UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Removal of Information from Working Memory

Permalink
https://escholarship.org/uc/item/52n521t3

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 35(35)

ISSN
1069-7977

Authors

Ecker, Ullrich
Lewandowsky, Stephan
Oberauer, Klaus

Publication Date
2013

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/52n521t3
https://escholarship.org
http://www.cdlib.org/

Removal of Information from Working Memory

Ullrich K. H. Ecker (ullrich.ecker @uwa.edu.au)
School of Psychology, University of Western Australia

Stephan Lewandowsky (stephan.lewandowsky @bristol.ac.uk)
Department of Experimental Psychology, University of Bristol
School of Psychology, University of Western Australia

Klaus Oberauer (k.oberauer @psychologie.uzh.ch)
Department of Psychology, University of Zurich

Abstract

Standard working memory (WM) updating tasks confound up-
dating requirements with generic WM functions. We intro-
duce a method for isolating a process unique to WM updat-
ing, namely the removal of no-longer relevant information. In
a modified version of an established updating paradigm, to-
be-updated items were cued before the new memoranda were
presented. Longer cue-stimulus intervals—that is, longer re-
moval time—Iled to faster updating, showing that people can
actively remove information from WM. Well-established ef-
fects of item repetition and similarity on updating RTs were
diminished with longer removal time, arguably because rep-
resentational overlap between out-dated and new information
becomes less influential when out-dated information can be re-
moved prior to new encoding. The benefit of removal time was
found only for partial updating, not for complete updating of
entire memory sets. We conclude that removal of out-dated in-
formation can be experimentally isolated, and that removal is
a unique, active WM updating process.

Keywords: Working memory updating; Executive functions

Imagine you ask a colleague for his phone extension and he
replies: “It’s 3266. No, hang on, in my new office it’s 3257.”
Ideally, one should easily discard the last two digits of the
outdated information (i.e., “66”") and replace them in working
memory (WM) with the correct digits (i.e., “57”). However,
this updating of WM content is no trivial task, and outdated
information often continues to affect WM (Oberauer, 2001).

WM updating has been identified as one of three primary
executive processes (Miyake, Friedman, Emerson, Witzki, &
Howerter, 2000). Updating has been claimed to be the only
executive process to predict fluid intelligence (Friedman et
al., 2006). However, most updating tasks used in previous
research (e.g., Miyake et al., 2000) not only require WM up-
dating but arguably also measure general WM abilities. This
has led some to conclude that updating tasks constitute re-
liable assays of general WM capacity (Schmiedek, Hilde-
brandt, Lovdén, Wilhelm, & Lindenberger, 2009).

This creates an unsatisfactory situation. If WM updating
tasks measure just the same as other WM tasks such as com-
plex span tasks, then why call them updating tasks? Both
conceptually and theoretically, updating can be distinguished
from maintenance and processing in WM. If updating is to be
established as a non-redundant construct, it must be isolated
and measured separately from other WM processes.

In a recent individual-differences study, we identified a
processing component that was independent of general WM

400

capacity and unique to situations that demanded WM updat-
ing (Ecker, Lewandowsky, Oberauer, & Chee, 2010). In that
study we analyzed the processing components involved in
widely used WM updating tasks, and we identified three sepa-
rable components: retrieval, transformation, and substitution.
Ecker et al. found that retrieval and transformation operations
co-varied with general WM capacity, but that the substitution
component did not. We thus argued that substitution is the
only process that uniquely represents WM updating, without
being “contaminated” by any association with WM. One im-
plication of this analysis is that previous studies measuring
WM updating did not separate variance unique to updating
from the variance of generic WM processes.

In this article, we further decompose the components of
WM updating. In Ecker et al. (2010), we suggested that infor-
mation substitution can be further subdivided into the removal
of outdated information and the encoding of new informa-
tion. As encoding is a simple and generic operation involved
in many cognitive tasks, we argue that it is the removal pro-
cess that lies at the heart of memory updating. Accordingly,
we focus on the removal of information from WM. Here we
show that removal of outdated information can be separated
experimentally from encoding of new information.

