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Transcriptomic abnormalities in peripheral blood in bipolar 
disorder, and discrimination of the major psychoses
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Abstract

We performed a transcriptome-wide meta-analysis and gene co-expression network analysis to 

identify genes and gene networks dysregulated in the peripheral blood of bipolar disorder (BD) 
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cases relative to unaffected comparison subjects, and determined the specificity of the 

transcriptomic signatures of BD and schizophrenia (SZ). Nineteen genes and 4 gene modules were 

significantly differentially expressed in BD cases. Thirteen gene modules were shown to be 

differentially expressed in a combined case-group of BD and SZ subjects called “major 

psychosis”, including genes biologically linked to apoptosis, reactive oxygen, chromatin 

remodeling, and immune signaling. No modules were differentially expressed between BD and SZ 

cases. Machine-learning classifiers trained to separate diagnostic classes based solely on gene 

expression profiles could distinguish BD cases from unaffected comparison subjects with an area 

under the curve (AUC) of 0.724, as well as BD cases from SZ cases with AUC = 0.677 in withheld 

test samples. We introduced a novel and straightforward method called “polytranscript risk 

scoring” that could distinguish BD cases from unaffected subjects (AUC = 0.672) and SZ cases 

(AUC = 0.607) significantly better than expected by chance. Taken together, our results 

highlighted gene expression alterations common to BD and SZ that involve biological processes of 

inflammation, oxidative stress, apoptosis, and chromatin regulation, and highlight disorder-specific 

changes in gene expression that discriminate the major psychoses.

Keywords

Bipolar disorder; biomarker; peripheral blood; schizophrenia; transcriptome

Introduction

Bipolar disorder (BD) is a highly heritable psychiatric disorder (h2 ~ 68%, (Polderman et al., 

2015)) with a lifetime prevalence near 1% (Ferrari et al., 2016). Although there are 

symptomological, neuropsychological, and brain-structural differences between BD and 

schizophrenia (SZ) (Murray et al., 2004); there is strong genetic evidence supporting the 

hypothesis that BD and SZ have shared molecular abnormalities (Bulik-Sullivan et al., 2015; 

Purcell et al., 2009). Dysregulation in immune and neurodevelopment genes have been 

associated with BD and SZ from postmortem brain studies (Chen et al., 2013; Darby et al., 

2016; Hess et al., 2016; Iwamoto et al., 2005; Pacifico and Davis, 2017). Investigating gene 

expression profiles in the blood is a critical next step to uncovering biomarkers and 

molecular processes that may be common and discordant between BD and SZ. We sought to 

identify gene expression alterations associated with BD by meta-analyzing a collection of 

publicly available datasets from peripheral blood studies that assayed transcriptome-wide 

profiles. We then conducted a cross-disorder transcriptomic analysis of BD and SZ to find 

shared and discordant gene expression changes.

Some prior studies compared gene expression profiles between BD and SZ cases, but those 

have used small samples or examined only a few candidate genes (Cattane et al., 2015; 

Drexhage et al., 2010; Shao and Vawter, 2008; Tesli et al., 2016; Tsuang et al., 2005; 

Wirgenes et al., 2014). Although the brain is the most relevant tissue for investigating gene-

expression abnormalities associated with psychopathology, there is evidence that gene-

expression levels in the blood are significantly correlated with those in the brain (Kim et al., 

2014; McKenzie et al., 2014; Tylee et al., 2013). We recently showed that SZ-associated 

networks of co-expressed genes detected in the prefrontal cortex were enriched with 
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neurodevelopmental and immune signaling function, and showed greater than chance over-

representation of SZ-associated networks detected in blood (Hess et al., 2016).

In this study, we obtained all publicly available transcriptome-wide gene expression data 

from peripheral blood for BD cases (n = 95) and unaffected comparison subjects (n = 111), 

and integrated transcriptomic data from 258 SZ cases and an additional 241 unaffected 

comparison subjects from our previous study of SZ (Hess et al., 2016). This study 

characterizes transcriptomic changes in peripheral blood that are shared and dissimilar 

between BD and SZ, which may shed light on biomarkers and pathogenic mechanisms of 

major psychosis.

Methods and Materials

Literature search for transcriptome studies of BD

An electronic literature search was conducted up to April 30, 2018 using the keywords 

“bipolar disorder”, “manic”, “mania”, “microarray”, “gene expression”, “transcriptom*”, 

and “blood” across the databases PubMed, Scopus, and Google Scholar, coupled with a 

query of published gene expression data sets in Gene Expression Omnibus (GEO) and 

ArrayExpress. Studies that met the following inclusion criteria were kept: (1) recruited 

affected cases with a clinical diagnosis of BD based on DSM-IV or DSM-IV-TR criteria, (2) 

recruited unrelated, unaffected comparison subjects, and (3) had available raw 

transcriptome-wide gene expression data (not quantitative PCR) generated from whole blood 

or peripheral blood leukocytes. One potentially useful study was excluded due to relatedness 

between cases and controls (Matigian et al., 2007). A total of seven studies were retained for 

analysis yielding 95 BD cases and 111 unaffected comparison subjects. Table 1 provides an 

overview of the demographics, sample sizes, and numbers of probes collapsed to genes for 

the seven studies included in our analysis (Beech et al., 2010; Bousman et al., 2010; 

Clelland et al., 2013; Padmos et al., 2008; Savitz et al., 2013; Tsuang et al., 2005; Witt et al., 

2014).

