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ABSTRACT

After the initial development of the first TOUGH-based geomechanics model 15 years ago

based  on  linking  TOUGH2  multiphase  flow  simulator  to  the  FLAC3D  geomechanics

simulator, at least 15 additional TOUGH-based geomechanics models have appeared in the

literature. This development has been fueled by a growing demand and interest for modeling

coupled multiphase flow and geomechanical processes related to a number of geoengineering

applications,  such  as  in  geologic  CO2 sequestration,  enhanced  geothermal  systems,

unconventional hydrocarbon production, and most recently, related to reservoir stimulation

and injection-induced seismicity.  This  paper  provides a  brief  overview of these  TOUGH-

based geomechanics models, focusing on some of the most frequently applied to a diverse set

of  problems  associated  with  geomechanics  and  its  couplings  to  hydraulic,  thermal  and

chemical processes. 
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2

41

42
43
44

45

46

47

48

49

50

51

52

53

54

55

56

57
58

2



1  INTRODUCTION

A growing demand and interest for modeling coupled multiphase flow and geomechanical

processes  has  resulted  in  the  development  of  a  growing  number  of  models  that  adds

geomechanics to the existing multiphase flow capabilities of the TOUGH family codes. This

development started with the development of the TOUGH-FLAC simulator to meet the need

for analyzing the effect of geomechanics on multiphase fluid flow behavior and transport

properties around nuclear waste emplacement tunnels at the previously proposed U.S. high-

level nuclear repository site at Yucca Mountain, Nevada (Rutqvist et al., 2002; Rutqvist and

Tsang, 2012). The TOUGH-FLAC simulator was developed as a pragmatic approach, linking

the two existing codes, TOUGH2 and FLAC3D (Rutqvist et al., 2002). The TOUGH-FLAC

simulator has since been adapted and applied for a wide range of geoscientific research and

geoengineering  applications,  such  as  geologic  CO2 sequestration,  enhanced  geothermal

systems, and gas production from hydrate bearing sediments (Rutqvist (2011) and references

therein). 

Following the first development of the TOUGH-FLAC simulator, a number TOUGH-based

geomechanical models have  been and are being developed.  In  fact,  at  least  15 additional

TOUGH-based  geomechanics  models  of  various  sophistications  have  appeared  in  the

literature. This include simulators such as TOUGH+ROCMECH (Kim and Moridis, 2013),

TOUGH-RDCA (Pan et  al.,  2014a),  TOUGH-CSM (Winterfeld and Wu, 2015),  TOUGH-

RBSN (Kim et al., 2015a), and many more linking TOUGH-family codes, such as TOUH2,

TOUGH-MP, TOUGH+, TOUGHREACT, and ITOUGH to various geomechanics models.

For example, TOUGHREACT has been linked to geomechanics models for the analysis of
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coupled thermal, hydraulic, mechanical and chemical (THMC) processes (e.g.,  Taron et al.,

2009; Zheng et al., 2014; Kim et al., 2015b). In recent years, additional interest and demand

have  been fueled  by  the  need stimulate  reservoirs  through  fracturing  (e.g.,  for  enhanced

geothermal systems or tight gas and shale gas formations), understand the risk of leakage

(e.g., at carbon storage sites), and to address the issue of induced seismicity. 

This paper provides a brief overview of the current TOUGH-based geomechanics models,

including capabilities, applications and potential future developments. Table 1 lists and briefly

describes 20 TOUGH-based geomechanics models that  have appeared in the literature.  In

general  these  TOUGH-based  geomechanics  models  differ  in  the  assumptions  about  the

mechanical behavior of porous and fractured geologic media, the numerical method used to

perform the stress–strain calculation, the discretization scheme and how state variables and

parameters calculated for potentially different meshes are mapped to each other, and the way

to couple fluid flow and geomechanics. Although the TOUGH-based geomechanics models

are developed for modeling coupled thermal-hydraulic-mechanical (THM) processes or, in

some cases, even THMC processes, the couplings of fluid flow and geomechanics, i.e., HM

couplings,  are  central  to  most  applications  and  are  known  to  be  challenging  to  solve

numerically  depending  on  the  specific  application.  Therefore,  an  overview  of  numerical

schemes related  to  HM couplings  schemes is  devoted  to  the  entire  next  section.  This  is

followed  by  descriptions  of  TOUGH-FLAC,  TOUGH-ROCMECH,  TOUGH-RDCA,

TOUGH-CSM,  and  TOUGH-RBSN,  which  are  complementary  TOUGH-based

geomechanical models that have been most frequently applied to a diverse range of problems.

Thereafter, other TOUGH-based geomechanics models listed in Table 1 are briefly reviewed
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before concluding the paper with some final thoughts on the current state of TOUGH-based

geomechanics models expected future developments. 

