or top index. Deleting a

refinement is the same, but also involves removing a record from the tree. If

there is enough space available, extending either end of a refinement involves

changing an index, copying solution values from the parent refinement, and

filling in new solution values using linear or quadratic interpolation in space.

Creation is the same, plus the operation of inserting a new node in the tree.

Separation of a refinement into two refinements involves changing indices and

inserting a new node. Finally, merging two refinements is easy because we

insisted on the left-to-right ordering of refinements in the solution value vector.

We move left the solution values of the right refinement, if necessary, then

extend the left refinement to the right, change some indices, and delete the

right node. Complicating the last two operations is the need to adjust pointers

108

to descendant refinements.

6.3. Memory Repacking

A problem occurs during an "extend" operation when there is insufficient

expansion room between refinements. This calls for a repacking of memory, and

two algorithms for doing this are given by Knuth [1973, pp. 245-6] for the case of

a sequence of stacks (rather than deques). We Will therefore describe the

modifications to these algorithms for our data structure.

When a refinement runs out of room in the v vector, moving only the adja

cent refinement Will probably cause another repacking to occur soon, so it is

better to reallocate all available memory when a refinement runs out of room.

Knuth breaks this into two parts: Algorithm G, which decides how to allocate the

free memory to the refinements, and Algorithm R. which actually moves the

refinements into the positions dictated by Algorithm G. It is Algorithin R which

requires the forward and backward sweep of the v vector in order to avoid

overwriting any information.

Our Algorithm R differs from Knuth's only in that our refinements are

indexed from zero rather than one. So only Algorithm G is of interest. Knuth's

main idea is to share ten percent of the free memory equally among the

refinements, and. the other ninety percent is divided proportionately to the

amount of increase in refinement size since the previous repacking. Thisidea.is

not useful in our case. For a traveling wave, all refinements stay about the same

size, but "move". However, we can modify this rule by awarding the ninety per

cent of available memory proportionately to the amount each refinement has

moved since the last repacking. We discover whether a refinement has moved

primarily left or right (in memory) since the last repacking, and award its share

of the ninety percent to its left or right, respectively.

109

This change to Knuth's algorithm greatly reduces the number of repackings

compared to more naive allocation methods. Since the coarse mesh doesn't

move it receives none of the ninety percent allocation. Furthermore, the higher

level refinements move further (measured in number of mesh points, not physi

cal distance) than the lower level ones, so they are awarded more free space by

this scheme.

So far we have discussed the case of a single scalar equation. If we are

instead solving a system of n equations in one space dimension, only slight

modifications are needed, given our crucial assumption that the refinements for

all solution components are the same. We simply use the same tree-like record

structure, and store the solution values in a matrix with n rows. Each row has

exactly the same structure of solution yalues for refinements separated by gaps,

as illustrated in Figure 6.1. Now we repack memory whenever one (hence all) of

the components needs repacking.

An advantage of this organization is that the mesh-adjusting mechanism is

separated from the differential-equation-advancing and error-estimating

mechanism: to solve a different system of equations requires changes only in the

9ifferential equation advancement and error-estimation calculations.

6.4. Alternative Data Structures

Having described the data structures we actually used, we will attempt to

justify our choice by examining some alternatives that we rejected.

One alternative that suggests itself is to store solution values in a matrix

(for the case of one differential equation) of dimensions f.-L x 1.1 (where f.-L is the

maximum number of refinements, and 1.1 is the maximum number of mesh points

in a refinement), instead of using deques. This is inconvenient, wasteful of

storage space, and inefficient in execution speed. It is inconvenient because the

•

110

size of refinements is unpredictable, and if one refinement exceeds 1/ in size, the

computation stops, even though there may be much memory available for other

refinements. It is wasteful of storage space, for the same reason. In addition,

the maximum number of refinements is also unpredictable, and thus a great

deal of space is wasted for nonexistent refinements. (In our scheme, one

specifies the maximum number of refinements to be much larger than neces

sary. The sequentially allocated deques and the repacking algorithm then:

assure that all the memory allocated to solution values is used efficiently. The

only wasted memory is occupied by records corresponding to nonexistent

refinements, and this is small compared to the space occupied by solution

values.)

Finally, use of this scheme probably implies that a wave that moves left or

right is being implemented (in at least one direction) by moving (in memory) all

the solution values in a refinement. This is inefficient, because on many

machines (e.g., the CDC 7600) it costs almost as much to move an item as to add

two items. Furthermore, we' then need a three-dimensional array for a system

of differential equations, and this, too, will lead to inefficiencies. If one decides

to avoid excessive memory moving by adding pOints to the left or right of a

refinement, one m.ight as well abandon the array entirely, and use our scheme.

An alternative to our tree readily suggests itself -- a threaded tree [Knuth,

1973, pp. 332 ff.]. A threaded tree has links pointing back to ancestors, similar

to our coarse links, but only from rightmost descendants. But as Knuth [1973, p.

352] points out, finding ancestors of nodes is not as convenient with such a

scheme; a triply-linked tree is more convenient. Furthermore, we use the links

that are used for "threads" instead to chain together refinements on the same

level.

111

Another alternative involves the method of storing solution values. Our

method is the one Knuth suggests for storing a sequence of stacks. But Knuth

suggests a different scheme for storing a sequence of deques [Knuth, 1973, p.

249]. As before, base and top point to the bottom and top, respectively, of the

memory a:uailable to the refinement in question. But this time the actual left of

the refinement is pointed to by front, which may be between base and top (Fig

ure 6.2a). Similarly, the actual right of the refinement is not at top, but at rear,

which is initially between front and top. Suppose now this refinement "moves"

right, but does not expand in area (this is the case for a traveling pulse). Then if

there is not enough room to the right of rear (between rear and top), the

refinement is stored in its available memory using circular wraparound, as illus

trated in Figure 6.2b. Now the refinement has been split into two parts in its

available memory, with the free space intervening. A refinement always has one

of the two forms shown:.

This scheme has the virtue of reducing the number of memory repackings,

since we repack memory only when the space available to an individual

refinement has run out, and not when a refinement "moves" too far left or right.

Thus, with a traveling pulse we need never repack memory. Despite this, how

ever, we decided not to use the wraparound scheme. It greatly complicates the

differential equation calculation, in effect introducing still another interface, in

addition to all the coarse I fine interfaces. We instead were willing to allow extra

memory repackings, which occur infrequently anyway.

In sum, our data structures seem well-suited to manipulating refinements

in one space dimens'i~~. For two or more space dimensions, the situation

becomes much more complicated. A tree structure to exhibit the relationship

between refinements is usually used; and additional structures may be neces

sary. The storage of solution values cannot be generalized from our scheme.

See, e.g., Rheinboldt and Mesztenyi [1980], Gannon [1980], Berger, Gropp, and

'.

Base Top

Figure 6.2a

[
Another [Another

__ .!efin~e.....,m.....,e.....,n.,....t _____ F_r..".e"7e-rs-rp"'Tac-re."...,_ ~~inemen t

Base Top

Figure 6.2b XBl822·167

Alternative Storage for Deques

112

113

Oliger [1980].

CHAPTER 7

Choice of Programming Language

In this short chapter, we explain and justify our choice of implementation

method for the programs used in our computations.

Possible alternatives include Algol W, PL/I. Algol 60, Algol 68, Pascal, For

tran, and Fortran with preprocessor. The arguments against the first four are

lack of availability of a compiler andlor lack of portability. Raw Fortran (even

Fortran 77) is cumbersome to use because of the lack of control and data struc

tures, both of which are crucial for our task. However, most numerical software

is written in Fortran, and if one uses another language, there must be an inter

face to Fortran. It was with some regret that we were unable to use Pascal.

despite its excellent data and control structuring facilities. It does have a For

tran interface, but it can be very awkward to use [Mohilner, 1977]. Further

more, earlier versions of Pascal compilers required array bounds to be known at

compile time -- a restriction even more severe than Fortran imposes. Finally,

we are interested in portability, and using a Pascal/Fortran interface does not

lend itself to this.

Due to the desire for portability, two other approaches were rejected. The

first is Feldman's [1979] EFL, which is a Fortran preprocessor specifically

designed for numeric computations. It requires the writing of a sizable two-pass

translator. This translator is written in the language C, which is achieving wider

use, but cannot be said to be portable. The other approach is Grosse's [1978]

language T. T is implemented as a preprocessor which generates PL/I output;

unfortunately PLII is far from portable. Both of these languages did merit con

sideration, though, since their respective authors have devoted considerable

114

,.

115

thought to the problem of appropriate language constructs with which to

express numerical algorithms.

The two portable Fortran preprocessors we examined were Kernighan's

[1975] Ratfor and Cook and Shustek's [1975] Mortran. Although we believe the

former is more widely used, we chose the latter because it is far more general

and fiexible. Brandt [1977] has also decided to use a macro preprocessor for

Fortran to implement his software for the multigrid method.

The term Mortran, like Fortran, has several meanings. It can mean a struc

tured source language, a translator for that language, or a macro-processor.

The structured language is implemented as a set of macros which are used by

the Mortran macro processor to translate the language into Fortran. The result

ing Fortran program is then run like any other Fortran prograrri.. Figure 7.1

shows the mechanics of running a Mortran program.

In contrast to most other Fortran preprocessors, the Mortran preprocessor

is written in a portable subset of ANSI (standard) Fortran. Hence the Mortran

preprocessor, and, more importantly, Mortran source programs, are portable

between different machines. Furthermore, Mortran source and Fortran source

can be intermixed, so the Mortran user has access to all existing Fortran

software.

We felt that there was one property of Mortran which made it especially

desirable for this project: extensibility. This means that new data structures,

operations on data structures, and control structures can be added to the

language (at rather small cost in implementation time) by adding additional

macros to the language.

Let us contrast this situation with other languages such as Fortran or Pas

cal. Fortran is completelyinextensible, Pascal is extensible only in the sense

that one can add additional data types. For example, Pascal has no complex

t-'
t-'
0\

Mortran
source

(Can be intermixed
. with Fortran)

(The user can also
include his own macros)

Mortran
processor
(written in

ANSI Fortran)

Mortran
macros

Fortran
source

Fortran'
compiler'

Subroutine
library

Figure 7.1 Running Mortran Programs

Relocatable:
; binary I

Loader

Absolute •
binary
object ;

program
ready for
execution

X8L 822-168

117

data type. But one can be added to the language by defining records consisting

of two real fields. However. one is unable to extend Pascal by defining new

operations for data types. e.g .. complex addition or multiplication .. One is forced

to use subroutine calls instead. Furthermore. in Pascal one is unable to define

new control structures. such as a loop with premature exit. By contrast. Mor

tran (but not Tor EFL or Ratfor) permits all of these things.

Two applications of this extensibility are important to our algorithm. From

our description of the data structures (four-way linked trees and deques) it is

obvious that we need records and pointers. in order to operate conveniently and

efficiently on refinements. Mortran allows us to define these new data types and

to define operations (such as following the pointer) on these data types. We did

this using a modification of the method in Zahn [1975]. Pascal-like notation is

used [Jensen and Wirth. 1974].

A second application of extenSibility is to defining new control structures.

In contrast to many of the traditional numerical algorithms (such as linear

equation solvers or eigenvalue routines) where operations with loops predom

inate. in our programs (especially the sections involving merging. separating.

creating. destroying. and moving refinements) the use of decisions is extensive.

Mortran has adequate decision (or "conditional") statements (like if ... then.

if ... then ... else). indefinite looping constructs (while ... do. repeat ... until. etc.)

and (nested) block structure within subroutines. The lack of these features in

Fortran would have resulted in code whose correctness would be exceedingly

difficult to verify by visual inspection.

Additional features of Mortran which are helpful but not essential are addi

tional control structures (such as next and exit to prematurely exit a loop).

alphanumeric statement labels (however. most labels disappear because of the

rich supply of control structures). free field format (column and card boun-

11B

daries ignored), comments inserted anywhere in the text, conditional (alterna

tive) compilation, and variable names of arbitrary length.

Of course, some of the restrictions of Fortran remain. Among these are

lack of dynamic storage allocation, lack of arrays with arbitrary subscripts, and

recursion. Although our refinements are nested recursively, we almost always

operate on them in "level order" (one level at a time). The only exception is

when we" are graphing solutions. Then we need to search the tree in preorder, so

we need to simulate recursion. The subscript problem is harder to solve, and

requires modifying the Mortran preprocessor to accept macro-time expressions.

We did not do this. Instead, since we needed only zero array subscripts, we used

an extra dummy element preceding the array in common to achieve this effect.

The dynamic storage limitation is impossible to overcome, but is not crucial.

Another aspect of the macro preprocessor is the kind of (Fortran) code it

produces. For the while ... do. repeat ... until. iL.then. and if ... tb.en ... else con

structs, the Fortran code produced is as efficient as possible without using glo

bal flow analYSis. The only problem is with for loops. The macro processor has

two stacks to allow nesting of loops, but there is no stack to remember symbols,

such as loop indices. Therefore, all testing and incrementing for for loops are

done at the top of the loop, and this is not quite as efficient as testing and incre

menting at the bottom. Mortran does, however, (correctly) test the loop condi

tion before initially entering (unlike,the Fortran do). Mortran allows the Fortran

do (with all its restrIctions and generation of efficient code) so we compromised.

We kept the existing Mortran for statement, but redefined the do statement to

check the loop limits once before entering the loop (to test for a null loop) and

then generate the usual (efficient) Fortran do.

In sum, we felt that the use of Mortran greatly aided the development of the

programs for this project. For further details on Mortran. refer to Cook and

119

Shustek [1975] and Zahn [1975]. Reading Mortran programs is quite easy for

those familiar with modern block-structured languages. The only things to note

are that left angle bracket means begin and right angle bracket means end, as

in Algol or PL/I. Other notation (especially that dealing with records and

pointers) is similar to that of Pascal [Jensen and Wirth, 1974]. In particular, the

notation (p1.field) or (pfield) denotes the field of the record pointed to by

the pointer p .

We finally remark that portability was indeed achieved by this method,

since our programs were run on an IBM 370/168, a CDC 7600, and a DEC VAX with

minimal conversion problems between them.

CHAPTER 8

Computational Results

In this chapter we answer the following questions about the method

described in the preceding chapters:

1. Does our method "work", i.e., does it "follow" or "track" steep gradients? Is

it fooled by background effects?

2. Is the algorithm sufficiently general to allow refinements to be created, des

troyed, merged, separated, moved, and to abut boundaries?

3. Is the algorithm sensitive to the direction of characteristics, or dependent

on knowing that certain boundary conditions are inflow or outflow?

4. Will the method handle nonlinear problems?

5. How well will the method follow discontinuities or shocks?

6. Are recursive refinements worthwhile?

7. How should one choose the refinement ratios Nand M?

8. How efficient is the method, both in execution time and memory?

9. Does the global error behave according to the theory of Chapter 4 as

h, k ~ O?

10. How do the three methods of interior local error estimation of Chapter 5

compare in accuracy and efficiency?

11 How do different boundary approximations and methods of estimating their

error affect the solution?

12. How often should one monitor the local truncation error (and adjust

refinements)?

120

121

8.1. Model Problems

Since we believe it is impossible to answer these questions analytically, we

resort to numerical experiments on model problems. We now introduce several

such problems. Problem P1, the first-order wave equation, was introduced in

Section 2.5. (We again use a = 200.)

P2 is the second order wave equation, written as a 2 x 2 first order system,

with "open" boundary conditions (i.e. , the boundaries are "transparent" to trav

eling waves). As exact solution we use two counter-streaming Gaussian pulses,

superimposed on a sinusoidal backgroUnd. The differential equation is

a~x~b,O~t,O<c,

where

A =[~ ~l,
with initial conditions

Ul(X,O) = f(X)+9(x)j

U2(x,0) = -f(x) + g(x) ,

and open boundary conditions

u1(a,t) = u2(a,t) + 2f(a - ct)j

ul(b,t) = --u2(b,t) + 2g(b + ct) ,

a~x~b,

t ~ O.

Ai; in P1, we choose a = 0, b = 4, c ::: 1. The exact solution is

Ul(X ,t)::: f (x - ct) +g (x + ct),

U2(X,t) = -f(x - ct) + g(x + ct).

To produce our interacting pulses, we take f (x) exactly as in P1, and

(P2)

122

g (x) = -exp(-a (x -4.5)2),

where a = 200 as before. Once again, each pulse occupies about 8 percent of the

region a ~ x ~ b. This problem decisively answers questions 2 and 3 above,

since the pulses start out outside the computational region (only the sinusoid

being present). They then enter the region, and two sets of recursive

refinements are set up. The pulses eventually cross, so the sets of refinements

must merge and then separate. Finally, the pulses exit the region, so all

refinements (except the coarse mesh) are destroyed. Note that both boundaries

act as inflow boundaries at some times and as outflow boundaries later on. This

problem thus shows that nothing we have done depends on the direction of wave

motion. It also shows that the method works for a system.

The difference apprOximation in the interior is again Lax-Wendroff

with coarse I fine approximation

at interfaces, the obvious initial condition, and obvious boundary approxima

tions for vI' For V2, we need extra boundary conditions at both x = a and x = b,

and we use either

(a) upwind I downwind differenCing:

vj2(t+kt) = (J + cktD~)Vj2(t) at x = a,

vj2(t+kt) = (I + cktD~)Vj2(t) at x = b,

where Vj2(t) denotes an approximation to u2(x ,t) at x = a + jht on an l-th level

refinement; or

(b) first-order extrapolation

(D~)2vj2(t+kt) = 0 at x = a,

".

,.;

123

(D'--)2vj2(t +kt) = 0 at x = b.

(The first 2 in each line is an exponent, not a superscript.) Gustafsson, Kreiss

and Sundstrom [1972] showed that both approximations (a) and (b) are stable

with Lax-Wendroff, according to their stability definition.

Let H(x) denote the Heaviside unit function, which is 0 for x < 0, and 1 for

x ~ 1. Our third problem is again a .scalar equation, the inviscid Burgers equa

.tion

O~ x ~ 4, t ~ 0,

with boundary condition

u(O,t)=1. t ~ 0,

and initial condition

u(x,O) = 1 - H(x - 0.1), O~ x ~ 4.

The exact solution is

u(x,t) = 1 - H(x-*t - 0.1),

a shock traveling to the right with speed *' We apprOximate this using the usual

two-step Lax-Wendroff method, as given in Richtmyer and Morton [1967, p. 302]

with F(u) = ~2. Naturally we modify this by adding subscripts and super

scripts l in the appropriate places, The only dissipation in our scheme is that

inherent in the method itself, Since our previous calculations used time

dependent boundary conditions, we use constant ones here, (Of course, at

coarse/fine interfaces, we make modifications as in P1 and P2.)

8.2. Qualitative Results

Figures 8,1 (a) to 8,1(i) illustrate our algorithm when applied to problem P1,

the first order wave equation. We used a coarse mesh of 81 pOints, with

• ~
$ & · • '"' Q &

I.&J • Z
I-"-& I.&J u. -. · c:t: N Z
0
I-
<1:

: :::a til
'-",/

· 43 r-!
N LaJ .

co
LaJ QJ

:::> H
Q <1: ::l
LaJ t:1

::. .~
e> Z ~,
1ft · c:t: ... I.L. LaJ LaJ Q c:t: c:t: Z 0 :::a
• & · (I) ...

c:t:
I.L.

• 1ft · • X

"So
$ · $

an ... '1) nJ r- ~ co ... $
$ ~ ~. 11) ... M ... $ $ <s. '!> '!> 0 0 0 '$

I -X -:::>

124

N

. ...

------------------------.--------_._----...

... CQ :]I r- M CIO
0 r- ~ M
GI GI ~ $ «- & -X -::>

125

~
4) .
4)

&
&
I

: · •

4)
1ft · '"

: · '"

4)
II) · CU

I · cu

~
1ft · -
Z · ...

at · 4)

GI
~ · GI

~
LaJ
Z
LL
LaJ
Q:

~
LaJ
z:
LL
LaJ
Q:
z:
::J

x

& ...
•

&

•
l-

411
Z
0
I-
<J:
::J ,.......
CI ,..0

'-'
LaJ ...-i .
LaJ 00

::> Q)

<J:
,..

::3 ::l
bO

.,-l

Q: ~

LaJ
Q
Q:
0

l-
Ul
~
LL

a 3 2
l.es ,

I
'.91 11 I

I
I

I
I
I

e.7i H. I
I
I

I
:
I
I. • · I • • e.62 Hl I
I • • I n I I

U(X) e.·17
t-'
N
0\

0.33 ~ I I
I
I'
I

I
I
I
I
I
I
I · 0.18 l- I :

1\ ~
~ r ~

I
I

e.e ..

-e.le
e.ee e.se 1.ee 1.se a.ee a.se 3." 3.5'

X UNREFINED ---- REFINED

FIRST ORDER ldAUE EQUATION~ T • 0.68

Figure 8.1(c)

N ----••. --.-----.----.---.... -.. ~-----.. -.------------.. --------_."7J
/

---.---;-,:::.a~--.. -

/ --
CO) - •• - •• - ••• -.--•• - - -.-•••••••••• ----.-•• ------.---..... - ---

N ---.---.. ------.. --.. -------_ .. -.. ---------------------------.. _----._---

~ .. (0 N r-- PI 01) ...
011 r-- (0 ... CO) - • • (I> • 0 0 .. • -X -:::>

127

• -. • I

· ...

• &I) · CO)

· CO)

• &I) · N

• 0 · N

• U) · ..

! ..

• • · •

~
LaJ
Z
LaJ
0::
Z
::J

x

& ...
•

(U

•
I-
,

Z
0
I-
<I:
::) ""' (;, "0

LaJ '-" ...,
LaJ 00

:::> Q)

<I: !-I

:::3 ::l
bI)

OM
0:: ~

LaJ
~
0::
0

f-
(I)
0::

N -.--.---.--.-••••••• - •••• --.-.-•• - •• ---•• -.--... ---.• --------.---
."./ -_._-_._. __ ... _ _ ... _ _ - -.~~ ... --.

*
.. CD ~ a. r-. . .. • • &

-,.

r-
"f' .
0

-:~ -::>

128

M 00
M -. .
0 •

"f' • &
~ • ,

· ""

• 1ft · CO)

· CO)

&
1ft · N

: · N

0
In · ...

i · ...

~
II) · •

&
& · &

I
I
I
I

Q
l.&J z:
LL.
~
z: ::l.

x

<5)

• •
('I)

• ...
,

z:
0
<I:
::l
a Q)

'-' r-i

..... 00

::> Q)

<I: !-<
;:j

:3 00
.~

~
~.

l.&J
Q
~
0 ...
(I)
~
LL.

1.es

e.il

0.76

e.62

V(X) e."7
......

