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* QUANTUM MECHAUICAL TRANSITION STATE THEORY 

t William H. Miller 

Department of Chemistry and Inorganic Materials Research Division, 
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ABSTRACT 

2 . -t_ . .,;} 

Feynman's path integral representation of the Boltzmann 

-SH operator, e , is used to express the rate constant of a 

recently formulated quantum mechanical version of transition 

state theory •. By evaluating the path integral in two separate 

Stages, one is able to interpret the result as a generalization 

of a model suggested several years ago by Johnston and Rapp 

for handling the non-separable aspect of tunneling in transi-

tion state theory. A Fourier series expansion of the path 

integral is also developed, and this approach has promise for 

direct numerical evaluation of the quantum rate expression. 
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I. INTRODUCTION 

This paper is a continuation of recent work on quantum mechanical 

1-3 4 transition state theory. ' The basic idea motivating this 

5 development is the thesis that the "fundanental assumption" of 

transition state theory--namely, that all flux through a par-

ticular surface in coordinate space can be identified as reactive 

flux--is a good approximation for describing the threshold 

behavior of a chemical reaction with activation energy. 

6 . 
It is reasoned that the shortcomings of conventional transition 

7 state theory stem from additional assumptions--such as separability 

of the potential energy surface about its saddle point, vibration-

ally adiabatic motion along a reaction coordinate, etc.--which are 

not necessarily valid in the threshold region. The goal, then, 

has been to implement this "fundamental assumption" of transition 

state theory quantum mechanically (since quantum effects are very 

important in the threshold region) without incorporating any form 

of these additional separability approximations. 

1 Earlier work has given a formal solution to the problem and 

2 ' 3 derived its semiclassical limit. Numerical application to the 

collinear H + H2 reaction shows that the semiclassical approximation 

to quantum transition state theory gives. a good description of the 

threshold behavior. 
. 2 3 

The semiclassical approximation ' involves 

the classical path approximation to the Boltzmann operator, but 

does not introduce any assumptions of separability. 

The present paper, however, develops a different approach to 

evaluating the quantum rate expression in Reference 1, namely use 
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8 · . -BH 
of a path integral representation of the Boltzmann operata~ e • 

This path integral formulation has a two-fold utility. First, the 

path integral version of the quantum mechanical expression has an 

intuitive physical structure that can perhaps lead to new useful 

models and approximations; this has certainly been the case re-

garding the path integral representation of the quantum propagator, 

-iHt/h · · 9 10 
e , and its use in scattering theory. ' Second, unlike 

the situation with the quantum propagator, the "integrand" of the 

-BH path integral for e is not an oscillatory function, and it 

thus appears that the path integral approach may actually be an 

efficient way of carrying out the quantum mechanical calculation 

for the rate constant. 

The path integral representation of the Boltzmann operator 

is·introduced in Section II, and the rate constant written in 

terms of it. By evaluating the path integral in two distinct 

stages, an interesting interpretation of the result emerges, namely 

an exact version of a model postulated several years ago by Johnston 

and Rapp
11 

for dealing with non-separable aspects of tunneling in 

transition ~tate theory. A particularly convenient way of carrying 

out the path integral--a Fourier series expansion of the path--is 

developed in Section III, and Section IV shows how an exactly 

solvable "reference potential" can be used to accelerate the rate 

of convergence of the path integral. Section V gives the final expressions 

for the rate constant which result from the path integral expansion of 

-BH 
e ; this expression for the rate constant has the form of conventional 

transition state theory but with a generalized "tunneling factor" 

which includes corrections due to non-separability as well as 
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tunneling. For completeness, th~ path integral J."epresentation 

of the microcanonical density operator, o(E-H), is given in the 

Appendix. 
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II. GENERAL FORMULATION 

The quantum transition state rate expression derived 

1 previously is 

= -8H 
tr(e f)/Qa . (2 .1) 

where a and b denote reactant and product arra11gemen~s, 

respectively, Q is the partition function per unit volume a 

for separated reactants, H is the total Hamiltonian, and f is 

a special one-dimensional flux operator. To keep the notation 

simple all expressions will pertain to a collinear A + BC + AB + C 

reaction; in most cases it should be obvious what the more general 

equations are. 

