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Abstract 

An important goal in the study of higher-order cognition is to 
understand how relational categories are acquired and 
applied. Previous work has explored the potential of within-
category comparison opportunities to promote relational 
category learning and transfer. This follows from predictions 
of structure mapping theory (Gentner, 1983, 2003) that 
alignment leads to highlighting and abstraction of common 
relational structure. However, a straightforward merging of 
traditional classification learning with comparison (i.e., trials 
presenting two same-category items) has not been effective. 
We explore the hypothesis that classification and comparison 
have an unforeseen incompatibility. In a 3x2 between-
subjects design we tested three presentation conditions 
(unconstrained item pairs, category-matched items pairs, 
single items) in two supervised category learning modes: 
classification and observation. The major finding is an 
interaction driven by highly accurate categorization for the 
observational learners with same-category pairs. The 
introduction of the observational mode yielded the predicted, 
but elusive result of an advantage for within-category pairs 
over twice as many single-item trials. We conclude that 
within-category comparison can be an effective means to 
promote relational category learning and discuss the apparent 
impediment of the guess-and-correct cycle. 

Keywords: relational categories; structural alignment; 
comparison; classification learning; transfer; observational 
learning mode 

 
Introduction 

Categorization and comparison are two core mechanisms 
underlying human learning, comprehension, and knowledge 
use. Within the study of categorization, the bulk of the 
research attention has been devoted to object/entity 
categories – categories whose members belong based on 
sharing a set of intrinsic features. Though the learning and 
generalization of entity categories has been studied using 
different tasks, such as through inference of missing 
features (Markman & Ross, 2003) and category construction 
(Ahn & Medin, 1992), the traditional classification learning 
paradigm has remained the most prevalently used (Murphy, 
2003; Ross, Chin-Parker, & Diaz, 2005). In its most 
common form, the traditional classification learning 
paradigm operates as follows: a single stimulus is presented, 
the participant is asked to classify the item into one of two 
category options, a response is selected, and corrective 
feedback is given. The traditional, classification learning 
paradigm has yielded substantial knowledge and has offered 
a testing ground for formal models of categorization (e.g., 

ALCOVE, Kruschke, 1992; DIVA, Kurtz, 2007; SUSTAIN, 
Love, Medin, & Gureckis, 2004).   

However, not all categories lend themselves well to 
traditional accounts of category learning.  Though a sizable 
amount of knowledge can be captured through a feature-
based understanding of the world, features alone do not 
seem to capture the richness of what we know – the ways in 
which objects and attributes relate to one another reflect a 
critical facet of the concepts we hold.  In the categorization 
literature, an increasing emphasis has been placed on 
relational categories (Gentner & Kurtz, 2005; Markman & 
Stilwell, 2001) that are based on a common (perhaps rule-
like) relational structure as opposed to a set of intrinsic 
features (see Corral & Jones, 2014; Goldwater, Markman, & 
Stilwell, 2011; Higgins & Ross, 2011; Kurtz, Boukrina, & 
Gentner, 2013; Patterson & Kurtz, 2014; Smith & Gentner, 
2014; Weitnauer, Carvalho, Goldstone, & Ritter, 2014). As 
an example, take the relational noun bridge – something that 
connects two other things. A member of the category bridge 
might occupy the form of a concrete structure connecting 
two landmasses. Alternatively, a bridge might take the form 
of an ambassador connecting the geopolitical ideas of two 
countries. In terms of features, these two members of the 
category bridge are greatly disparate; a bridge does not have 
much in common with a diplomat. Nonetheless, both 
bridges are category members insofar as they relate to two 
other things in the same way. This qualitative difference 
between entity and relational categories translates to 
differences on the quantitative level as well, with relational 
categories exhibiting slower acquisition in children 
(Gentner, 2005). These differences expose an empirical 
need for the study of relational categories in order to further 
the understanding of human categorization.   