~ N
1.0 ·i';~

'.33 ~

0.18 ~

... ~ '-"

-8.1'

e.ee •• se

x

/ " / " / y,

1.0' 1.se 2." 2.se 3.ee
UNREFINED ---- REFINED

FIRST ORDER WAVE EQUATION# T -4.20
Figure 8.1 (f)

2 3 3 2

i f,
I \

! I
I

i I
! I
i I
II
:1 ;

3.se

2 3 a
I.es

e.su

8.76

e.6a

lJ(X) 0.-17
I--'

~ i '1\ LV
0

0.33 l- I / \

i ,
i I
i I

0.18 l- I

! I
II
U

V " / " / " / "\. • e.e ..

-e. 18

8.80 e.S0 I.M 1.se 2.8e 2.50 3.88 3.se 4."
X UNREFINED ---- REFINED

FIRST ORDER WAVE EQUATION_ T • ... 49
Figure 8.l(g)

: · -----.., -._-_. __ _ _ -_ .. _ ,...- ..
ttl _ •••• __ •• _ ••••••• __ ••••••• __ ••••••••••••••••••••••••• - •• _ ••••••• _ ••••••••••••••• __ ._ ••

I &
U) · • M

Q ...
IJJ • Z

l-Ll.
~ IJJ u. , · ~ C\I Z

0
I-
~

2 ::J ,-...

a .c · '-'
C\I LaJ .-!

IJJ 00

Q ::> w
~ !-I

IJJ ;:I

«- Z :a co
In -..-I

· 0:: r:... ... La. LaJ LaJ Q
~ 0:: Z 0
~

& E-<So · U) - 0::
U.

&
In · &

X

&
~ · &

:£ ... (II (U r- M co ... C!)

CI' I'- (II or PI ... & & & C!) & C!) & & 0&
I -X -::>

131

......
LV
N

1.86

e.il

e.76

e.62

V(X) 0.<47

0.33

0.18

I.'"

-8.10

e.ee 1.51

x
I.e. 1.50 2.00 2.58 3.88

UNREFINED ---- REFINED
FIRST ORDER WAVE EQUATION# T • 4.80

Figure 8.1{i)

3.5e

.......
w
w

1.1.

'.82

•• 55

8.27

Vl(X) 8.'8

-8.28

-8.55

-'.83

-I." I.S' 1." 1.5' 2.88 2.S1 3." 3.S'
X UNREFINED ---- REFINED

SECOND ORDER UAVE EQUATIOH# T -0.04
Figure 8.2(a)

• .. -.-... _ _.-._ _ _....... _._
N

• & • <D · COl •
Q &
L&.I • Z
~ • L&.I 1ft ,

· 0:: Z ca
0
<I:

• :::J
0 ,.c • '-' · L&.I N N

L&.I 00

::> <1J
Q <I: l-<

L&.I :3 ::l
bO • Z .~

1ft 0:: ~. · .. ~ L&.I
L&.I Q
0:: 0::
Z 0
:::J

• Q • Z · .. 0
(,)
L&.I
U)

:: ·
----~--.......... ---.------... -.-.--.-~.-... -...... -.. -... -.------I • x
-~.-------.--.---... -:::; "

..... __ -_ _ _ .•.. _._.-... _--.. _---

• I · •
• N II) ,... • CD 1ft C"I • .. CO II) N • t\I II) CO • • • • • • • ..

I I I I -X -...
::>

134

QI ._--_ •• _. __ ._._ •••••• _............. • •••••••••••••••••• _ •••••••••• _ ••••••• _ •••• _._._-

.......................... - __ __ .. _._----.--.--- -
-:::~:Y~~--...... ~---;,;~~~~::~:::::: ._._ .. __ ._._--.............. _ __ ~

C') ----.--.-••••••• - •••••••••••••••• - ••

ftI -----.-••••• - ••• --.-•••••••••••

- --- ,,---------------------.. ::._._._ _-...... _ .. _ ... ---
IU --------.---------.--••

• ftI ~ r- • GO ~ f'I) ... GO In N • N ~ CD . . • • • • • • • f I I -X -~
=>

135

•
I

: · •

: · ...

at · N

: · N

at · ..

: · ...

: · •

I · •

x

&
&
•
~

•
to-

-Z
0
E-
<I:
:J '""'" u 0 '-'

UJ N

UJ
00

::> (1J ,..
<I: ::l
::3 eo

.~

a:: ~

UJ
Q
a::
0

Q
Z
0
(,)
UJ
<n

N

PI

... - -.:::-.=----~-.--.-..... -.. --.----. --
• ___ se. •• a ____________ ••• _

N

PI -...
PI

CU

------.-.. -.-.~ . .::: ..

• ftJ an r- • .. CIO an N • • • • • -X -....
::::>

-
.".. .".,... _--_. __ .. __ ._---

-~--------.-.-.----... -.----.
~--.. -.-.-----.----

OJ an PI
N an CD . . .
• • • I I I

136

•
I

:
• ...

• an · PI

• • · PI

• aft · N

: ..
N

• aft · ..

• • · ...

:I · •

• • · •

Q
LIJ
Z
~
LIJ
0::
Z
::l

x

&
&
•

N
•
~

,
Z
0
~
~
:::J ,-...
C' '\j

LIJ -......;

N

LIJ 00
::> aJ ([H
::3 ;:l

bI)

~
'.-1
~

LIJ
Q
~
0

Q
Z
0
(.)
LIJ
(I)

CD

PI

...

...
PI

PI

...

...
PI

ftI

.--.-------.---............... - f.

•

---------.... --.. ---.. -~

------.--.--.... -... -~~~ ... ---.. --_____ ._ .. ~.N.~._···_ _.··_ .. _•
----------------_ ..

= . •
U)
U) . •

.... • CD • . . • • -X -...
::>

>
.",. .. -..... -.--.... -.-----~

CD U) ('It • CD U) CD , • ...
I I • I

137

: • ...

• III · PI

: · PI

:: · CD

• • · CD

• III · ...

• • · ...

· •

I · •

Q
LaJ
Z
L&.
LaJ
0::
Z
:l.

x

CS>
N
•

N
•
I-

..
z:
0
t-
<J:
:l ,,-..

"
Q)

-...,;

LaJ N

LaJ
00

::> Q)

<J: I-<
;:l

:3 00
-..-I

0::
~

LaJ
Q
0::
0

Q
Z
0
(,)
LIJ
(I)

I-'
W
00

1.1'

'.82

•• 55

'.27

V1 (X)

-8.28

-a.S5

-8.83

-1.18

I-

.... 1.5' 1.~1

2 3 4 44 4 3 2

. I I
I . I

• • • •
I i I

!'1' II \
~ \ ..

II \ l II \ r
\ A
\ Ii

I
:
i

I
I

!
I .

1.58 2.88 2.61 3."
X UNREFINED ---- REFINED

SECOND ORDER WAVE EQUATION, T -2.40
Figure 8.2 (f)

3.5' 4."

.....
W
1.0

. I

1.18

'.82

'.55

8.27

V2(X) e •• a

-a.28

--•• 55

-8.83

-1.18

••••

a 3.. 3 2

• •
\ i
\!

\
1\
! \
i

I
f
i
i · i

I
'.58 1.ee 1.Se 2.88 2.S' 3.88

X UNREFINED ---- REFINED
SECOND ORDER UAVE EQUATION# T -2.40

Figure 8.2 (g)

;:

3.5'

C\I

COl

...

...

N

•

--.---.---.-~-
..".-

=======-~,~--~---:::-.----..
..... -....

-----. .. --'::::: :a-""~rs=:::.-.= .. -.=.--.:::::-.-:::: ..• =1. --.,.;~...: ---.-......... ---.--.

N II' "" • 00 II' C') • CIt II' IV C8 IV II' Gal • • • • • • • • ...
I I I I -X -...

::>

140

• • · ...

• II' · C')

I · C')

• II' · IV

I · IV

• II' · ...

: · ...

s · •

I • •

Q
L&J
Z
l&.
L&J a:
Z
::l

x

&
(D

•
N
• ...
,

Z
0
<t
::l '""' 0 .r::

'-"
L&J N

L&J
co

::> Q)

<t l-l
;:l

:3 bO
.~

a: ~

L&J
Q
a:
0

~
Z
0
(.)
L&J
U')

AI

,., -----_._-----_ --_ ... - _. l ___ .. __ . __ __ . ____ .. _
••• __ • __ ._ ••• _-_ •••••• _-_ ••• -....... • •• - •• ;-:.:'!:.~ ~::::-:==:.:.: .. ~.:.:.=.;:.=-::;.::.:.:.::.:.:. :.:.:-:-=_. ----- ----

..
AI t-----,-------.. -----.. --.. --

• ...
• •

~
~
• •

....
N . •

I . • -x -ru
::>

141

- '" -~ ---~ --- -::=.= _-_._-

GO
AI . • I

~
~ . • I

PI
GO . • I

•
I

I
• ..

• ~ · AI

• • · CU

• ~ · ...

• • · ...

~ · •

· •

Q
L£J
z:
LL
L£J
0::
z:
::l

x

&
to
• ru
•
f-

-z:
0
-f-
<E:
:::J ,-....

a '1"1
'-'

L£J N

L£J
00

::> aJ

<E:
,..
;::l

:3 00
"1"1

0::
~

LIJ
Q
0::
0

Q
z:
0
(.)
L£J
en

...

•
rot ..,
...

•

-------... -.... -..... ;::..:.......:-..... ~-.. .. ---

• ... N
GO . •

I'-
N .
•

• • . • -X -....
::>

-~ -.--.-.. -.. -.--.. - ... -... -.-.-.
..... -.-.. -.-.-.. -~~.---.--------.-.

142

", --

GO
N . • I

Ln
aD . • I

rot • GO " . • " I I

: · •

:: · ..,

• • · rot

:: · cu

• • · cu

• Ln · ...

• • · ...

• aD · •

• • • •

Q
LLI
Z
I.&.
LLI
IX
Z
:::l

x

<S>
CO
• ru
•
f-
,

Z
0
f-
<J:
:::l "..... c:- .!""")

LLI '-'
N

LLI 00

::> Q)
<J: ~

3 ;:l
00

IX
• ..1
~

LLI
Q
IX
0

Q
Z
0
(.)
LLI
Con

N

('It ..
..
('It

N

N
('It ..

---.-.-.. --.... -......... -.--.~
.-... -.----.--.--.-.. --..... ~ .. -_.

"
,----~,----.-... -~~ .. -...... . ---

." -----,.---... -......... -.. -~------.. --.... -.. -.. --~

.. _--_._._---_ ... _ ..

... _. __ ._ .. _ .. _-_ .. __ .---_

• N .." fU • ... • \I) • • • CD CD -X -....
=>

~-.-.... -.-..... -... -----.
•••• ,J. •• --.------.-------.---

,/"

--.. -.. --=-~ .. --... -.-.. -... -.. - ... -
"

I .. -... - _ _ .. __ ._ .. _ ... _ ..

ao .." ,., • N an 00
CD CD CD ..
I I I I

143

I · ..

· ('It

I · C'J

• .." · CU

: · N

CD
.." · ...

CD • · ...

CD
.." · •

I · •

Q
UJ
Z
LA.
UJ
Q::
Z
::l

x

&
&
•

("I')

•
f-
,

Z
0
f-
<I:
:l -0 ~

'-'
UJ N

UJ 00'

=> (IJ

<I: I-<

:3 ::I
00

OM

Q:: ~

UJ
Q
Q::
0

Q
Z
0
(.)
L&J
(I)

· _. __ ... _ .. __ ._

. -.-----....... -........•..•... ~,......... . --... _ ... _--_ .. _ _ .. __ _ ... _ ... -=::::::-
..... PI

N .. ·····r···--· __ ··············_···_·· __ ·_·
,,'"

N t---------.. -.-.--... -.~
PI _ ... _----.. _--_ .. __ ._._ ... _..-._. __ ._-_._--_. __ ... _.-----• t----.------.-. -.-.... ---.... _.-.-. . .. -.-----;:;-..... ---.-.... --.

-" · --_. __ .. _--_. __ _ ... _--_ -

• N II) r- • 011 II) PI • ... CO II) N • N II) CO • ... • • • • • • , ...
I I I -X -~

=>

144

I · or

I ·
<5>
ru

COl • ...
•
I-

s ,
· N Z

0
I-
(I:

• • · N

~ ""' 0 .-I
LLJ '-"

N

LLJ co

Q
=> Q)
(I: ~

LLJ • Z II) ·
::3 ;::I

00
.~

0:: ~ ... La. LLJ
LLJ Q
0:: 0::
Z 0
~

I ·
Q
Z ... 0
(,)
LLJ
(f)

· • x

I · •

t-'
~
V1

1.1'

'.82

e.ss

e.27

Vi (X) a.ee

-a.28

-a.ss

-e.83

-l.le

f

84 .. 3 a

\
\

....

I

i
I
I

. ,
I I
I I

i i
•• sa l.ee l.sa a.1I 2.sa 3.81

X UNREFINED ---- REFINED
SECOND ORDER YAUE EQUATION# T -4.40

Figure 8.2 (m)

.~

23.. ..

3.58

,
\

.....

......
~
0\

1.11

1.82

I.SS

8.27

V1 (X) 8.e8

-8.28

-8.55

-8.83

-1.18

a 38

8.88 8.58

x
1.88 1.58 2.81 2.58 3.88

UNREFINED ---- REFINED
SECOND ORDER UAVE EQUATION# T -4.60

Figure 8.2(n)

2 3 a

3.58

• ..
• ...

N • . •
u: . •

,.. • N • . . • • -X -....
:::>

• N . • I

147

'" '" . , ('II
CII . , •

I

• • · (II

• '" · ftI

• • · tU

• II) · ...

I · ...

m · •

Q
UJ
Z
t-4
LL.
UJ
~

Q
UJ z:
t-4
LL.
UJ
~
z:
:l

x

<5)
CO
• • •

l-

-Z
0
H
I-
<I:
;:) ,-...

a 0
'-"

IJJ N .
LaJ 00

::> QJ

<I: !-I
::l :3 eo

.,-l

Ct: r.x..

UJ
Q
~
0

Q
z:
0
(.)
IJJ
(I)

I-'
.p-
(Xl

1.38

~

l.la ...

e.g4 ~
t-

1).76 t-

v (X) ,,1I.r;1 t-

0.39

0.al

0.~3

-0.15

G.00

• J

0.58

X

,- , I I I --. J ,- r T

..

-

-

-

-

-

-
-
-
-

I ~ _-1_ ~ ~ -I ~ ~

1.8e 1.50 C!.oo a.Sf 3 •• e 3.S' ".0'
UNREFINED ---- REFINED

INVISCID BURGERS EQUATION# T • 0.08
Figure 8.3(a)

f-'
~
\D

1.30

1.12

8.94

0.76

U (X) 0.5':'

0.39

0.cH

e.03

":e.15

,

~

l-

~

-
~

l-

~

l-

~

l-

..,.

-
-

•
8.ee

2 3" -0 2

1
! I l ,

I I t
, I

! · · I • • · •
I • • •
I IiI I
I I! • I I .,
•) . : · · .
I

. .,
: :' • · il · • · . · • :1 · • • · I · • , i

I ·
I · I
I , · • I · • I · · • • : ! : • • • • • · • · · · · · : : • · I : • I

i · : •
l • • · • i\ · !
i \ · · I i \ :

i J I I I I I

•• 50 1.00 1.50 2.80 Cl.58 3.ee
X UNREFINED ---- REFINED

INUISCID BURGERS EQUATION# T • 1.60
Figure 8.3(b)

,
I

,

·

-
·
-
-

-

-

-
·

-

-
-
-
-
·

I

3.se ... ee

I-'
V1
o

1.39

1.12

0.9"

~.76

U(X) tt.~7

~.39

0.21

0.03

-0.1$

-

~

f-

f-

!0-

f-

~

-
..

0.90

a 34 43 2

I I

n ! I . I I I

~I I: a
" . i i,) -- : ;1
"I jl

I
I
I
I
I

. l
I
I
I
I

i
i\
: \
: l

::
:I .. I: 1

I , I : t: L
'~'- 1 .. L ~~i

0.59 1.00 1.!:=~ 2.00 a.S0 3.ee 3.se 4.ee

X UNREFINED ---- REFINED

INUISCID BURGERS EQUATION# T • 2.40

Figure 8.3(c)

• t t I I I I I

-
·

-

- -
QI ••• _ ••• _ •• _ ••••••••••••• _ __ ___ ____ _ ___ • __________ • _____ .. _e •• - · ---._-_ ... _------_ .. __ _-------......... _-_._--_ ... __ _ .. -------..... --.... -.-.... ---~---.----- ... ---- -------------.. ---.. ----------- -.... ~.-. ~~. ~•...
('I) -~---•• -... --••••••• - •• --•••• -.--•••••••••••••• - •• - •••••••••••••••• - •••••••• ---••••••• ---, ::::::=

·N •• _ ••• _............. • •• _ _ ••• __ ••• _ •••••• _ •••• _ •••••••••••••••••••••••

-

-

-

r- ·
• I • I I I .L J ~ L J

e N ~ to r- 0, ... ('I) II.
('I) ... 0) r- II, M N .g - - $ ~ .s. ~ CD CD CD

I -X -:::>

151

$
CD · ~

CD
." · ('I)

$
& · N

0
III · ...

Go
G · -
$
III · $

$
$ · $

Q
I.&J
Z
~
I.&J
0::
Z
:::l

X

G)
c»
• •

I

E-
,

Z
0
~

E-
<r:
::J
a w

.........
U') "0

'-"

'" C"'l

I.&J 00
~

'"
Q)

::J
,..
;:::1

CQ OJ)
.~

Q
-~

~
(.)
U')
~

:::> z
~

f-'
Ln
1',)

1.38

1.12

0.94

0.7a

U(X) 0.C;;7

0.39

G.al

"'.03

-9.16

,

-
-
-
-
-

-
l-

I--

~

I--

•
0.00

2 3 .. 43 2
I I

,
I I ,

I VI
I I I ,

II I ,
I I • ,

! • • I I: h I

I
I I il ~ I) : I

: "., :' I :1 I -I I · I
I il I • • • .

1 I H • · • I

i

• i I ! · I --·
J

: I · · : I · I

I

\ I --I . I

I i j

l
I .
I

!
:
I

: .
~
~
:\
I

i \
i \

II ::
I: ..
II
II

I i~ _____ l !! I

0.50 1.0\!1 1.50 2.00 a.50 3.G9 1.5e ... ee

X UNREFINED ---- REFINED
INUISCID;BURGERS EQUATION# T a5.60

Figure 8.3(e)

153

refinement ratios N = M = 4 and maximum number of refinement levels = 4.

(Only three levels were actually used in the calculation.) The local error toler

ance was 0.01. Al = 0.8, and the wave speed c = 1. Each graph plots the approxi

mate solution v (x) versus x (at a fixed time) as a solid line, together with a

separate calculation done with no refinement (maximum refinement level = 1),

shown as a dotted line. Since the maximum error in this calculation was about 2

percent, the refined solution may be taken as the exact solution on the graph.

In Figure 8.1(a) we see that the solution consists solely of the sinusoidal

background-the pulse has not yet entered. (This graph is taken at t = 0.04

rather than t = 0 since we use the exact solution at t = M = 0.04 so we can

compare with the hybrid method later. This is true in all calculations.) In Figure

8.1 (b) the pulse has started to enter the left boundary, and refinements have

been created at the second and third levels. (The small numbers at the top are

the level numbers· of the refinements. Both refinements abut the left boundary.)

In Figure 8.1 (c) the pulse has fully entered and the refinements have moved

right.

Figures 8.1 (d) and (e) show the pulse moving across the region, and the

refinements following it. Note that the unrefined solution has become a very

poor approximation to the pulse--the unrefined peak has only half the height it

should. Note also that behind the pulse, the unrefined solution has a large

undershoot.

In Figure 8.1(f) the pulse has neared the right boundary, and the

refinements now abut this boundary. In Figure 8.1 (g) the pulse is leaving the

region--this again shows the time-dependent boundaries at work. In Figure

8.1(h) the pulse has left the region, but the unrefined solution has developed a

phase error. Finally, Figure 8.1 (i) shows that the second and third level

refinements have been deleted. Only the background sinusoid is present, but

154

there is still some "backwash" left in the unrefined solution.

These calculations show that the method is not fooled by background oscil

lations. and that the refinements do follow the steep gradients. Furthermore.

this problem and the next one show that our method is able to adapt to time

dependent boundary conditions.

Figures 8.2(a) through 8.2(0) show our algorithm applied to the second

order wave equation with counter-streaming pulses. This conclusively answers

questions 1 to 3. and shows that our method works on a system of differential

equations. It also shows the necessity for good data structures. since there are

from one to seven refinements. and. as we shall see. they interact in compli

cated ways. In this calculation we again used 81 mesh pOints in the coarse

mesh. with refinement ratios N = M = 3 and maximum number of levels = 5.

(Only four levels were actually used.) The local error tolerance was again 0.01.

Al = 0.8. and the wave speed c = 1. The same conventions about unrefined and

refined solutions. and the labeling of refinements are used. We usually show the

first component VI(X.t) versus x. but ina few instances we show V2(X.t) versus

x (all at a fixed time).

Note that the graphs are plotted at the end of a time step. before the

refinements are adjusted in preparation for the next time step. Hence the

pulses will appear at one side of the fourth level refinements.

In Figure 8.2(a) the pulses have not yet entered the region and we see only

the sinusoidal background. In Figure 8. 2(b) both pulses have entered and

refinements on levels 2. 3 and 4 abut both boundaries. In Figure 8.2(c) both

pulses have left the boundaries and are moving towards each other. Already we

can see that the peak of the unrefined solution has decayed substantially.

In Figure 8.2(d) the second-level refinements are about to merge. and in

Figure 8.2(e} they have merged; however. the third and fourth level refinements

155

have not yet merged. In Figure 8.2(f) the third level refinements have merged.

Figure 8.2(g) shows the second component of the solution at the same time. In

Figure 8.2(h) the fourth level refinements have merged. Figure 8.2(1) shows the

second component of the solution at the same time.

In Figure 8.2(j) the pulses have crossed. and the third and fourth level

refinements have separated. (Note that the pulses cross. but the refinements do

not.) In Figure 8.2(k) the second level refinements have separated as well. Note

the degradation in the unrefined solution at this pOint. Figure 8.2(1) shows the

pulses approaching the boundaries. Now the unrefined solution has phase errors

as well as amplitude errors. In Figure 8.2(m) the pulses are leaving the region.

and the refinements "bunch up" against the boundary. Figure 8.2(n) shows that

the fourth lev~l refinements have been deleted. Finally. Figure 8.2(0) shows that

all refinements have been deleted. Only the sinusoidal background remains.