If the "dividing surface" of transition state theory is a 

straight line and s the coordinate that measures dis-tance from 

the dividing surface (see Figure 1 of Reference 1), then the flux 

operator f is given in transition state theory by1 

f = 
Ps 

o(s) h(p.) 
m s 

where p is the momentum operator conjugate to s and h is the s 

step-function: 

h(x) = 1, x > 0 

0, X < 0 

(2 ~ 2) 

As discussed in Reference 1, one actually wants the version of 

12 operator f given by the Weyl correspondence rule;· the coordinate 

,. 
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? , 
IIi .. ' 6 

matrix elements of the Weyl version of f are given by 

<s' If Is> = h 
nm 

,· 
o(s + s ) 

' 2 (s - s ) 

If the .trace in Eq. (2.1) is evaluated in a coordinate 

representation, therefore, one has 

= 

where u is the other coordinate in the collinear A + BC 

system, the one which measures distance parallel to the 

dividing surface; in conventional language s is the 

"reaction coordinate" and u is the synunetric stretch 

coordinate of the "activated complex". Substitution of 

Eq. (2.3) into (2.4) and an integration by parts gives 

(2.3) 

(2.4) 

= h 
4nm 

1 a 
1 

-BHI (- s) as <u,s e u,-s> . (2.5) 

8 Feynman's path integral representation is now introduced 

for matrix elements of the Boltzmann operator: 

I -BHI ' ' u s <u, s e u , s > = J, Du J, Dfi 
u s 

where V(s,u) is the potential energy surface, and the integral 

notation 



u 
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u· 
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denotes Feynman' s "sum" over all paths u(r) which satisfy the 

' . ' 
boundary conditions u(O) = u and u(hf3) = u; the integral 

J. Ds 
. ' s 

denotes a.similar pa!=h integral over all paths s(T) for which 

s(O) = s and s(hf3) = s. T is a time-like parameter that varies 

from 0 to hf3; it is the same parameter which is the imaginary 
. 2 . 

time in the semiclassical limit · of quantum transition state 

theory. Section III undertakes an explicit evaluation of the 

path integral, but for now it will be left at this rather 

symbolic level. 

With this path integral representation for the Boltzmann 

operator, Eq. (2.4) thus becomes 

' ' u s = Ids .fds!du <s I £1 s> Jnu J~s (2.7) 
u s 

hf3 
exp{ - hl { d [1

2 
.ms·' .< ... >.2 1 · ' ( )2 . ( ( ) (. ). · .} T • +-zmu T +VsT,uT)], 

and since the flux operator f involves only the s degree of freedom 

it is convenient to perform the s(l") path integral first. Thus 

Eq. (2.7) is equivalent to. 

. : 
! 

I 

- ! 
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f
oo U 1 hB 1 ' 2 

du Jou P[u] exp{- h fdT [2 mu (T) + v0 (u(T))]}, (2.8) 
~ u 0. 

where the Pis a functional of the path u(T): 

P [u] = 2'1rliB 
s 

<s' If Is> J, Ds 
s 

1 JhB 1 r 2 . 
exp{- h · dT [2 ms ·(T) + V(s(T), u(T}) - v0 (u(T))]}. (2.9) 
. 0 

The rate constant is formally indepen.dent of the reference 

potential v0(u) which is introduced purely for convenience. 

Similarly, the factor ~ = (211h8)-l is introduced by Eq. (2.8) 

and in the definition of P for interpretational reasons. 

Eqs. (2.8) and (2.9) have a simple and physically intuitive 

interpretation. The functional P[u] is the one-dimensional 

tunneling.probability for the s degree of freedom with the u 

coordinate following the fixed path u(T); since u(T) is 

a ftxed function, P[u] is the probability for tunneling in the 

s-degree of freedom through the one-dimensional "time"-:-dependent 

potential barrier v(s,T), 

v(s,T) _ V(s,u(T)) - v
0

(u(T)) (2.10) 

The path integral over u(t) paths in Eq. (2.8) is simply Boltzmann 

average over all u(T) paths; i.e., one notes that 



hB 
exp{- ~ J dT 

0 
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1 ' 2 [2 mu (T) + v0 (u(T))]} (2 .11) 

is a path integral expression for the quantum mechanical partition 

function for the u-degree of 

Eqs. (2.8) and (2.9) express 

freedom with potential function v
0

(u). 

kT the rate constant, therefore, as 11 

times the probability of tUnneling through the one-dimensional time 

dependent potential barrier in the a-direction--the time dependence 

arising because the path u(T) is fixed--with a subsequent BoltZmann 

average over all paths u(T). 