Data import and quality control

A full description of our pre-processing, quality control, and normalization steps are 

provided in the Supplementary Methods. Briefly, raw array data from seven studies were 

imported into R (version 3.4.1) for pre-processing using a custom pipeline available on 

Github (https://github.com/hessJ/gxp_bipolar). Log2 and quantile normalized array data was 

obtained per study for between 9,702 and 22,409 genes (mean ~17,689 genes).

Transcriptome-wide meta-analysis

We fit a multivariate linear regression model that specified expression of each gene as a 

dependent variable (DV) and diagnosis as an independent variable (IV). Age, sex (except for 

the all-male sample from Witt et al., [2014]), and array batch (in the Tsuang et al., [2005] 

sample which featured both Affymetrix U133A and U133 Plus 2.0 arrays) and significant 

latent surrogate variables were included as covariates. We applied this model to every gene 

per study to compute the adjusted mean difference in gene expression between BD cases 

relative to unaffected comparison subjects. Genes that were present in at least four out of the 
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seven studies were retained for meta-analysis (ngenes = 17,201). A conservative random 

effect model inverse-variance weighted meta-analysis was used to pool differential 

expression estimates per gene across studies. The R package metafor (Viechtbauer, 2010) 

was used to perform the meta-analysis with the DerSimonian-Laird estimator.

Differential expression of weighted gene co-expression networks and module preservation

We derived a weighted gene co-expression network using the R package WGCNA 
(Langfelder and Horvath, 2008) to investigate gene regulatory networks associated with BD 

and major psychosis as described in the Supplementary Methods.

Linear regressions were fit to estimate the effect of diagnostic group on module eigengenes 

while simultaneously adjusting for confounding effects of age, sex, study site, and 

significant surrogate variables. The following diagnostic groups were compared: (1) BD 

cases compared to unaffected subjects, (2) BD cases compared to SZ cases, and (3) BD and 

SZ (together called ‘major psychosis’) compared to the combined set of unaffected subjects. 

P-values were adjusted using the Benjamini-Hochberg false discovery rate (FDR) procedure 

within each network (BD and controls: 24 modules; BD, SZ, and controls: 33 modules × 2 

tests = 66 total tests). A threshold of FDRp < 0.05 was used declare statistical significance 

for differential gene module expression.

Pathway and gene set analysis

A permutation-based gene set test for differential expression was performed using the piano 

package from R/Bioconductor (Väremo et al., 2013), which is described in the 

Supplementary Methods.

Discriminating diagnostic groups with machine learning classifiers

We evaluated classification performance of multiple machine learning (ML) algorithms in 

predicting diagnostic status of subjects based on expression levels for top differentially 

expressed autosomal genes. Details regarding the model training and testing procedures are 

described in the Supplementary Methods. The classification analysis was conducted using 

the R/CRAN package exprso (Quinn et al., 2016).

Polytranscript scoring

We developed an approach analogous to polygenic risk scoring for application to 

transcriptomic data (Purcell et al., 2009), which computes a score of the average expression 

level across multiple genes and weighted by their disease-associated expression changes. 

This score can serve as a predictor of disease that accounts for expression variation across 

many genes. An overview of the method is provided in Supplementary Figure 4 with details 

available in the Supplementary Methods. A logistic regression model was used in the 

training set with diagnostic status set as the outcome variable and polytranscript score as the 

predictor variable. After training, the model was then deployed in the test sample and 

classification accuracy was obtained (metric: ROC AUC). A 10-fold bootstrapping 

procedure was performed, each iteration producing a new training and test set in order to 

calculate mean and standard deviation of ROC AUC.
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Comparing significant results with previous mega-analyses

A list of 382 differentially expressed genes associated with BD was obtained from a 

previous transcriptome-wide meta-analysis of postmortem brain tissues (Seifuddin et al., 

2013), which we cross-referenced to the lists of differentially expressed genes and gene 

modules associated with BD and SZ identified in the present study. We also compared 

results from our current meta-analysis of BD cases with our previous study of peripheral 

blood and postmortem brain gene expression changes for SZ cases (Hess et al., 2016). 

Hypergeometric tests of enrichment were performed when overlap was observed between 

gene lists. We tested whether differential gene expression values observed in BD were 

similar to changes in SZ cases using Pearson’s correlation coefficient.

Results

Leukocyte abundance and surrogate variables

BD cases and unaffected comparison subjects did not show a statistically significantly 

difference in estimated abundance of leukocytes (Supplementary Table 1). One significant 

surrogate variable was recovered from the data set of BD cases and unaffected comparison 

subjects. A second surrogate variable analysis (SVA) was performed after adding 

transcriptomic profiles for SZ cases and unaffected comparison subjects from our previous 

study (Hess et al., 2016), yielding 4 SVs which were correlated with estimated abundance of 

16 out of 17 circulating leukocytes (Supplementary Figure 3).

Genes differentially expressed in BD

Our meta-analysis uncovered 19 genes significantly differentially expressed (six over-

regulated and 13 under-regulated) in BD cases relative to unaffected comparison subjects 

(FDRp < 0.05, Figures 1 and 2). Summary statistics for the 19 dysregulated genes are 

provided in Table 2. These genes did not show significant evidence of heterogeneity across 

studies (Cochran’s Q-test, p > 0.05). Forest plots for the 19 significant genes are provided in 

Supplementary File 1 with study-wise and pooled estimates. A total of 60 gene sets were 

significantly differentially expressed in BD cases relative to unaffected comparison subjects 

(FDRp < 0.05) (Supplementary Table 2), from which 30 gene sets were over-expressed and 

30 gene sets were under-expressed. Some of the biological gene sets over-expressed in BD 

included (all P-values = 0.0001, FDRp < 0.05): immune and cytokine signaling, cell 

adhesion, pro-apoptotic signaling, and positive regulation of reactive oxygen species. 