Figures 8.3(a) to 8.3(e) show the algorithm applied to Burgers' equation

(P3). The purpose of this calculation is to show that our method can "follow"

shocks. This also shows that our method can handle a nonlinear problem. One

would not necessarily expect the former, since we monitor the local truncation

error, which requires a continuous third derivative. We do not suggest this as a

practical method for computing With shocks. (But by modifying the error esti

mation, we believe .we can develop a viable method for doing this, which Will be

described in a later paper.) We used 41 points on the coarsest mesh, With ratios

N = M = 3, and maximum number of levels = 4. (In contrast to the smooth solu

tion case, the estimate of the local truncation error does not decrease on finer

meshes; hence our method Will always use the maximum number of levels in this

case.) The local error tolerance was 0.01. and the wave speed input to the pro

gram was 0.5 (which is the shock speed). Again, Al = 0.8, and the dotted line

shows the unrefined calculation.

156

Figure B.3(a) shows the shock at t = M = O.OB. given as the exact solution.

Figure B.3(b) shows the shock later. at time t = 1.6. Notice that our method has

eliminated all the wiggles. leaving a very sharp shock. except for the Gibb·s.

phenomenon (whose height is 1.33). This can be eliminated by adding a small

amount of dissipation. but only on the highest level of refinement.

Later graphs (Figures 8.3(c). (d). (e» show nothing neW. except that the

refinements ar~ following the shock. as desired.

We now proceed to more quantitative questions.

8.3. Choosing Refinement Ratios and Maximum Levels

Having answered the first five questions posed at the beginning of this

chapter. we now proceed to the questions of how to choose the refinement ratios

Nand M (described in Chapter 2). and whether to use recursive refinements.

We used problem P1 (the first order wave equation) for this study. We chose

81 pOints for the coarse mesh; soh! = 0.05. We took A1 = hll kl =O.B. C = 1. and

recorded all errors at time t = 3.6. This is the time just before the pulse leaves

the computational region 0 ~ x ~ 4. As usual. the Lax-Wendroff method was

used.

If the exact solution is denoted by u and the approximation by v. then the

global truncation error is e = u - v. The l2(X) norm of v is given in Definition

3.1 of Chapter 3. in the notation of Section 2.2. The l2(X) norm of e is analogous.

The maximum norm of e is (in the same notation)

where 1 ·1"" denotes the maximum absolute value of all the components of the

vector (for an n x n system).

' ..

157

In our tables. a maximum mesh level of 1 signifies that only the coarse

mesh is present (no refinement). 2 signifies one additional level of 'refinement.

and so forth. The times reported are CPU seconds on a CDC 7600. (Since this

machine runs only in batch. these times are highly reproducible between runs.

and we did not need to take average times.) The storage used is for solution

values only. and is the maximum storage used at the (refinement) level listed.

for all times. Since the coarse mesh is static; it always uses 81 locations. The

total listed is the sum over all levels.

Tables 8.1 and 8.2 show the results using three~level Richardson extrapola

tion. Table 8.1 uses a local truncation error bound of 6 = 0.01 and Table 8.2 uses

6 = 0.001. Before examining the results. let us state our expectations regarding

the global truncation error. Let 6 be the pointwise local truncation error bound.

and E(t) = lie (t)I~ be the l2(X) norm of the error at time t.

Propositions 4.1 and 4.2 contain constants KT·. KT" which depend only on

the (time) interval of integration 0 ~ t ~ T. It is well-known that these can be

replaced by K2exp(a2t). Ksexp(ast). for some positive constants K2. Ks. and

some constants a2. as. respectively. When the interior local truncation error per

unit step hP d 1. the boundary error hP d 2. and the interpolation error h P ds are

all bounded (pointwise) by 6. then these propositions assert that the E(T) is

bounded by C4exp(ai T)6[(b -a)T]*. where C4 is constant and i = 2 or 3. Compu

tational evidence strongly suggests that for our problems there is no exponen

tial growth. ai = O. (For the corresponding differential equation there is no

growth either. It is also well-known that the interior approximation alone for the

Cauchy problem produces no growth.) By examination of our results. we deter

mined that C4 ;;:j 0.5. Therefore. for an input tolerance of 6. we would expect

E(T) at T = 3.6 not to exceed 0.5-(4-3.6)*6 R;j 26. Hence we expect the l2(X)

norm of the error not to exceed 0.02 in Table 8,1 and 0.002 in Table 8.2. if

enough levels of refinement are used.

I-'
VI
(»

Maximum
Refinement Maximum ~2-norm Time Maximum Storage

by Levels
Level L M

~2
Error Error of Solution (sec.) 2 3 4 5 Total

, .198 .562 .268 .040 .L

2 3 3 .i02 .311 .317 .197 58
2 4 4 .0722 .230 .323 .233 73
2 5 5 .0524 .175 .325 .275 81
2 6 6 .0393 .131 .327 .324 97
2 7 7 .0306 .101 .327 .400 113
2 8 8 .0247 .0790 .328 .456 129
2 10 10 .0178 .0514 .328 .622 161
2 16 16 .0115 .0201 .329 1.35 257
3 3 3 .0207 .0628 .328 .505 49 94
3 4 4 .0115 .0201 .329 1.03 65 149
3 5 5 .0102 .0126 .329 2.04 81 216
3 6 6 .0100 .0126 .329 3.32 97 271
3 7 7 .0104 .0142 .329 4~74 113 330
3 8 8 .0105 .0143 .329 6.95 129 353
3 10 10 .0103 .0125 .329 15.0 -161 471
4 3 3 .0107 .0139 .329 1.66 49 94
4 4 4 .0115 .0201 .329 1.17 65 149
4 5 5 .0102 .0126 .329 2'.:31 81 216
4 6 6 .0100 .0126 .329 3.57 97 271
5 3 3 .0107 .0139 .329 1.86 49 94
2 9 8 .0138 .0333 .328 0.49 145
2 18 16 .0101 .0125 .329 1.47 289

Table 8.1 Global Errors and Memory Used for Problem PI Using 3-Leve1
Richardson Extrapolation and Local Error Tolerance; 0.01

T

81
139
154
162
178
194
210
242
338
224
295
378
449
524
563
713

130 354
iO 295

0 378
0 449

130 0 354
226
370

"

......
VI
\0

Maximum
Refinement

-il

Level L M

1
2 3 3
2 4 4
2 5 5
2 6 6
2 7 7
2 8 8
2 :!-O 10
2 15 15
2 20 20
3 3 3
3 4 4
3 5 5
3 6 6
3 7 7
4 3 3
4 4 4
5 3 3

"

~2
Error

.198

.101

.0715

.0514

.0381

.0290

.0227

.0:!-48

.00669

.00378

.0182

.00592

.00246

.00120

.000665

.00237

.000746

.00124

Maximum

Error

.562

.311

.230

.175

.131

.101

.0790

.0514

.0229

.0128

.0628

.0201

.00820

.00398

.00215

.00705

.00126

.00192

~ -norm'
2

of Solution

.268

.318

.323

.326

.327

.328

.329

.329

.329

.330

.329

.329

.329

.330

.330

.329

.329

.329

Time

(sec.)

.040

.402

.601

.860
1.21
1.55
1.97
3.01
6.72

11.8
.971

1.83
3.31
5.62
9.45
3.02
11.3
11.6

Maximum Storage
by levels

234 5

241
321
401
481
561
641
801

12011
1601

241 109
321 177
401 266
481 355
561 463
241 109 247
321 177 497

1"

Total

81
322
402
482
562
642
722
882

1282
1682

431
579
748
917

1105
678

1076
241 109 247 364 1042

Table 8.2 Same as Table 8.1, but with Local Error Tolerance = 0.001

160

Table 8.1 illustrates one of the important features of our algorithm. It

shows what happens when the refinement process is (recursively) carried as far

as possible on smooth solutions. Compare N = M = 4, maximum refinement lev

els 3 and 4, or N = M = 3, maximum refinement levels 4 and 5. In these cases,

allowing an additional level of refinement has resulted in no increase in memory

used, and no decrease in error. This illustrates that, for smooth solutions, when

the algorithm. has satisfied the local error tolerance, it refuses to refine further,

as it should.

In many of the cases shown. our expected lz error of 0.02 was not attained.

But in all such instances (and even in some instances where this error was

attained-- i.e., the program is slightly over-conservative) the program gave a

warning that the local error tolerance was not attained at some point. Thus, for

smooth solutions, we should always choose a large value for the maximum level

number (say 10) and let the program refine as much as possible. So choosing

the maximum number of levels is not a problem.

Choosing the refinement ratios Nand M is more problematic. It appears

from the table that the most efficient combination of ratios which attains our

desiredl z error of 0.02 is N = M = 4, maximum level = 3 (or 4). However, a very

close competitor is N = M = 16, tnaximum level = 2. Either one would do in this

case. However., there is a reason to prefer the fortner. This can be seen by look

ing at the case N = M = 10, maximum level = 3. We see that the time goes up

drastically for "relatively large" (8 or more) refinement ratios as the number of

levels actually used goes up. Since we recommend using as many levels as

necessary, if we ran the case N = M = 16, we couldn't be sure (in advance) that

it would use only two levels. (Indeed, the case N = M = 12 wants to use 3 levels,

but N = M = 13 uses only two.) Therefore, as Table B.2 will also show, we recom

mend N = M = 4, 5 or 6 in general, with lower factors for coarser local error

tolerances, and conversely. Using N = M = 3 is generally inefficient, because it

161

requires too many levels. and the cost goes up quickly with the number of levels.

until no further levels are used.

At the end of Table 8.1 we showed that we are not conftned to taking ratios

Nand M equal. However. there is no advantage to choosing N #' M. For exam

ple. one of our entries has N = 9. M = 8. Since Al = kil hI = 0.8. this implies

~ = k21 h2 = 0.9. If we took another level of refinement. we would have

As = 1.0125 and our difference scheme would be unstable on the third level.

Thus we will in the future take N = M.

Table 8.2 shows results similar to Table 8.1. but with a smaller tolerance.

Note that in Table 8.2 the second refinement level is the whole region. (This was

not the case in Table 8.1.) Taking only two refinement levels with large N and M

(N = M = 20) does not produce the desired l2 error 0.002. And the maximum

error for this case is greater than 0.01. about ten times higher than desired.

Comparing the cost with case N = M = 6. maximum level = 3 shows conclusively

the necessity for recursive refinements. It furthermore affirms our policy of

choosing N and M between 4 and 6.

We next come to the most important question of this chapter (and perhaps

this thesis).

8.4. Efficiency of the Method

In Section 8.2 we showed that our method was able to resolve steep gra

dients. and even shocks. in the solution. We showed this by comparing the solu

tion obtained by our method with one obtained on a uniform coarse mesh. This

cl~arly showed the qualitative superiority of our "refined" solution over the

"unrefined" one.

However. the "unrefined" solution cost far less to compute than the

"refined" one. For example. in Figures 8.1(a) to (i). it cost 1.17 seconds to

162

compute the "refined" solution up to time t = 3.6 (without graphic output. etc.)

vs. 0.04 seconds to compute the "unrefined" solution up to the same time. as

shown in Table 8.1. This is a factor of 29 more expensive. But the unrefined

solution is worthless.

Thus. to study the efficiency of our method. we need to compare the com

puting time taken by our method with the computing time taken to produce

(approximately) the same error on a uniform (fine) mesh. As a by-product. we

will also be able to compare the memory taken in the two approaches.

Because this is probably the most important result in this thesis. we made

this study on two of our model problems: Pl. the first-order wave equation. and

P2. the second-order wave equation. The result is the same for both. and gives

us confidence in extrapolating this to larger systems.

Our method is simple. Instead of comparing a "refined" solution 2; with a

solution computed on only its coarsest mesh. we compare 2; with a solution com

puted on a uniform fine mesh whose spacing is the same as the spacing of the

~·s finest mesh. If these two produce approximately the same error. then we

have a valid comparison.

Table 8.3 shows the results. In this table we have used two different

difference schemes: the first (LW) is Lax-Wendroff on all refinement levels: the

second (4th) is:a hybrid method which uses the fourth order method (see Sec

tion 2.5) on the coarsest mesh; and Lax-Wendroff on all others. For the LW

method. we used Al = 0.8. but because of stability considerations. we had to use

Al = 0.6 for· the hybrid method. We used three-level Richardson extrapolation

for the LW method. but had to use differences for the hybrid method. As usual.

the errors are at t = 3.6 and all other parameters for the refined examples are

as in Table 8.2. For P2. the maximum error is the maximum over both com

ponents of the solution. and thel2_ error is the rnaximmn of the l2 errors of

ill .. ---

No .. In tervals Maximum
Problem on Coarsest Refinement

No. Method A Mesh Level

PI LW .8 1280 1
PI LW .8 80 3
PI LW .8 2000 1
PI LW .8 80 3
PI 4th .6 1280 1
PI 4th .6 80 3
PI 4th .6 2000 1
PI 4th .6 80 3

P2 LW .8 1280 1
I-' P2 LW .8 80 3
Cl' P2 LW .8 2000 1 w

P2 LW .8 80 3
P2 LW .8 2880 1
P2 LW .8 80 3

Table 8.3 Efficiency of the Method

~2
L M Error

- 5.89-3
4 4 5.92-3

- 2.42-3
5 5 2.46-3

- 5.89-3
4 4 1.05-2

- 2.42-3
5 5 4.37-3

- 8.33-3
4 4 8.35-3

- 3.43-3
5 5 3.45-3

- 1. 65-3
6 6 1. 67-3

!

Work
Maximum Time Memory per

Error (sec.) Used. Point

2.01-2 7.67 1281 5.99-3
2.01-2 1.83 579 3.16-3
8.20-3 18.4 2001 9.20-3
8.20-3 3.31 748 4.43-3
2.02-2 11.1 1281 8.67-3
3.60-2 2.04 579 3.52-3
8.22-3 27.1 2001 1. 35-2
1. 46-2 4.04 748 5.40-3

2.01-2 13.0 1281 1. 02-2
2.01-2 4.33 756, 5.72-3
8.22-3 30.0 2001 1. 50-2
8.24-3 8.50 1009 8.42-3
3.99-3 63.16 2881 2.19-2
4.00-3 15.19 1278 1.19-2

164

either component. The memory given is the memory per solution component.

We used upwind/downwind boundary conditions (see Section B.l).

We see that in terms of computer time our method using Lw is 3 to 5.5

times as efficient as using a uniform fine mesh which produces the same error.

In terms of memory. a factor of 1.7 to 2.2 is gained. At first it might seem

surprising that our method could be more efficient. since it requires much

greater overhead than. the uniform mesh method. The overhead is needed to

estimate the local truncation error and adjust the refinements. This is compen

sated for. however. by being able to take large time steps in unrefined regions.

Using a uniform mesh. we must take fine time steps everywhere.

An additional aspect of. efficiency that should be mentioned involves the

work per mesh point. Our mesh refinement algorithm reduces the (maximum)

number of mesh pOints needed to achieve a given accuracy. and this naturally

reduces the amount of work. but does the amount of effort per mesh point

decrease?

Table· B.3 also gives this figure. obtained by dividing the computer time by

the maximum number of mesh pOints used. It is clear that in all cases the work

per mesh point is decreased by a factor of two (the notation n-m means

n-lOm).

Our results also show that the hybrid LW / 4th order method is not competi

tive in efficiency with pure Lax-Wendroff. We also tried using the hybrid method

with Al = 0.2. all other At= O.B. Though improved somewhat. the results still

were not competitive with pure Lax-Wendroff. In addition. the hybrid method

was quite cumbersome to implement.

In general. of course. one will not get a factor of three or any other specific

efficiency factor. This depends primarily on the fraction of the region needing

refinement. and other factors such as the local error tolerance, when (for which

165

t) we are doing the comparison, the wave speed, and so forth.

It might be argued that we obtained our results only by adjusting or tuning

the parameters N, M. To refute this charge, we have shown several different

values of Nand M. This shows that although we cannot easily determine the

optimal N, M, even suboptimal choices still yield a significant savings in execu

tion time.

8.5. Behavior as h --+ 0

As we pointed out in Chapter 3, we can study two types of convergence. (In

all cases we hold the refinement ratios N and M fixed.) In the first, we hold the

local error tolerance 6 fixed and let hI --+ O. In the second, we let hI --+ 0 and let

6 = C(hl)2.

We first keep the maximum number of refinement levels constant, and less

than necessary (for the method to refine as much as possible), and study the

first type of convergence. Table B.4 shows these results on Pi using pure Lax

Wendroff, Al = O.B, N = M = 4, three-level Richardson extrapolation, and local

error tolerance = 0.001. For the smaller values of h, the O(h2) behavior of the

errors (both maximum and l2) is apparent.

Next we do the same test, but choose the maximum number of levels large

enough so that the method refines as much as possible. The maximum level is 5

here. The convergence is O(h2) for the maximum error with the coarse mesh

size going from No = 80 to 160. But as we saw in Chapter 3, the grid is approach

ing a uniform mesh as< h --+ 0 and this slows down the convergence. As h --+ 0 the

number of levels used approaches 1.

Finally, we let h --+ 0 and let 6 = 0(h2). Here we see the convergence is fas

ter, and the maximum error is finally O(h2). The l2 error does not behave as

well.

No. of R.
2
-norm

Intervals Maximum Local
R.2

Maximum Storage
on Coarse Refinement Error Maximum of Time by Levels

Mesh Level L M To 1. Error Error Solution (sec.) 1 2 3 4 Total

40 2 4 4 .001 .144 .391 .304 .178 41 161 202
80 2 4 4 .001 .0715 .230 .323 .647 81 321 402

160 2 4 4 .001 .0228 .0790 .328 .782 161 122 283
320 2 4 4 .001 .00592 .0201 .329 2.74 321 157 478

40 3 4 4 .001 .0228 .0790 .328 .592 41 161 158 360
80 3 4 4 .001 .00592 .0201 .329 1.89 81 321 181 583

160 3 4 4 .001 .00296 .00503 .329 3.77 161 118 281 560
320 3 4 4 .001 .000756 .00126 .329 13.5 321 161 445 927

40 5 4 4 .001 .00240 .00325 33.8 41 161 121 349 672
f-' 80 5 4 4 .001 .000743 .00126 12.35 81 321 177 497 1076 0'\
0'\ 160 5 4 4 .001 .00260 .00330 22.5 161 101 277 433 972

320 5 4 4 .001 .000756 .00126 13.46 321 157 433 0 911
640 5 4 4 .001 .00045~ .00140 28.8 641 257 374 0 1272

1280 5 4 4 .001 .000418 .00126 43.9 1281 433 0 1714

40 5 4 4 .01 .00388 .0109 2.78 41 161 109 213 524
80 5 4 4 .0025 .00139 .00498 8.20 81 321 169 305 876

160 5 4 4 .000625 .000438 .00139j 26.7 161 641 289 493 1584
320 5 4 4 .000156 .000134 .000354 93.6 321 1076 545 869 2811

Table 8.4 Behavior of Global Error as hI ~ 0

~

167

B.6. Estimating the Local Truncation Error in the Interior

In this section we will consider the other ways of estimating the interior

local truncation error that we examined in Chapter 5: differences and two-level

Richardson extrapolation. In all other tables in this chapter we used three-level

Richardson estimation (except on the first level of the hybrid method) in the

interior of the region.

Table 8.5 shows these results for problem P1. As usual, the parameters not

listed in the table are the same as in the computations for Table 8.1 or 8.2. R3

signifies 3-level Richardson extrapolation, R2 is two-level Richardson extrapola

tion, and D signifies differences. Omitted entries are the same as the entries

above them.

We see that there is very little difference in efficiency between these

methods for problem P1. The use of differences seems to be slightly more

efficient. But in our opinion, the greater convenience of three-level Richardson

for interior approximations far outweighs any small efficiency differences.

B.7. Estimating the Local. Truncation Error at Boundaries

In this section we will fix our problem (P2), and our interior approximation

and error estimation methods (Lax Wendroff and three-step Richardson, respec

tively). Then we will vary our boundary approximation and our method of error

estimation at the boundary.

We will use upwind/downwind differencing and first-order extrapolation (see

Section 8.1). For the former we will estimate the error both by using the

modified Richardson 3-step method (Section 5.4) and by replacing t derivatives

by x derivatives in the truncation error and using differences. For extrapolation

we can only use differences. The results are shown in Table 8.6. In all cases, the

number of intervals on the coarsest mesh is 80, the maximum number of

t-'
(j\

OJ

Haximum
Refinement

Level

3

3

3

3

Local
Error

L M Tolerance Method

4 4 .01 R3
R2
D

6 6 .01 R3
R2
D ..

4 4 .001 R3
R2
D

6 6 .001 R3
R2
D

22 Maximum

Error Error

.0115 .0201

.0115 .0201

.0115 .0201

.0100 .0126

.0099 .0126

.00992 .0126
J;

.00592 .0201

.00592 .0201

.00592 .0201

.00120 .00398

.00120 .00398

.00120 .00398

Time
(sec.)

1.03
1.05

.957

3.32
3.65
3.35

1.83
1. 74
1.52

5.62
5.59
5.28

Table 8.5 Using Different Methods to Estimate the Local Truncation Error

'"

169

refinement levels is 5. and the refinement ratios L = M = 4. In all cases the fifth

refinement level was not used. U ID signifies upwind I downwind differencing. and

Rich. signifies the modified 3-step Richardson method. The memory occupied by

solution values is the maximum total over all refinement levels for one com-

ponent of the solution. As usual. all other parameters not shown are the same

as in the computation for Table 8.1. except that we use Problem P2 rather than

P1.

Clearly. the different boundary approximations and error estimation

methods produce approximately the same results. This supports our claim that

our method of adaptively handling boundaries is quite general.

8.8. How Often Should the Local Truncation Error Be Checked?

In Chapter 2 we used subsequences to describe the times at which we esti

mate the local truncation error (and possibly alter refinements). In this section

we shall show that for Problem Pl it is unwise to monitor the local truncation

error.more often than every coarse time step.

Table 8.7 shows the results of these computations for Problem P1. All

parameters not mentioned are the same as in the computations for Table 8.1.

The meaning of (a) under "tolerance frequency" In Table 8.7 is how many coarse

Boundary Error Local l2 Maximum Time Memory

Approx. Estimation Error Error Error (sec.) Used
Tolerance

U/D Rich. .01 1.20-2 2.18-2 3.84 630
UID . diff. .01 1.21-2 2.18-2 3.87 630

ext.rap. ditTo .01 1.18-2 2.18-2 3.93 642
U/D Rich. .001 8.02-4 1.34-3 42.3 1774
U/D ditT. .001 8.02-4 1.34-3 41.9 1774

extrap. ditT. .001 8.00-4 1.34-3 42.6 1814

Table 8.6. Error Estimation at Boundaries

.....
-...J
0

Maximum
Refinement

Level L M

4 4 4

3 6 6

Q
To1. Freq. 2

To1. (a) (b) Error

.01 1 1 .0115
1 2 .0115
1 3 .0115
2 1 .0112
2 2 .0119
2 3 .0112
3 1 .0119
3 2 .0114
3 3 .0119
4 1 .0107
5 1 .0129
6 1 .0235

.001 1 1 .00120
1 2 .00120
1 3 .00120
2 1 .00120
2 2 .00120
2 3 .00120
3 1 .00121

Maximum
Error

.0201

.0201

.0201

.0202

.0201

.0202

.0238

.0219

.0238

.0241

.0380

.0857

.00398

.00398

.00398

.00398

.00398

.00398

.00398

Time
(sec.)