A pressing topic in the study of relational categories is 
how they are learned. Prior investigation has demonstrated 
benefits to the acquisition and transfer of relational 
categories through comparison (Kurtz, Boukrina, & 
Gentner, 2013; Patterson & Kurtz, 2014). The observed 
comparison benefits can be understood through the process 
of structural alignment (Gentner, 1983, 2003, 2010; Gentner 
& Markman, 1997). According to the structural alignment 
view, deep, relational similarity that exists between two 
cases is rendered salient by aligning their relational 
predicates during comparison, allowing for shared relational 
structure to be abstracted into a portable knowledge 
structure. It is predicted from this view that comparison 
advantages should be great when same-category items are 
compared, relative to single item learning and comparison 
using contrasting categories whose relational structures are 
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not alignable. Although same-category comparison during 
classification learning has been shown to confer benefits on 
near and far transfer of category knowledge (relative to 
twice as many trials of single item learning), the comparison 
advantage has only been found with the inclusion of some 
different-category pairs (Kurtz, Boukrina, & Gentner, 
2013). A fifty-fifty mix of same and different-category pairs 
led to comparison outperforming single item learning. One 
important characteristic of this format is that the learner 
cannot assume both items belong to the same category and 
is therefore encouraged to consider each of the items and 
their category assignment relative to one another. While a 
comparison advantage was found, it was not clear what 
specific aspect(s) of this methodology provided the causal 
power. To date, we know of no successful demonstration of 
a pure, same-category comparison advantage over single 
item learning – one successful attempt required twice as 
many stimulus exposures as the single item control (Kurtz 
& Gentner, 1998). In preliminary work to the current study, 
we attempted to boost the invitation to compare during 
same-category comparison trials. However, neither the use 
of similarity ratings nor the drawing of correspondence lines 
between compared items yielded differences between pure, 
same-category comparison and single item learning. In these 
cases it seemed clear that the comparison engine was 
effectively engaged but, perplexingly, no advantage 
accrued.  

An alternate account of these observed shortcomings is 
that the task acted in opposition to the benefits of same-
category comparison. Drawing on the machine learning and 
attribute-based categorization literatures, a continuum can 
be found between two different learning modes: 
discriminative and generative learning (Levering & Kurtz, 
2015; Ng & Jordan, 2001). Discriminative learning is 
characterized by learning the probability of a category given 
a set of features; the focus is on learning a minimalist way 
to predict a category given aspects of the stimulus. By 
contrast, a generative mode emphasizes learning the 
probability of a set of features given a category; in other 
words, the focus is on learning what stimulus aspects are 
common to a given category, resulting in a more positively 
defined, holistic representation. Consistent with this 
generative/discriminative distinction, previous work has 
shown the discriminative guess-and-correct cycle of 
classification to result in reduced holistic category 
knowledge compared to a more generative learning mode 
(Levering & Kurtz, 2015). Accordingly, the less holistic 
category representation encouraged by classification might 
be at odds with making productive comparisons. From a 
more general standpoint, a conflict may exist between 
performing classification and getting the most out of 
comparison – such that successfully coordinating and 
integrating the two components is not possible.    

An alternative to the traditional classification-learning 
paradigm is supervised observational learning. On each trial, 
items are simply presented with their correct category 
labels. While the two modes generally lead to similar 

performance outcomes (Estes, 1994; see also, Ashby, 
Maddox, & Bohil, 2002; Edmunds, Milton, & Wills, 2014), 
observational learning has been shown to result in richer 
category knowledge (Levering & Kurtz, 2015). Using 
unidimensional rule plus family resemblance categories, 
Levering and Kurtz (2015) found observational learners 
showed enriched knowledge of internal category structure 
(relative to classification learners), demonstrating enhanced 
ability to infer values on the partially diagnostic features 
when provided only the category. Further, typicality ratings 
revealed greater sensitivity to changes on partially 
diagnostic features for observational learners compared to 
classification learners. Applied to relational categories, the 
more holistic consideration encouraged by observational 
learning could provide benefits to comparison and relational 
discovery. 

Observational learning presents a viable task alternative 
to circumvent potential impediments associated with pure, 
same-category comparison learning under classification. 
The task allows the learner to jointly consider the co-
presented examples as members of a category without the 
distractions of the guess-and-correct cycle. It is expected 
that, through unhindered structural alignment, the greatest 
benefit at test and far transfer will be conferred to same-
category comparison in the observational mode, relative to 
mixed comparison (having half as many same-category 
comparison opportunities) or single item learning.  

Method  
The purpose of the experiment was to assess the impact of 
learning mode on the effectiveness of different kinds of 
comparison opportunities. To accomplish this, learning 
mode and presentation condition were varied orthogonally. 
 
Participants 
184 undergraduates from Binghamton University 
participated for partial course credit.   