The description in the above paragraph has much of the character 

of the ad ~ model suggested a number of years ago by Johnston and 

. 11 
Rapp for treating the non-separable aspect of tunneling in transition 

state theory. The Johnston-Rapp model essentially corresponds to 

Eqs. (2.8)-(2.9) with the crudest possible approximation to the u{T) 

path integral, namely the inclusion of only the constant path 

u(T) = u (2.12) 

including only this path in the "sum over paths" gives (apart from 

multiplicative factors) 

oo -sv
0

(u) J due . P(u) (2.13) 
..000 

where here P(u) is simply a function of u, namely the !-dimensional 

tunneling probability through the a-potential barrier V(s,u) - v
0

(u), 

which depends parametrically on u. Eqs. (2.8)-(2.9) are thus an exact 

formulation of Johnston and Rapp's important qualitative idea. 
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The reader will recognize that the development leading to 

Eqs. (2.8) and (2.9) is an example of Feynman's discussion of the 

- 13 
"path integral as functional" This is also the same methodology 

used in describing electronic transitions in atom-atom and atom-

14 15 . 
molecule collisions; ' here one imagines performing the path 

integral over electronic degrees of freedom for a fixed nuclear 

path, with a subsequent semiclassical approximation for the path 

integral over nuclear degrees of freedom. 

Eqs. (2.8) and (2.9) may be a useful starting point for 

exploring other approaches to quantum mechanical transition state 

theory. One can investigate various approximations, for e:Xample, 

for determining the one-dimensional tunneling probability through 

a time-dependent potential barrier. To whatever level of accuracy 

this one-dimensional time-dependent problem is solved, the final 

step is simply a Boltzmann average.over all paths for the remaining 

degree of freedom, the symmetric stretch u-motion. The case with 

more than two degrees of freedom is an obvious generalization of 

Eqs. (2.8) and (2.9): Pis still the probability of tunneling 

through a one-dimensional time-dependent potential ba~rier for the 

s-degree of freedom, but there are more degrees of freedom of the 

u-type, so that Eq. (2.8) would involve a multiple path integral 

over paths of the remaining degrees of freedom. 
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III. PATH INTEGRALS BY FOURIER SERIES 

This Section develops a procedure for evaluating Boltzmann 

path integrals which has a number of desirable features. The 

. 16 
idea itself is suggested by Feynman. 

For simplicity of notation, consider a one-dimensional 

Boltzmann path integral, 

X 
2 . 1 

= J Dx exp{- h 
xl 

fl1 1 I 2 } dT [2 mx (T) + V(x(T))] 
0 

One way .of representing "all paths" x(T) that satisfy x(O) = x
1

, 

x (h B) = x
2

, is by a Fourier series 

N 
:K(T) = x1 + (x2~x1)(-r/hB) + L 

n=l 
c sin (n7TT /h B) 
n 

The first two terms in Eq. (3.2) are the "straight line" path 

connecting x1 and x2, and the remaining terms are harmonic 

perturbations about it. Summing over '.'all paths" that connect 

x1 and x2 is equivalent to integrating over all possible values 

of the Fourier coefficients {c }; i.e.; 
n ·. 