2 HM COUPLING SCHEMES

Figure 1 shows a schematic of the couplings between hydraulic and mechanical processes in a

deformable porous media such as soil and rock (Rutqvist and Stephansson, 2003). The arrows

indicate the couplings, which can be divided into two categories: direct (solid line arrows) and

indirect (dashed line arrows). Direct couplings are associated with pore-volume changes and

their  instantaneous  and  direct  effect  on  fluid  mass  balance  and  effective  stress,  whereas

indirect  couplings  are  occurring  indirectly  through  changes  in  mechanical  and  hydraulic

properties.

Depending  on the  type  of  problem being solved  and  the  porous  medium properties,  the

importance of different HM couplings varies. In relatively permeable fractured hard rock, the

indirect coupling in the form of permeability changes with stress might be most important. In

relatively impermeable, soft and porous clay, on the other hand, direct pore-volume coupling

may be most important. For example, when a porous deformable medium is suddenly loaded

mechanically, the pores will be compressed and thereby squeezing the pore fluid to a higher

pore pressure that will impact the fluid mass balance. This increase in pore-fluid pressure will

in  turn  have  an  instantaneous  effect  on  effective  stress  and  volumetric  strain.  These  are

instantaneous two-way couplings between hydraulic and mechanical processes that can be

challenging to resolve numerically.  
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A number of numerical schemes have been employed for solving coupled fluid flow and

geomechanics  problems (Minkoff  et  al.,  2003; Kim,  2010).  These  include  so-called  fully

coupled (monolithic) and sequentially coupled solution methods. In monolithic solutions, all

the equations for fluid flow and mechanics including coupling terms are assembled into a

large  matrix  system  and  solved  simultaneously.  Most  of  the  coupled  fluid  flow  and

geomechanics finite element codes developed in rock and soil mechanics since the 1980s have

employed fully coupled numerical schemes (e.g.,  Noorishad et al., 1982). The fully coupled

method  usually  provides  unconditional  and  convergent  numerical  solutions  for

mathematically  well-posed  problems  (Noorishad  et  al.,  1982;  Rutqvist  and  Stephansson,

2003; Kim, 2010).

When linking two different codes for fluid flow and geomechanics, it is generally not possible

to use the monolithic solution scheme. Consequently, in most TOUGH-based geomechanics

models to date, including TOUGH-FLAC, the equations for fluid flow and geomechanics are

solved sequentially. Sequential coupling methods might be prone to numerical instability and

inaccuracy when solving problems involving strong direct pore-volume coupling. Analysis of

sequential  methods associated with pore-elasticity with appropriate  stability properties has

been the subject many studies (Settari  and Mourits, 1998; Mainguy and Longueare, 2002;

Kim et al., 2009). However, as shown by Kim (2010), by choosing an appropriate coupling

scheme with so-called stress fixed iterations in the sequential scheme, the sequential solution

becomes unconditionally  stable.  In  a  stress  fixed sequential  solution,  flow is  solved first,

fixing the total stress field, and then geomechanics is solved from the variables obtained at the

previous flow step.  The stress fixed sequential  scheme is achieved in the computation by

6

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

6



calculating an appropriate porosity correction term while keeping the pore-compressibility

non-zero and active in the reservoir simulator (Kim et al., 2011). Though the efficiency of the

sequential, iterative schemes has been questioned (Prevost, 2013),  a recent study showed that

fixed stress split is a robust and efficient scheme for iteratively coupling poro-elastic systems

even for highly nonlinear problems (Mikelíc et al., 2014). 

For  practical  reasons,  the  sequential  coupling  method  is  used  in  all  TOUGH-based

geomechanics models except in some one-way coupled approaches and in TOUGH-CSM in

which a monolithic solution is employed (Winterfeld and Wu, 2015). For strong pore-volume

coupling,  the  various  TOUGH-based  geomechanics  models,  including  TOUGH-FLAC,

TOUGH+ROCMECH  and  TOUGH-CSM,  have  been  verified  against  analytical  solutions

involving  poro-elasticity  such  as  solutions  involving  one-dimensional  consolidation

(Terzaghi) and the 2D Mandel-Cryer effects. These verifications have shown good agreement

between  numerical  results  and  analytical  solutions  for  both  the  fully  coupled  scheme  in

TOUGH-CSM  (Winterfield  and  Wu,  2015)  and  sequentially  coupled  schemes  in

TOUGH+FLAC (e.g.,  Kim et al., 2012) and TOUGH+ROCMECH (e.g.,  Kim and Moridis,

2013). This shows that both monolithic and sequential coupling schemes can be used to solve

problems involving strong pore-volume coupling, though the efficiency of the two schemes

might be substantially different depending on the specific problem being solved. 