1.17
1.64
3.10
1.16
1.15
1.24
1.26
1.21
1.38
1.31
1.41
1.48

5.62
7.86
7.90
6.10
5.68
6.06
6.52

Table 8.7 How Often Should the Local Truncation Error Be Checked?

'.

Maxim~ Storage
by Levels

2 3 4 Total

65 149 0 295
65 125 0 271
65 125 0 271
69 173 0 323
69 149 0 299
69 173 0 323
81 205 0 367
81 161 0 323
81 205 0 367
85 221 0 387
89 249 0 419
93 281 0 455

481 355 917
481 313 875
481 313 875
481 415 977
481 355 917
481 415 977
481 475 1037

171

time steps occur between checks of the local error. The column (b) has two

different meanings. depending on column (a). If column (a) is 1 then we check

the truncation error at any time a refinement whose level is less than or equal to

(b) is about to be advanced. Thus, in these cases we check more often then

every coarse time step. Table 8.7 shows that this is very costly and produces no

benefits whatever.

If (a) in Table 8.7 is greater than one. a one in column (b) signifies that we

check all refinements every (a) coarse time steps. If column (a) is greater than

one and (b) is greater than one, we check refinements with levels greater than

or equal to (b) every coarse time step. and all others every (a) coarse time

steps. Of course, in all cases in this table, the buffers mentioned in Section 2.6

have to be modified. in a way analogous to the argument given there.

Our results for these cases show very little ditIerence from checking every

coarse time step. until the checking frequency becomes too seldom (as in case

(a) = 6. (b) = 1). Then the accuracy starts to deteriorate. because a pulse may

enter the boundary before it is enclosed in refinement(s). (The algorithm could

easUy be modified to check the boundaries at every coarse time step. but we did

not do this.)

We conclude that for this problem we may as well check the local error

every coarse time step, althOUgh this may depend on factors such as the spacing

of the coarse mesh. the wave speed. and the presence of forcing functions

(terms kF in (2.1». Also, the results may be radically different in more than

one space dimension (M. Berger. Ph.D. thesis [to appear D.

8.9. linear vs. Quadratic Interpolation

One final lmplementationdetail we considered is whether to use linear or

quadratic interpolation when a level l refinement moves into a region formerly

172

occupied only by a level l-l refinement. (Tbi's is releva.{lt to the statement of

Propositions 4.1 and 4.2.) Table B.B shows that there is practically no difference.

(All parameters not mentioned are as in the computation for Table B.1. As usual.

omitted values are the same as the ones above.) We used quadratic interpolation

elsewhere in. this chapter) but linear interpolation would be preferred because

it is easier to program~

,-

Maximum
Refinement
Level

3

3

3

3

4

L

4

6

4

6

3

Local
M Error

Tolerance

4 .01

6 .01

4 .001·

6 .001

3 .001

Linear or
Quadratic

Lnterp.

Q
L
Q
L

Q
L
Q
L
Q
L

Table 8.8 Linear vs.Quadratic Interpolation

173

.Q
2

Error

.0115

.01l16

.0100

.0100)

.00592

.00593

.00120

.00121

.00237

.00240

Maximum
Error

.0201

.0201

.0126

.0127

.0201

.0201

.00398

.00398

.00705

.00705

Time

(sec.)

1.03
1.06
3.32
3.60

1.83
1.87
5.62
5.76
3.02
3.13

CHAPfER 9

Conclusions and Extensions

In this thesis we have developed and partially analyzed an adaptive finite

difference method for hyperbolic systems in one space dimension. It is intended

for problems which are smooth in most parts of the spatial region. but which

have large gradients which require "moving" refinement(s) for accurate approxi

mation. The algorithm was described in Chapter 2.

Although our method was originally developed for problems with smooth

solutions. and the analyses hold only for that situation. we found in Section 8.2

that our method also works for problems with shocks. in the sense that the

refinement(s) follow the shock. However. the method is not yet efficient for that

case.

The most important result of this thesis is that our method can be much

more efficient (for a given level of accuracy) than using a uniform grid.

Specifically. in Section 8.4 we found that our method was 3-5 times more

efficient (in computing time). Work by W. Gropp [1980] and M. Berger [to

appear] in two spatial dimensions confirms this. We believe the efficiency of the

shock calculation . mentioned above can b~ greatly improved by changing the

method of error estimation. and we will do this in the future.

Our method also provides efficiencies in storage, but these are not as

dramatic as the execution time savings. We expect the savings to be greater for

more space dimensions.

Our algorithm is the only one of which we are aware which adaptively treats

time-dependent boundary conditions for hyperbolic systems (as was shown by

174

175

problem P2 in Section B.7) in a systematic and general way. This is obviously

important for limited area weather forecasting, among other problems.

We saw that our algorithm does indeed accurately "track" moving pulses,

even when they merge, separate, or pass through boundaries, without being dis

tracted by background "noise" (as appeared in our problems Pl and P2).

As explained in Chapter 3, our method of mesh refinement requires the use

of a stability definition ditIerent from the usual Gustafsson-Kreiss-Sundstrom

[1972] definition. In Chapter 4 we stated but did not prove a convergence propo

sition analogous to Gustafsson's [1975] result, but using the new stability

definition. Using this, and the results of Pereyra and Sewell, we proved a result

(Proposition 4.2) which gives insight into why our algorithm can be expected to

produce economies. Our algorithm does not increase the order of convergence,

but, loosely speaking, it can greatly decrease the constant multiplying h P in the

global error. Our computations in Section B.5 confirm the rate of convergence

given in Proposition 4.2.

In Chapter 5 we examined methods for estimating the local truncation

error. For interior approximations we found that the three-step Richardson

extrapolation method was the most versatile and easy to use. We proved that

this procedure was valid for a large class of explicit ditIerence schemes (namely

those whose local truncation error has the same order in both space and time).

We found that this scheme can sometimes be applied (with modifications) at the

boundaries, but that differences provide the most versatile method here.

In Chapter 6 we discussed the data structures necessary for an etIicient

implementation of the algorithm. The nested structure of recursive refinements

was indicated by a four-way linked tree of records, and the solution values were

contained in sequentially allocated deques. We used a macro preprocessor for

Fortran to implement this, since Fortran lacks convenient facilities for data and

178

control structures.

Many additional areas for research suggest themselves. The first is the

completion of the theoretical results using the new definition of stability in

Chapter 3. Although it is well-known that our difference scheme when applied to

problemsP1 and P2 on a uniform. mesh is stable according to the Gustafsson

Kreiss-Sundstrom definition, we have not proved that it is stable according to

. the new definition. For refined meshes with nonuniform time steps, the only

known stability result has recently been given in M. Berger's Ph.D. thesis [to

appear] for the GKS stability definition. Still needed is a similar result for the

new stability definition. Proposition 4.1 of Chapter 4 on the rate of convergence

also needs to be proved.

We believe Theorem 5.1 is true in more general.circumstances although

whether it c an be proved then is an open question. The first is variable

coefficients in one space dimension. The second is linear hyperbolic systems in

more than one space dimension (but here a theorem like Gustafsson's is lacking

to guarantee the order of the global error). Another generalization is to

difference schemes that depend nonlinearly on approximate solution values. We

believe that Theorem 5.1 holds for some of these cases, although we are unable

to state which ones. Evidence for this was provided by our shock calculation for

the inviscid Burg~rs' equation in Chapter 8. On. the other hand, we doubt that

this theorem generalizes to implicit methods, or to some other types of equa

tions (such as parabolic equations) ..

In proving Theorem 5.1, we assumed that not only the solution, but also the

global error was sufficiently smooth. That is, we assumed the existence of an

asymptotic expansion for the global truncation error. To our knowledge, the

best result for the initial boundary value problem is Gustafsson's [1975J

theorem, which only gives the size of the global error, but says nothing about its

177

smoothness. We believe this theoretical gap will be very ditIicult to overcome.

In the realm of implementation in one space dimension, the method of local

error estimation needs to be altered (for etIiciency reasons) in shock calcula

tions. It also needs to be extended to impliCit difference schemes (this is more

difficult) and possibly to conservative difference schemes. On the other hand,

we believe our algorithm applies without change to moving boundary layer prob

lems.

In two space dimensions there are many more problems, but these are

being considered in M~ Berger's Ph.D. thesis [to appear]. Some of the new prob

lemsare: more complicated data structures, orientation of refinements, and

clustering analysis.

References

Ascher. V .• Christiansen. J .. and Russell. R. D .. "A Collocation Solver for Mixed

Order Systems of Boundary Value Problems." Math. Camp. 33 (1979). 659-

679.

Babushka. 1.. and Rheinboldt. W .. "Error Estimates for Adaptive Finite Element

Computations." SIAM J. NUTner. Anal. 15 (1978).736-754.

Bank. Randolph. and Sherman. Andrew. "PLTMG Users' Guide." July 1979 Version.

Center for Numerical Analysis CNA 152. University of Texas at Austin (Sep

tember 1979).

Berger. M .. Stanford University Ph.D. thesis. to appear.

Berger. M:. Gropp. W .. and Oliger. J .. "Mesh Generation for Time-Dependent Prob

lems: Criteria and Methods." in Proc. Workshop on Numerical Grid Genera

tion Techniques for Partial Differential Equations. NASA Langley Research

Center (October. 1980).

Berger. M .. Gropp .. W .. and Oliger. J .. Stability Analysis. to appear.

Brackbill. J. U. and Saltzman. J .. "Adaptive Zoning for Singular Problems in Two

Dimensions." to appear in J. Comp. Phys.

Brandt. Achi. "Multi-Level Adaptive Solutions to Boundary Value Problems."

Math. Camp. 31 (1977a). 333-390.

Brandt. Achi. "Multi-Level Adaptive Techniques (MLAT) for Partial Differential

Equations: Ideas and Software." in Rice. John. ed .. Mathematical Software

III. Academic Press. New York (1977b) 277-318.

Browning. G .. Kreiss. H .. and Oliger. J .. "Mesh Refinement." Math. Camp. 27

(1973). 29-39.

Budnik. P .. and Oliger. J .. "Algorithms and Architecture." in Kuck. D. J .. Lawrie.

D. H. and Sameh. A. H .. High Speed Computer and Algorithm Organization.

178

179

Academic Press,New York (1977), 355-370 ..

Ciment, Melvyn, "Stable Difference Schemes with Uneven Mesh Spacings," Math.

Comp. 25 (1971), 219-227.

Cook, A. James, and Shustek, L. J., "A User's Guide to MORTRAN2," Computation

Research Group, Stanford Linear Accelerator Center, Stanford, Calif. (June

1975).

Davis, Stephen, and Flaherty, Joseph, "An Adaptive Finite Element Method for

Initial Boundary-Value Problems for Partial Differential Equations," SIAM J.

Sci. Stat. Computing 3 (1982), 6-27.

de Boor, Carl. "On Writing an Automatic Integration Algorithm," in Rice, John,

ed., Mathematical Software, Academic Press, New York (1971a), 201-209.

de Boor, Carl. "CADRE: Cautious Adaptive Romberg Extrapolation," in Rice, John,

ed., Mathematical Software, Academic Press, New York (1971b), 417-449.

de Boor, Carl, "Good ApprOximation by Spline~ with Variable Knots. II," in Confer

ence on the Numerical Solution of Differential Equations, Lecture Notes in

Mathematics 363, Springer Verlag, New York (1973),12-20.

de Boor, Carl. "How Small Can One Make the Derivatives of an Interpolating func

tion?" J. ApprO%. Theory 13 (1975a), 105-116.

de Boor, Carl. "A Smooth and Local Interpolant with 'Small' k-th Derivative," in

Numerical Solutions of Boundary Value Problems for Ordinary

Differential Equations, Academic Press, New York (1975b), 177-197.

de Doncker, Elise, "An Adaptive Extrapolation Algorithm for Automatic Integra

tion," ACM SIGNUM Newsletter 13 (1978), 12-17.

Dupont, Todd, "Mesh Modification for Evolution Equations," to appear.

Dwyer, fl. A., Kee, R. J. and Sanders, B. R., "Adaptive Grid Method for Problems in

Fluid Mechanics and Heat Transfer," AIAA J. 18(1980), 1205-1212.

Feldman, Stuart, "The Programming Language EFL," Bell Laboratories Compo

Sci. Tech. Rep. No. 78 (1979).

180

Gannon, Dennis, "Self Adaptive Methods for Parabolic Partial Differential Equa

tions," Dept. of Computer Science, Univ. of Illinois (Aug. 1980).

Gear, C. William, Numerical Initial Value Problems in Ordinary J)ifferential

Equations, Prentice-Hall, Englewood Cliffs, N. J. (1971).

Gelinas, R. J., Doss, S. K., and Miller, K., "The Moving Finite Element Method:

Applications to General Partial Differential Equations with Multiple Large

Gradients," J. Camp. Phys. 40 (1981), 202-249.

Gropp, William D., "A Test of Moving Mesh Refinement for 2-D Hyperbolic Prob

lems," SIAM J. Sci. Stat. Computing 1 (1980), 191-197.

Gropp, William D., Preprocessor Language, to appear.

Grosse, Eric, "Software Restyling in Graphics and Programming Languages,"

Stanford Univ. Compo Sci. Report STAN-CS-78-663 (1978).

Gustafsson, BertH, "The Convergence Rate for Difference Approximations to

Mixed Initial Value Problems," Math. Camp. 29 (1975),396-406.

Gustafsson. Bertil, "The Convergence Rate for Difference Approximations to Gen

eral Mixed Initial Boundary Values Problems~" SIAM J. Numer. Anal. 18,

(1981), 179-190.

Gustafsson, B., Kreiss, H., and Sundstrom, A., "Stability Theory of Difference

Approximations for Mixed Initial Boundary Value Problems, II," Math.

Camp. 26 (1972),649-686.

Henrici, Peter, IJiscrete Variable Methods in Ordinary J)ifferential Equations,

Wiley, New York (1962).

Jensen, Kathleen, and Wirth, Niklaus, Pascal User Manual and Report, 2nd ed.,

Springer Verlag, New York (1974).

Kahaner, D. K., and Wells, M. B., "An Experimental Algorithm for N-Dimensional

Adaptive Quadrature," ACM TOMS 5 (1979), 86-96.

Keller, H. B., Numerical Methods for Two-Point Boundary-Value Problems, Blais

dell, Waltham, Mass. (1968), 78-80.

181

Kernighan, Brian, "RATFOR - a Preprocessor for a Rational Fortran," Software -

Practice and Experience 5 (1975), 395-406.

Knuth, Donald E., The Art of Computer Programming, vol. 1, 2nd ed., Addison

Wesley, Reading, Mass. (1973).

Kreiss, H., and Oliger, J., "Comparison of Accurate Methods for the Integration of

Hyperbolic Equations," TeUus XXlV(1972), 199-215.

Krogh, F. T., ''VODQ/SVDQ/DVDQ - Variable Order Integrators for the Numerical

Solution of Ordinary Differential Equations," TV Doc. No. CP-2308, NPO-

11643, Jet Propulsion Laboratory, Pasadena, Calif. (1969).

Lentini, M., and Pereyra, V., "An Adaptive Finite Difference Solver for Nonlinear

Two-Point Boundary Value Problems with Mild Boundary Layers," SIAM J.

Numer. Anal. 14 (1977),91-111.

Lentini, M., and Pereyra, V., "Boundary Problem Solvers for First Order Systems

Based on Deferred Corrections," in Numerical Solutions 0/ Boundary

Value Problems for Ordinary IJifferential Equations, Academic Press, New

York (1975).

Lindberg, Bengt, "Error Estimation and Iterative Improvement for Discretization

Algorithms," BIT 20 (1980),486-500.

Lyness, James, "Algorithm 379: SQUANK (Simpson Quadrature Used Adaptively -

Noise Killed)," CACM 13 (1970), 260-263.

McKeeman, William, "Algorithm 145: Adaptive Numerical Integration by

Simpson's Rule," CACM 5 (1962),604.

Miller, K., and Miller, R., "Moving Finite Elements," SIAM J. Numer. Anal., to

appeal'.

Mohilner, Patricia, "Using Pascal in a Fortran Environment," Software - Practice

and Experience 7 (1977), 357-362.

Oliger, Joseph, "ApprOximate Methods for Atmospheric and Oceanographic Circu

lation Problems," Proc. Third International Symposium on Computing

182

Methods in Applied Sciences and Engineering, Springer Verlag, New York

(1978).

Oliger, Joseph, "Fourth Order Difference Methods for the Initial Boundary-Value

Problem for Hyberbolic Equations," Math. Compo 28 (1974), 15-25.

Oliger, Joseph, "Hybrid Difference Methods for the Initial Boundary-Value Prob

lem for Hyperbolic Equations," Math. Camp. 30 (1976), 724-738.

Oliger, Joseph, "Constructing Stable Difference Methods on Piecewise Uniform

Grids," to appear.

Pearson, Carl E., "On a Differential Equation of Boundary Layer Type," J.

Mathematical Phys. 47 (1968), 134-154.

Pereyra, V., "Higher Order Finite Difference Solution of Differential Equations,"

Stanford Univ. Comp; Sci. Report STAN-CS-73-348 (1973).

Pereyra, V., and Sewell, E. G., "Mesh Selection for Discrete Solution of Boundary

Problems in Ordinary Differential Equations," NUmBr. Math. 23 (1975),

261-268.

RaL M. M. and Anderson, D. A., "Application of Adaptive Grids to Fluid-flow Prob

lems with Asymptotic Solutions," AIAA J. 20 (1982), 496-502.

Rheinboldt, Werner C. and Mesztenyi. Charles. "On a Data Structure for Adaptive

Finite Element Mesh Refinements." ACM TOMS 6 (1980), 166-187.

Richtmyer. Robert and Morton. K. W .. Difference Methods for Initial Value Prob

lems, 2nd. ed., Wiley. New York (1967).

Russell, R. D. and Christiansen, J., "Adaptive Mesh Selection Strategies for Solv

ing Boundary Value Problems," SIAM J. Mlmer. Anal. 15 (1978).59-80.

Shampine, 1. M. and Gordon. M. K., Computer Solution of Ordinary Differential

Equatio':'tS: the Initial Value Problem. Freeman. San Francisco (1975).

Steger, Joseph and Chaussee, Denny. "Generation of Body-Fitted Coordinates

Using Hyperbolic Partial Differential Equations," SIAM J. Sci. Stat. Com

puting 1 (1980), 431-437.

183

Stetter, Hans, "Global Error Estimation in Adams PC-Codes," ACM TOMS 5 (1979),

415-430.

White, Andrew B., "On Selection of Equidistributing Meshes for Two-Point Boun

daryValue Problems," SIAM J. Numer. Anal. 16 (1979),472-502.

Zahn. Charles T., Jr., "A User Manual for the MORTRAN2 Macro-Translator," Com

putation Research Group, Stanford Linear Accelerator Center, Stanford,

Calif. (August 1975).'

APPENDIX A

Appendix: Program Listing

The following is the listing of the mesh refinement program for problem P2

(the second order wave equation with counter-streaming pulses). We include it

both to resolve any small details which had to be omitted from the text, and to

show the advantages of using a preprocessor language for this type of algorithm.

As described in Chapter 7, the language used is an extension of Mortran [Cook

and Shustek, 1975].

184

MORTRAN 2.0 (VERSION OF 6/24/75)

$U5
o

185

PROCESSOR VERSION OF 06/24/75

o "PROGRAM TO SOLVE THE INIl1AL BOUNDARY-VALUE PROBLEM FOR THE ONE-
o DIMENSIONAL SECOND ORDER WAVE EQUATION
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

2
U - C U = 0, C .GT.O,
TT XX

REWRITTEN /IS THE 2 BY 2 FIRST ORDER SYSTEM, WITH V = ClIDU/DX, AND
W = OU/DT,

V = ClIIN
T X

W = ClIV
T X

IN THE STRIP A .LE. X .LE. B, T .GE. 0, VIIITH AUTOMATIC INSERTION
OF MESH REFINEMENTS IN REGIONS WHERE THE SOLUTION IS CHANGING
RAPIDLY. INITIAL CONDITION V(X, 0) = F(X) + G(X), W(X, 0) =
-F(X) + G(X), WHERE F ANDG ARE GIVEN BY SUBROUTINE EXACT.SOLUTION.
BOUNDARY CONDITIONS V(A. 1) = W(A. T) + 2F(A - ClIl),

V(S, T) = -WeB, T) + 2G(B + ClIT).
EXItCT SOLUTION vex. T)= F(X - ClIT) + G(X + ClIl),

W(X, 1) = -F(X - ClIT) + G(X + ClIT).