(3.1) 

(3.2) 

(3.3) 

where the limit N -+co must be taken. Eq. (3.3) cannot be written 

as an equality, however, since. there is a yet undertermined Jacobian 

factor relating the "change of variables" from Dx to dc1dc2 ••• dcN. 
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With the Fourier series expansion for x(T) given by Eq. 0.2), 

the "kinetic energy" part of the exponent in Eq. (3.1) can be 

evaluated explicitly: 

1 2 rnx'<T> 2 2 
(n1T) c ] • ( 3 . 4) 

n 

For reasons that will be clear below it is convenient to rescale 

the Fourier coefficients {c } by defining the new integration 
n 

variables {z } 
n 

z = 
n 

1/2 
c n(~) 

n 411 2
13 

and one notes-that 

= 

With this change of variables, and with Eq. (3.4), Eq• (3.1) 

becomes 

00 00 

X /dz1 .. jdz2 -oo -oo 

where J is the undetermined constant Jacobian factor, s = 

T/hS, and the path x(s) is 

(3.5) 
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N z 
x(t;;) = L · ~ sin(n1Tt;;) 

n=l n 

The Jacobian factor J is determined by realizing that it 

is a property only of fuhction space itself and must thus be 

independent of the particular potential function V(x). For the 

case V(x) = 0, i.e., a free particle, one knows that 

1/2 
= ( m ) 

2nh
2
S 

2 
= p /2m, and since 

00 00 00 

this implies that. 

J = 

Finally, then, one has 

m 2 exp [- -- (x2-x1) ] 
. 211 2s 

00 

= 

2 --1rz -sv e e · 

1 

where the first.factor is the "unperturbed" Boltzmann matrix 

element, given by Eq. (3.7), and 

(3.6) 

(3. 7) 

(3.8) 
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00 

-oo 

2 2 2 2 z zl + z2 + ... + ZN 

1 
- Jd~ V(x(0) v = 

0 

with x(~) given by Eq. (3.6). 

Since the integrand in Eq. (3.8) is positive for all {z }, 
n 

one can imagine evaluating this multi-dimensional integral by 

MOnte Carlo methods. To do this it is convenient to change 

variables of integration from {z } to integration variables which n 

go from 0 to 1. Thus let the integration variables {w } be 
n 

defined by 

z 
n 

Jdz'n 
-oo 

so that 

e 

' 2 -7TZ 
n 

2 
-7TZ 

d~ e 
n = dw 

n 

= w n 

it is clear that w = 0 -+ 1 as z = - 00 -+ + 00 • Eq. (3.8) then n n 

becomes 

1 

<x2le-BHixl> = <x2le-BHolxl> ~d~ 
0 

e -Bv 
. '· 

(3.9) 

(3.10a) 



where 

1 

fi! 
0 

1 

v = ~ds v<x<s>> 

0 

with the path x(s) given by 
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x(s) 
4h 20 1/2 N Z(w ) 

= x
1 

+ (x
2

..,.x
1
)s + (--'"') L: n · sin(nlTs) 

Dl1T n=l n 

The function Z(w) which appears in Eqs. (3.10d) is determined 

implicitly by the relation 

2 
-lTZ 

e = w 

(3.10b) 

(3.10c) 

• (3.10d) 

(3.11) 

and clos.ed form rational approximations are readily available for 

it; for example, for i ~ w ~ 1, 

z(w) = (21T) 1/2 ., (3.12) 

where, 

. i 

i 
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17 auid where the coefficients {ai}, {bi} are tabulated. For the 

~ ~ 1 . range 0 w. 2' one can use the symmetry relation 

Z(w) = - Z(-w) 

in conjunction with Eq. (3.12). 

A M:>nte Carlo evaluation of Eq. (3.10) is now straight 

forward: The variables {w }, n = l, ••• N are chosen as random n .· . 

numbers in (0,1), V calculated for the corresponding path 

x(l;), and this is repeated M times, say. Then 

-sv e :::: 
M -sv 

1 E e k 
M k=l 

th 1 ' where Vk is the value of V for the k se ection of the random 

variables {w }. One particularly attractive feature of this 
n 

approach is that one need not be too concerned about the choice 

of N, the number of Fourier terms kept in the expansion of the 

path [Eq. (3.10d), so long as enough terms are included; i.e., 

it is in the nature of the Monte Carlo integration process that 

there is no wasted effort if many extra terms are included. 