In the development of coupled HM numerical models, a lot of effort is usually dedicated to

verification  of  algorithms  related  to  pore-volume  coupling,  partly  because  poro-elastic

analytical  solutions  for  such  problems  exist.  However,  in  much  of  the  multiphase  flow
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applications encountered, direct two-way pore-volume couplings may not be important, or can

be  ignored  by  choosing an  appropriate  pore-compressibility  in  the  flow simulator.  More

common is that indirect couplings by property changes dominate. Moreover, in many cases

one-way coupling is  sufficient,  for example  hydraulic-to-mechanical  coupling considering

how fluid pressure gives rise to mechanical deformation and failure. In other applications,

such  as  fluid-driven  hydraulic  fracturing  propagation,  very  strong  pore-volume  coupling

appears,  especially  when new fracture  volume is  created  at  the  crack  tip,  which  is  very

challenging numerically, regardless of the applied HM coupling scheme. 

3 TOUGH-FLAC

The TOUGH-FLAC simulator was originally developed in the late 1990s as part of the Yucca

Mountain nuclear waste disposal project (Rutqvist et al., 2002; Rutqvist and Tsang, 2003a). At

that  time  TOUGH2  (Pruess  et  al.,  2012)  was  the  main  code  used  for  the  analysis  of

unsaturated zone flow and transport  of the Yucca Mountain site,  but there was a need to

analyze  how flow and  transport  was  affected  by  geomechanical  processes  (Rutqvist  and

Tsang, 2003b). The idea was then to link TOUGH2 to a geomechanics code; the FLAC3D

code (Itasca, 2012) was selected, because it had the required geomechanics capabilities, was a

continuum  code  compatible  with  the  TOUGH2  continuum  approach,  and  was  already

qualified and applied in the Yucca Mountain Project (Rutqvist and Tsang, 2012).

While FLAC3D (Itasca, 2012) is a commercial code and the source code is not distributed, it

contains a script programming capability called FISH, which makes it possible to reach and

modify internal variables and thereby enabled the linking with the TOUGH2 code. FLAC3D

also  has  the  capability  of  implementing  user  defined  constitutive  models  through  C++
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programing added in a dynamic link library file (Rutqvist, 2011). Thus, despite not having

access to the source code, FLAC3D provides sufficient flexibility for research applications

and specialized developments to a wide range of applications. In addition, FLAC3D contains

a  large  number  of  constitutive  models,  including  elasto-plastic  and  visco-elastic  (creep)

models for solids as well as the possibility of including some discontinuities as interfaces

between solid elements. 

As  described  in  the  previous  section,  TOUGH-FLAC  uses  sequential  coupling  between

TOUGH2 and FLAC3D, whereby fluid flow variables, such as pore pressure, temperature,

and saturation calculated by TOUGH2, are transferred to a compatible  numerical grid for

FLAC3D,  which  then  calculates  effective  stresses  and associated  deformations,  returning

updated  values  for  porosity,  permeability,  and  capillary  strength  parameter  to  the  flow

simulator  (Rutqvist  et  al.,  2002;  Rutqvist,  2011).  As described in  a  2011 status  paper  on

TOUGH-FLAC (Rutqvist.  2011),  TOUGH-FLAC was expanded to applications,  including

geomechanical aspects of CO2 sequestration and fault activation, geomechanical effects in gas

production from hydrate bearing sediments, and geothermal energy production. Since 2011,

TOUGH-FLAC applications have been further broadened along with an increasing number of

users, including continued modeling of geomechanical aspects of CO2 sequestration (Cappa

and Rutqvist, 2012; Mazzoldi et al., 2012; Rinaldi and Rutqvist, 2013; Jeanne et al., 2014a;

Konstantinovskaya  et al.,  2014; Rinaldi  et  al.,  2014a, b,  2015a; Figueiredo et  al.,  2015),

nuclear waste disposal (Rutqvist et al., 2013; 2014), enhanced geothermal systems (Jeanne et

al., 2014b-d, 2015a, b; Rutqvist et al., 2015a; Rinaldi et al., 2015b), underground gas storage

and compressed air energy storage (Rutqvist  et al.,  2012a; Kim et al.,  2013; Walsh et al.,
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2015), and gas production from hydrate bearing formations (Kim et al., 2012; Rutqvist et al.,

2012a). 

In  the  recent  few  years  significant  advancements  of  TOUGH-FLAC  have  been  made,

extending the simulations to more complex geomechanical processes,  especially related to

modeling injection-induced fault  activation and induced seismicity (Rutqvist  et al.,  2014a;

Rinaldi  et  al.,  2015a),  advanced constitutive  models  for  expansive  clay  in  nuclear  waste

isolation (Rutqvist et al., 2014b; Vilarrasa et al., 2015), and modeling of salt geomechanical

processes coupled with temperature and multiphase flow (Blanco-Martín et al., 2015a; 2016).