Our removal measure is based on the work of Kessler and
Meiran (2008). In the updating paradigm they used, items
(e.g., letters or digits) are presented in a set of individual
frames. Items are then repeatedly updated by presenting new
items in some frames. On each updating step, between one
and n items are updated, where n is the memory set size (equal
to the number of frames). Participants had to press a key at
the end of each step to indicate that they finished updating.

Kessler and Meiran (2008) proposed a distinction between
local and global updating. Local updating refers to changes
made to individual items, whereas global updating refers to
the integration of all items in the current memory set after
individual items were changed. A key piece of evidence for
this distinction comes from the observation (Experiment 3 in
Kessler & Meiran, 2008) that updating RT's increased with the
number of to-be-updated items up to n — 1 items, but updating
was much faster again when all n items were to be replaced
on a given step. Thus, updating latencies depended in a non-
monotonic fashion on the number of to-be-updated items.
Kessler and Meiran (2008) explained this non-monotonicity



by assuming that partial updates require a complex sequence
of (1) unbinding of the integrated representation of the pre-
vious memory set, (2) substitution of some but not all items
(i.e., the actual local updating), followed by (3) re-binding
the new set as part of the global updating process. In con-
trast, when the entire set is updated, steps (1) and (2) can be
omitted, the old set is simply discarded and a new memory
set is encoded and globally updated.

Our interpretation of the non-monotonicity of updating la-
tencies is a specific instantiation of the ideas of Kessler and
Meiran (2008), motivated by a computational model of WM,
SOB (Lewandowsky & Farrell, 2008). SOB is a two-layer
neural network in which items (represented in one layer) are
associated to position markers (represented in the other layer)
through Hebbian learning, which rapidly modifies the matrix
of connection weights between the two layers. In the present
updating paradigm, the position marker would represent the
location of the item’s frame on the screen. Forgetting in SOB
is entirely based on interference; there is no time-based decay.
To avoid overloading of the system in the absence of decay,
an interference model requires a mechanism to remove out-
dated information; such a mechanism is implemented in the
most recent version of SOB (see Oberauer, Lewandowsky,
Farrell, Jarrold, & Greaves, 2012). Removal of a specific
item involves retrieving that item by cueing with its posi-
tion marker, and “unlearning” the association between that
item and its position. Unlearning is computationally imple-
mented as Hebbian anti-learning. Thus, in SOB the idea of
“unbinding” (cf. Kessler & Meiran, 2008) refers specifically
to the unbinding of selected items from their position mark-
ers. Both encoding and removal of individual items take time
(cf. Oberauer, 2001). By contrast, wholesale removal of an
entire memory set can be achieved by simply resetting the
entire weight matrix, which we assume to be a very rapid
process. This explains why updating the entire memory set is
faster than partial updating.

In SOB, removal of old information and encoding of new
information are described as two separate processing steps.
It follows that updating should be facilitated if a cue about
what information needs to be removed is given ahead of
the to-be-encoded new information. In standard WM up-
dating tasks—including the one used by Kessler and Meiran
(2008)—removal can only begin when the new item(s) are
presented. For example, when updating the telephone exten-
sion from from 3266 to 3257, one can only begin removing
the “66” when given the “57”. Hence updating times in such
a task will include both time for removal and time for en-
coding. In our new updating task we present cues indicating
which items are to be updated before presenting the new to-
be-encoded stimuli. People can use the cue only to selectively
remove old items from the memory set, not to encode new in-
formation. By varying the cue-stimulus interval, we vary the
available time for removal. If longer available removal time
leads to faster updating RTs, people must have used the cue-
stimulus interval for removal or unbinding. We tested this

401

idea in a series of four experiments.

Experiment 1

In Ecker et al. (2010), we found that repeating (i.e., main-
taining) an item during an updating task carries a benefit of
nearly 400 ms. Experiment 1 tested the idea that this bene-
fit should diminish when people are given the opportunity to
remove outdated information before encoding the (identical)
updated item.