 
Materials 
The training and testing phase stimuli consisted of 36 
unique, Stonehenge-like arrangements of rocks – examples 
can be seen in Figure 1. Rocks varied in their size, shape, 
and color. As in our previous studies, the stimuli comprised 
three relational categories (category labels in brackets): 
monotonicity [Besod] – defined by a monotonic decrease in 
height of the arrangement from left to right, support [Makif] 
– characterized by the presence of a rock being supported by 
two other rocks, forming a sort of bridge, and symmetry 
[Tolar] – captured by the presence of two same color rocks 
of similar size and shape, one stacked atop the other. Each 
arrangement belonged to only one of the three categories.  
Of the 36 stimuli, a subset of 24 was utilized as the training 
set (eight per category) and 12 were reserved for use at test 
(four per category). The subsets matched those used in 
Kurtz, Boukrina, and Gentner (2013) and subsets were held 
constant across participants. For comparison conditions, 
training stimuli were presented in pairs. Pairs were 
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randomly generated for each participant according to the 
condition – all same-category pairs (Same_ conditions) or a 
fifty-fifty blend of same- and different-category pairs (Mix_ 
conditions). 

To assess far transfer of category knowledge, a set of 15 
mobile-like stimuli (colorful, geometric objects connected 
with vertical lines, as if hanging down from a platform; see 
Figure 1) was used. Each mobile conformed to one of the 
three relational categories from training, five mobiles per 
category. Compared to the training and testing stimuli, the 
mobiles were dissimilar in their surface characteristics (in 
color and shape of objects) and the orientation of the 
category-defining core in each item was reflected over the 
X-axis. 

Procedure 
In a between-subjects design, participants were randomly 
assigned to one of six conditions. Four conditions employed 
comparison learning: same-category classification 
(SameClass, n = 30), mixed-category classification 
(MixClass, n = 31), same-category observational (SameObs, 
n = 31), and mixed-category observational (MixObs, n = 
32). Two conditions served as single item controls: single 
item classification (SingClass, n = 31) and single item 
observational (SingObs, n = 29). All participants received 
an archeological cover story and were given the following 
instructions: “Your overall goal is to figure out what makes 
a given rock arrangement belong to one of the three types: 
Besods, Makifs, or Tolars. You will be tested on your 
knowledge of each type later.” The following instructions 
were given to comparison conditions (and were stripped of 
dual-item and comparison language in the single item 
conditions): “On each learning trial, you will see two rock 
arrangements. [Obs: You will be shown the correct type for 
each arrangement to help you learn, Class: Try to figure out 
the correct type for each arrangement. Use the mouse to 
select your response. A box will appear around the 
arrangement that you should respond to.  You will be given 
feedback at the end of each trial to help you learn]. At first 
you will not understand what makes them belong to a type, 
but before long you should become quite good at 
recognizing the different types. Remember that there are 
three different styles for arranging the rocks into 
configurations. Looking at the two arrangements together 
can help you learn these types. Try your best to gain 
mastery of the names of each type and what makes an 
arrangement belong to those types. Learn as much as you 
can before the test!”  

Comparison Conditions – Training  
Training consisted of two cycles of 12 paired stimulus trials, 
totaling 48 stimulus exposures. At the beginning of each 
trial, two laterally offset stimuli were presented and 
remained visible until the trial was complete. In the 
classification conditions, a box appeared that randomly 
queried one of the arrangements. Participants were asked for 
the category of the queried item. They selected a response 

using the mouse and were then queried about the other item. 
Following both responses, participants were shown 
simultaneous feedback for each item indicating: (1) whether 
or not their response was correct, (2) the correct category of 
the item (in green), and (3) if incorrect, the category they 
responded with (in red). In the observational conditions, the 
correct category labels were provided with the presented 
items and remained on screen for the duration of the trial.  
When the participant finished studying an item pair they 
continued to the next trial with a mouse click.  Participants 
in both classification and observational conditions had as 
much time to engage each trial as they wished.  

 
Single Item Conditions – Training  
Training consisted of two cycles of 24 randomized, single 
item trials, totaling 48 stimulus exposures. A single stimulus 
was presented at the start of each trial and remained visible 
until the trial was complete. Classification and observational 
conditions closely followed their comparison counterparts.  
In the classification condition, participants were asked for 
the category of the item. Following their response, they 
were presented feedback identical in nature to the 
comparison classification conditions. In the observational 
condition, participants were presented with a single labeled 
item. As in the comparison conditions, single item 
conditions were permitted as much time as desired on each 
trial.  
 

 
 
Figure 1: Sample stimuli for each category in 
each phase. 