Fault activation and induced seismicity have been modeled in 3D using strain-softening (slip-

weakening) fault friction models that enable modeling of sudden seismic slip (Rinaldi et al.,

2015a).  This includes recent 3D modeling of injection-induced fault activations associated

with both underground CO2 injection and during stimulation of shale-gas reservoirs (Rutqvist

et  al.,  2015b;  Rinaldi  et  al.,  2015a).  In  some  cases  this  has  involved  fully  dynamic

calculations  of  the  fault  activation  and  resulting  ground  surface  motion  (Rutqvist  et  al.,

2014a). Implementation of more advanced fault frictional laws is underway; Urpi et al. (2016)

present  a  first  step  in  the  implementation  of  a  rate-and-state  fault  friction  law  into  the

TOUGH-FLAC framework. 

The  recent  extension  of  the  TOUGH-FLAC  simulator  for  modeling  THM  processes

associated with nuclear waste disposal in salt has been accomplished through collaboration

between LBNL and Clausthal Technical University, Germany (Blanco-Martín et al., 2015b).

This includes the development, implementation and application of an advanced constitutive

model from Clausthal Technical University (the Lux/Wolters constitutive model) for THM

induced  damage,  healing  and  sealing  of  salt  host  rocks  and  compaction  of  crushed  salt
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(Blanco-Martín et al., 2016). Moreover, this involves modeling of large strain along with the

compaction of the crushed salt backfill from a porosity of about 30% to less than 1% (Blanco-

Martín et al., 2015a, b). Clausthal Technical University uses a different coupling scheme in

which FLAC3D is the main code driving the simulation forward, and denotes this simulator

FLAC-TOUGH rather than TOUGH-FLAC (Lux et al., 2014; Blanco-Martín et al., 2015b). 

Related to THM in clay, the implementation of the Barcelona Basic Model for mechanical

behavior of unsaturated soils (Rutqvist et al.,  2014b), and the Barcelona Expansive Model

(Vilarrasa et al., 2015) for mechanical behavior of expansive soils are important additions for

rigorous modeling of bentonite based backfill material. Moreover, the consideration of two

structural levels, i.e.,  macro- and micro-structures in the expansive model, provides a link

between mechanics and chemistry for more mechanistic modeling of THMC behavior. Two

recent papers by  Zheng et al. (2014; 2015) describe different types of chemical-mechanical

coupling behavior in bentonite, i.e., effects of chemistry on the mechanical evolution of the

bentonite  material.  In  this  case  TOUGHREACT  is  linked  to  FLAC3D  to  model  CM

couplings, such as salinity effects on swelling pressure. Such chemical-mechanical coupling

effects might be especially important when considering higher temperature disposal systems

(Zheng et al., 2015). 

Most  recently,  the  TOUGH-FLAC  approach  has  been  extended  and  applied  in  inverse

modeling,  by  linking  FLAC3D  to  the  ITOUGH  simulation–optimization  code  (Finsterle,

2015)  using  the  general  structure  of  the  TOUGH-FLAC simulator  (Blanco-Martín  et  al.,

2015c). The resulting simulator, ITOUGH-FLAC, provides an inverse modeling framework

for  the  estimation  of  flow  parameters,  considering  the  system  response  accounting  for

geomechanical processes. Moreover, using iTOUGH2-PEST (Finsterle and Zhang, 2011) and
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TOUGH-FLAC, both flow and mechanical parameters can be estimated, including sensitivity

analysis, uncertainty propagation and data-worth analysis. Currently, iTOUGH2-PEST with

TOUGH-FLAC has been applied for material parameter estimation by analyzing field data at

the In Salah CO2 storage project. Algeria (Rinaldi et al., 2015c), and at a multi-year in situ

heating experiment at Asse mine in  Germany (Blanco-Martín et al., 2016). 

FLAC3D is a well-established code with a large user base (Itasca, 2012). It makes available

many geomechanical constitutive models and has the flexibility to extend and implement new

constitutive models, which is one of the most appealing features for selecting FLAC3D as the

geomechanics code to be linked to TOUGH. One drawback with the current TOUGH-FLAC

simulator  is  that  it  runs  exclusively  under  Windows  (because  FLAC3D  only  runs  under

Windows), which prohibits the use ultra-large computer clusters. However, there are plans to

port  FLAC3D  to  Linux  and  to  develop  an  MPI version  in  the  near  future  (personal

communication with Itasca, April 2016). 