Method

Experiment 1 used a letter updating task in which each trial
consisted of an encoding stage, an updating stage with mul-
tiple updating steps, and a final recall stage. Participants
encoded 3 letters, presented simultaneously in individual
frames. This was succeeded by an unpredictable number of
updating steps; each updating step involved only a single, ran-
domly selected letter. In most cases, the outdated letter was
replaced with a new letter, but sometimes the letter repeated.
Each update was cued before the new letter was presented
(the respective frame turned red and bold). Presentation time
of this cue—henceforth referred to as removal time—was ei-
ther 200 ms or 1500 ms. The longer cue should be suffi-
cient time for removal, whereas the shorter cue should be just
enough time to focus attention on the to-be-updated frames
without permitting removal. After each updating step, the
frames were blanked for 500 ms or 1800 ms in the long and
short removal-cue condition, respectively, ensuring equal re-
tention intervals in both conditions. The experiment had a
2 (repetition no/yes) x 2 (removal time: short/long) within-
subjects design.

Participants We tested 15 participants, mainly students
from the University of Western Australia (UWA).

Apparatus & Procedure The experiment was controlled
by a MatLab program. There were 32 trials, each featuring
on average 9 updating steps (the number of updating steps
ranged from 1 to 21). The probability of item repetition dur-
ing updating was set at p = 0.15. We chose this low rate of
repetition to ensure that removal of outdated information was
still an attractive strategy. At each updating step, participants
were required to press a key when they had finished updat-
ing (max. response time was 5 s). This updating RT was
the dependent variable of main interest. At the end of each
trial, participants were prompted to recall all three letters in
random order.

Results

Updating response time data are shown in Figure 1.

A 2 x 2 repeated measures ANOVA on updating RTs with
the factors repetition (no/yes) and removal time (short/long)
yielded a main effect of repetition, F(1,14) = 15.23, MSE =
0.03, p < .01, 1’]12J = 0.52, a main effect of removal time,
F(1,14) =9.78, MSE = 0.01, p < .01, n;, = 0.41, and cru-
cially, a significant interaction, F (1, 14) = 8.22, MSE = 0.01,
p=.01, T]f, =0.37. The interaction indicates that the effect of



repetition on updating RTs is larger with short removal (265
ms) than long removal time (86 ms).

1.2 Repetition
[*] No

& Yes

Updating RT (in seconds)
© o © o o°o kr p»
[9)] o ~ [oe] © o =

1
IS

o
w

Short (200 ms) Long (1500 ms)
Removal-cue Time

Figure 1: Updating response times from Experiment 1. Ver-
tical bars denote within-subject standard errors of the mean.

Discussion

Experiment 1 demonstrated that the benefit of item repeti-
tion during memory updating (Ecker et al., 2010) is strongly
reduced if participants are given sufficient time to remove
outdated information prior to the encoding of the updated
information. In a sense, if there is no time for removal, a
condition with repeating items does not require true mem-
ory updating—the established item representation in WM
can be maintained, no information needs to be removed and
substituted—hence the time advantage of repetition. In con-
trast, to the degree that an item is removed from WM, the time
taken to encode a new item into that position will no longer
depend on the identity of the removed item. This result pat-
tern supports our notion that active removal of information is
integral to WM updating under normal conditions (i.e., when
there is no opportunity to “outsource” the removal process.

Experiment 2

Experiment 2 had a similar rationale. Previous research
(Lendinez, Pelegrina, & Lechuga, 2011) had shown that up-
dating numbers is quicker when the new to-be-remembered
number is similar to the outdated number. Experiment 2
tested whether this benefit would diminish if participants
were given sufficient time to remove the outdated number be-
fore encoding the new number.