 
Assessment 
Following training, all conditions performed an identical 
assessment sequence. The sequence consisted of, first, a 
within-domain test and, second, a far transfer assessment.  
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The within-domain test randomly presented the 24 “old” 
rock arrangements from training and 12 new arrangements.  
 After the within-domain test, the 15 mobile stimuli were 
presented in random order for the far transfer phase. Both 
the test and transfer trials employed an endorsement format: 
on each trial a single item was presented, the participant was 
asked if the item belonged to a given category, and 
participants gave a yes/no response. This measure of 
categorization performance is similar to, but distinct from 
both the classification and observational learning tasks. The 
endorsement task minimizes any transfer appropriate 
processing advantages (Morris, Bransford, & Franks, 1977) 
that might result from a perfect task match between training 
and testing phases. As the primary interest was in how well 
knowledge could be extended from the learning phase, old 
test items were each presented once, while the new test and 
far transfer items were each presented twice – once each 
with accurate and inaccurate category labels. 

Results 
Given the absence of training accuracy data for 
observational conditions, the analyses for training data are 
omitted here. While our predictions primarily concern the 
extension of knowledge to new examples, we begin by 
considering performance on old test items.  
 
Test – Old Items 
In the absence of complete training data, old test data can 
give an estimation of late learning phase performance. The 
data were subjected to a two-way analysis of variance with 
two levels of task (classification and observational learning) 
and three levels of presentation format (same-category pairs, 
mixed-category pairs, and single item). The ANOVA 
revealed a significant effect of task, F(1, 178) = 7.71, p = 
.006, showing that observation learners (M = 0.84, SD = 
0.15) were more accurate in their endorsement decisions 
than were classification learners (M = 0.77, SD = 0.17).  No 
main effect was found for presentation format, F(2, 178) = 
0.72, p = .49, indicating that, collapsed across task, type of 
comparison did not have an effect. Consistent with our 
predictions however, a significant interaction showed that 
task differentially impacted the effectiveness of the type of 
comparison opportunity, F(2, 178) = 3.77, p = .025. The 
interaction was marked by a significant difference between 
observational (M = 0.88, SD = 0.13) and classification (M = 
0.74 SD = 0.19) learning modes for same-category pairs 
[t(59.36) = -3.42, p = .001, corrected for unequal variances], 
but only a marginal difference between observational (M = 
0.85, SD = 0.13) and classification (M = 0.79, SD = 0.14) 
learning modes for mixed-category pairs, t(61) = -1.91, p = 
.06. Task did not did not have an effect on single item 
learning (SingClass, M = 0.79, SD = 0.18; SingObs, M = 
0.78, SD = 0.18; p > .1).  
 
Single Item Control As a reminder, one of the primary 
goals of the experiment was to explore whether pure, same-
category comparison could lead to an advantage over single 

item learning. As predicted, same-category comparison in 
the observational mode was found to provide a significant 
benefit over its task-matched, single-item control using a t-
test comparison – the only comparison condition to do so,  
t(53.10) = 2.45, p = .02, corrected for unequal variances.  
 
Test – New Items  
Looking at the data for never-before-seen, within-domain 
items (see Figure 1, Figure 2), a 3x2 ANOVA denoted only 
a significant interaction, F(2, 178) = 4.85, p = .009. Follow 
up analyses indicated that a same-category observational 
performance advantage over its classification counterpart 
drove the interaction: while task led to significant 
differences in endorsement accuracy for same-category 
comparison conditions (SameClass, M = 0.69, SD = 0.17; 
SameObs, M = 0.83, SD = 0.13; t(53.90) = -3.70, p = .001, 
corrected for unequal variances), task did not lead to reliable 
differences between mixed-category comparison conditions 
or single item conditions.  These results emphasize the 
power of pure same-category comparison, but only under 
the appropriate task circumstances. 
 
Single Item Control As seen with the old-item test data, 
same-category learning in the observational mode was 
found to produce the predicted advantage over its task-
matched, single-item control on new test items [t(48.09) = 
3.22, p = .002, corrected for unequal variances]. By 
contrast, no other comparison condition was able to show an 
advantage over single item learning.  
 

 
 
Figure 2: New item test and far transfer 
endorsement accuracy by condition.  Error bars 
show +/- 1 SE.  