I: 

(3.13) 
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IV. HARM>NIC REFERENCE POTENTIAL 

This Section is a continuation of the previous one but 

involves a procedure which is of particular utility. Any 

quantum mechanical expansion method can be made more efficient 

if the potential V(x)--for a one-dimensional system, for example-­

th can be divided into a . zero-- order part which is exactly sqlvable 

plus a (hopefully small) remainder. ' This Section shows how this 

idea can be carried out in the path integral version of quantum 

mechanics. 

One thus writes 

V(x) = (4.1) 

where 6V(x) :: V(x) - v
0

(x), and where v0 (x) is an exactly solvable 

potential which is chosen to make 6V(x) as small as possible. 

Within the path integral version of quant~ mechanics "exactly 

solvable" essenti~:llly means "harmonic oscillator", and V 
0 

is thus 

chosen as 

V(x) 
1 2 2 = -Dl.IJX 
2 

(4.2) 

Eq. (3.8) can then be written as 

1/2 . 
m · . · m 2 = ( --) · exp[--- (x -x) 1 

2nfl2 a 2h 2 a 2 1 

2 .· _ay 
-7Tz . JJ 0 

e e ' (4.3) 
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1 

v0 = ~d~ v0 (x(~)) 
0 

1 

~v = ~d~ 6v<x<~>> 
0 
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' 

with x(~) given by Eq. (3.6). Since v
0 

is a simple function of 

x, v0 can be calculated explicitly: 

1 2 
1 2 r . . v0 2 IOO.l J df; x(~) 

0 

1 

= ~ IOO.l2 ~ d~ 
0 

Substituting .this result into Eq. (4.3) gives 

N 

I> 
n•l 

N z 
L nn sin(n1T~)]2 
n=l 

z 2 
n 

-2 
n 

(4.4) 
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where u = hwB. Since the variables {z } appear in the exponent 
n 

of Eq. (4.5) quadratically, it is useful to complete the square 

and make the appropriate change of integration variables;. thus 

let 

2 1/2 - u [z + u z = (1 + --) 
n . . 2 2 . n n rr 

and then 

2 1/2 
dz 

u dz = (1 + '""22) n n n rr, 

so that Eq. (4.5) becomes · 

• 

N 

L: 
n=l 

. Bm.i 
- -6-

n 2 1/2 X - (-1) X 
(811KAJ ) 1 . 21 

1T 2 2 . 
(nrr) + u 

1 
2 1/2 

(1 +-u-) 
2 2 

n 'IT 

' 

(4.5) 

(4.6) 
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-2 
-Tiz -B~V 

e - e (4. 7) 

where the path x(l;) is given in terms of the integration variables 

{Z } as 
n 

N 

1: 
n=l 

N 
--TI 1: 

n=l 

z sin(nTil;) 
n 

sin(nTIO 
il 

Eqs. (4.7) and (4.8) can be simplified a great deal by 

18 
making use of certain summation and product formulae. Thus 

one finds that 

N n 
n=l ~ ) y/2 = (sin~ u) 

112 

1 + 2"2 
n TI 

and 

--TI 

N 

1: 
n=l 

n 
x1-(-l) x2 sin(nTil;) 

2 2 + 2 · n 
n TI u . 

(4 .8) 
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x1 sinh [u(l-~)] + x2 sinh(u~) 

sinh u 

With these results Eqs. (4.7) and (4.8) take on a very simple 

form 

where the "bar" has been removed from the integration variables 

{z }, and where 
n 

< le-BHolx > =l , m 
~ 1 · \zTih2B 

· 2x1x2 ] 
-sinh u. 

the quantity in Eq. (4.10) is the matrix representation of the 
. r . 
Boltzmann operator for a harmonic oscillator, i.e., for the 

unperturbed Hamiltonian 

2 
+ .!. l11.} X 

2 
Ho = .£..._ 

2m 2 . 