REFERENCE:
BOLSTAD, JOHN H., 'AN ADAPTIVE FINITE DIFFERENCE METHOD FOR
HYBPERBOLIC SYSTEMS IN ONE SPACE DIMENSION', LBL-13287 AND
STAN-CS-82-899,JUNE,1982.

o "
o "SHORTEN IDENTIFIERS"

$ 'INITIALIZE' = 'INITIA'
$ 'ADVANCE.50LUTION' = 'ADVSOL'

o
o REAL TIME;
o INTEGER HANDLE, MILSEC;
o LOGICAL RUNNING;
o
o HANDLE = 0;
o CALL UB$INITJIMER(HANDLE);
o RUNNING = .TRUE.;
o WHILE RUNNING <
1 CALL INITIALIZE(RUNNING);
1 IF (.NOT. RUNNING) EXIT;
1 CALL ADVANCE.50LUTION;
1 CALL UB$STATJIMER(2, MILSEC, HANDLE);
1 TIME = 0.0 1 lIMILSEC;
1 OUTPUT TIME; (' EL/ISED TIME = " F9.3, ' SECONDS');
, CALL UB$INITJIMER(HANDLE»
o STOP;
o END;
o
o "MORTRAN MACROS"
o

$ 'ONE.TIME.STEP' = 'ONETIM'
$ 'EXItCT.SOLUTION' = 'EXTSOL'
$ 'INITIAL.CONDIl10NS' = 'INITCN'
$ 'EXTEND.LEFT' = 'EXTLFT'
$ 'EXTEND.RIGHT' = 'EXTRGT'
$ 'DETERMINE.REFINEMENTS' = 'DETREF'
$ 'ADJUST.MESH' = 'ADJMES'

$ 'FILLIN' = 'FILL/N'
$ 'SEPARATE.AEF' = 'SEPRAT'
$ 'INTERPOLATE' = 'INTRPO'
$ 'ESTIMATE.ERROR' = 'ESTERR'
$ 'TOLERANCE' = 'TOLRNC'
$ 'TOL.ACHIEVED' = 'TOLAeV'
$ 'TOL.FREQ' = 'TOLFRQ'
$ 'DIFFERENCES' = 'DIFRNC'
$ 'DIFFERENCES2' = 'DIFRNZ'
$ 'RICHARDSON2' = 'RICHAZ'
$ 'RICHARDSON3' = 'RICHA3'
$ 'LEFTMOST' = 'LFTMST'
$ 'ESTERROR' = 'ESTRRR'

186

$ 'MAXLEVEL' = '5' "MAXIMUM NUMBER OF LEVELS OF REFINEMENT"
$ 'MAXLEVELP1' = '6' "MAXLEVEL + 1"
$ 'MAXRFINE' = 'Hi' "MAXIMUM NUMBER OF REFINEMENTS. THIS NUMBER ..

o MUST BE ;GE. MAXLEVEL + 1 ."
$ 'MEMAVAlL' = '3000' "MEMORY AVAILABLE FOR V AND REFINEMENTS"
$ 'HEIGHT' = '16' ''VERTlCAL HEIGHT OF CRUDE PLOTS"
$'HEIGHTP1' = '17' ''HEIGHT + 1"
$ 'PAGEWIDTH' = '120' "NO. OF CHARS. ON UNE OF OUTPUT"
$ 'EMPTY' = '-1' "SIGNAL FOR RIGHT END OF EMPTY MESH"
$ 'NCOMP' = '2' "NUMBER OF EQUATlONS AND COMPONENTS IN

o SOWTlON VECTOR"
o

$ 'USE SOLN;' = 'COMMON /SOLN/ ZVNf:W; VNEW. ZV, V;
o REAL ZVNEW(IIICOMP), VNEW(NCOMP, MEMAVAlL). ZV(NCOMP). V(NCOMP,
o MEMAVAlL);'
o "ZVNf:W = VNf:W(1.0), ZV = V(1/J).
o THIS SIMULATES V(1 :NCOMP, O:MEMAVAlL) IN ALGOL NOTATlON."
o ARRAY RFIN(MAXRFINE) OF RECORD <
1 POINTER TO RFIN: LLINK. RLINK. COARSE. FINEi
1 INTEGER: BASE. TOP, OLDBASE, OLDTOP. LEFT. RIGHT; >

$ 'USE LFTMST;' = 'COMMON /LFTMST/ LEFTMOST;
o POINTER TO RFIN: LEFTMOST(MAXLEVELP1);'

$ 'USE COM3;' = 'COMMON /COM3/ A, B, N;
o REAL A, B; INTEGER N;'

$ 'USE COM4;' = 'COMMON /COM4/ C,FACTOR, SCAlE, 1Vv'OPI;
o REAL C, FACTOR, SCALE, TYVOPI;'

$ 'USE COM5;' = '
o COMMON /COM5/ NLEVEL, NPTSM, POWER, RIGHTS, BUFFER;
o INTEGER NLEVEL, NPTSM(MAXLEVELP 1), POWER (MAX LEVELP 1),
o RIGHTB(MAXLEVEL). BUFFER(MAXLEVEL);' .

$ 'USE STEPSZ;' ='
o COMMON/STEPSZ/ HO, H. K, LAMBDA;
OREAL HO, H(MAXLEVEL). K(MAXLEVEL), LAMBDA(MAXLEVEL);'

$ 'USE COM7;' =
o 'COMMON /COM7/ C 1. C2, C3, L2. L3, L6, NM1, NM2, NM3;
o REALC1,C2,C3,L2,L3,L6;
o INTEGER NM1, NM2, NM3;'

$ 'USE ZERO;' = 'COMMON /ZEROl ZERO; INTEGER ·ZERO;'
$ 'USE XRATIO;' = 'COMMON /XRATlO/ XRATIO; INTEGER XRATIO;'
$ 'USE COUNT;' = 'COMMON /COUNT! NSHRT, NSHL;

o INTEGER NSHRT. NSHL;'
$ 'USE DEBUGi' = 'COMMON /DEBUG! DEBUG; INTEGER DEBUGi'
$ 'USE COM12;' = 'COMMON /COM12/ TOLERANCE, NTIME, SKIPPR, TRATIO.

o QUADRAT, PRINT, RICHSN, TOLCHK. TOL.FREQ,
o TOLACHI EVED, BDRYi
o REAL TOLERANC E;
o INTEGER BCRY, NTIME, RICHSN, SKIPPR, TOL.FREQ(2), TAATIO;
o LOGICAL QUADRAT, PRINT, TOLCHK, TOLACHIEVED;'

$ 'USE METHOD;' = 'COMMON /METHOD/ METHOD; INTEGER METHODi'
$ 'USE COM14;' = 'COMMON /COM14! C6, C7, ca, C10;

OREAL C6(MAXLEVEL), C7(MAXLEVEL), Ca(MAXLEVEL), C10(MAXLEVEL);'
$ 'USE ERROR;' = '

o COMMON /ERROR/ ZESTER, ESTERROR;
OREAL ZESTER(NCOMP), ESTERROR(NCOMP, MEMAVAlL)i'

o
o

187

"THIS SIMULATES ESTERROR(1 :NCOMP, O:MEMAVAlL)"

o SUBROUTINE INITIALlZE(RUNNING);
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
1
1
o
1
1
1
o
1
1
1
o
1
1
1
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
1
1
1
1
1
1
1
1
1

USE SOLN; USE LFTMST; USE COM3; USE COM4; USE COM5; USE STEPSZ;
USE COM7; USE ZERO; USE XRATIO; USE COUNT; USE DEBUG; USE COM12;
USE METHOD; USE COM14j USE ERROR; DEFINE RFINj
REAL Sj
INTEGERI,J,L,NLEVP1;
POINTER TO RFIN: P;
LOGICAL RUNNINGj
CHARACTER-9 DAY;
DATA ZERO /O/j

INPUT NLEVEL, X RATIO, TRATlO, DEBUG, RICHSN, BDRY, TOL.FREQ, METHOD,
N, SKIPPR, NTlME, QUADRAT, TOLCHK, LAMBDA(1), SCALE, TOLERANCE, C;
(912,314, 2L 1, 4F7 .3)j
IF N .LE. 0 <

RUNNI NG = FALSE.;
GO TO :EXIT:>

IF NLEVEL .LE. 0 .OR. NLEVEL .GT. MAXLEVEL <
OUTPUT NLEVEL; (' INCORRECT INPUT, NLEVEL =',15);
RUNNI NG = .F ALSE.;
GO TO :EXIT:>

IF MAXRFINE .LT. MAXLEVELP1 <
OUTPUTj (' ... MAXRFINE TOO SMALL');
RUNNI NG = .F ALSE.;
GO TO :EXIT:>

IF TRATIO .LT. 2 .OR. XRATIO .LT. 2 <
OUTPUT X RATI 0, TRATIO; (' XRATIO, TRATIO =', 214,' TOO SMALL');
RUNNI NG = .F ALSE.;
GO TO :EXIT:>

TOLACHIEVED = .TRUE.;
NM1 =N-1j
NM2 = N - 2;
NM3 = N - 3j
A= 0.;
B = 4.j
H(ZERO) = 1 .j
H(1) = (B - A)/N;
l'NOPI = 62831853071796;
L2 = C-LAMBDA(1) / 2.;
L3 = C*LAMBDA(1) /3.;
L6 = C*LAMBDA(1) / 6.;
K(1) = H(1)*LAMBDA(1) / C;
C1=1.-L2;
C2 = 1. + L2;
C3 = 1.+ 11.*L6;
FACTOR = 1.;
NSHL = 0;
NSHRT = 0;

"SET UP A PERMANENT EMPTY (NIL) REFINEMENT ON LEVEL NLEVEL+1."
MAKEAVAIL RFIN:
NLEVP1 = NLEVEL + 1;
NEW(P);
LEFTMOST(NLEVP1) = P:
WITH P <
-BASE = MEMAVAIL + 1 :
-TOP = -BASE + (EMPTY):
-LEFT = 0;
-RIGHT= EMPTY;
-RLINK = NIL:
-COARSE = NI L;
-FINE = NIL;

"SET UP COARSE (1 ST LEVEL) REFINEMENT."

188

1 NEW(P);
1 LEFTMOST(1) = P;
1 -LEFT = 0;
1 -RIGHT = 1;
1 -TOP = N;
1 -DlDTOP = "'TOP;
1 "'BASE = 0;
1 "'OLDBASE = "'BASE;
1 -WNK = Nil;
1 -ALINK = Nil;
1 "'COARSE = NI l; ".
1 -FINE = Ml;
1 (LEFTMOST(NLEVPl) lWNK) = P>
o
o RIGHTB(1) = 1;
o POWER(1) = 1;
o S = C-LAMBDA(l);
o BUFFER(1) = METHOD + 2 + TOLFREQ(1)-S;
o DO J = ZERO, MEMAVAIl <
1 DO I = " NCOMP <
2 VNEW(I, J) = 0.;
2 ESTERROR(I, J) = 0.»
o
o DO l = 2, NlEVEl <
1 IF l .EQ. 2 <RIGHTB(2) = N>
1 ELSE <RIGHTB(l) = XRATID-RIGHTB(l-l»
1 H(L) = H(l-l)/ X RATIO;
1 K(l) = K(l-1)/TRATIO;
, LAMBDA(l) = (LAMBDA(l-l)-XRATIO)/TRATIO;
1 lEFTMOST(l) = Nil;
1 S = XRATIO-S;
1 IF (TOl.FREQ(l) .EQ. 1 .AND. l .lE. TOL.FREQ(2»
1 S = S/TRATIO;
1 IF TOL.FREQ(1) .GT. 1 .AND. l .IT. TOL.FREQ(2) .OR.
1 TOL.FREQ(2) .EQ. 1 <
2 BUFFER(l) = 3 + S-rOLFREQ(1 »
1 ELSE <
2 BUFFER(l) = 3 + S>
1 >
o DO l = " NlEVEl <
1 C6(l) = C*H(l)D2-(1. - C-c-LAMBDA(l)D2)/6.;
1 C7(l) = (1. - C-c-LAMBDA(l)"2)/(3.-K(l»;
1 CB(l) = 1.1(6.-K(l»;
1 Cl0(l) = 0.5-c JlLAMBDA(l)*H(l)'"2;
1 NPTSM(l+l) = 0;
1 POWER(l+1) = POWER(l)JCTRATIO>
o
o OUTPUT;('l SOLUTION OF SECOND-oRDER WAVE EQUATION WITH OPEN',
o 'BOUNDARY CONDITIONS USING LAX-WENDROFF MESH REFINEMENT');
o IF METHOD .EQ. 2 < OUTPUT;(' FOURTH ORDER (SP./lCE) ON COARSE MESH'»
o ELSE <OUTPUT;(' LAX-WENDROFF ON COARSE MESH'»
o IF RlCHSN .EQ. 1 <
1 OUTPUT; (' ERROR ESTIMATION USING DIFFERENCES'»
o ELSE IF RICHSN .EQ. 2 <
1 OUTPUT; (' ERROR ESTIMATlON USING 2-lEVEl RICHARDSON'
1 'EXTRAPOLATION'»
o ELSE <
1 OUTPUT; (' ERROR ESTIMATION USING 3-lEVEl RICHARDSON'
1 'EXTRAPOLATION'»
o IF BDRY .EQ. 1 < OUTPUT; (' EXTRAPOLATION BOUNDARY CONDITIONS'»
o ELSE IF BDRY .EQ. 2 <
1 OUTPUT; (' UPWIND B.C. VVlTH ESTIMATION BY DIFFERENCES'»
o ELSE <
1 OUTPUT; (, UPWIND B.C. VVlTH ESTIMATION BY RICHARDSON EXTRAP.'»
o OUTPUT N, H(1), K(1), LAMBDA(1), C; (I' NO. OF I NTERVALS ON "
o 'COARSE MESH',I6,' HCOARSE', FB.5,' KCOARSE', FB.5,' LAMBDA',
o FB.5,' C', F10.2);

189

o OUTPUT NLEVEL, XRATIO, TRATIO, TOLERANCE: (' HIGHEST LEVEL',
o 'REFINEMENT', 14,' H RATIO', 13,' K RATIO', 13,
o ' LOCAL TRUNCATION ERROR BOUND', 1PE15.7):
o OUTPUT SKiPPR, DEBUG, NTIME, SCALE, QUADRAT, TOLCHK, TOL.FREQ;
o (' SKIPPR =',14,' DEBUG =', 14, I NTIME = ',IS,
o 'SCALE =',E15.7,' QUADRATIC INTERPOLATION =', L2,
o ' CHECK ERROR =', L2 / ' TOL FREQUENCY =', 213);
o CALL DATE(DAV):
o OUTPUT DAY: (' DATE = ',A9):
o OUTPUT (BUFFER(J), J = 1, NLEVEL): (' BUFFER', 2015);
o DO L = 1 , NLEVEL <
1 LAMBDA(L) = ClIlAMBDA(L»
o :EXIT:
o RETURN:
o END: '1NITIALlZE"
o
o
o
o
o
o
o
o
o
o
o
1
1
1
2
1
1
2
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

SUBROUTINE INITIALCONDITIONS(BASE, V, VNEW):

"FIND EXACT SOLUTION AT FIRST TWO LEVELS"

USE COM3; USE STEPSZ; USE ZERO;
REAL TEMP(NCOMP), V(NCOMP, 1), VNEW(NCOMP, 1), X;
INTEGER BASE, I;

DO J = ZERO, N <
X=A+JJIH(1):
CALL EXACT.SOLUTION(X, 0., TEMP);
DO I = 1, NCOMP <

VNEW(I, BASE+J) = TEMP(I»
CALL EXACT.SOLUTION(X, K(1), TEMP):
DO I = 1, NCOMP <

V(I, BASE+J) = TEMP(I)>>
RETURN:

END: "INITIAL.CONDITIONS"

SUBROUTINE EXACT.SOLUTION(X, T, TEMP);
USE COM4:
REAL PHASE, T, TEMP(NCOMP), X:

PHASE = X - C-r + 0.5;
F = FACTOR*EXP(-SCALf:lIPHASE:D2)+O.'-SIN(TWOPllIfIHASE):
PHASE = X + c-r - 4.5:
G = -FACTOR-EXP(-SCALE-PHASEUZ):
TEMP(1) = F + G;
TEMP(2) = G - F;
RETURN;

END:

o SUBROUTINE UXX(X, T, TEMP):
o USE COM4;
OREAL F, G, PHASE, SP2, T, TEMP(NCOMP), X;
o PHASE = X - c-r + 0.5:
o SP2 = SCALE-PHASE-PHASE;
o F = 2.-SCALE-FACTOR-EXP(-SP2)K{2.-SP2 - 1.)
o - 0.' -(TWOPI"2) - SIN(TWOPllIfIHASE);
o PHASE = X + c-r - 4.5:
o SP2 = SCALE-PHASE-PHASE:
o G = -2.-SCALE-FACTOR-EXP(-SP2)-(2.-SP2 - 1.):
o TEMP(1) = F + G:
o TEMP(2) = G - F:
o RETURN;
o END;
o
o
o SUBROUTINE UXXX(X, T, TEMP);

190-

o USE COM4;
o REAL PHASE, SP2, T, TEMP(NCOMP), X;
o PHASE = X - ClIT + 0.5;
o SP2 = SCALElI<pHASElIPHASE;
o F=FACTORlI<EXP(-SP2)lI<4."'SCALflI<SCALE"'PHASElI«3.-2.lI<SP2)
o - 0.1 lI<(lWop I lI<lI<3) lI< COS(TV\OPI"'PHASE);
o PHASE = X + ClIT - 4.5;
o SP2 = SCALElI<PHASElIPHASE;
o G = -FACTORlI<EXP(-SP2)lI<4.'"SCALfI<SCALE"'PHASElI«3.-2."'SP2);
o TEMP(1) = F + G;
o TEMP(2) = G - F;
o RETURN;
o END;
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
1
1
1
2
2
2
1
1
1
o
o
o
o
o
1
1
1
1
1
2
2
3
3
3
3
3
4
4
4
3
3
3

SUBROUTINE ADVANC E.50LUTl ON;

"ADVANCE THE SOLUTION IN TlME. USE THE EXACT SOLUTION AT
THE FIRST TlME LEVEL (NECESSARY FOR THE FOURTH ORDER MEIHOD, BUT
NOT NECESSARY FOR LAX WENDROFF, EXCEPT FOR COMPARISON PURPOSES)"

USE SOLN; USE LFTMST; USE COM5; USE STEPSZ; USE COUNT; USE DEBUG;
USE COM12; DEFINE RFIN;
REAL T, Tl ME;
INTEGER BOTTOM, HLEVEL, L, LM, LT, M, NTIME1, NEWHIL, SUM, TLEVEL,
TOP, TOTPTS, TOUT;
POI NTER TO RFIN: P;

CALL INITIAL.CONDITIONS(O, V, VNEW);
T = K(1);
PRINT = SKIPPR .EQ. 1;
IF (DEBUG .GT. 0) CALL PLOT(1, T);
IF TOLCHK <TOP = NLEVEL> ELSE <TOP = NLEVEL - 1 >
L = 1;
WHILE L .LE. TOP .AND. LEFTMOST(L) .NE.NIL <

P = LEFTMOST(L);
TOTPTS = 0;
REPEAT <

CALL ESTIMATE:ERROR(P, L, 1, T);"
CALL DETERMlNE.REFINEMENTS(P, L, 1, TOTPTS);
P = (P-.RLINK)>

UNTIL P .EQ. LEFTMOST(L+1);
NPTSM(L+1) = MAXO(NPTSM(L+1), TOTPTS);
L=L+1>

"FIND LEVEL OF FINEST MESH"
HLEVEL = L - 1 ;
IF (LEFTMOST(L) .NE. NIL) HLEVEL = L;
NTlME1 = NTlME .. 1;
DO TLEVEL = 1, NTIME1 <

"ADVANCE THE SOLUTlON FROM T = K(1)*TLEVEL TO K(1)lI«TLEVEL+1),
STARTlNG WITH THE HIGHEST LEVEL (FINEST) MESH."
PRINT = MOD(TLEVEL+1, SKI PPR) .EQ. 0 .OA. TLEVEL .EQ. NTIME1;
M = 1;
REPEAT <

L = HLEVEL;
REPEAT <

LT = M/POWEA(HLEVEL+1-L);
LM = MOD(LT-1, TAATIO) + 1;
TIME = T + LTlrK(L);
P = LEFTMOST(L);
REPEAT <

CALL ONE.nME.STEP(P, L, LM, LAMBDA(L), TIME, 1, .FALSE.,
V, VNEW);
P = (P-.ALlNK»

UNTIL P .EQ. LEFTMOST(L+1);
CALL MOVE(L);
L=L-1>

2
2
2
3
3
3
2
2
2
2
3
3
3
3
3
3
3
4
4
4
5
5
5
6
6
6
5
5
5
4
4
4
5
4
5
4
5
4
3
2
1
1
1
1
o

191

UNTIL MOD(M, POWER(HLEVEL+1-L» .NE.O:
L=L+1;
IF L .EQ. 1 <

TOUT = TLEVEL + 1:
IF (PRINT) CALL PLOT(TOUT, TIME):
IF (TLEVEL .EQ. NnME1) GO TO :FINI:>

ELSE <TOUT = TLEVEL>
IF TOLFREQ(1) .EQ. 1 .AND. L .LE. TOL.FREQ(2) .OR.
TOLFREQ(1) .GT. 1 .AND. L .EQ. 1 .AND. (MOD(TLEVEL,
TOL.FREQ(1» .EQ.O .OR. TOL.FREQ(2) .NE. 1) <

"CHECK TRUNCATION ERROR INSIDE OR AT COARSE TIME STEP"
IF TOLCHK .AND. TOL.ACHIEVED <TOP = NLEVEL>

ELSE <TOP = NLEVEL-1 >
TOP = MINO(TOP, HLEVEL);
IF (TOL.FREQ(1) .GT. 1 .AND. MOD(TLEVEL, TOLFREQ(1»
.NE. 0) L = TOL.FREQ(2):
IF L .LE. TOP <

BOTTOM = L;
L = TOP;
WHILE L .GE. BOTTOM <

. P = LEFlMOST(L);
TOTPTS = 0;
REPEAT <

CAlL ESnMATE.ERROR(P, L, TOUT, ilME);
CALL DETERMINE.REFINEMENTS(P, l, TOUT, TOTPTS):
P = (P-.RLlNK»

UNTIL P .EQ. LEFTMOST(L+1);
NPTSM(L+1) = MAX 0 (NPTSM(L+1), TOTPTS):
L=L-1>

"FIND LEVEL OF FINEST MESH"
NEWHI L = BOTTOM;
UNTIL LEFlMOST(NEWHIL+1) .EQ. NIL <

NEWHIL = NE'MiIL + 1 >
IF NEWHIL .GT. HLEVEL <

M = M 1I TRATIOllll(NEWHIL - HLEVEL»
ELSE IF NEWHIL .LT. HLEVEL <

M = M I TRAilOllll(HLEVEL - NEWHIL»
HLEVEL = NEWHI L>

>
M=M+1>

WHILE M .LE. POWER(HLEVEL):

T = K(1) 1I (TLEVEL+1):
> "END OF ONE COARSE TIME STEP"

o :FINI:
o OUTPUT; (I' MAXIMUM STORAGE FOR SOLUTION VALUES (PER COMPONENT) ');
o SUM = (LEFTMOST(1)-.TOP) + 1;
o DO L = 2, NLEVEL <
1 TOP = NPTSM(L):
1 SUM = SUM + TOP:
1 OUTPUT L, TOP: (' LEVEL', 216»
o OUTPUT SUM: (' TOTAL', 15):
o OUTPUT NSHl, NSHRT: (' MESH SHIFTED LEFT', 14,' TIMES, RIGHT',
o 14, ' TIMES'):
o RETURN:
o END; "ADVANCE.SOLUTION"
o
o
o
o
o
o
o
o
o
o

SUBROUTINE ONE.TIME.STEP(P, L, LM, LAMBDAL, T, STENCIL, EXTRAP, V,
VNEW):

"ADVANCE THE SOLUTION ONE LEVEL L TIME STEP ON A LEVEL L REFI NE
MENT. THESE REFINEMENTS ARE CHAINED TOGETHER USING THE RLiNK
POINTERS. 'MilLE ADVANCING REFINEMENT P, WE SKIP OVER ANY
REFINEMENTS OF P. IF METHOD .EQ. 1, USE LAX WENDROFF, WITH FIRST
ORDER ACCURATE BOUNDARY APPROXIMAilON, WHILE IF METHOD .EQ. 2,
USE OLIGER'S FOURTH ORDER METHOD IN SPACE (LEAP FROG IN TIME) WITH

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
1
o
1
1
o
o
o
o
o
o

192

THIRD ORDER ACCURATE BOUNDARY CONDITIONS. AT INTERFACES, USE THE
'COARSE-FINE' LAX-'NENDROFF APPROXIMATION. THIS ROUTINE IS ALSO
USED TO ESTIMATE THE LOCAL TRUNCATION ERROR USING RICHARDSON
EXTRAPOLATION."