Conversely, some of the major biological processes down-regulated in BD cases included 

(all P-values = 0.0001, FDRp < 0.05): regulation of transcription, nuclear export of RNA and 

splicing, DNA repair, and histone modification. Leave-one-study-out sensitivity analyses for 

the 19 differentially expressed genes associated with BD indicated that pooled effects were 

relatively stable. The association for 18 genes with BD remained significant (p<0.05) in all 

leave-one-study-out analyses. The significance of the association between TSG101 and BD 

was lost when we removed Clelland et al., (2013) from the meta-analysis (Supplementary 

Figure 5).

Among genes reaching a nominally significant association (p < 0.05) with BD, 70.6% were 

found to be over-expressed, which was statistically greater than expected by chance 
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(binomial p = 9.44×10−59). The quantile-quantile plot in Figure 2 shows that meta-analysis 

associations deviated from the null with a global inflation factor of λGC = 1.54. Three out of 

the 19 significant genes associated with BD were also found to be significantly differentially 

expressed in the peripheral blood of SZ cases (FDRp < 0.05; AK4, KAT8, and OGFRL1), 

but this was not more than expected by chance (one-tailed Fisher’s exact test p = 0.26) (Hess 

et al., 2016). AK4 was over-expressed in SZ cases while KAT8 was under-expressed in SZ 

cases (both results concordant with BD cases). While OGFRL1 was under-expressed in SZ 

cases (discordant with BD cases). We compared effect sizes for the BD-unaffected contrast 

with those observed for the SZ-unaffected contrast and found a small but statistically 

significant negative correlation 16,436 genes(Pearson’s r = −0.069, p = 3.69×10−19, 16,436 

common genes). Filtering the list of genes down to 480 genes related to immune and 

cytokine signaling led to a significant positive correlation in differential expression effect 

sizes between SZ and BD (Pearson’s r = 0.105, p = 0.021). There was no overlap between 

genes presently associated with BD in blood and those reported in previous study of BD 

postmortem brain tissue (Seifuddin et al., 2013).

Gene modules associated with BD

The first WGCNA network generated for this analysis clustered 14,443 genes into 24 

modules. Four modules were significantly differentially expressed in BD cases at a FDRp < 

0.05 (Figure 3A): ME15 (ngenes = 137, p = 0.0018), ME17 (ngenes = 109, p = 0.0021), ME22 

(ngenes = 65, p = 0.006), and ME23 (ngenes = 61, p = 0.007).

Pathway analysis uncovered 23 gene sets significantly enriched in ME15, 66 enriched in 

ME17, 40 enriched in ME22, and 7 enriched in ME23 (FDRp < 0.05, Supplementary Table 

3). The top five most significantly over-represented gene sets were found in ME17 and were 

related to immunity: defense response to virus (p = 4.32×10−35), type I interferon signaling 

pathway (p = 1.89×10−33), negative regulation of viral genome replication (p = 9.5×10−26), 

response to virus (p = 1.02×10−25), and interferon-gamma-mediated signaling pathway (p = 

6.7×10−21) (Figure 3B). ME22 and ME23 had the highest degree of semantic similarity (i.e., 

graph-based measure of compute topological overlap between GO terms) based on over-

represented GO gene sets found in these modules (semantic similarity index = 0.43, Figure 

3C). Eight genes from ME17 were found to be differentially expressed in the postmortem 
brain of BD cases (hypergeometric p = 0.003) as reported by Seifuddin et al. 2013(Seifuddin 

et al., 2013) (Supplementary Table 4). A permutation-based preservation analysis found that 

21 modules (87.5%) were strongly preserved (z-summary > 10) and two modules were 

moderately preserved (z-summary statistics = 6.25 and 8.15) between BD cases and 

unaffected comparison subjects (Supplementary Figure 6).

We downloaded the summary statistics from a recent pre-print study by Krebs et al. that 

performed RNA-sequencing of peripheral blood samples from 240 BD cases and 240 

unaffected comparison subjects to compare with our gene-level and network association 

analyses of BD. Krebs et al. identified six genes significantly dysregulated in the blood of 

BD cases. Five of these six genes were assayed by studies included in our meta-analysis 

(BBS9, C6orf163, COG4, DOCK3, and PVT1). We found a strong concordance of effect 

sizes between these our meta-analysis and Krebs et al. for the five significant genes 
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(Pearson’s r = 0.92, p-value = 0.028). However, the five genes were not statistically 

significant in our meta-analysis (p-values = 0.10 – 0.87), and these genes were not included 

in the four WGCNA modules associated with BD.

Gene modules associated with major psychosis

The WGNCA network generated from BD and SZ cases and unaffected comparison subjects 

comprised 33 gene modules comprising 11,033 genes along with 4,413 unclustered genes 

that were excluded from analysis. Thirteen gene modules had significant altered expression 

in cases with major psychosis relative to unaffected comparison subjects (FDRp < 0.05, 

Figure 4A), nine of which were over-expressed: ME1 (ngenes = 1,845), ME5 (ngenes = 596), 

ME7 (ngenes = 439), ME10 (ngenes = 331), ME11 (ngenes = 273), ME13 (ngenes = 260), 

ME17 (ngenes = 184), ME28 (ngenes = 107), and M33 (ngenes = 37). The four remaining 

modules were under-expressed in major psychosis: ME12 (ngenes = 262), ME15 (ngenes = 

201), ME16 (ngenes = 185), and ME23 (ngenes = 139). No module showed a significant 

difference in expression between BD and SZ cases (Supplementary Table 5).

