This document contains restricted data as defined in the Atomic Energy Act of 1946. Its transmittal or the disclosure of its contents in any manner to an unauthorized person is prohibited.

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Each person who receives this document must sign the cover sheet in the space below.

<table>
<thead>
<tr>
<th>Route to</th>
<th>Noted by</th>
<th>Date</th>
<th>Route to</th>
<th>Noted by</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>W. Crane</td>
<td>RC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RB</td>
<td>ZEB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This document contains 5 pages
This is copy 1 of 50 series A

Issued to Information Division

SECRET
Classification
MINUTES OF MEETING OF MTA REVIEW COMMITTEE
HELD NOVEMBER 20, 1951
AT LIVERMORE

Milton F. Moore
DISTRIBUTION - SERIES A

<table>
<thead>
<tr>
<th>Location</th>
<th>Copy Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic Energy Commission, Berkeley</td>
<td>1-2</td>
</tr>
<tr>
<td>Atomic Energy Commission, Chicago</td>
<td>3</td>
</tr>
<tr>
<td>Atomic Energy Commission (Production Division), San Francisco</td>
<td>4</td>
</tr>
<tr>
<td>Atomic Energy Commission (Production Division), Washington</td>
<td>5</td>
</tr>
<tr>
<td>California Research & Development Company</td>
<td>6-9</td>
</tr>
<tr>
<td>University of California Radiation Laboratory</td>
<td>10-20</td>
</tr>
</tbody>
</table>

RESEARCH SERVICE BRANCH
Atomic Energy Commission
Berkeley Area
Berkeley, California
MINUTES OF MEETING OF NTA REVIEW COMMITTEE
HELD NOVEMBER 20, 1951
AT LIVERMORE

Present: UCRL: Alvarez, Bradner, Brobeck, Cooksey, Latimer, Lawrence, Lofgren, Norton, Thornton, Twitchell, Van Atta
CR&D: Cope, Davis, Hildebrand, Kent Mayer, Miller, Powell
UCRL Consultant: Panofsky
AEC: Brown, Fleckenstein, Moore, O'Donnell

Mayer summarized the Mark I construction status. The weld tests and strength tests will be completed this week. It is expected that evacuation of the tank will take place approximately November 24. A classified area is being established on the second and third floors of the accelerator building in preparation for the oscillator installation. The No. 1 power supply is on test, with the remaining power supplies to be tested shortly. Helium leak testing is to start immediately.

It is expected that the first Hg converted diffusion pump will be received from DPI about November 21. The remaining pumps will be shipped by the middle of December. Hildebrand mentioned that DPI tests on pumps showed the following pumping speeds at various temperatures:

- 5,500 - 6,000 liters/sec @ 25°C H₂O cooled
- 8,700 - 9,000 liters/sec @ 10°C
- 11,000 - 17,000 liters/sec @ 5°C

The first pump will be tested at Livermore under the above conditions, prior to installation on Mark I, to confirm the DPI tests.

Lofgren reported on the new developments in ion pumps. A new model of the design shown in Figure 1 has given excellent results.
The pipe is 12 feet long and 5 inches in diameter, with a solenoid magnet placed along the entire pipe. An air inlet 1/4" in diameter is attached at the center with a separate opening about 3" in diameter to provide for an ion gauge. Using this model, a vacuum of 3.3×10^{-6} mm Hg, a pumping speed of 1900 liters/sec, and a center-to-end pressure ratio of from 500-1000 was attained. If a leak equal to that at the center is placed in the pipe about one foot from the main inlet, no pressure increase at the center is noted. It is thought that the discharge is actually taking place in the region near the inlet, hence additional inlets increase the discharge areas but do not increase the pressure. The ability to maintain a discharge apparently requires a high pressure only near the filament.

Lawrence pointed out that, since additional inlets do not increase pressure, it is indicated that a very high pumping speed can be attained from a long pump. If a 2-foot diameter by 20-foot long discharge can be obtained, a pumping speed of over one million 1/sec will be possible. This is a factor of 1000 greater than the pumping speeds of Hg diffusion pumps (48 x 5000 1/sec) or 150,000 1/sec for Mark I.

A question was asked as to whether the discharge extinguished at lower pressure—i.e., whether the arc was dependent on the pressure. Lawrence replied that this was not the case since under a perfect vacuum the discharge could be maintained because the filaments are supplying sufficient electrons to ionize the gas at the outlet. Alvarez asked...
whether any significant change in pressure occurred if the length of the pipe was increased. Lofgren reported that by blocking off one half of the pipe and then slowly increasing the length a slight decrease in pressure was noted.

Lawrence summarized the present theory on ion pumps. The number of ions formed is independent of the vacuum in the central region of the pipe. Ionization is maintained by the electrons from the filament. A back pressure of 1 micron is required to make the pump operate. All molecules in the pipe are ionized. A larger arc area gives a greater ionizing volume and hence a greater pumping speed. The power needed for ion pumps is comparable to that required for Hg pumps; however, Hg pumps require additional power for refrigeration which is not needed for ion pumps.

Alvarez suggested that one possibility for design of an ion pumping system on A-12 is a series of discharges lengthwise in the bottom portion of the tank and shielded from the resonant cavity by a grid structure.

Bradner discussed the recent Q and low power tests on the Mark I containing no other external parts except transmission lines. A Q of 255,000 ± 0.3% was obtained, which is 14% lower than theoretical.

A Q 20% lower than theoretical was expected, based upon experience with the Radiation Laboratory 40' linear accelerator.

The cavity was excited by a single pre-excitier oscillator to a power level of 200 kw during the low power tests. Prior to the test it was decided that a temperature rise in the cavity walls of 200° C would indicate a hot spot and require inspection and repair. The maximum rise obtained was 60° C. During these tests one of the transmissions shorted out. Cause of this failure is not known.

A general discussion brought out the fact that uranium depleted either to 0.4% or 0.5% is all that would be available instead of material depleted to 0.3%. By using the material with the higher U-235 and a D2O moderator the Pu-239 production will be increased from 5 moles/day to 8 or 10 moles/day.