Method

The task in Experiment 2 was very similar to Experiment
1, but it used two-digit numbers. During updating, about
half the updates used similar and dissimilar numbers, re-
spectively. This was achieved by manipulating both the
proximity of numbers (proximal/distant) and the repetition

402

of one of the digits (yes/no). This resulted in four updat-
ing conditions, which had different probabilities of occur-
rence: proximal/repeating (e.g., updating from 18 to 19;
p = .15), proximal/non-repeating (e.g., updating from 20 to
18; p = .15), distant/repeating (e.g., updating from 59 to 19;
p = .15), and distant/non-repeating (e.g., updating from 18 to
59; p = .50). Proximal updates ranged from —3 to +3 (ex-
cluding zero); distant/repeating updates were constrained to
multiples of 10, and distant/non-repeating updates used prime
numbers from 13 to 83. Filler updates with intermediate prox-
imity (£4 — 8) were used with p = .05. Positive and negative
updates were randomly intermixed (this was not considered
an experimental factor). Removal time was again an addi-
tional factor (short/long).

Participants We tested 27 UWA students.

Apparatus & Procedure The apparatus and procedure was
identical to Experiment 1, with the exception that the experi-
ments had 36 trials.

Results
Updating response time data are shown in Figure 2.

17 Similarity

[e] Low
81 High

Updating RT (in seconds)
L o R o e ol
o = N w » o (o2}

o
©

o
o

Short (200 ms) Long (1500 ms)
Removal Time

Figure 2: Updating response times from Experiment 2. Ver-
tical bars denote within-subject standard errors of the mean.

For the sake of simplicity, we collapsed the three ‘simi-
lar’ conditions into one, and ran a 2 x 2 repeated measures
ANOVA with the factors similarity (low/high) and removal
time (short/long). We found reliable main effects of simi-
larity, F(1,26) = 11.38, MSE = .01, p < .01, 1]12, =0.30, and
removal time, F(1,26) = 101.43, MSE = .02, p < .001, nf, =
0.80. Most importantly, these main effects were qualified by
a significant interaction: the similarity effect was larger with
short removal time (116 ms) than long removal time (38 ms),
F(1,26) = 6.04, MSE = .01, p = .02, = 0.19.

Discussion

Experiment 2 demonstrated that a well-documented similar-
ity effect in memory updating is diminished when participants



are given time to remove a to-be-updated item from memory
before encoding the new item. This supports our notion of
removal: We assume that the similarity effect in memory up-
dating arises because of representational overlap between the
replaced and the new item. That is, two similar numbers share
a digit and/or a region in number space, and to the degree that
only new features are substituted, not entire item representa-
tions, this similarity will facilitate updating. Yet, the more
an item representation is removed before the updated number
can be encoded, the less facilitation there will be.

Having established some support for our notion of removal,
we now turn to a test of our prediction that an active removal
process is only utilized during partial updates, not global up-
dates (which unlike partial updates can be achieved more ef-
ficiently by ‘wiping’ memory, or in SOB terms, by resetting
the weight matrix).

Experiment 3

Based on the distinction between slow selective removal and
fast resetting of the weight matrix, we predicted that longer
removal times should lead to a substantial time gain in partial
updating, but little gain on updating steps replacing the entire
memory set.

In Experiment 3, the letter updating task was modified such
that each updating step could update the memory set either
partially or entirely (i.e., 1-, 2-, or 3-frame update).

Methods

Participants Sixty-nine UWA undergraduates participated.

Apparatus and Procedure Apparatus and procedure were
identical to previous experiments except that on each step,
new letter(s) were presented in 1, 2, or 3 frames, and that
there were 28 trials in total.

Results

Updating response time data are shown in Figure 3.

A two-way repeated measures ANOVA on updating re-
sponse times yielded a significant main effect of the num-
ber of updated frames, F(2,136) = 64.30, MSE = 0.03, p <
.001, nf, = 0.49, a significant main effect of removal time,
F(1,68) =281.68, MSE = 0.02, p < .001,m7 = 0.81, as well
as a significant interaction, F(2,136) = 109.55, MSE = 0.01,
p <.001, T]f, = 0.62. Planned contrasts showed that on aver-
age it took significantly longer to update two frames com-
pared to one (1.44 seconds vs. 1.26 seconds; F(1,68) =
146.29, MSE = 0.02, p < .001) and that with 1 or 2 frames,
updating took significantly longer with short as compared to
long removal time (1.53 vs. 1.17 seconds; F(1,68) = 320.14,
MSE = 0.03, p < .001. However, updating three frames was
relatively quick (1.23 seconds), and removal time had a negli-
gible impact on updating time when all three frames were up-
dated. While the removal time effect was statistically signif-
icant (arguably due to the large sample size and power; 1.26
vs. 1.20 seconds; F(1,68) = 13.59, MSE = 0.01, p < .001),

403

it was much smaller with three frames than with one or two
frames (53 vs. 362 ms).