Supplementary Table 6 shows the number of genes dysregulated in the blood of BD cases, 

postmortem brain of BD cases, peripheral blood of SZ cases, or postmortem brain of SZ 

cases that overlapped the 13 gene modules associated with major psychosis. ME7 contained 

a significant amount of overlap with genes differentially expressed in the blood of BD and 

SZ, as well as a significant number of overlapping genes with those differentially expressed 

in the postmortem brain of BD cases. Seven modules showed significant overlap with the 

blood-based differential expression gene list for SZ. A total of 449 unique gene sets were 

found to be significantly over-represented in thirteen modules associated with major 

psychosis (Supplementary Table 7). The top three gene sets enriched in each module are 

presented in Figure 4B, which highlighted mitochondrial components, apoptosis, cellular 

respiration, transcription, translation, and inflammation and immune signaling. Gene sets 

related to histone modification were also found to be significantly enriched in modules that 

were significantly over-expressed in major psychosis (GO:0042393, p = 0.001; 

GO:0033522, p = 0.00761, GO:0008334, p = 0.00186; shown in Supplementary Table 7). 

The thirteen modules associated with major psychosis showed relatively high pair-wise 

similarity with respect to overlapping GO gene sets (Figure 4C). Genes involved in histone 

modification, apoptosis, and immunity were found to be similarly dysregulated in BD and 

SZ (Supplementary Figure 7).

Performance of machine learning methods

RF, linear SVM, and radial SVM yielded classification accuracies that were significantly 

above chance when distinguishing BD cases from unaffected comparison subjects in the test 

sets (Figure 5A). RF and linear SVM showed a typical pattern of classification accuracy 

increasing with the inclusion of genes into the models. In contrast, the classification 

accuracy of radial SVMs declined as more genes were included in the trained model. The 

highest average hold-out set classification performance for linear SVM was AUC = 0.724, 

(95% CI = 0.715 – 0.734, p = 2.98×10−12) using the top 200 differentially expressed genes 

associated with BD. RF outperformed linear SVM and radial SVM in terms of hold-out 

AUC in the classification task distinguishing BD and SZ cases (Figure 5B). RF reached an 
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average hold-out set AUC of 0.677 (95% CI = 0.661 – 0.692). From the top 200 most 

commonly selected genes used to train ML models for Figure 5A and Figure 5B, 35 genes 

were found to be used in both classification tasks (Figure 5C). Our final validation analysis 

showed that all three classification models could significantly discriminate BD and SZ cases 

with better-than-chance accuracy (Supplementary Figure 8) in a pure hold-out sample 

wherein both case groups were profiled on the same microarray array in the same study 

(Tsuang et al., 2005). The best classification observed for the final validation analysis was 

for RF trained on the top 180 differentially expressed genes (AUC = 0.60, 95% CI = 0.586 – 

0.622, p = 7.1×10−7), which was qualitatively on-par with the classification performance 

obtained when training models with balanced sub-sampling of the full BD-SZ data set. As 

our sample size was relatively small, there was a risk of overfitting the data in our 

classification analysis. We sought to determine if trained models could predict randomized 

sample labels within our 10-fold cross-validation test sets. We would not expect models 

trained to identify true disorder-related gene expression patterns to perform better than a 

random classifier (AUC ~50%) on a test data set with randomized phenotype labels. Our 

results showed that average AUCs dropped to a range of 0.49 to 0.52 (mean AUC = 0.51) for 

classification models applied to test sets with shuffled phenotype labels, suggesting that 

discrimination of groups was not biased from overfitting.

Polytranscript risk scores were able to distinguish hold-out set BD cases from unaffected 

comparison subjects, and BD cases from SZ cases significantly better than expected by 

chance (Figure 6A and Figure 6B). Numerous gene bins used for polytranscript risk scores 

outperformed radial SVMs in terms of AUC for the classification tasks depicted in Figure 

5A and Figure 5B, as well as linear SVMs in Figure 5B. An average AUC of 0.672 (95% CI 

= 0.647 – 0.70, p = 1.4×10−7) and AUC of 0.607 (95% CI = 0.57 – 0.643, p = 4.5×10−5) was 

reached by polytranscript risk scores for the classification of BD cases from unaffected 

comparisons and BD from SZ cases, respectively.

Discussion

We performed a transcriptome-wide meta-analysis after rigorous pre-processing and quality 

control of gene expression data obtained from seven blood-derived microarray data sets, 

representing the largest collection of publicly available peripheral blood transcriptomic data 

(to the best of our knowledge and at the time of this writing) of BD cases and unaffected 

comparison subjects. Our study uncovered 19 genes, 60 biologically annotated gene sets, 

and four gene co-expression modules that were differentially expressed in BD cases relative 

to unaffected subjects. We further found that BD cases had abnormally increased expression 

levels of genes in involved in oxidative stress, immune signaling, and apoptosis. but 

significant down-regulation of genes involved in histone modification, DNA repair, and 

RNA processing and splicing.