 
Far Transfer  
Of critical interest was the impact different learning 
conditions had on the ability to transfer category 
knowledge. To assess this, the far transfer accuracy data 
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were subjected to a 3x2 ANOVA that indicated a main 
effect of task: learners in observational learners (M = 0.77, 
SD = 0.17) showed enhanced transfer relative to 
classification learners (M = 0.68, SD = 0.19), F(1, 178) = 
4.22, p = .04. Consistent with both old and new test items, 
no main effect of presentation format was found on far 
transfer items. However, a marginally significant interaction 
between task and presentation format was found, F(2, 178) 
= 2.93, p = .056. Consistent with our predictions, the 
interaction showed that levels of task resulted in larger 
disparities between same-category comparison conditions 
(SameClass: M = 0.67, SD = 0.20; SameObs: M = 0.81, SD 
= 0.16; t(59) = -3.20, p = .002) than between mixed pair 
comparison conditions (MixClass: M = 0.70, SD = 0.18; 
MixObs: M = 0.72, SD = 0.17; t(61) = -0.56, p = .58). No 
differences were seen between single item learning 
conditions (SingClass: M = 0.70, SD = 0.20; SingObs: M = 
0.70, SD = 0.19; t(58) = -0.09, p = .93). 
 
Single Item Control Comparing same-category comparison 
in the observational mode against its single item, task-
controlled counterpart yielded the predicted advantage for 
comparison at far transfer, t(58) = 2.43, p = .02. No other 
comparison condition exhibited reliable differences over 
single item learning.  
 

Discussion 
The empirical goal of the present study was to further the 
understanding of how relational categories are best learned. 
The specific questions being asked were: (1) how does 
learning mode affect the acquisition of relational categories? 
and (2) how does learning mode influence the effectiveness 
of different types of comparison opportunities? The results 
show clearly that the observational mode has a positive 
influence on learning, increasing endorsement accuracy on 
within-domain members and enhancing far transfer to 
members across domain. While the type of comparison 
opportunity did not exhibit a direct impact on performance, 
exceptional performance in the same-category observational 
group drove an interaction at within-domain test and pushed 
an interaction near significance at far transfer. The 
interaction underscores that the type of learning task plays 
an important role in the effectiveness of certain kinds of 
comparison opportunities (same-category pairs), but not for 
others (mixed-category pairs). Further, same-category 
comparison in the observational mode was the only 
condition to display an advantage over single item learning 
– and did so across all testing phases. 

These results are compelling for a number of reasons. 
First, they represent the first time that observational learning 
has been shown to outperform feedback learning on a test of 
category membership knowledge. Though the effectiveness 
of observation as a learning vehicle has been sparsely 
explored, previous work has shown observational learning 
to be either equivalent or disadvantaged relative to 
classification when category membership is the target of 
assessment (Ashby, Maddox, & Bohil, 2002; Edmunds, 

Milton, & Wills, 2015; Estes, 1994; Levering & Kurtz, 
2015). It should be noted that most research employing 
observational learning has been conducted using feature-
based categories with single item presentation. Taken 
together, this poses the possibility that the type of category 
(feature-based or relational) may interact with task and 
presentation format; this is a topic for further research. 
Second, the findings clearly echo that learning mode can 
substantially impact acquired category knowledge 
(Markman & Ross, 2003). This highlights the need for 
future categorization research to study phenomena using a 
broader palette of learning methods. Third, this study 
demonstrates a pure, same-category comparison advantage 
over single item learning for the first time. This key finding 
fits nicely into the theoretical framework developed in the 
study of analogy (Gentner, 1983; Markman & Gentner, 
1997).  The success of same-category comparison under 
observation, relative to classification, suggests that 
classification is disruptive to fruitful comparison. Future 
work will seek to further specify and elaborate on this 
finding. 

The excellent level of mean performance in the same-
category observational condition is unprecedented in the 
study of relational category learning. Accordingly, 
understanding the basis for this success is paramount. A 
number of causal factors are worth exploring. One 
speculation is that observational learning encourages greater 
engagement than classification (despite being a less active 
task: there is no responding). Unlike classification, 
observational learning with same-category pairs does not 
involve the guess-and-correct cycle. As such, classification 
may promote discriminative goals that interfere with 
making the most of comparison opportunities. Classification 
learners may be more inclined to look for diagnostic 
features and less attuned to relational structure. Also, 
classification learners may be more focused on the 
performance factor of getting correct answers as opposed to 
the more global goal of category mastery.  
 
A Further Speculation  
One speculative factor that may serve to benefit engagement 
in the same-category observational case is symbolic 
juxtaposition (Gentner, 2010). By applying the same label to 
the presented items, it represents an invitation through 
language to compare and abstract commonalities that exist 
between them. Getting this invitation at the beginning of the 
trial (as opposed to the feedback period at the end of 
classification trials) might have emphasized comparison as 
the focus of the task and led to more engaged and effective 
comparisons.  
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