USE COM3j USE COM4j USE COMSj USE STEPSZj USE COM7j USE ZEROj
USE XRATIOj USE COM12j USE METHOD; DEFINE RFI Nj
REAL LAMBDAL, LAMBCF, LCF2, LF2, MULT, PHASE, T, V(NCOMP, 1),
VNEW(NCOMP, 1);
INTEGER BASE, BJ, I, J, L, LAST, LEFTR;LM, NPTSP2, OFFSET, PBASE,
RIGHTR, S, STENCIL, TOP, TS;
POINTER TO RFIN: P, PARENT, UPj
LOGICAL EXTRAPj

IF STENCIL .EQ~ 2 <MULT = 1.> ELSE <MULT = 0.>
S = STENCIL;
TS = 2"'STENCIL;
LF 2 = LAMBDAL "'0.5 j
LAMBCF = LM"'LAMBDAL/XRATIOj
LCF2 = LAMBCF"'O.5;
OFFSET = XRATI0-CP-.LEFT);
BASE = (P-.BASE);
TOP = (P-.TOP);
NPTSP2 = TOP - BASE + 2;
LAST = TOP - BASE - S;
UP = (P-.FINE);
IF UP .EQ. NIL .DR. EXTRA? <

LEFTA = NPTSP2>
ELSE <

LEFTR = (UP-.LEFT) - 1 - OFFSETj
RIGHTR = (UP-.RIGHT) + 1 - OFFSET>

PARENT = (P-.COAASE)j
PBASE = (PARENT-.BASE) - XRATIO"'(PARENT-.LEFT);

"FOURTH ORDER METHOD - COARSEST MESH ONLY"
"NOT IMPLEMENTED FOR THIS PROBLEM"

o "USE A SECOND ORDER LAX-'NENDROFF METHOD IN THE INTERIOR
o OF REFINEMENT P."
o J = MINO(S, LEFTR+1)j
o GO TO :L2:j
o REPEAT <
1 BJ = BASE + Jj
1 VNEW(1,BJ) = V(1 ,BJ) + LF2 '" «V(2,BJ+S) - V(2,BJ-S»
1 + LAMBDAL-CV(1 ,BJ+S) - 2.-V(1 ,BJ) + V(1 ,BJ-S») - MULr-
1 VNEW(1,BJ)j
1 VNEW(2,BJ) = V(2,BJ) + LF2 '" «V(1 ,BJ+S) - V(1 ,BJ-S»
1 + LAMBDAL"'(V(2.,BJ+S) - 2.-V(2,BJ) + V(2,BJ-S») - MUL r-
1 VNEW(2,BJ);
1 J=J+1j
1 :L2: IF J .EQ. LEFTR+1 <
2 ''THE FOLLOWING SKIPS OVER ALL REFINEMENTS OF THIS
2 REFINEMENT."
2 J = RIGHTRj
2 UP = (UP-.RLlNK)j
2 IF (UP-.COARSE) .EQ. P <
3 LEFTR = (UP-.LEFl) - 1 - OFFSETj
3 RIGHTR = (UP-.RIGHl) + 1 - OFFSET>
2 ELSE <LEFTR = NPTSP2»>
o
o
o
o
o
o
o
1

WHILE J .LE. LASTj

"IF THE LEFT EDGE OF REFINEMENT P TOUCHES THE LEFT BOUNDARY OF
THE REGION, USE REFLECTION FOR V AND UPWIND DIFFERENCING FOR W.
OTHERWISE, USE LAX-WENDROFF WITH COARSE SPACE STEP AND FINE
TIME STEP."
IF (P-.LEFT) .EQ. 0 <

IF BDRY .EQ. 1 <

2 ,
2
2
1
1
1
o
1
1
1
1
1
o
o
o
o
o
1
2 ,
2
2
1
1
o
1
1
1
1
1
o
1
2
2
o

193

VNEW(2,BASE) = 2.*VNEW(2,BASE+1) - VNEW(2,BASE+2»
ELSE <

VNEW(2,BASE) = V(2,BASE) + LAMBDALll(V(l,BASE+S) - V(l,BASE»
- MUL TllVNEW(2 ,BASE) >

PHASE = A - ClIT + 0.5;
VNEW(l,BASE) = VNEW(2,BASE) + 2.11FACTORllEXP(-SCALEllPHASEllll2) +
0211SIN(TVVOPlllPHASE»

ELSE <
J = PBASE + (P-.LEFT);
VNEW(l,BASE) = V(1,J) + LCF2 11«V(2,J+1) - V(2,J-1» +
LAMBCFll(V(1,J+1) - 2.llV(1,J) + V(1,J-l »);
VNEW(2,BASE) = V(2,J) + LCF2 11«V(1,J+1) - V(l ,J-l» +
LAMBCFll(V(2,J+1) - 2.llV{2,J) + V(2,J-l»»

"IF THE RIGHT END OF REFINEMENT P TOUCHES THE RIGHT EDGE
OF THE REGION, USE REFLECTION FOR V AND DOWNWIND DIFFERENCING
FOR W. OTHERWISE USE COARSE-FINE LAX-WENDROFF."

IF (P-.RIGHT) .EQ. RIGHTB(L) <
IF BDRY .EQ. 1 <

VNEW(2,TOP) = 2.*VNEW(2,TOP-l) - VNEW(2,TOP-2»
ELSE < .

VNEW(2,TOP) = V(2,TOP) + LAMBDALll(V(1,TOP)-V(1,TOP-S»
- MULTllVNEW(2 ,TOP) >

PHASE = B + ClIT - 4.5;
VNEW(1,TOP) = -'v1IIEW(2,TOP) - 2.llfACTORIlEXP(-SCALEllPHASEllll2)>

ELSE < •
J = PBASE + (P-.RIGHT);
VNEW(l,TOP) = V(1,J) + LCF2 11«V(2,J+l) - V(2,J-1» +
LAMBCFll(V(1,J+l) - 2.llV(1,J) + V(l ,J-1 »);
VNEW(2,TOP) = V(2,J) + LCF2 11«V(1 ,J+l) - V(l ,J-l» +
LAMBC Fll(V(2 ,J+1) - 2.llV(2,J) + V(2,J-l »»

IF S .EQ. 2 <
DO I = 1, NCOMP <

VNEW(I ,BAS E+ 1) = 0.;
VNEW(I,TOP-l) = 0.»

o RETURN;
o END; "ONE.TIME.STEP"
o
o
o
o
a
o
o
a
a
o
o
o
o
o
1
1
1
1
2
2
2
2
2
3
4
3
3
2
1

SUBROUTINE MOVE(L);
"MOVE SOLUTION VALUES FROM REFINEMENT(S) ON LEVEL L+1 (IF ANY) TO
THE CORRESPONDING POSITIONS ON LEVEL L. ALSO MOVE SOLUTION VALUES
ON LEVEL L FROM 'v1IIEW TO V IN PREPARATION FOR NEXT TIME STEP."

USE SOLN; USE LFTMST; USE XRATIO; DEFINE RFIN;
REAL TEMP;
INTEGER BC, BF, I, J, L, LEFT, PBASE, RIGHT, TOP;
POINTER TO RFIN: P, PARENT;

PARENT = LEFTMOST(L);
REPEAT <

PBASE = (PARENT-.BASE);
TOP = (PARENT-.TOP);
P = (PARENT-.FINE);
WHILE (P-.COARSE) .EQ. PARENT <

LEFT = (P-.LEFT);
RIGHT = (P-.RIGHT);
Be = PBASE - XRATIOll{PARENT-.LEFT) + LEFT;
BF = (P-.BASE);
DO J = LEFT, RIGHT <

DO I = 1 , NCOMP <
'v1IIEW(I, BC) = V(I, SF»

BC=BC+1;
SF = BF + XRATlO>

P = (P-.RLlNK»

1
1
2
3
1
1
o
o
o

"SHIFT MESH VALUES FOR NEXT TIME STEP"
DO J = PBASE, TOP <

00 I = 1, NCOMP <
V(I,J) = VNEW(f,J)>>

PARENT = (PARENT-.RUNK»
UNllL PARENT .EQ. LEFTMOST(L+1);

RETURN;

194

o END; "MOVE"
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
1
1
1
1
1
1
1
1
1
1
2
3
1
2
2
2
1
2
3
1
2
2
2
1

SUBROUTINE ESllMATE.ERROR(P, L, TLEVEL, T)i
"ESTIMATE LOCAL TRUNCATION ERROR."

USE COM12; REAL T;
INTEGER L, TLEVEL;
POINTER TO RFIN: P;

GO TO (:DIFF:, :RlCH2:, :RICH3:), RICHSN;
:DIFF: CALL DIFFERENCES(P, L, TLEVEL, T);

GO TO :OUT:;

:RICH2: CALL RlCHARDSON2(P, L, TLEVEL, T);
GO TO :OUT:;

:RICH3: CALL RICHARDSON3(P, L, TLEVEL, T);.

lOUT: RETURN;
END;

SUBROUllNE DIFFERENCES(P, L, TLEVEL, T);
"ESTIMATE LOCAL TRUNCATION ERROR USING DIFFERENCES"

USE COM3; USE COM5; USE STEPSZ; USE ZERO; USE DEBUG; USE COM12;
USE COM14; USE ERROR; DEFINE RFIN;
REAL EXACT(1 0), T, TEMP(NCOMP), XLEFT;
INTEGER BASE, I, J, L, M, NM1, NPTS, TLEVEL, TOP;
POINTER TO RFIN: P, PARENT;
LOGICAL XPRINT;

WITH P <
XPRINT = PRINT .AND. MOD(DEBUG, 4)/2 .EQ. 1;
CALL DIFFERENCES2(P, L);
PARENT = -COARSE;
BASE = -BASE;
TOP = -TOP;
NPTS = TOP - BASE;
NM1 = NPTS - 1;
XLEFT = A + H(L-1) LEFT;
"COMPONENTS OF ESTIMATED .ERROR ARE INTERCHANGED."
DO J = 1, NM1 <

DO I ::: 1, NCOMP <
ESTERROR(I,BASE+J) = C6(L)lIfSTERAOR(I,BASE+J»>

IF -LEFT .EQ. 0 < "LEFT BOUNDARY"
ESTERAOR(1 ,BASE) = C 1 o (L)"'(LAIVIBDA(L)"'ESTERROR(2,BASE)
- ESTEAAOR(1 ,BASE»;
ESTERROR(2,BASE)::: 0.>

ELSE <
DO I = 1, NCOMP <

ESTEAROR(I,BASE) = 0.»
IF -RIGHT .EQ. RIGHTB(L) < "RIGHT BOUNDARY"

ESTEAROA(1 ,TOP) = C 10 (L)"'(LAMBDA(L)"'ESTERROA(2,TOP)
+ ESTERROA(1,TOP»;
ESTERROA(2,TOP) = 0.>

ELSE <

2
3
1
2
3
3
3
3
3
3
4
4
4
4
5
6
6
6
6
4
5
6
6
7
7
7
6
o

DO I = 1, NCOMP <
ESTERROR(I,TOP) = 0.»

IF XPRINT <
DO I = 1, NCOMP <

195

OUTPUT I, TLEVEL, P, L; (/' ESTIMATED LOCAL TRUNCATION',
'ERROR OF V(', 11, ') AT T =',15, ' DELTA T, REFINEMENT',
13,' LEVEL',14);
OUTPUT (ESTERROR(I,J), J = BASE, TOP); (1 X, 1 P10E1 2.4);
OUTPUTj (' LOCAL TRUNCATION ERROR USING EXACT DERIVATIVES');
DO J = ZERO, NPTS <

M = MOD(J, 1 0) + 1 ;
CALL UXXX(XLEFT + JlIH(L), T, TEMP)j
EXACT(M) = C6(L)lI'fEMP(3-1);
IF J .EQ. 0 <

IF I .EQ. 1 <EXACT(M) = 0.>
ELSE <

CALL UXX(A, T, TEMP);
EXACT(M) = C 1 0(L)1'(LAMBDA(L)*TEMP(2) -
TEMP(1»»

IF M .EQ. 10 .• OR. J .EQ. NPTS <
IF J .EQ. NPTS .AND. -RIGHT .EQ. RIGHTB(L) <

IF' .EQ. 1 <EXACT(M) = 0.>
ELSE <

CALL UXX(B, T, TEMP);
EXACT(M) = C1 o (L)J(LAMBOA(L)rrEMP(2) +
TEMP(1»»

OUTPUT (EXACT(M2), M2 = 1,.M); (1X, 1P10E12.4)»»>

o RETURN;
o END; "DIFFERENCES"
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
1
2
2
1
1
2
2
2
1
1
1
2
2
2
o
o
o
o

SUBROUTINE DIFFERENCES2(P, L);
"COMPUTE A DIFFERENCE APPROXIMATION TO UXXX AT EACH INTERIOR POINT
ON THE LEVEL L MESH, AND TO UXX AT BOUNDARIES."

USE SOLNj USE COM5j USE STEPSZj USE ERRORj DEFINE RFIN;
REAL D3VDX(NCOMP, 1), HCUBE4, HSQj
INTEGER BASE, BASEP2, BJ, I, L, TOP, TOPM2;
POINTER TO RFIN: Pj
EQUIVALENCE (ESTERROR, D3VDX);

HSQ = H(L) 2j
HCUBE4 = 4.lIH(L)lD3j
BASE = (P-.BASE);
BASEP2 = BASE + 2j
TOP = (P-.TOP);
TOPM2 = TOP - 2;
DO I = 1, NCOMP <

DO BJ = BASEP2, TOPM2 <
D3VDX(I,BJ) = 2.J(-V(I,BJ-2) + 2.J(V(I,BJ-1) - V(I,BJ+1»
+ V(I,BJ+2»/HCUBE4>

IF (P-.LEFT) .EQ. 0 <:
D3VDX(I,BASE) = (2.&v(I,BASE) - 5.av(l,BASE+1) +4.J(
V(I,BASEP2) - V(I,BASE+3»/HSQj
IF (L ~GT. 1) D3VDX(I,BASEP2) = 0.>

D3VDX(I,BASE+1) = 0.;
D3VDX(I,TOP-1) = 0.;
IF (P-.RIGHT) .EQ. AIGHTB(L) <

D3VDX(I,TOP) = (-V(I,TOP-3) + 4.av(l,TOPM2) -5.&V(I,TOP-1)
. + 2.lIV(I ,TOP»I HSQ;
IF (L .GT. 1) D3VDX(I,TOPM2) = 0.»

RETURN;
END; "DIFFEAENCES2"

196

o
o SUBROUTINE RICHARDSON2(P, L, TLEVEL, T);
o "ESTIMATE LOCAL TRUNCATION ERROR USING RICHARDSON EXTRAPOLATION.
o THIS METHOD USES TWO TIME STEPS OF LENGTH DELTA T AND IS SUITABLE
o ONLY VvtiEN T DERIVATIVES IN THE DIFFERENTIAL EQUATION CAN BE
o REWRITTEN IN TERMS OF X DERIVATIVES."
o
o
o
o
o
o
o
o
o
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
3
1
2
2
1
2
3
1
2
3
1
2
2
1
2
3
3
3
3
3
3
4
4
4
4
5
5
6
6
6
4
5
6
6
7
7
7

USE SOLN; USE COM3; USE COM5; USE STEPSZ; USE ZERO; USE DEBUG;
USECOM12; USE COM14; USE ERROR; DEFINE RFIN;
REAL EXACT(l 0), NEXTT, T, TEMP(NCOMP), XLEFT;
INTEGER BASE, I, J, L, M, M2, NM1, NPTS, TLEVEL, TOP;
POINTER TO RFIN: P, PARENT;
LOGICAL XPRlNT;

WITH P <
NEXTT = T + K(L);
CALL ONE.TlME.5TEP(P;L. 1, LAMBDA(L), NEXTT, 1, .TRUE.;; V,
ESTERROR);
CALL ONE.TlME.5TEP(P,L. 1, O.5l1lAMBDA(L), NEXTT, 2, .TRUE., V,
ESTERROR);

XPRINT = PRINT .AND. MOD(DEBUG, 4)/2 .EQ. 1;
PARENT = -COARSE;
BASE = -BASE;
TOP = -TOP;
NP1S = TOP - BASE;
NM1 = NPTS - 1 ;
XLEFT = A + H(L-1) LEFT;
DO I = 1 , NCOMP <

DO J = 1, NM1 <
ESTERROR(I,BASEiV) = C7(L)'"ESTERROR(I,BASE+J)>>

IF -LEFT .EO. 0 < "LEFT BOUNDARY"
ESTERROR(1 ,BASE) = 0.;
ESTERROR(2,BASE) = ESTERROR(2,BASE)/3.>

ELSE <
DO I = 1, NCOMP <

ESTERROR(I,BASE) = 0.»
IF -RIGHT .NE. RIGHTB(L) <

DO 1=1, NCOMP <
ESTERAOR(i,TOP) = 0.»

ELSE < "RJGHT BOUNDARY"
ESTEAROR(1 ,TOP) = 0.;
ESTERROR(2,TOP) = ESTERROR(2,TOP)/3.>

IF XPRINT <
DO I = 1, NCOMP <
OUTPUT I, TLEVEL, P, L; (I' ESTIMATED LOCAL TRUNCATION',
'ERROR OF V(', 11, ') AT T =', 15,' DELTA T, REFINEMENT',
13,' LEVEL', 14);
OUTPUT (ESTERROR(I,J), J = BASE,TOP); (1 X, 1 P1 OE12.4);
OUTPUT; (' LOCAL TRUNCATION ERROR USING EXACT DERIVATIVES');
DO J = ZERO, NPTS <

M = MOD(J, 10) + 1;
CALL UXXX(XLEFT + JSH(L), T, TEMP);
EXACT(M) = C6(L)lITEMP(3-1);
IF J .EQ. 0 <

IF I .EO. 1 <EXACT(M) = 0.>
ELSE <

CALL UXX(A, T, TEMP);
EXACT(M) = C 1 o (L)Il(LAMBDA(L)lITEMP (2) -
TEMP(l »»

IF M .EO. 10 .OR. J .EQ. NPTS <
IF J .EO. NPTS .AND. -RIGHT .EQ. RIGHTB(L) <

IF I .EQ. 1 <EXACT(M) = 0.>
ELSE <

CALL UXX(B, T, TEMP);
EXACT(M) = Cl o (L)Il(LAMBDA(L)lITEMP(2)
+ TEMP(1 »»

I.

5
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
3
1
2
Z
3
3
2
3
3
2
3
2
3
3.
1

_ 2
3
1
2
3
1
2
3
3
2
2
3
3
2
3
3

197

OUTPUT (EXACT(MZ), M2 = 1, M); (1X,1P10E12.4)»>>>

RETURN;
END; "RICHARDSON2"

SUBROUTINE RICHARDSON3(P, L, TLEVEL, 1);
"ESTIMATE LOCAL TRUNCATION ERROR USING RICHARDSON EXTRAPOLATION.
THIS METHOD USES TVIfO TIME STEPS OF LENGTH DELTA T (ON THE
APPROPRIATE MESH) AND ONE OF LENGTH 2 DELTA T. IT IS THUS SUITABLE
FOR ANY SYSTEM OF EQUATIONS."

USE SOLN; USE COM3; USE COM5; USE STEPSZ; USE ZERO; USE DEBUG;
USE COM12; USE COM14; USE ERROR; DEFINE RFIN;
REAL EXACT(1 0), NEXTT, T, TEMP(NCOMP), XLEFT;
INTEGER BASE, I, J, L, M, M2, NM1, NPTS, TLEVEL, TOP;
POINTER TO RFIN: P, PARENT;
LOGICAL XPRINT;

WITH P <
NEXTT = T + 2.IlK(L);
CAlL ONE.TlME.5TEP(P, L, 1, LAMBDA(L), T+K(L), 1, .TRUE.,V, VNEW);
CAlL ONE. TI ME.5TEP(P, L, 1, LAMBDA(L), NEXTT, 1, .TRUE .. VNEW,
ESTERROR);
CAlL ONE.TIMESTEP(P, L, 1, LAMBDA(L), NEXTT, 2, .TRUE., V,
ESTERROR);

XPRINT = PRINT .AND. MOD(DEBUG, 4)/2 .EQ. 1;
PARENT = -COARSE;
BASE = -BASE;
TOP = -TOP;
NPTS = TOP - BASE;
NM1 = NPTS - 1 i
XLEFT = A + H(L-1)L.LEFT;
DO J = 1, NM1 <

DO I = 1, NCOMP <
ESTERROR(I,BASEiJ) = C8(L)lIIESTERROR(I,BASEiJ»>

IF -LEFT .EQ. 0 < "LEFT BOUNDARY"
ESTERROR(1 ,BASE) = 0.;
IF BDRY .NE. 3 <

ESTERROR(2,BASE) = V 'V(2,BASE) - 5.*V(2,BASE+1) + 4.JI
V(2,BASE+2) - V(2,BASE+3»

IF BDRY .EQ. 2 <
ESTERROR(2,BASE) = 0 .5J1LAMBDA(L)JI(LAMBDA(L)JlESTERROR(2 ,BASE)-
2.*V(1,BASE) + 5.1IV(1,BASE+1) - 4.1IV(1,BASE+2) + V(1,BASE+3»>

ELSE IF BDRY .EQ. 3 <
ESTERROR(2,BASE) = ESTERROR(2,BASE)/(2.+LAMBDA(L»>

IF L .GT. 1 <
ESTERROR(1,BASE+2) = 0.;
ESTERROR(2,BASE+2) = 0.»

ELSE <
DO I = 1, NCOMP <

ESTERROR(I,BASE) = 0.»
IF -RIGHT .NE. RIGHTB(L) <

DO I = 1, NCOMP <
ESTERROR(I,TOP) = 0.»