Three genes were found to be differentially expressed in the blood of BD cases from our 

meta-analysis and in SZ cases from our previous study (Hess et al., 2016). Genes involved in 

immune signaling, histone modification, and apoptosis showed concordant dysregulation in 

the blood of BD and SZ cases. From WGCNA, thirteen gene modules were found to be 

differentially expressed in major psychosis. Although no significant differences in gene 
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expression were found between BD and SZ cases based on our network analysis, ML 

classifiers and our novel method of polytranscript risk scoring were able to significantly 

discriminate BD and SZ.

Twenty-nine of 382 genes found by Seifuddin et al. to be dysregulated in the brain of BD 

cases displayed at least nominally significant association with BD from our meta-analysis (p 
< 0.05) (Seifuddin et al., 2013). Gene sets related to oxidative stress and mitochondrial 

components were associated with BD from both our study and Seifuddin et al. (Seifuddin et 

al., 2013). This highlights that some differential expression changes associated with BD 

from analysis of postmortem brain tissue can be identified in the blood of living BD patients. 

Eight genes were found in gene co-expression modules that were differentially expressed in 

the blood of BD cases and showed gene-level dysregulation in the postmortem brain of BD 

cases from the study by Seifuddin et al.: GLRX, IFI27, IFI44L, LIPA, MT1E, MT2A, MX1, 

and TNFSF10. Six of these genes belong to Gene Ontology pathways related to immune 

system signaling (IFI27, IFI44L, LIPA, MT2A, MX1, and TNFSF10). GLRX encodes a 

cytosolic enzyme glutaredoxin-1 that participates in redox-regulation and protects against 

buildup of excessive oxidative stress (Morgan et al., 2010). Abnormally increased expression 

of GLRX has been associated with pro-inflammatory signaling and was shown to promote 

neuronal cell death (Gorelenkova Miller et al., 2016). MT1E encodes a metallothionine that 

has high affinity for heavy metals and contributes to the migration of human glioma cells 

(Ryu et al., 2012), and was found to be differentially expressed in postmortem brain tissue of 

individuals with mood disorder that completed suicide compared to non-suicide cases 

(Sequeira et al., 2012).

We found that immune signaling genes were abnormally expressed in major psychosis, 

which is in line with previous studies. There are clinical data suggesting that BD cases 

exhibit a higher incidence of autoimmunity than the general population (Perugi et al., 2015), 

and that autoimmune disease may even contribute risk for BD as well as SZ (Barbosa et al., 

2014; Eaton et al., 2010). In a recently published study, we identified significant positive 

genetic correlations between a cluster of gastrointestinal inflammatory diseases and BD and 

SZ (Tylee et al., 2018), indicating that there is shared genetic risk between major psychosis 

and autoimmune disorders. Pathway enrichment analysis of GWAS results for BD, SZ, and 

major depression revealed significant enrichment of immune signaling genes in risk loci 

(The Network and Pathway Analysis Subgroup of the Psychiatric Genomics Consortium, 

2015). The strongest GWAS signal for SZ identified by the Psychiatric Genomics 

Consortium was located in the major histocompatibility (MHC) region (Ripke et al., 2014), 

which was later found to be driven, in part, by a structural variant in the complement 

component C4 gene that alters the copy number and, in turn, abnormally elevates expression 

levels of the gene in brain leading to synaptic pruning deficits in mice (Sekar et al., 2016). 

The first cross-disorder GWAS by the PGC implicated the MHC region with BD and four 

other disorders (SZ, autism, depression, and attention-deficit/hyperactivity disorder) 

(Smoller et al., 2013). Although BD and SZ etiology remains elusive, there are several 

genetic studies supporting the hypothesis that genes involved in immune regulation may play 

a role in pathophysiology.
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Upstream regulators of pro-inflammatory cytokines may also play an important role in 

pathophysiology. Our study found that toll-like receptor gene sets were differentially 

expressed in major psychosis cases. Toll-like receptors can induce inflammation by 

mediating the secretion of pro-inflammatory cytokines (e.g., IL1β, IL-6, IL-8, and TNF-α), 

which have been also shown to stimulate production of reactive oxygen species (García 

Bueno et al., 2016; McKernan et al., 2011; Troutman et al., 2012; Wieck et al., 2016). The 

biological link between inflammation and oxidative stress may explain some of the 

associations we uncovered for BD and major psychosis. Genes involved in oxidative stress 

were found to be significantly increased in BD cases relative to unaffected comparison 

subjects, as well as in cases with major psychosis. We also found significant enrichment of 

toll-like receptor genes in ME7 and ME13 which were significantly over-expressed in major 

psychosis cases relative to unaffected comparison subjects. Over-expression of the oxidative 

stress pathway in major psychosis might be a consequence of increased expression of toll-

like receptors stimulating pro-inflammatory cytokines, which may result in a reciprocal 

feedback loop (Biswas, 2016), whereby accumulation of reactive oxygen species may 

promote inflammation, impair cellular repair mechanisms, and exacerbate DNA damage and 

apoptosis. Aberrant inflammation and oxidative stress has been linked with white matter 

hyper-intensities in BD patients (Beyer et al., 2009), and may induce neuronal and glial loss 

(Gigante et al., 2011).