4 TOUGH-ROCMECH

TOUGH-ROCMECH is developed as an alternative to TOUGH-FLAC, in which the source

code of the geomechanics part is available and therefore enabling a more efficient linking

between multiphase flow and geomechanics, and the possibility of porting the simulator for

computer clusters and massive parallel processing (Kim and Moridis, 2013). ROCMECH is

an  LBNL in-house  developed finite  element  code  that  was tailored  first  for  linking with

TOUGH+ (Kim and Moridis, 2013) and later with TOUGHREACT (Kim et al., 2015b) and

iTOUGH2  (Finsterle,  2015).  Similar  to  TOUGH-FLAC,  TOUGH-ROCMECH  employs
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sequential  coupling schemes,  including the fixed stress  split  algorithms,  which have  been

implemented and verified by Kim and Moridis (2013). 

The  current  basic  ROCMECH version  has  the  capability  of  modeling mechanical  failure

within solid elements through elasto-plastic Drucker-Prager or Mohr-Coulomb models. This

has recently been extended to consider failure on multiple shear planes representing fracture

sets of different orientation and applied for the analysis of shear stimulation related to an

enhanced geothermal project at the Newberry Volcano, Oregon (Smith et al., 2015). A new

multiporosity approach for poro-elasticity was also developed and implemented by Kim et al.

(2012).  This  version  of  TOUGHREACT-ROCMECH has  also  been applied  for  modeling

THMC  processes  for  flow  along  fractures,  considering  mechanical  and  chemical

(precipitation) effects on porosity and permeability (Kim et al., 2015b). These are processes

important for the long-term sustainability of enhanced geothermal systems and for sealing of

fractures associated with geologic containment of CO2 and nuclear waste disposal.  

In  a  version  of  TOUGH+ROCMECH,  capabilities  for  modeling  3D  fracture  propagation

along a vertical pre-defined plane have been implemented. This model was applied for the

analysis of hydraulic fracture propagation associated with stimulation of shale-gas reservoirs

(Kim and Moridis, 2013; 2015). The approach is similar to that of Ji et al. (2009), in which the

fracture  propagates  along  the  boundary  of  the  model  domain  through  a  nodal-splitting

algorithm.  The  permeability  of  fractured  elements  are  increased  with  fracturing  opening

according to the cubic relation between flow and fracture aperture (Rutqvist and Stephansson,

2003). Using such an approach in the case of modeling hydraulic fracturing in tight shale, the
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TOUGH+RealGasH2O with ROCMECH has been applied (Kim and Moridis, 2013; 2015).

The vertical fracturing is modeled by adding traction boundary conditions at locations where

nodes  have  been  split.  Moreover,  once  a  fracture  has  been  created  adjacent  to  the  solid

element, the initial single continuum element in TOUGH is changed to multiple continuum

for considering the local leak-off from the fracture to the surrounding porous rock. 

In ROCMECH, fracturing conditions for node-splitting are based on tensile strength rather

than toughness. A fracturing criterion considering the effects of both effective stress normal to

the fracture and shear stress enables a mix-mode fracturing criterion. Using this model, Kim

and Moridis (2015) were able to model multiphase flow driven hydraulic fracturing and found

significant  effects  of  complex  two-phase  flow  processes,  including  vertical  gravity

segregation that are processes important for estimating the fracture volume and leak-off to the

surrounding rock.

Ongoing  developments  of  TOUGH-based  geomechanics  models  linked  to  ROCMECH

includes  MPI versions  of  both  TOUGH+ROCMECH  and  TOUGHREACT-ROCMECH,

which will enable simulations of much larger problems using massive parallel processing on

large scale computer clusters. 

5 TOUGH-RDCA
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Pan et al.  (2014a) coupled TOUGH2 to RDCA (rock discontinuous cellular automaton), a

code capable of simulating nonlinear and discontinuous deformation behavior, such as plastic

yielding and the initiation, propagation and coalescence of cracks induced by changes of fluid

pressure and temperature.

RDCA uses a special displacement function to represent internal discontinuities  (Pan et al.,

2014b). A level-set method tracks the fracturing path, and a partition of unity method is used

to  improve  the  integral  precision  of  fracture  surface  and  fracture  tip  calculations.  The

mechanical state  is evaluated by a cellular automaton updating rule. In this  approach, the

discontinuity of a crack is incorporated independently of the mesh, such that the crack can be

arbitrarily located within an element, i.e., the method does not require any re-meshing for

crack growth. As a result, a fixed mesh can be used in RDCA and this greatly simplifies the

modeling procedure and its sequential  integration with TOUGH2.  If  a fracture propagates

through a certain element, the permeability of this element is increased according to the cubic

law with the additional permeability of the fracture superimposed on the initial permeability

representing the rock matrix. 