ELSE < "RIGHT BOUNDARY"
IF L .GT. 1 <

ESTERROR(1,TOP-Z) = 0.;
ESTERROR(2,TOP-2) = 0.>

ESTERROR(l.TOP) = 0.;
IF BDRY .NE. 3 <

ESTERROR(2,TOP) = 2.1IV(2,TOP) - 5.lIV(2,TOP-1) + 4.JI
V(2,TOP-2) - V(2,TOP-3»

IF BDRY .EQ. 2 <
ESTERROR(2,TOP) = 0 .5J1LAMBDA(L)JI(LAMBDA(L)lIIESTERROR(2 ,TOP) +
2.lIV(1,TOP) - 5.IIV(l,TOP-1) + 4.lIV(1.TOP-2) - V(l,TOP-3»>

2
3
1
2
3
3
3
3
3
3
4
4
4
4
5
5
6
6
4
5
6
6
7
7
5
o

198

ELSE IF BDRY .EQ. 3 <
ESTERROR(2,TOP) = ESTERROR(2,TOP)/(2.~AMBDA(L»»

IF XPRINT<
DO I = 1, NCOMP <
OUTPUT I, TLEVEL, P, L;(/' ESTIMATED LOCAL TRUNCATION "
'ERROR OF V(',11, ') AT T =',15,' DELTA T, REFINEMENT',
13,' LEVEL', 14);
OUTPUT (ESTERROR(I,J), J = BASE, TOP); (1 X, 1 P10E12.4);
OUTPUT; (' LOCAL TRUNCATION ERROR USING EX~T DERIVATIVES');
DO J = ZERO, NPTS <

M = MOD(J, 10) + 1;
CAlL UXXX(XLEFT + JlIH(L), T. TEMP);
EXACT(M) = C6(L)IITEMP(3-1);
IF J .EQ.O <

IF I .EQ. 1 <EXACT(M) = 0.>
ELSE <

CALL UXX(A. T. TEMP);
EX~T(M) = 2.lIC 1 0(L)KTEMP(2)>>

IF M .EQ. 10 .OR. J .EQ. NPTS <
IF J .EQ. NPTS .AND. -RIGHT .EQ. RIGHTB(L) <

IF I .EQ. 1 <EX~T(M) = 0.>
ELSE <

CALL UXX(B. T. TEMP);
EXACT(M) = 2.lIC1 0(L)KTEMP(2)>>

OUTPUT (EXACT(M2), M2 = 1, M); (1 X. 1 P10E12.4)»»>

o RETURN;
o END; "RICHARDSON3"
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
1
2
2
3
3
2
2
1
1
1
1

SUBROUTINE DETERMINE.REFINEMENTS(PARENT, L, TLEVEL, TOTPTS);

"DETERMINE WHERE TO REFINE THE LEVEL L REFINEMENTS.
REFINE THEM WHENEVER THE INTERIOR LOCAL TRUNCATION ERROR
PER UNIT TIME STEP, OR THE BOUNDARY LOCAL TRUNCATION ERROR
(BOTH PROPORTION~ TO HJ<H) IS GREATER THAN TOLERANCE.
THE DESIRED INTERVAL(S) OF REFINEMENT WILL EXTEND FROM THE
LEFTN(J)-TH MESH POINT TO THE RIGHTN(J)-TH POINT (RELATIVE TO
THE LEFT SIDE OF THE REGION) ON THE PARENT REFINEMENT,
J = 1, •.• , NRFIN."

$ 'MAX.lNTERVALS' = '10'
USE COM5; USE XRATlO; USE DEBUG; USE COM12; USE ERROR; DEFINE RFIN;
INTEGER BASE, GAP, I, J, L, LEFT, LEFTN(MAX.INTERVALS), LP1, N.
NRFIN. OFFSET, RIGHTN(MAX.INTEAVALS), RT, TLEVEL. TOTPTS;
POINTER TO RFIN: P, PARENT;
LOGICAL COND;

GAP = BUFFER(L) + 2;
LP1 =L+1;
OFFSET = XRATIOI«PARENT-.LEFl);
BASE = (PARENT-.BASE) - OFFSET;
N = (PARENT-.TOP) - BASE;
NRFIN = OJ
LEFT = OFFSET;
WHILE LEFT .LE. N <

REPEAT <
COND = .FALSE.;
00 I = 1, NCOMP <

COND = COND .OR. ABS(ESTERROR(I,BASE+LEFl) .GT.
TOLERANCE>

IF (COND) GO TO :BEGIN INTERVAL:;
LEFT = LEFT + 1;>

WHI LE LEFT .LE. N;
EXIT;

:BEGIN INTERVAL:
RT = LEFT;

1
3
3
1
2
2
3
3
2
2
1
1
1
1
2
2
1
1
1
1
1
o
o
1
2
2
1
2
2
o

199

IF NRFIN .GE. 1 <IF RIGHTN(NRFIN) + GAP .GE. LEFT<
LEFT = LEFTN(NRFIN) + BUFFER(L);
NRFIN = NRFIN - 1 »

REPEAT <
COND = .FALSE.;
DO I = 1, NCOMP <

COND = COND .OR. ABS(ESTERROR(I,BASE+RT» .GT.
TOLERANCE>

IF (.NOT. COND) EXIT;
RT=RT+1;>

UNTIL RT .GT. N;
RT=RT-1;
NRFIN = NRFIN + 1;
IF NRFIN .GT. MAX.INTERVALS <

OUTPUT TLEVEL, LP 1; (' TOO MANY REFINEMENTS', 217);
STOP>

LEFTN(NRFIN) = MAX 0 (OFFSET. LEFT - BUFFER(L»;
IF (LEFTN(NRFIN) .EQ. OFFSET + 1) LEFTN(NRFIN) = OFFSET;
RIGHTN(NRFIN) = MINO(N, RT + BUFFER(L»;
IF (RIGHTN(NRFIN) .EQ. N-1) RIGHTN(NRFIN) = N;
LEFT = RT + 2>

IF DEBUG .GT. 0 <
IF NRFIN .EQ. 0 <

OUTPUT TLEVEL, L, PARENT;
(' TLEVEL, LEVEL, REF, NO REFINEMENTS ',15,213);>

ELSE <
OUTPUT TLEVEl, L, PARENT, (LEFTN(J), RIGHTN(J). J = 1, NRFIN);
(' TLEVEL, LEVEL, REF, N(LEFTN, RIGHTN)', 15, 213,1215);»

o IF NRFIN .EQ. 0 <
1 IF «PARENT-.FINE) .NE. NIL) GO TO :ALPHA:>
o ELSE <
1 IF «LEFTN(1) .EQ. OFFSET AND. (PARENT-.LEFT) .NE. 0) .OR.
1 (RIGHTN(NRFIN) .EQ. N .AND. (PARENT-.RIGHT) .NE. RIGHTB(L)))
1 OUTPUT TLEVEL. LP1. PARENT;
1 (' TLEVEL', 15, ' DANGER, LEVEL', 14, ' REFINEMENT ABUTS'
1 'LEFT OR RIGHT SIDE OF REFINEMENT', 14);
1 IF L .EQ. NLEVEL <
Z OUTPUT TLEVEL, PARENT; (' TLEVEL', 15,' REFINEMENT',
Z 13, ' DANGER, LOCAL ERROR TOLERANCE NOT ACHIEVED.');
Z TaL-ACHIEVED = .FALSE.>
1 ELSE <
2 :ALPHA: CALL ADJUST.MESH(PARENT, NRFIN, LP1, TLEVEL. LEFTN.
Z RIGHTN. TOTPTS»>
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

RETURN;
END; ''DETERMINE.REFINEMENTS''

SUBROUTINE ADJUST.MESH(PARENT, NRFIN, L, TLEVEL, LEFTN, RIGHTN,
TOTPTS);

"IF THE DESIRED L-TH LEVEL INTERVALS PRODUCED BY DETERMINE.
REFINEMENTS DIFFER FROM THE EXISTING REFINEMENTS OF THE
(L-1)-ST LEVEL PARENT, lIVE MUST ADJUST THE REFINEMENTS.
THIS IS DONE IN A SINGLE LEFT-TO-RIGHT SCAN OF THESE
REFINEMENTS. THIS MAY INVOLVE CREATION, DELETION, SEPARATING
OR MERGING OF REFINEMENTS. USUALLY, HOWE'v1:R, rr
INVOLVES ONLY THE MANIPULATION OF THE INDICES LEFT, RIGHT,
BASE, AND TOP BELONGING TO A REFINEMENT. ONLY SELDOM ARE
SOLUTION VALUES ACTUALLY MOVED IN MEMORY."

USE SOLN; USE COM5; USE XRATIO; USE DEBUG; USE COM12; DEFINE RFIN;
INTEGER BASE, I, J,l, LEFTN(1), M, NPTS, NRFIN, RIGHTN(1), TLEVEL, .
TOP, TOTPTS;
POINTER TO RFIN: P, PARENT, Qi UP;
LOGICAL CONDj

200

o
o WITH P <
1 P = (PARENT-.FINE);
1 FOR J = 1 TO NRFIN <
2 UNTIL LEFTN(J) .LE. -RIGHT .OR. -COARSE .NE. PARENT <
3 CALL DELETE(P, L);
3 P = -RLlNK;>
2 IF RIGHTN(J) .LE. -LEFT .OR. -COARSE .NE. PARENT <
3 CALL CREATE(PARENT, P, L, LEFTN(J), RIGHTN(J), 0, P»
2 IF RIGHTN(J) .LT. -RIGHT <
3 Q = -ALINK;
3 IF (Q-.COARSE) .EQ. PARENT .AND. J .NE. NRFIN <
4 IF LEFTN(J+1) .LT. -RIGHT .AND. RIGHTN(J+1) .GT. (Q-.LEFT) <
5 ''THE REFINEMENT Q TO THE RIGHT HAS MOVED LEFT."
5 CALL FILL.lN(P, Q, L, TLEVEL);
5 CALL SEPARATE.REF(P, Q, RIGHTN(J»;
5 (Q-.8ASE) = (Q-.BASE) - XRATIOll{(Q-.LEFT) - LEFTN(J+1»;
5 (Q-J.EFT) = LEFTN(J+1)>>
3 IF J .NE. NRFIN <
4 IF (A1GHTN(J+1) .LT. (Q-.LEFT) .OR. (Q-.cOARSE) .NE. PARENT)
4 AND. LEFTN(J+1) .LT. -RIGHT <
5 "SEPARATE REFINEMENTS"
5 BASE = -BASE + XRATIO-(LEFTN(J+1) - -LEFT);
5 CALL CREATE(PARENT. Q, L, LEFTN(J+1). -RIGHT, BASE, Q);
5 (Q-.RIGHT) = -RIGHT;
5 (Q-.TOP) = -TOP;
5 CALL SEPARATE.REF(P, Q, RIGHTN(J»»
3
3 "DELETE RIGHT END OF REFINEMENT P"
3 -RIGHT = RIGHTN(J);
3 -TOP = -BASE + XRATlOI(-RIGHT - -LEFT»
2
2 IF LEFTN(J) .NE. -LEFT <
3 IF LEFTN(J) .GT. -LEFT <
4 "DELETE LEFT END OF REFINEMENT P."
4 -BASE = -BASE + XRATlOll{LEFTN(J) - -LEFT);
4 -LEFT = LEFTN(J»
3 ELSE
3 <CALL EXTEND.LEFT(P, LEFTN(J), L, TLEVEL)>>
2
2 IF RIGHTN(J) .GT. -RIGHT <
3 Q = -RLlNK;
3 WHILE (Q-.COARSE) .EQ. PARENT .AND. RIGHTN(J) .GT.
3 (Q-.LEFT) <
4 CALL FILLJN(P. Q. L, TLEVEL);
4 -RIGHT = MINO(RIGHTN(J), (Q-.RIGHT»;
4 -TOP = -BASE + XRATIOll{-RIGHT - -LEFT);
4 IF -RIGHT .EQ. (Q-.RIGHT) <
5 CALL MERGE{P, Q);
5 Q = (Q-.RLlNK»
4 ELSE <
5 IF J .NE. NAFIN <COND = LEFTN(J+1) .GT. (Q-.RIGHT»
5 ELSE <COND = .TRUE.>
5 IF COND <CALL MERGE(P. Q»
5 ELSE < "REFINEMENTS P AND Q HAVE MOVED RIGHT. CHECK
6 IF SOME OF Q'S REFINEMENTS NOW BELONG TO P."
6 UP = (Q-.FINE);
6 IF UP .NE. NIL <
7 WHILE (UP-.COARSE) .EQ. Q .AND. (UP-.RIGHT) .LE.
7 XAATIO- -RIGHT <
8 (UP-.COARSE) = P;
8 UP = (UP-.RLlNK»
7 IF (UP .NE. (Q-.FINE) .AND. -FINE .EQ. NIL)
7 -FINE = (Q-.FINE);
7 IF (UP-.COARSE) .EQ. Q «Q-.FINE) = UP>
7 ELSE «Q-.FINE) = NIL»>
5 GO TO :EXIT:»

•

201

3
3 CALL EXTEND.AIGHT(P, AIGHTN(J), L, TLEVEL, .TRUE.»
2 :EXIT:
2 NPTS = XAATIO-(-AIGHT - -LEFT);
2 -TOP = -BASE + NPTS;
2 TOTPTS = TOTPTS + NPTS + 1 ;
2
2
3
3
3
3
3
3
3
3
4
4
2
1
1
2
2
1
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
1
2
1
1
1
2
2
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
1
1
2
2
o
o

IF PAINT .AND. DEBUG/8 .GE. 1 <
OUTPUTTLEVEL, P, L; (I' TLEVEL',15,' AEFINEMENT',14,
, LEVEL', 14):
BASE = -BASE:
TOP = -TOP:
OUTPUT -ALINK, -LLlNK, -FINE, -COARSE, BASE, TOP, -LEFT,
-AIGHT: (' ALINK, LLINK, FINE, COARSE, BASE, WP, LEFT,',
'AIGHT' / 815);
00 I = 1, NCOMP <

OUTPUT I: (' V(', 11, ')'):
OUTPUT (V(I, M), M = BASE, TOP): (1 P8E15.7»>

P = -ALINK:>

UNTlL -COARSE .NE. PARENT <
CALL DELETE(P, L):
P = -ALINK:>

>
AETUAN:

END: "ADJUST.MESH"

SUBAOUTlNE SEPARATE.AEF(P, Q, PAIGHT):
"GIVEN TWO AEFINEMENTS P AND Q, WITH P TO THE LEFT OF Q, WHICH MAY
HAVE MOVED OA BEEN SEPARATED. CHECK IF SOME OF P'S AEFINEMENTS NOW
BELONG TO Q."

USE XAATIO: DEFINEAFIN;
INTEGEA PAIGHT:
POINTER TO AFIN: P, Q, UP;

UP = (P-.FINE);
IF UP .NE. NIL <

WHILE (UP-.COARSE) .EQ. P .AND. (UP-.AIGHT) .LE. XAATIO-PRIGHT <
UP = (UP-.RLlNK»

IF (UP .EQ. (P-.FINE» (P-.FINE) = NIL;
IF «UP-.COARSE) .EQ. P) (Q-.FINE) = UP;
WHILE (UP-.COARSE) .EQ. P <

(UP-.COARSE) = Q:
UP = (UP-.RLlNK)>>

AETUAN:
END; "SEPARATE.REF"

SUBROUTINE MERGE(P, Q);
"MEAGE TV\O ADJACENT REFINEMENTS POINTED TO BY PAND Q. THE P
AEFINEMENT IS ASSUMED TO BE SPATlAl.LY TO THE LEFT OF Q."

USE DEBUG: DEFINE RFIN:
POINTEA TO RFIN: P, Q, A, UP;

"CHAIN TOGETHER THE REFINEMENTS OF P AND THE AEFINEMENTS OF Q."
UP = (Q-.FINE);
IF UP .NE. NIL <

IF «P-.FINE) .EQ. NIL) (P-.FINE) = (Q-.FINE):
WHILE (UP-.COARSE) .EQ. Q <

(UP-.COARSE) = P:
UP = (UP-.ALlNK)>>

"UNCHAIN THE RECOAD FOA THE Q AEFINEMENT."

o
o
o
o
o
o
1
1
1
o

R = (Q-.RLlNK):
(P-.RLI NK) = R:
(R-.LLlNK) = P:
DISPOSE(Q):

WITH P <

202

IF (DEBUG .GT. 0) OUTPUT Q, P, -LEFT, -RIGHT, -FINE, -BASE, -TOP:
(' DELETE',I4,' MERGE',I4,' LEFT, RIGHT, FINE, BASE, TOP',
515);>
RETURN;

o END; "MERGE"
o
o
o
o
o
o
o
o
o
o
o
a
1
1
1
1
2
3
1
1
o

SUBROUTINE FILL.lN(P, Q, L, TLEVEL);
"FILL IN iHEAREA BElWEEN T'vVO REFINEMENTS P AND Q, BY INTERPOLATION."

USE SOLN; DEFINE RFIN;
INTEGER BASE, DELTA, I, J, L, TLEVEt; TOP:
POINTER TO RFIN: P, Q;

CALL EXTEND.RIGHT(P, (Q-.LEFT), L, TLEVEL, .FALSE.);
BASE = (Q-.BASE);
IF BASE .NE. (P-.TOP) <

"SHIFT Q MESHVALUES DOWN."
TOP = (Q-.TOP);
DELTA = BASE - (P TOP):
DO I = 1, NCOMP <

DO J = BASE, TOP <
vO, J-DELTA) = VO, J»>

(Q-.BASE) = (P-.TOP);
(Q-.TOP) = (Q-.TOP) - DELTA>

o RETURN:
o END: "FILL.lN"
o
o
o
o
o
o
o
o
o
o
o
o
o
1
1
1
1
2
1
1
o
o
o
1
2
2
2
2
1
2
1
1
1

SUBROUTINE CREATE(PARENT, Q, LEVEL, LEFTN, RIGHTN, BASE, NEW):
"CREATE A NEW REFINEMENT AT LEV1:L LEV1:L, WITH PARENT POINTED TO BY
PARENT. INSERT IT TO THE LEFT OF REFINEMENT Q. RETURN THE POINTER
'NEW TO IT."

USE LFTMST; USE XRATIO; USE DEBUG: DEFINE RFIN;
INTEGER BASE, LEVEL, LEFTN, RIGHTN, TOP;
POINTER TO RFIN: L, NEW, P, PARENT, Q;

P =Q;
IF P .EQ. NIL <

"PARENT HAS NO DESCENDANTS: FIND THE FIRST REFINEMENT TO THE
RIGHT OF PARENT WHICH HAS A DESCENDANT."
P = (PARENT - .ALI NK):
WHILE (P-.FINE) .EQ. NIL .AND. P .NE. LEFTMOST(LEVEL) <

P = (P-.RLlNK»
IF P .NE. LEFTMOST(LEVEL) <P = (P-.FINE»
ELSE <P = LEFTMOST(LEVEL+1»>

L = (P-.LLlNK):
NEW(NE'vV);
WITH NEW <
IF BASE .EQ. 0 <

"BASE ~OT SPECIFIED, FIND IT."
TOP ::: (L-.TOP) + 1:
-BASE = TOP + MAXO(O, «P-.BASE) - TOP - XRATIO-(RIGHTN - LEFTN»
/2);>

ELSE <
-BASE = BASE>

IF (P .EQ. LEFTMOST(LEVEL») LEFTMOST(LEVEL) = NEW;
IF «PARENT-.FINE) .EQ. P .OR. (PARENT-.FINE) .EQ. NIL)

203

1 ~PARENT-.FINE) = NEW;
1 "INSERT IN HORIZONTAL DOUBLY LINKED LIST."
1 (L-.RLlNK) = NEW;
1 (P-.WNK) = NEW;
1 -RLINK = P;
1 -LLINK = L;
1 -LEFT = LEFTN;
1 -RIGHT = LEFTN;
1 -TOP = -BASE;
1 -OLDBASE = -BASE;
1 -eLDTOP = -BASE; '. 1 -COARSE = PARENT;
1 -FINE = ML;
1 IF (DEBUG .GT. 0) OUTPUT NEW, -BASE, -OLDTOP; (' CREATE', 14,
1 ' BASE, TOP', 215);>
0
0 RETURN;
0 END; "CREATE"
0
0
0 SUBROUTINE DELETE(P, LEVEL);
0 "CHECK TO SEE IF REFINEMENT P HAS ANY CHILDREN. IF NOT, DELETE IT."
0
0 USE LFTMST; USE DEBUG; DEFINE RFIN;
0 I NTEGER LEVEL;
0 POINTER TO RFIN: L, P, PARENT, R;
0 EQUIVALENCE (PARENT, L);
0
0 WITH P <
1 IF -FINE .EQ. NIL <
2 PARENT = -COARSE;
2 R = -ALINK;
2 IF (PARENT-.FINE) .EQ. P <
3 "SEE IF P HAS ANY SIBLINGS, OR IF THERE ARE ANY OTHER
3 REFINEMENTS TO THE RIGHT OF P ON THIS LEVEL."
3 IF (R-.COARSE) .EQ. -COARSE <
4 (PARENT-.FINE) = R>
3 ELSE <
4 (PARENT-.FINE) = NIL>
3 IF (P .EQ. LEFTMOST(LEVEL» LEFTMOST(LEVEL) = R>
2
2 "UNCHAIN REFINEMENT P."
2 L = -LLlNK;
2 (L-.RLlNK) = R;
2 (R-.LLINK) = L;
2 DISPOSE(P);
2 IF (DEBUG .GT. 0) OUTPUT P; (' DELETE',14»>
0
0 RETURN;
0 END; "DELETE"
0
0

,~ 0 SUBROUTINE EXTEND.RIGHT(P, NEVVEND, L, TLEVEL, LASTPT);
0 "EXTEND THE REFINEMENT POINTED TO BY P TO THE RIGHT. IF LASTPT IS
0 TRUE, DO NOT FILL IN THE EXTREME RIGHTMOST POINT., THIS IS
0 IMPORTANT TO AVOID MEMORY REPACKINGS DURING A MERGE."