In our study, pro-apoptotic genes showed abnormally increased expression in BD and major 

psychosis. Abnormal expression of pro-apoptotic machinery in the blood of cases with 

major psychosis has been previously reported (Fries et al., 2014; Lowthert et al., 2012; 

Pietruczuk et al., 2018; Scaini et al., 2017). Evidence of apoptotic dysregulation has also 

been reported in postmortem brain studies of BD cases (Benes et al., 2006; Kim et al., 

2010). An increased production of pro-apoptotic genes has been associated with SZ (Batalla 

et al., 2015; Catts and Weickert, 2012; Hess et al., 2016). A biological link between the pro-

inflammatory cytokine TNF-α and apoptosis has been reported (Wang et al., 2008; Zhao et 

al., 2001), which could be a pathogenic mechanism.

At least 47% of the BD cases and 84% of the SZ cases in our sample had at some point 

received or were being actively treated with mood stabilizers and/or antipsychotics; however, 

these rates could be higher but are obscured due to missing data. We can make some 

inferences whether the differential expression patterns we observed in major psychosis were 

congruent with known medication effects based on findings reported in the literature for 

lithium and antipsychotics. Lithium may provide neuroprotective effects through inhibition 

of pro-apoptotic signals (Li et al., 2010)and reduction of oxidative stress and inflammation 

(Beurel et al., 2010; Guloksuz et al., 2012; Nassar and Azab, 2014). Antipsychotics were 

reported to diminish levels of circulating pro-inflammatory cytokines in SZ patients 

(Tourjman et al., 2013). Higher levels of apoptotic markers were seen in fibroblast cells from 

treatment-naïve patients with SZ compared to unaffected comparison subjects (Gassó et al., 

2014). Antipsychotics were also associated with a reduction in oxidative stress markers 

among treatment-naïve first-episode patients (Kriisa et al., 2016; Noto et al., 2015). Though 

definitive conclusions cannot be drawn, the abnormal expression changes in immune, 

oxidative stress, and apoptotic genes found in BD and major psychosis cases in our study do 

not appear to be consistent with reported medication effects.
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Histone tail modification is a dynamic regulatory process that can produce short-term 

changes to gene expression (Reik, 2007). Histone modifying genes were found to be 

significantly under-expressed in BD and major psychosis relative to unaffected comparison 

subjects. Genes involved in histone acetylation – a process associated with a 

transcriptionally active state of chromatin (Eberharter and Becker, 2002) – were significant 

under-expressed in BD and SZ, more so than genes related to histone deacetylation and 

methylation (Supplementary Figure 6). Histone acetylation and transcriptional activation 

may be perturbed in BD and SZ, and this might hold promise as a therapeutic target. 

Lithium and valproate were found to increase histone acetylation in cellular and animal 

models through inhibition of histone deacetylases (HDACs) (Leng et al., 2008; Wu et al., 

2013). Histone modification may be linked with the variety of neuroprotective effects 

associated with lithium and valproate such as anti-inflammation, reduction of oxidative 

stress, and enhanced synaptic plasticity (Chiu et al., 2013).

The values of ROC AUC achieved by our classification models were too modest to be 

considered clinically significant (72% for BD vs. UCs, and ~60% for BD vs. SCZ). 

However, classification performance of our models was significantly better than a random 

classifier, supporting the idea that blood-based gene expression classifiers could be further 

optimized and eventually have diagnostic utility. Our results of our machine learning 

analysis should be interpreted in light of limitations. We sought to build a machine learning 

classification model only on blood-based gene expression levels, yet there are advantages to 

integrating multiple modalities (i.e., behavioral, brain imaging, ‘omics data, environmental 

data) to capture underlying biology of neuropsychiatric disorders that would otherwise be 

missed by a single modality. In this vein, it is possible that one single biomarker test will 

never be sufficient for BD and SZ because of obstacles presented by clinical and etiology 

heterogeneity. An increasingly common theme in psychiatry is improving precision 

medicine by parsing heterogenous disorders into homogenous sub-groups, which could 

conceivably benefit classification performances for BD and SCZ (Lombardo et al., 2019). 

The concept of serial biomarker testing (i.e., one test to screen for high-risk individuals 

followed by additional tests to discriminate related disorders) has been proposed in context 

of autism spectrum disorders and related neurodevelopmental disorders, and could be an 

effective strategy for the pursuit of biomarkers for BD and SZ (Glatt, 2013). Our sample size 

was relatively small, therefore had the risk of overfitting the data when training classification 

models. We evaluated classification models for bias from overfitting by shuffling test set 

phenotype labels. Our results showed that classification performance was no better than 

random chance (AUC ~ 50%) suggesting that performance of our machine learning models 

were not driven by overfitting. Another limitation of our analysis was that we did not 

perform laboratory-based validation of our differential expression results. However, we used 

summary statistics to evaluate the concordance between the top differentially expressed 

genes associated with BD in the study by Krebs et al. compared to our meta-analysis, and 

found strong concordance of effect sizes (Pearson’s r = 0.92, p-value = 0.028), suggesting 

that our findings are not driven by random chance (Krebs et al., 2018).

We performed an electronic literature search for studies that trained machine learning 

classification models on gene expression profiles to discriminate BD cases from unaffected 

controls (the present study excluded) and reported classification performance as area-under-
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the-curve to allow results to be comparable to our study. We identified four studies that met 

our inclusion criteria (Kato et al., 2011; Munkholm et al., 2019, 2015; Struyf et al., 2008). 