Removal Time
[®] Short (200 ms)
B Long (1500 ms)

1.7

16

15

14

13

1.2

1.1

Updating RT (in seconds)

1.0

0.9

0.8

2
Number of Updated Frames

Figure 3: Updating response times from Experiment 3. Ver-
tical bars denote within-subject standard errors of the mean.

Discussion

The results of Experiment 3 support our hypothesis that par-
tial updating of a memory set involves a process of active
removal. “Bringing forward” this removal process by cue-
ing the to-be-updated frames prior to presentation of the new
items sped up partial updating substantially. This time saving
of roughly 300-400 ms can be interpreted as the time that is
required to remove information from WM.

In contrast, the opportunity to remove items from memory
before presentation of new memoranda brought no substan-
tial advantage when the entire memory set was updated. This
finding supports our notion that memory can be cleared al-
most instantly, and that updating of an entire memory set does
not require the time-consuming selective removal process.

The speed-up induced by the long removal cue did not in-
crease with the number of to-be-updated items. This unex-
pected observation seems to imply that removing one item
from WM takes as long as removing two items. There are
two possible explanations. One is that removal of multiple
items can occur in parallel. While this is a theoretical pos-
sibility, it is at odds with SOB’s notion that items must be
retrieved individually to be removed by anti-learning.’

The second explanation is that people use the removal time
only to remove one item, even when two items are about to
be updated. This might be an efficient strategy because item-
specific removal is likely to require the focus of attention, and
switching the focus of attention to a new item takes time (cf.
Garavan, 1998). Thus, the most efficient use of removal time

IThis explanation may still warrant further investigation, as un-
like our position presented here, people might not use the cue time
for a slow removal process, but only to find the to-be-removed items.
However, this explanation cannot easily account for the reduction of
the repetition/ similarity effects observed in Experiments 1 and 2.



might be to focus on the first to-be-removed item and remove
it, then wait. As soon as the new item(s) are presented, one
of them can immediately be encoded in the currently focused
frame. Only then would the focus move on to the second to-
be-updated item (if there is one).

This interpretation is in line with a recent proposal by
Kessler and Oberauer (2013), namely that partial updating
also involves task-switching, which participants may like-
wise try to avoid. This notion assumes that, without sub-
stantial pre-cued removal time, participants scan the items
from the beginning of the list to the end, starting in a main-
tenance mode (M). Hence, if the first item on the list is not
updated, people might refresh that representation, then move
to the next item. As soon as they encounter an item that re-
quires updating, they switch to updating mode and actively
remove that item from WM (U). Updating frames 1 and 3
would hence require 3 switches, (M)UMU; updating frames
1 and 2 two switches, (M)UUM; updating frames 2 and 3 one
switch, (M)MUU. In the case of 1-frame updates, updating
frame 1, (M)UMM, and updating frame 2, (M)MUM, both
require two switches, but updating frame 3 only requires one
switch, (M)MMU. A strategy of scanning the list up to the
first to-be-updated item, switching to updating mode, remov-
ing the item, and waiting would hence minimize both focus-
switch and task-switch costs.