~j 0
0 USE XRATIO; USE COUNT; DEFINE RFIN;
0 INTEGER EXTENT, L, NE'M:ND, RIGHT, TLEVEL;
0 LOGICAL LASTPT;
0 POINTER TO RFIN: P, PARENT, Q;
0
0 WITH P <
1 Q = -RLlNK;
1 RIGHT = -RIGHT;
1 EXTENT = XRATIO*(NEVVEND - RIGHT);
1 IF (.NOT. LASTPT) EXTENT = EXTENT - 1;

, 1
2
3
3
3
2
2
2
1
1
1
1
o

204

IF -TOP + EXTENT .GE. (O-.BASE) <
IF -BASE .EO. -TOP <

"A PREVIOUSLY EMPTY REFI NEMENT IS A SPECI AL CASE."
EXTENT = EXTENT + 1 ;
-TOP = -TOP - 1 >

CALL REALLOC(P, EXTENT);
IF (-BASE .GT. -TOP) -TOP = -TOP + 1;
NSHL = NSHL + 1 >

PARENT = -COARSE;
CALL INTERPOLATE(PARENT, -TOP, RIGHT, NEWEND, L, TLEVEL, LASTPT);
-AI GHT = NEWEND;
.... TOP = -BASE + XRATlOll{-RIGHT --LEFT»

o RETURN;
o END; ''EXTEND.RIGHT''
o
o
o
o
o
o
o
o
o
o
o
o
o
1
1
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
1
2
1
1
2
2
3
3
4
2

SUBROUTINE EXTEND.LEFT(P, LEFTN, L, TLEVEL);
"EXTEND THE AEFI NEMENT POI NTED TO BY P TO THE LEFT"

USEXRATlO; USE COUNT; DEFINE RFIN;
INTEGER EXTENT, L, LEFT, LEnN, TLEVEL;
POINTER TO RFIN: P, a;
a = (P-.UINK);
LEFT = (P-.LEFT);
EXTENT = XRATlOll{LEFT - LEFTN);
IF (P-.BASE) - EXTENT ,LE. (O-.TOP) <

CALL REALLOC(P, -EXTENT);
NSHRT = NSHRT + 1 >

(P-.BASE) = (P-.BASE) - EXTENT;
CALL I NTERPOLATE«P-.C OARS E), (P-.BASE), LEFTN, LEFT, L, TLEVEL,
.TRUE.);
(P-.LEFT) = LEFTN;

RETURN;
END; "EXTEND.LEFT"

SUBROUTINE INTERPOLATE(PARENT, BFINE, LEFT, RIGHT, L, TLEVEL, LASTPT);
"COPY SOLUTION VALUES IN LOCATIONS LEFT TO RIGHT-1, INCLUSIVE, OF THE
REFINEMENT POINTED TO BY PARENT, TO ITS (DESCENDANT) REFINEMENT.
IF LASTPT = TRUE, 00 THE SAME FOR THE RIGHT POINT. THEN
INTERPOLATE SOLUTION VALUES BET'M:EN THE COPIED VALUES IN THE
DESCENDANT."

USE SOLN; USE COM3; USE STEPSZ; USE XRATIO; USE COM12; DEFINE RFIN;
REAL FRAC, TEMP(NCOMP);
INTEGER BC, BF, SFINE, I, J, L, LEFT, M, RIGHT, RM1, TLEVEL, XRM1;
POINTER TO RFIN: PARENT;
LOGICAL LASTPT;

RM1 = RIGHT - 1;
XRM1 = XRATIO - 1;
BC = (PARENT-.BASE) - XRATIO*(PAAENT-.LEFT) + LEFT;
BF = BFINE;
DO J = LEFT, RM1 <

DO I = 1, NCOMP <
V(i, BF) = V(I, BC»

BF=BF+1;
DO M = 1, XRM1 <

FRAC = FLOAT(M)/XRATIO;
IF TLEVEL .EO. 1 <

CALL EXACT .sOLUTION(A + (XRATIOZJ + M)*H(L), K(1), TEMP);
DO I = 1 , NCOMP <

vo, SF) = TEMP(I)>>
ELSE IF OUADRAT <

,~

3
3
3
4
5
5
4
5
5
2
3
4
2
1
o
o
1
2
o

205

"QUADRATIC INTERPOLATION, USING TWO CLOSEST COARSE MESH
POINTS AND ONE TO THE LEFT, EXCEPT AT LEFT BOUNDARY"
DO I = 1 , NCOMP < '
IF J .NE. 0 <

V(i,BF) = V(I,BC) + FRACJI(V(I,BC) - V(I,BC-1) + 0.5J1
(FRAC + 1.)lI(V(I,BC+1) - 2.lIV(I,BC) + V(I,BC-1))»

ELSE <
V(I,BF) = V(I,BC) + FRAClI(V(I,BC+1) - V(I,BC) + 0.5 l1

(FRAC - 1.)lI(V(I,BC+2) - 2.lIV(I,BC+1) + V(I,BC)»»
ELSE < "LINEAR INTERPOLATION"

DO I = 1, NCOMP <
V(I,BF) = V(I,BC) + FRACJI(V(I,8C+1) - V(I,BC»»

BF=BF+1>
BC=8C+1>

IF LASTPT <
DO I = 1, NCOMP <

V(I,BF) = V(I,BC)>>

o RETURN;
o END; "INTERPOLATE"
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
1
1
2
2
2
2
3
3
2
1
1
1
1
1
1
1
1
1
2
2
2
2

SUBROUTINE REAlLOC(Q, EXTENT);
''THE REFINEMENT POINTED TO BY POINTER Q HAS RUN OUT OF ROOM ON

ITS RIGHT (IF EXTENT .GT. 0) OR ITS LEFT (IF EXTENT .LT. 0).
REALLOCATE MEMORV. SEE D. E. KNUTH, THE ART OF COMPUTER PROGRAM
MING, VOL 1, PP. 240-249. THIS 15 A MODIFICATION OF ALGORITHM G,
P.245. VIlE AWARD THE AVAILABlE FREE SPACE TO THE REFINEMENTS AS
FOLLOWS. APPROXIMATELY 10 PERCENT OF THE AVAILABLE MEMORY WILL BE
SHARED EQUALLY AMONG THE REFINEMENTS. THE OTHER 90 PERCENT IS
AWARDED PROPORTIONATELY TO THE AMOUNT OF MOVEMENT SINCE THE LAST
REPACKING. IF THE RIGHT END OF A REFINEMENT HAS MOVED RIGHT SINCE
THEN (COMPARE TOP AND OLDTOP), THE AWARD 15 TO THE RIGHT OF THAT
REFINEMENT. IF THE LEFT END HAS MOVED LEFT SINCE THE LAST
REPACKING (COMPARE BASE AND OLDBASE), THE AWARD 15 TO THE LEFT."

USE LFTMST: USE COM5; USE DEBUG; DEFINE RFIN;
REAL ALPHA, BETA, SIGMA, TAU;
INTEGER D(MAXRFINE), EXTENT, FREESP, INC, LEFT, NEWBASE(MAXRFINE),
NRFINE, RT;
POINTER TO AFIN: LAST, P, Q:
EQUIVALENCE (NEWBASE, D);

WITH P <
LAST = LEFTMOST(NLEVEL+1);
IF DEBUG .GT.O <

OUTPUT Q, EXTENT: (' REPACK; REF. NO', 15, ' EXTENT', 15
I ' REF. NO, BASE, TOP ');
P = LEFTMOST(');
REPEAT <

,OUTPUT P, -BASE, -TOP; (316);
P = -RLlNK;>

UNTIL P .EQ. LAST;>

IF EXTENT .GT. o «Q-.TOP) = (Q-.TOP) + EXTENT>
ELSE «Q-.BASE) = (Q-.BASE) + EXTENT>

FREESP = MEMAVAIL + , i
INC =0:
NRFINE = 0;
P = LAST;
D(LAST) = 0;
REPEAT <

NRFINE = NRFINE + 1;
P = -LLlNK;
D(P) = 0;
FREESP = FREESP - (-TOP - -BASE + '):

2
2
2
2
2 , , ,
2
2
1
2
2
1
2
2
1
1
1 ,
2
2
2
2
2
1 ,
1
2
1
1
1
2
2
2 , , , ,
1
2
2
2
3
3
2 ,
o

RT = MAXO(O, -TOP - -OLDTOP);
LEFT = MAXO(O, -OLDBASE - -BASE);
INC = INC + MAXO(RT, LEFT);

206

IF RT .GT. LEFT <D(-RLlNK) : DC-RLlNK) + RT>
ELSE <D(P) : LEFT»

UNTIL P .EQ. LEFTMOST(');

IF FREESP .LT.O <
OUTPUT; (' lUI(MEMORY OVERFLOW. PROGRAM ENDED. ');
STOP>

IF INC .GT. 0 <
ALPHA: (0.1-FREESP)1 NRFINE;
BETA: (O.9-FREESP)/INC>

ELSE <
ALPHA = FLOAT(FREESP)/NRFINE;
BETA: 0.> .

P : LEFTMOST('),
NEWBASE(P) : -BASE;
SIGMA: 0.;
UNTIL -ALINK .EQ. LAST <

TAU = SIGMA + ALPHA + D(-RLlNK)-BETA;
NEWBASE(-ALlNK) : NEWBASE(P) + -TOP - -BASE + , + INT(TAU)
-INT(SIGMA);
SIGMA: TAU;
P = -RLlNK;>

IF EXTENT'.GT. 0 «Q-.TOP) = (Q-.TOP) - EXTENT;>
ELSE «Q-.BASE) = (Q-.BASE) - EXTENT;

NEWBASE(Q) = NEWBASE(Q) - EXTENT>
CALL REPACK(NEWBASE);
P = LEFTMOST(');
REPEAT <

-OLDBASE = -BASE;
-OLDTOP = -TOP;
P = -ALINK;>

UNTI L P .EQ. LAST;

IF EXTENT .GT. 0 «Q-.OLDTOP) = (Q-.oLDTOP) + EXTENT>
ELSE «Q-.OLDBASE) = (Q-.OLDBASE) + EXTENT>

IF DEBUG .GT. 0 <

>

OUTPUT; (. REF. NO, BASE, TOP =');
P = LEFTMOST(');
REPEAT <

OUTPUT P, -BASE. -TOP; (316);
P = -RLlNK;>

UNTIL P .EQ. LAST;>

o RETURN;
o END; "REALLOC"
o
o
o
o
o
o
o
o
o
o
o
o
1 , ,
1
2

SUBROUTINE REPACK(NEWBASE);
"RELOCATE SEQUENTIAL TABLES. THIS IS ALGORITHM R OF KNUTH, VOL.
1. P. 248. THE ONLY CHANGE IS BECAUSE OUR ARRAY V STARTS FROM 0
I NSTEAD OF '."

USE SOLN; USE LFTMST; USE COM5; DEFINE RFIN;
INTEGER BASE. DELTA, I. J, NEWBASE(MAXRFINE). TOP;
POINTER TO RFIN: LAST, P, SECOND;

WITH P <
SECOND = LEFTMOST(2);
LAST = LEFTMOST(NLEVEL+');
P = SECOND;
UNTI L P .EQ. LAST <

IF NEWBASE(P) .LT. -BASE"<

•

3
3
3
3
3
4
5
3
3
2 ,
1 ,
1
2
2
3
3
3
4
5
3
3
o

"SHIFT DOWN."
BASE = -BASE;
TOP = -TOP;
DELTA = BASE - NEWBASE(P);
00 J = BASE, TOP <

DO I = , , NCOMP <
V(I, J-DELTA) = V(I, J)>>

-BASE = NEWBASE(P);
-TOP = -TOP - DELTA>

P = -ALINK;>

"FIND STAAT OF SHIFT."
P = LAST;
UN11L P .EQ. SECOND <

P =-LUNK;
IF NEWBASE(P) .GT. -BASE <

"SHIFT UP."
DELTA = NEWBASE(P) - -BASE;
FOR J :: -TOP 'is'(-1 TO -BASE <

DO I = 1 , NCOMP <
V(I, J+DELTA) = V(I, J»>

-BASE:: NEWBASE(P);
-TOP = -TOP + DELTA»>

o AETURN;
o END; "REPACK"
o
o

207

$ 'USE COM1S;' = 'COMMON /COM'S/ L2NORM, MAX, MIN;
o REAL L2NORM(NCOMP,2), MAX(NCOMP,2), MIN(NCOMP);'
o
o SUBROUTINE NORM(T);
o
o "COMPUTE MAXI MUM AND MEAN SQUARE ERROR AT ONE
o TI ME LEVEL. COMPUTE L2 NORM OF SOLUTl ON"
o
o USE SOLN; USE LFTMST; USE COM3; USE STEPSZ; USE XRATlO; USE COM' 6;
o USE ERROA; DEFINE AFIN;
o AEAL DIFF(NCOMP, '), EXACT(NCOMP). MAXAEAL, T, TEMP(NCOMP,2),
o X LEFT;
o INTEGER BASE, I, J, L, LEFTA, M, NPTS, NPTSP2, OFFSET, RIGHTA;
o POINTER TO RFIN: P, UP;
o EQUIVALENCE (ESTEAAOA, DIFF);
o
o MAXREAI.. = , .E30;
o DO I = , , NCOMP <
, DOM=1,2<
2 L2NOAM(I, M) = 0.;
2 MAX (I, M) = - MAXREAL>
1 MIN(I) = MAXREAL>
o L = 1;
o P :: LEFTMOST(');
o REPEAT <
1 REPEAT <
2 BASE = (P-.BASE)j
2 NPTS = (P-.TOP) - BASE;
2 NPTSP2 = NPTS + 2;
2 OFFSET = XRATIQlI(P-.LEFT);
2 XLEFT = A + H(L-1)-(P-.LEFT);
2 UP = (P-.FINE);
2 IF UP .NE. NIL <
3 LEFTR = (UP-.LEFT) - OFFSET;
3 RIGHTR = (UP-.RIGHT) - OFFSET>
2 ELSE <
3 LEFTR = NPTSP2>
'2 J = 0;
2 GO TO :L3:;

2
3
3
4
4
4
5
4
4
4
6
5
3
3
4
4
4
5
5
2
2
1
1
o
o
o
o
1
2
2
3
1
o
1
2
o

208

REPEAT <
CALL EXACT .sOLUTION(XLEFT + J*H(L), T, EXACl);
DO I = 1 , NCOMP <

TEMP(I,1) = V(I, BASE+J);
EXACT(I) = EXACT(I) - TEMP(I,1);
IF L .EQ. 1 <

OIFF(I,J) = EXACT(I»
TEMP(I,2) = ABS(EXACT(I»;
MIN(I) = AMIN1 (MIN(O, TEMP(I,1 »;
DOM=1,2<

L2NORM(I,M) = L2NORM(I,M) + H(L)-TEMP(I,M)-2;
MAX(I,M) = AMAX1 (MAX(I,M), TEMP(I,M»»

J=J+1;
:L3: IF J .EQ. LEFTA <

J = RIGHTR + 1 ;
UP = (UP-.RLlNK);
IF (UP-.COARSE) .EQ. P <

LEFTA = (UP-.LEFT) - OFFSET;
RlGHTA = (UP-.RlGHT) - OFFSET»>

WHILE J .LE. NPTS;
P = (P-.RLlNK»

UNTIL P .EQ. LEFTMDST(L+1);
L=L+1>

UNTIL (P-.cOARSE) .EQ. NIL;

P = LEFTMOST(2);
WHILE (P-.cOAASE) .EQ. LEFTMOST(1) <

FOR J = (P-.LEFT) TO (P-.RlGHT) <
CALL EXACT.SOLUTION(A + J-H(1), T. EXACl);
00 I = 1, NCOMP <

DIFF(I,J) = EXt>CT(I) - V(I,J)>>
P = (P-.RLlNK»

DO I = 1 , NCOMP <
DOM=1,2<

L2NORM(I,M) = SQRT(L2NORM(I,M»»

o RETURN;
o END; "NORM"
o

o
o
o
o

$'USE COM17;' ::
'COMMON /COM17 / ZZPAGE, ZPAGE, PAGE, BLANK;
INTEGER ZZPAGE, ZPAGE(HEIGHTP1), PAGE(HEIGHTP1, PAGEWlDTH),
BLANK;'

o SUBROUTINE CLEAR;
o USE COM3; USE ZERO; USE COM17;
o DO I = ZERO, HEIGHT <
1 DO J = ZERO, N <
2 PAGE(I, J) = BLANK»
o RETURN; END;
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

INTEGER FUNCTION ROUND(X);
REAL X;
IF X .GE. O. <ROUND = X + 0.5> ELSE <ROUND = X - 0.5>
RETURN; END;

SUBROUTINE PLOT (TLEVEL,l);
"PRINT AND PLOT SOWTION AND ERROR MEASURES."

USE SOLN; USE LFTMST; USE COM3; USE STEPSZ; USE ZERO; USE XRATlOj
USE DEBUG; USE COM16; USE COM17; USE ERROR; DEFINE RFIN;
REAL 01 FF(NCOMP, 1), RANGE, T, XJ, XLEFT, XRIGHT;
INTEGER BASE, I, J, L, LEFTR, M, NCUT, NPTS, NPTSP2, NRF, OFFSET,
AIGHTR,ROUND, TLEVEL, TOP,TOTPTS;
INTEGER PERIOD, ZEROCH, LABEL(NCOMP);
POINTER TO RFIN: P, UP;

....

209

o EQUIVALENCE (ESTERROR, DIFF);
o DATA BLANK 11H I, PERIOD 11H./, ZEROCH 11HO/, LABEL 11HV, 1HW/;
o
o C.6l.L NORM(T);
o OUTPUT T, TLEVEL; (I' T =', 1 PE15.7, ' =',15, ' DELTA T');
o 00 I = 1 , NCOMP <
, OUTPUT I, L2NORM(I,1), MAX(I,1), MlNel); (' NORM OF V(',11.
, ') =', 1PE15.7,' MAX =',1PE15.7,' MIN =',1PE15.7»

'D

o 00 I = 1, NCOMP <
1 OUTPUT I, L2NORM(I,2), MAX(I,2); (' V(',11, ') MEAN SQUARE'
1 'ERROR', 1 PE15.7,' MAXIMUM ERROR', , PE15.7»
o IF TLEVEL .NE. 1 AND. MOD(DEBOO, 2) .EQ. 1 <
, DO I = 1, NCOMP <
2 OUTPUT I, T; (I' V(',11, ') ERRORS AT T =',1 PE1S.7);
2 OUTPUT (DIFF(I,J), J = ZERO, N); (1 X, 1 P10E1 2.4)>>
o
o "PRINT SOLUTION AT NEWT-LEVEL"
o IF JllDD(DEBOO, 8)/4 .EQ. 1 <
, L = 1;
, P = LEFTMOST(L);
, REPEAT <
2 REPEAT <
3 BASE = (P-.BASE);
3 TOP;:: (P-.TOP);
3 DO I = 1 , NCOMP <
4 OUTPUT I, P, L; (I' V(', 11, ') REFINEMENT ',14,
4 'LEVEL',14);
4 OUTPUT (V(I,J), J = BASE, TOP); (1 X, 1 P8E15.7»
3 P = (P-.RUNK»
2 UNTIL P .EQ. LEFTMOST(L+1);
2 L=L+1>
1 UNTIL (P-.COARSE) .EQ. NIl;
1 >
o
o IF DEBUG .GT. 0 <
1 "COUNT NUMBER OF DISTINCT MESH POINTS • .6l.S0 COUNT NUMBER OF
1 (NONEMPTY) REFINEMENTS, EXCLUDING THE COARSEST MESH."
1 P = LEFTMOST(2); .
1 TOTPTS = 0;
1 NRF = 0;
1 WHILE (P-.COARSE) .NE. NIL <
2 TOTPTS = TOTPTS + (P-.RIGHT) - (P-.LEFT);
2 NRF = NRF + 1 ;
2 P = (P-.RUNK»
, TOTPTS = N + 1 + TOTPTS-(XRATIO - 1); ,
1 "PLOT SOLUTION ON PRINTER AND GRAFPtC"
1 NCUT = MINO(N, PAGEWlDTH);
1 DO 1 = 1 , NCOMP <
2 CALL CLEAR;
2 RANGE = MAX(I,1) - MIN(I);
2 IF RANGE .EQ. O. < RANGE = 1.> ,. 2
2 "INSERT DOTS ON PRINT PLOT TO DENOTE REFINED REGION"
2 P = LEFTMOST(2)i
2 WHILE (P-.COARSE) .EQ. LEFTMOST(1) <
300M = ZERO, HEIGHT <
4 PAGE(M, (P-.LEFT) :: PERIOD;
4 PAGE(M, (P-.RIGHT» = PERIOD>
3 P = (P-.RLlNK»
2
2 IF ROUND(MIN(I» .LE. 0 .AND. O •. LE. MAX (1 ,I) <
3 '1NSERTA LINE OF ZEROES INTO THE V PLOT"
3 M = ROUNO(-MIN(I) - HEIGHTI RANGE);
3 00 J = ZERO, NCUT <
4 PAGE(M, J) = ZEROCH»
2 00 J = ZERO, NCUT <

210

3
3
2
2
3
3
2
2
2
2
Z
2
2
2
2
2
3
4
4
4
4
3
3
2
2
2
2
2

M = ROUND«V(I,J) - MIN(I» II HEIGHT I RANGE);
PAGE(M, J) = LABEL(I»

OUTPUT; (1 H);
FOR M = HEIGHT BY -1 TO 0 <

OUTPUT (PAGE(M, J), J = ZERO, NCUT); (1 X,
PAGEWIDTHA1 »

"PUT OUT NUMBERS FOR GRAFPAC"
WRITE (7, :FORM1:) TOTPTS,I;
WRITE (7, :FORM2:) T;
WRITE (7, :FORM2:) A, B, -1.1,1.1;
WRITE (7, :FORM1:) NRF;
"PLOT REFINEMENT BOUNDARIES"
P = LEFTMOST(2);
L = 2;
WHILE (P-.COARSE) .NE. NIL <

REPEAT <
XLEFT = A+ H(L-1)lI{P-.LEFT);
XRIGHT = A + H(L-1)lI(P-.RlGHT);
WRITE (7, :FORM3:) L, XLEFT, XRIGHT;
P = (P-.RLlNK»

UNTIL P .EQ. LEFTMOST(L+1);
L=L+1>

"PLOT ALL POINTS ON ALL LEVELS IN STRICT LEFT-TO-AIGHTORDER
BY USING A DEPTH-FIRST SEARCH OF THE TREE."
P = LEFTMOST(1);
L = 1;

2
2

:RECURSE:

2
2
3
3
3
3
3
3
4
3
4
4
3
3
4
4
4
4 :L4:
5
6
5
3
3
3
3
3
3
2
o

J = 0;
UP = (P-.FINE);
REPEAT <

OFFSET = XRATIOlI(P-.LEFT);
XLEFT = A + H(L-1)lI(P-.LEFT);
BASE = (P-.BASE);
NPTS = (P-.TOP) - BASE;
NPTSP2 = NPTS + 2;
IF (UP-.COARSE) .NE. P <

LEFTR = NPTSP2>
ELSE <

LEFTR = (UP-.LEFl) - OFFSET;
RIGHTR = (UP-.RIGHl) - OFFSET>

GO TO :L4:;
REPEAT <

XJ = XLEFT + JlIH(L);
WRITE (7, :FORM2:) XJ, V(l,BASE~);
J=J+1;

IF J .EQ. LEFTR <
P = UP;
L=L+1;
GO TO :RECURSE:»

WHILE J .LE. NPTSi
UP = P;
P = (P-.COARSE);
J = (UP-.RIGHT) + 1 - XRATIO-(P-.LEFl);
UP = (UP-.RLlNK);
L=L-1>

UNTIL L .LT. 1 ;»

o :FORM1: FORMAT (15, 12);
o :FORM2: FORMAT (4E15.7);
o :FORM3: FORMAT (11, 2E15 7);
o RETURN;
o END; "PLOT"

$$
$$

o MORTRAN ERRORS ENCOUNTERED

<.

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.

"""

TECHNICAL INFORMATION DEPARTMENT

LAWRENCE BERKELEY LABORATORY

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

\ ~ ~ ~_~! ~4
~ ... 01'-.\ "

\. .,;;..

<~

w;:. ~