In TOUGH-RDCA, the fracturing condition can be evaluated either by linear elastic fracture

mechanics  using  fracture  toughness  or  by  a  modified  Mohr-Coulomb  criterion.  The

toughness-based criterion includes mixed Mode I (extension) and Mode II (shear) fracture

propagation,  whereas  the  Mohr–Coulomb  criterion  is  modified  with  a  tension  cut-off,

enabling modeling of both shear and tensile failure. 
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TOUGH-RDCA has been verified against analytical solutions and against TOUGH-FLAC for

poro-elastic behavior and injection-induced ground surface uplift (Pan et al., 2013). A number

of simulation applications have been presented related to fluid driven fracture propagation and

CO2 leakage through fractures. This includes multiple fracture propagation with intersections

to pre-existing fractures (Pan et al., 2014c). The code is currently limited to modeling fracture

propagation in 2D, whereas a 3D RDCA code is under development.

6 TOUGH-CSM

TOUGH-CSM is being developed at the Colorado School of Mines (CSM), with the ultimate

goal of an efficient code tailored for massive parallel processing simulations (Winterfeld and

Wu, 2012; 2015). The geomechanics part is accomplished by adding a mean stress equation

for thermo-poroelastic multi-porosity media to the standard set of governing multiphase flow

equations  of  TOUGH2-MP.  In  this  formulation,  the  mean  total  stress  is  included  as  an

additional  primary  variable,  and  the  coupled  thermal–hydrological–mechanical  system  is

solved fully implicitly,  obtaining volumetric strain and associated changes in porosity and

permeability.  Geochemical  reactions  based  on  the  TOUGHREACT code  have  also  been

included in this formulation (Zhang et al., 2012; Winterfeld and Wu, 2012). 

A  few  applications  of  TOUGH-CSM  related  CO2 sequestration  in  deep  sedimentary

formations and geothermal systems have been published (Hu et al., 2013; Winterfeld and Wu,

2014). In the case of CO2 sequestration, the effect of fracturing through the caprock overlying

a reservoir was studied in Huang et al. (2015). Since only the mean stress was solved in the
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fully coupled simulation, some other relationships and assumptions were used to estimate the

horizontal  stress  needed  for  evaluating  the  possibility  of  vertical  fracturing  through  the

caprock. The application example related to geothermal, using a version of the code denoted

TOUGH-EGS, included simulation of ground subsidence at the Geyser geothermal field with

comparison to the previous results obtained with TOUGH-FLAC (Hu et al., 2015). 

As concluded in Hu et al. (2015), calculations limited to mean total stress as opposed to the

full  stress  tensor  is  a  simplification  that  may  be  a  shortcoming  since  it  cannot  analyze

phenomena  dependent  on  shear  stress,  such  as  rock  failure.  However,  currently  a  new

algorithm is being developed and tested in which the stress tensor, including all normal and

shear stress components, are solved in a sequential manner (Winterfeld and Wu, 2015). This

approach  of  calculating  the  stress  components  was  verified  against  analytical  solutions

showing  the  potential  of  TOUGH-CSM  for  realistic  and  efficient  modeling  coupled

geomechanical processes using massive parallel processing. 

7 TOUGH-RBSN

TOUGH-RBSN is being developed at LBNL with the main goal of modeling mass transport

through permeable media under dynamically changing hydrologic and mechanical conditions

in 3D heterogeneous geological media (Asahina et al.,  2014; Kim et al.,  2015a). A strong

motivator is the potential of modeling discrete fracture propagation through heterogeneous

geological media in 3D (Kim et al., 2015a).  The simulation tool combines TOUGH2 with the

rigid-body-spring network (RBSN) model, which enables a discrete (lattice) representation of

elasticity, individual fractures and fracture networks in rock. 
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One advantage of linking TOUGH2 and RBSN resides in their common utilization of a set of

nodal points and properties of the corresponding Voronoi tessellation (e.g., natural neighbor

and volume rendering definitions).  Shared use of the Voronoi tessellation facilitates every

stage  of  the  analyses,  including  model  construction  and  results  interpretation.  In  such  a

system, the discrete  fractures are  directly  mapped onto unstructured Voronoi grids  via  an

automated geometric scheme (Asahina et al., 2011). A fracture is represented by the controlled

breakage of the springs (1D lattice elements) linking adjacent Voronoi cells along the fracture

trajectory. Fractures can propagate along Voronoi cell boundaries as THM-induced stresses

evolve and exceed prescribed material strength values. The fracturing process is represented

by the damage/breakage of the springs. A Mohr-Coulomb criterion with tension cut-off is used

to judge when a lattice element undergoes a fracturing event. 