The classification performance for these studies ranged from AUCs of 0.704 to 0.920. The 

study with the highest AUC utilized postmortem brain gene expression profiles in addition 

to phenotypic data to achieve a high classification performance, which does not have the 

same utility as a classifier based on ex vivo samples of mRNA. Two of the four studies 

utilized gene expression data from ex vivo peripheral blood samples (Munkholm et al., 2019, 

2015), but those studies evaluated potential biomarkers that were selected based on a 

candidate gene approach which may have skewed classification performance relative to 

unbiased feature selection. Candidate biomarker genes were also evaluated by (Kato et al., 

2011) within lymphoblastoid cells. In sum, we have identified limitations at various levels of 

existing gene expression biomarker literature for BD. The first proof-of-concept study was 

published about 14 years ago that demonstrated the utility of ‘liquid biopsies’ for BD 

(Tsuang et al., 2005). There has not been another transcriptomic study published in that 14 

year period to have evaluated the classification performance of blood-based gene expression 

biomarkers to discriminate BD cases from unaffected comparison subjects. Our study 

provides a critical benchmark in the pursuit of blood-based biomarkers for BD.

There were important technical factors that could impact the interpretation of our results. 

First, the number of samples varied per gene due to missing data caused by platform 

differences. We used an approach to adjust for differences between platforms as described in 

our previous transcriptome-wide studies of autism and SZ 9,79 that can handle missing 

values. Lifetime and current medication use was not reported in all subjects included in our 

study, therefore we used surrogate variable analysis (SVA) to indirectly control for 

potentially confounding effects of medication on gene expression. ComBat is a popular 

approach to cope with batch effects, however, applying that approach to our data set would 

have unnecessarily excluded more than two-thirds of genes with usable data due to a minor 

amount of missingness. Second, the only studies that met our inclusion criteria at the time of 

writing were microarray-based studies. RNA-sequencing has the potential to uncover small 

RNAs and other non-coding genes, exons, alternative splicing isoforms, and novel 

transcripts which were poorly represented or absent in our analysis. Lastly, causality could 

not be determined due to the cross-sectional nature of this study.

In conclusion, our study points to specific genes and gene sets with abnormal expression 

levels in the blood of cases with BD and major psychosis. The classification performance of 

our ML models were on par with past findings from much larger combined-sample 

transcriptomic analyses of autism, PTSD, and SZ (Breen et al., 2018; Hess et al., 2016; 

Tylee et al., 2017). Our classifiers should be further tested and potentially refined with 

longitudinal data to ensure that these models can yield reliable, clinically useful information. 

In all, our study found evidence that gene expression changes are shared between BD and 

SZ. Our results further support the notion that dysregulation in immune signaling, apoptosis, 

oxidative stress, and chromatin remodeling might be of central importance to BD and SZ. 

Further investigation of these pathways and their role in pathophysiology is warranted.
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Pre-processed data and code availability

Pre-processed expression data and full summary statistics are available upon request. The 

custom R scripts used to analyze the data are available at: (https://github.com/hessJ/

gxp_bipolar). Software is available for our PTRS method at: https://github.com/hessJ/ptrs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Volcano plot showing the log2 fold-change in gene expression between bipolar disorder 

(BD) cases and unaffected comparison subjects (horizontal axis) relative to p-value for the 

fold-change estimate (vertical axis). An orange horizontal dotted line denotes p = 0.05. A 

red dotted horizontal line denotes a Bonferroni significance threshold (adjusted p = 

0.05/17201 = 2.91e–06). Genes shaded red showed an association with BD at a Bonferroni 

adjusted p < 0.05. Genes shaded in orange showed an association with BD at a Benjamini-

Hochberg false discovery rate (FDR) p < 0.05. Genes shaded blue showed an absolute log2 

fold-change > 0.25 in BD cases.
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Figure 2. 
The association significance (vertical axis) and physical location of each gene (horizontal 

axis) is depicted in this Manhattan plot. A horizontal dotted line denotes a Bonferroni 

adjusted significance threshold. The genes labeled in this plot reached a statistical 

significance in association with BD at a Benjamini-Hochberg false discovery rate adjusted p-

value < 0.05. A quantile-quantile (QQ) plot in the inset shows the expected distribution of p-

values under the null hypothesis of no association versus the p-values observed from our 

meta-analysis.
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Figure 3. 
(A) Four WGCNA modules (ME15, ME17, ME22, and ME23) identified from 

transcriptome-wide peripheral blood gene expression data were found to be differentially 

expressed in bipolar disorder (BD) cases relative to unaffected comparison subjects. (B) The 

top five most significantly over-represented Gene Ontology (GO) gene sets found in the four 

BD-associated WGCNA modules. (C) A heat map showing the degree of similarity between 

pairs of modules based on the similarity of the sets of GO gene sets that were over-

represented in the four BD-associated modules. Similarity index is on a 0 – 1 scale, with a 

value closer to 1.0 indicating high similarity.
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Figure 4. 
(A) Thirteen WGCNA modules identified from transcriptome-wide peripheral blood gene 

expression data were found to be differentially expressed in cases with major psychosis 

(bipolar disorder + schizophrenia) relative to unaffected comparison subjects. (B) The top 

three most significantly over-represented Gene Ontology (GO) gene sets found in the 13 

major psychosis-associated WGCNA modules. (C) A heat map showing the degree of 

similarity between pairs of modules based on the similarity of the sets of GO gene sets that 

were over-represented in the 13 major psychosis-associated modules. Similarity index is on 

a 0 – 1 scale, with a value closer to 1.0 indicating high similarity. Rows and columns in the 

heat map were ordered by performing hierarchical clustering on the pair-wise similarity 

values.
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Figure 5. 
Classification performance of three machine learning (ML) algorithms that were trained on 

peripheral blood gene expression profiles to distinguish bipolar disorder (BD) from 

unaffected comparison subjects, and BD cases from schizophrenia (SZ) cases. (A) Average 