We applied multi-level regression analysis to the data of
Experiment 3 to confirm the importance of task switching as
specified above. We coded processes required at each updat-
ing step with the following parameters: The number of items
to encode (E; 1-3), the number of items to remove (R; 0-2),
and the number of task switches (SW; 0-3). Additional pa-
rameters were introduced in the modeling, including a wipe
(W) parameter (coding the discarding of an entire memory
set), and a refresh (RF) parameter (coding the number of
non-updated, to-be-refreshed items). Importantly, coding dif-
fered for short and long removal time conditions. For exam-
ple, with long removal time a two-frame update of frames
2 and 3 would involve no refreshing or switching: Partic-
ipants could use the removal time to refresh the first item,
switch to updating mode for frames 2 and 3, remove the let-
ter in frame 2, then wait to encode the new letter in frame
2, and remove the old and encode the new letter in frame 3
(RF =SW =W =0;R = 1,E = 2). In contrast, if removal
time is short, participants would have to refresh the first item,
switch once, remove two items and encode the two replace-
ment items (W =0;RF =SW =1;,R=E =2).

A model including both removal and task switch param-
eters achieved the best fit; U pdatingRT = 704 4 156 x E +
87 * R+ 393 « SW — 95E « SW, with a coefficient of deter-
mination COD = 0.437 and a Bayes Information Criterion
BIC =23403. (BIC of the best-fitting model without removal
parameter was 23475; according to Raftery (1996) this pro-
vides very strong evidence in favor of the removal model).

Experiment 4

Experiment 3 suggested that people only remove one item
even with long removal time. We argued this is in fact ef-
ficient behavior as it minimizes focus and task switch costs.
Yet, an alternative hypothesis is that people would have re-
moved more information had they had more time. Experi-
ment 4 tested the idea that with sufficient removal time, peo-
ple might remove more than one item, and thus show shorter
updating RTs in conditions that would benefit from the re-
moval of more than one item.

Methods

Participants We tested 34 UWA undergraduates.

Apparatus and Procedure Apparatus and procedure were
identical to Experiment 3 except for the addition of a third,
very-long removal time condition (i.e., removal time condi-
tions of 200, 1500, and 3000 ms), and the omission of the full
update condition (i.e., either 1 or 2 frames were updated with
each updating step). There were 15 trials in total.

Results

Updating response time data are shown in Figure 4.

Removal Time
17 [®] Short (200 ms)
8 Long (1500 ms)
1.6 Bl Very long (3000 ms)
Q15
c
3
Q 14
2]
£ 13
'_
24
o 1.2
£
811
[=%
=]
1.0
0.9
0.8

1 2
Number of Updated Frames

Figure 4: Updating response times from Experiment 4. Ver-
tical bars denote within-subject standard errors of the mean.

A 2 x 3 repeated measures ANOVA on updating RTs with
the factors number of updated frames (1 vs. 2) and re-
moval time (short/long/very long) yielded a main effect of
frame number, F(1,33) = 71.66, MSE = 0.03, p < .001,
nl% = 0.68, a main effect of removal time, F(2,66) = 167.88,
MSE = 0.02, p < .001, T'|127 = 0.84, but no significant inter-
action, F(2,66) = 2.06, MSE = 0.02, p > .10, 13 = 0.06.
Results showed that it took longer to update two frames than
one, and that more removal time led to faster updating RTs.
However, the effect of removal time was strong when com-
paring the short (200 ms) and long (1500 ms) conditions,
but negligible when comparing long and very-long (3000 ms)
conditions. The lack of interaction means that doubling re-



moval time did not lead to quicker updating, not even in the 2-
frame updates where performance could have benefitted from
the removal of both to-be-updated items.

Applying the regression models (as specified in Exp.
3), we found that a simple model provided the best fit:
UpdatingRT = 901 + 131 * R + 255 x« SW, with COD =
0.38,BIC = 6865. (Note that the more complex model spec-
ified in Exp. 3 did explain more variance than this simple
model when fit to the data of Exp. 4, but had a higher overall
BIC. The BIC for the best removal-free model was 6880; this
is strong evidence in favor of the simple removal model.)

Discussion

Experiment 4 showed that in the present task people only re-
moved one item in anticipation of an update, even when this
update concerned more than one item. This supports our no-
tion that people avoid focus and task switching when remov-
ing information from WM during updating.