The RBSN code has been extensively used and validated for fracturing in concrete materials,

including heterogeneities such as large grain inclusions, whereas the linked TOUGH-RBSN

code  has  been  verified  against  analytical  solutions  and other  numerical  tools  for  various

features, including poro-elasticity, swelling, and fracture deformation (Asahina et al., 2014;

Kim et al., 2015a). Applications include validation against experimental results on desiccation

cracking in a fine-grained sediment (mining waste), and most recently modeling of fracture

propagation through a heterogeneous laboratory sample that includes pre-existing weaknesses

(Kim et al., 2015a). 

18

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

18



Currently a new dynamic simulation framework for RBNS is being developed. In the new

methodology,  nodal kinematic information (displacements,  velocities,  and accelerations) is

calculated through the explicit time integration scheme, by which the code implementation

with parallelization can be easily realized. The parallelization will be a requirement for being

able to solve large-scale problems in 3D with this approach.

  

8 OTHER TOUGH-BASED GEOMECHANICS MODELS

In addition to TOUGH-FLAC, TOUGH-ROCMECH, TOUGH-CSM, TOUGH-RDCA, and

TOUGH-RBSN,  a  number  of  other  TOUGH-based  geomechanics  models  have  been

developed as listed in Table 1, though most of them have not been extensively applied. 

Some of the earlier work includes Gosavi and Swenson (2005) who linked TOUGH2 to the

finite  element  code  GeoCrack3D,  and  later  applied  it  to  geothermal  energy  applications.

Hurwitz et al. (2007) linked TOUGH2 to the USGS coupled hydro-mechanical finite element

code Biot2, named the simulator TOUGH2-Biot, and applied it to study hydro-thermal fluid

flow and deformation in large calderas. Recently another simulator named TOUGH2Biot was

presented (Lei et al., 2015) involving TOUGH2 linked to an in-house finite element code and

verified against previous TOUGH-FLAC simulations of the Geysers geothermal system and

applied to simulate CO2 injection of a site in China. 

Taron et al. (2009) at Penn State University linked TOUGHREACT to FLAC3D, a TOUGH-

based geomechanics model that has been applied for modeling THMC processes associated
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with geothermal systems (Taron  et al., 2009; Taron and Elseworth, 2009; Izada and Elsworth,

2015). For example, Taron and Elseworth (2009) used THMC modeling to study the evolution

of  permeability  associated  with  mechanical,  thermal,  and  chemical  (precipitation  and

dissolution) effects. In  Izada and Elsworth (2014; 2015), the FLAC domain was populated

with an implicit fracture network for the analysis of injection-induced micro-seismicity during

hydraulic stimulation.  

Other efforts includes  Rohmer and Seyedi (2010) who linked TOUGH2 to the French open

source  finite  element  mechanics  code  Code_Aster  and  simulated  deep  underground  CO2

injection.   Loschetter  et  al.  (2012) used  the  TOUGH2-Code_Aster  combination  to  model

enhanced coalbed methane production. Aoyagi et al. (2013) linked TOUGH2 to FrontISRM,

an  open  source  finite  element  code  in  Japan,  based  on  TOUGH-FLAC  links,  and

demonstrated it by modeling a generic CO2 injection simulation. 

Some of the most recent efforts include  Lee at al. (2015) who linked TOUGH2 to UDEC,

which is a distinct element code, enabling modeling the geomechanical behavior of fracture

networks  in  2D.  Miah  et  al.  (2015) presented  on-going  work  on linking  TOUGH2 with

PyLith,  which  is  a  USGS-developed  finite-element  code  primarily  used  for  large-scale

geomechanical  crustal  deformation  and  earthquake  simulation  (static,  quasi-static  and

dynamic  modes).  PyLith  has  advanced  fault  frictional  models  that  will  be  applied  and

benchmarked against TOUGH-FLAC implementations of rate-and-state frictional models. 
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Finally,  simpler  TOUGH-based  geomechanics  approaches  have  been  developed  for

specialized applications, including Walsh et al. (2012) who added the effects of an external,

vertical stress change to the porosity updates. This approach was recently applied to model

effects  of  glaciation  in  the  safety  assessment  of  a  hypothetical  nuclear  waste  repository

(Calder  et  al.,  2015).  Another  example  is  TOUGH2-Seed,  a  coupled  fluid  flow  and

mechanical statistical  model for the study of injection-induced seismicity (Nespolia et  al.,

2015). With TOUGH2-Seed, the authors were able to model several mechanisms influencing

each other during and after the injection phase.

  

9 CONCLUDING REMARKS

After  the  first  development  of  the  TOUGH-FLAC  simulator  15  years  ago,  at  least  15

additional TOUGH-based geomechanics models have appeared in the literature (Table 1).