ROC AUCs found in with-held test samples for random forests (RF), linear-kernel support 

vector machines (SVM), and radial-kernel SVM based on the classification of BD cases and 

unaffected comparison subjects. P-values for ROC AUCs were computed using a one-tailed 

t-test with a population mean of 0.5 (i.e., chance accuracy, designated by orange dotted line) 

(B) The performance of three ML models in classifying BD cases and SZ cases in test 

samples that were completely with-held from sample of BD and SZ cases used to train the 

ML classifiers. (C) A Venn diagram shows the number of genes used for classification in 

two or more bootstraps.
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Figure 6. 
The average of classification accuracies (metric: receive operating characteristic area under 

the curve, ROC AUC) of polytranscript risk scores observed in test sets. (A) Logistic 

regression models trained using polytranscript scores for 10 – 200 genes could distinguish 

bipolar disorder (BD) case from unaffected comparison subjects, with better-than-chance 

performance (designated by orange dotted line).
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Table 1

Demographics of bipolar disorder cases and unaffected comparison subjects included in our transcriptome-

wide meta-analysis.

Study ID Tissue Predominant 
Ancestry (%)

BD 
Cases 

(n)

Controls 
(n)

% 
Male Age (s.e.)

Genes 
analyzed 

(n)
Array

Witt et al. (2014) Leukocytes European 
(100%) 11 10 100 48.19 

(2.47) 15,611
Affymetrix Human 
Exon 1.0 ST 
Illumina

Beech et al. 
(2010) Whole blood European 

(65.7%) 20 15 31.4 34.31 
(1.78) 14,564

Human-6 v2 
BeadChip 
Affymetrix

Bousman et al. 
(2010) Leukocytes European 

(70.5%) 9 8 70.6 43.59 
(1.75) 18,629 Human Exon 1.0 

ST Affymetrix

Clelland et al. 
(2013) Leukocytes European 

(66.7%) 26 25 100 36.65 
(1.81) 22,409 Human Genome 

U133 Plus 2.0

Padmos et al. 
(2008) Monocytes -- 5 6 45.5 23.64 

(2.90) 9,702 Affymetrix U95v2 
Illumina

Savitz et al. 
(2013) Monocytes -- 8 24 46.9 35.03 

(1.96) 20,504

HT-12 v4 
expression 
BeadChip 
Affymetrix

Tsuang et al. 
(2005) Leukocytes Asian (100%) 16 23 41 42.38 

(2.16) 22,409 Human Genome 
U133 Plus 2.0

Total studies: 7 95 111

Data not reported designated as (--). Abbreviations: bipolar disorder (BD), standard error (s.e.).
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Table 2

Summary statistics for 19 genes that were significant over- or under-expressed in bipolar disorder (BD) cases 

compared to unaffected subjects from our transcriptome-wide meta-analysis of 17,201 genes.

Heterogeneity 
statistics

HGCN 
symbol

Effect 
direction 
per study

# of 
studies

# of 
cases

# of 
controls

Total 
n

Log 2 
FC

Std. 
Error p-value FD Rp Cochran’s 

Q
p-

value

AK4 -++++ 5 64 86 150 0.107 0.020 4.42E-08 0.0008 2.004 0.735

ILKAP 6 90 105 195 −0.140 0.028 4.96E-07 0.0042 4.571 0.470

FBXO38 -+--- 5 79 95 174 −0.201 0.041 7.38E-07 0.0042 2.652 0.618

CHIC2 6 90 105 195 −0.222 0.049 5.33E-06 0.018 3.203 0.669

AHCTF1 ---+--- 7 95 111 206 −0.166 0.037 5.79E-06 0.018 3.366 0.762

PRR16 +++++ 5 70 90 160 0.074 0.016 7.34E-06 0.018 4.768 0.312

RYR2 ++++++ 6 87 87 174 0.090 0.020 7.98E-06 0.018 4.472 0.484

TOPORS ------ 6 87 87 174 −0.226 0.051 8.63E-06 0.018 2.234 0.816

KAT8 ---- 4 55 78 133 −0.127 0.029 9.16E-06 0.018 0.195 0.978

KRTAP19–
3 +-+++ 5 74 82 156 0.092 0.021 1.04E-05 0.018 4.222 0.377

MTMR9 -+----- 7 95 111 206 −0.139 0.032 1.15E-05 0.018 4.838 0.565

HSPBAP1 ------ 6 90 105 195 −0.252 0.058 1.59E-05 0.023 7.633 0.178

ING3 -+----- 7 95 111 206 −0.140 0.033 2.19E-05 0.028 2.787 0.835

AGTRAP +++++ 5 74 82 156 0.190 0.045 2.42E-05 0.028 4.000 0.406

CLK4 -+--- 5 82 81 163 −0.325 0.077 2.44E-05 0.028 2.355 0.671

OGFRL1 ------ 6 90 105 195 −0.180 0.043 2.70E-05 0.029 3.158 0.676

VAMP3 +++-+-+ 7 95 111 206 0.194 0.048 4.65E-05 0.047 7.001 0.321

OGT ------- 7 95 111 206 −0.259 0.064 4.88E-05 0.047 11.005 0.088

TSG101 ---+-- 6 87 87 174 −0.115 0.029 5.39E-05 0.049 4.794 0.441

Abbreviations: Fold change (FC), false discovery rate adjusted p-value (FDRp)
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