General Discussion

In this article we have introduced a novel measure of WM
updating. Traditional WM updating tasks arguably measure
general WM processes in addition to updating, whereas it
is the removal of information from WM that is specific and
unique to WM updating. We demonstrated that giving peo-
ple preparation time to remove information from WM speeds
up updating when new information is subsequently presented,
but only when a subset of the memory set is updated. Updat-
ing an entire memory set does not benefit (much) from prepa-
ration time, arguably because—in line with the predictions
derived from SOB (Lewandowsky & Farrell, 2008; Oberauer
et al., 2012)—the time-consuming removal process only ap-
plies to individual items, whereas an entire memory set can
be removed by instant resetting of the weight matrix. Our
notion of removal by unlearning item-position associations is
a specific incarnation of the more general idea advanced by
Kessler and Meiran (2008), who suggested that partial updat-
ing of memory sets involves “dismantling” or “unbinding”
the old representations.

Whereas our research is guided by and supports the SOB
model, it is important to note that other researchers have pro-
vided independent evidence for the existence of an active and
attention-demanding removal process. For example, Fawcett
and Taylor (2012) have shown that directed forgetting of an
item (1) slows down responses on an unrelated secondary task
for up to 2.6 seconds, and (2) impairs incidental memory for
a subsequent distractor, in particular when the directed for-
getting of the studied item is successful.

We assume removal to be crucial to maintaining a func-
tional WM system that can efficiently focus on relevant in-
formation. Further research is needed to ascertain whether
removal abilities co-vary with WM capacity, whether they
predict intelligence-related variance, or whether they relate
to other executive functions.

405

Acknowledgments

This research was supported by Australian Research Council
Discovery Grants and Research Fellowships to UE and SL.

References

Ecker, U. K. H., Lewandowsky, S., Oberauer, K., & Chee,
A. E. H. (2010). The components of working memory up-
dating: An experimental decomposition and individual dif-
ferences. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 36, 170-189.

Fawcett, J. M., & Taylor, T. L. (2012). The control of working
memory resources in intentional forgetting: Evidence from
incidental probe word recognition. Acta Psychologica, 139,
84-90.

Friedman, N. P,, Miyake, A., Corley, R. P., Young, S. E., De-
Fries, J. C., & Hewitt, J. K. (2006). Not all executive func-
tions are related to intelligence. Psychological Science, 17,
172-179.

Garavan, H. (1998). Serial attention within working memory.
Memory & Cognition, 26, 263-276.

Kessler, Y., & Meiran, N. (2008). Two dissociable updating
processes in working memory. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 34, 1339—
1348.

Kessler, Y., & Oberauer, K. (2013). Working memory updat-
ing latency reflects the cost of switching between mainte-
nance and updating modes of operation.

Lendinez, C., Pelegrina, S., & Lechuga, T. (2011). The dis-
tance effect in numerical memory-updating tasks. Memory
and Cognition, 39(4), 675-685.

Lewandowsky, S., & Farrell, S. (2008). Short-term memory:
New data and a model. In B. H. Ross (Ed.), The psychology
of learning and motivation (Vol. 49, pp. 1-48). London,
UK: Elsevier.

Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H.,
& Howerter, T. D., A.and Wager. (2000). The unity and
diversity of executive functions and their contributions to
complex “frontal lobe” tasks: A latent variable analysis.
Cognitive Psychology, 41, 49-100.

Oberauer, K. (2001). Removing irrelevant information from
working memory: A cognitive aging study with the modi-
fied Sternberg task. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 27, 948-957.

Oberauer, K., Lewandowsky, S., Farrell, S., Jarrold, C., &
Greaves, M. (2012). Modeling working memory: An in-
terference model of complex span. Psychonomic Bulletin
& Review.

Raftery, A. E. (1996). Approximate bayes factors and ac-
counting for model uncertainty in generalised linear mod-
els. Biometrica, 83(2), 251-266.

Schmiedek, F., Hildebrandt, A., Lovdén, M., Wilhelm, O., &
Lindenberger, U. (2009). Complex span versus updating
tasks of working memory: The gap is not that deep. Jour-
nal of Experimental Psychology: Learning, Memory, and
Cognition, 35, 1089-1096.