Seven of those  involve linking TOUGH2 to  an  in-house developed or open source  finite

element code, using sequential coupling techniques as in TOUGH-FLAC, but with access to

the source code for the geomechanics part.  One of the main motivations related to those

developments is the access to the source code and the potential of more efficient coupling as

well as the possibility of running the codes together on computer clusters. Among the codes

linking TOUGH to an in-house or open source finite element code, TOUGH-ROCMECH is

the one that has been applied most extensively to date. Most of these finite element codes are

limited to  linear poro-elasticity,  although ROCMECH includes some elasto-plasticity with

Drucker-Prager and Mohr-Coulomb constitutive models. To extend such geomechanics codes

21

472

473

474

475

476

477

478

479

480

481
482

483

484

485

486

487

488

489

490

491

492

493

494

21



to more sophisticated constitutive models that are currently available in FLAC3D will require

a  substantial  effort,  but  is  feasible.  TOUGH-CSM  includes  an  unorthodox  mechanical

approach that  with the current addition for calculation of the full  stress tensor can be an

efficient  and  useful  approach  for  modeling  large  systems.  TOUGH-based  geomechanics

models based on codes with access to the source code,  such as TOUGH-ROCMECH and

TOUGH-CSM,  is  expected  to  have  increased  user  basis  as  more  advanced  constitutive

geomechanics  models  and processes  can  be  added  along with  their  applications  on large

computer clusters.   

TOUGH-FLAC still remains by far the most applied TOUGH-based geomechanics model. It

is  the  combination  of  the  TOUGH2  library  of  fluid  equations-of-states  (EOS)  and  the

FLAC3D  library  of  geomechanical  constitutive  models  that  make  it  possible  to  extend

TOUGH-FLAC to new areas of research and geo-engineering applications within a relatively

short time. The fact that FLAC3D only runs under Windows has been viewed as a bottleneck

since it cannot be ported to large computer clusters to reduce the computation time. However,

the computation time is only one part of the effort. Extension into a new research area or other

types  of  geological  media  usually  involves  development  and  implementation  of  new

constitutive  models,  to  build  the  mesh  and  populate  the  model  with  material  properties,

boundary conditions, to run the models, to interpret the results and to publish it in scientific

journals.  FLAC3D  has  the  user  interface  and  flexible  meshing  and  post-processing

capabilities  that  can  be  used  to  construct  models  for  both  FLAC3D and  TOUGH in  an

efficient way. A Linux and MPI version of FLAC3D is planned to be developed in the next

few years (personal communication with Itasca, April, 2016). This could be very beneficial
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for being able to run large scale problems, though there are issues on how to deal with the

sequential coupling of codes on large-scale computer clusters.  

Currently  there  is  a  need  for  effective  model  simulations  of  fracturing  and  fracture

propagation  in  heterogeneous  geological  media.  The  ability  to  model  discrete  fracture

propagation in 2D has been demonstrated for TOUGH-RDCA; the fractures can propagate

through  the  mesh  without  the  need  for  remeshing.  A  3D  version  of  RDCA is  under

development, but this will require substantial effort and 3D fracture propagation through a 3D

heterogeneous rock mass  will  be challenging. Discrete  fracture propagation has also been

demonstrated for TOUGH-ROCMECH, in  3D,  but  limited to  a  pre-defined path,  such as

vertical  fracture  along  the  boundary  of  the  model  domain.  Other  approaches,  such  as

TOUGH-UDEC  and  TOUGH-PyLith,  could  be  useful  additions  for  modeling  complex

hydraulic stimulations and induced seismicity. TOUGH-RBSN has the potential for modeling

complex  fracturing  processes  in  3D  in  heterogeneous  geological  media,  though  more

developments are required before it can be applied for large-scale systems. The dependency

of mesh orientation and size that are typically associated with hydraulic fracturing modeling

will also have to  be investigated when applying these TOUGH-based hydraulic  fracturing

models. 

Finally, TOUGH-based geomechanics models enabling modeling of coupled THMC (through

TOUGHREACT) as  well  as multi-physics joint inversion (trough ITOUGH),  are  areas  of

active research in which significant developments and applications are expected to take place

in the coming years. TOUGH-based geomechanics models such as TOUGH-FLAC, TOUGH-
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ROCMECH, TOUGH-CSM, TOUGH-RDCA, TOUGH-RBSN,  are  fully  compatible  to  be

extended for linking geomechanics to TOUGHREACT and ITOUGH.  These TOUGH-based

geomechanics models are complementary in terms of capabilities and application areas and

the  choice  of  model  for  a  specific  application  will  always  be  up  to  the  user  based  on

experience with different models, their capability and availability.         
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Figure 1. Hydromechanical couplings in geological media; (i) and (ii) are direct couplings 
through pore volume interactions, while (iii) and (iv) are indirect couplings through changes 
in material properties (Rutqvist and Stephansson, 2003).
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