2 
= .P_ + v

0
(x) 

2m 

The path x(E;), furthermore; is givenby 

(4. 9) 

(4.10) 

(4.lla) 



0 0 ;J 
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= 

.. i 
I) t4 3 

x sinh 1 

0 ·.• 
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[u(l-~)] + x2 sinh (u~) 

sinh u 

x0 (~) is the classical path from x
1 

to x2 followed by a 

particle which experiences only the harmonic potential 

V 
0 

(x), L e., it is the "unperturbed path" from x
1 

to x2• 

Eqs. (4.9)-(4.11) thus have a simple intuitive structure; 

they may be thought of as the path integral version of the 

(4.llb) 

"d. d .. 19 . 1storte wave representation familiar in scattering theory. A matrix 
. -SH 

element of the Boltzmann operator e is the matrix element 
-SH 

of the "unperturbed" Boltzmann operator e 0 multiplied by 

a correction factor involving the perturbation b.V; the correction 

-Sb.V factor is an average of e over all Fourier deviations of.the 

path x(~) about the unperturbed path x0 (~). 

One can also imagine a MOnte Carlo evaluation of the integrals 

in Eq. (4.9) along the same lin~s discussed at the end of the 

previous section. One would change integration variables from 

{z } to {w } in exactly the same manner. To the extent that 6V 
n n 

-Sb.V is small, the integrand e is a slowly varying function, so 

that MOnte Carlo evaluation of the integral would be expected to 

be efficient. 
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V. FINAL RATE EXPRESSION 

With the Fourier expansions of the path integral developed 

in Sections III and' IV, one can now return to the quantum mechanical 

expression for the transition state theory rate constant, Eq. (2.5). 

For the s(~) path it is convenient to ~se the Fourier series represents-

tion with no reference potential [Eqs. (3.6)~(3.8)], and for the u(~) 

path touse the Fourier series representation with a harmonic reference 

potential [Eqs. (4.9)-(4.11)]. This gives 

= kT 
h 

-sv sp( ) 1/2 e · hwB . · 
4TI sinh (flw8) 

2ms I!l1l . 

[ 

2 
exp - -- - -. tanh· ltw8 {--)(u-

2 . h28 h 

00 00 

2 2 
-TI(z +y ) 

e - -

(5.1) 

where w is .the frequency for the referenc.e potential for the u-degree 

of freedom (i.e.' the symmetric stretch frequency)' and 

00 

f~ 

00 00 00 00 

1 2 2 
.1V(s,u) = V(s,u) - V8 p - 2 liXI.l (u-u

0
) 

AV - fl~ 6V(sm, u(~)) 
0 
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and the paths are 

s(l;) 

u(l;) 

= 
'4h28 1/2 

(2t; - l)s + <---;:;--> 
N z 
E .nn. sin (mrt;) 
ri=l 

= u + u _?inh_ (hwSt;) + sinh [hwS(l-l;)) 
0 sinh (hwS) 

where u
0 

is the equilibrium value of the u-coordinate. 

V = V(O,u0) is the saddle point of the potential surface sp 

and is inserted purely for convenience, (i.e., it canc~ls 

out identically in Eq. (5.1)). 

The derivative with respect to s in Eq. (5.1) can be 

carried out, and the result is simplified if one then changes 

the integration variables s and u to z
0 

and y0 , defined by 

zo = (~t2 s 
h 2a7T 

~tanh f'!"'B ] 1/2 
Yo = -) u . 2 

Eq. (5.1) then takes the familiar form of conventional transition 

state theory 

~~a = r 
-av sp (5.2) 
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t 
where ~ib is the harmonic oscillator partition function for 

the u-degree of freedom, 

t 
~ib 

and r is a generalized non-separable tunneling correction: 

X 

where 

b.V (s,u) 
s 

= a b.V(s,u) = a V(s,u) 
as· as 

and where the paths s(~) and u(!;) are given in terms of the 

integration variables by 

s(!;) = 
N 

211ft 28 .1/2 1 411 28 1/2 ~. zn 
( · ) (!; ·- -2>z0 + (--) LJ1 - sin(n1TI;) m , m1T n= n 

(5. 3) 

(5. Sa) 

u(!;) = + ·[ .lift .Jl/2 
sinh. (hw8!;) + sinh. [hw8(1-!;)J 

uo y 0 JIK.l) tanh. ~w8) . . sinh (hw8) . • 
. 2 . . 

4h 28 1/2 
+ (--) . m1T (5.5b) 
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Eq. (5.2), with f given by Eqs. (5.4)-(5.5), is the final 

result. If 6V = 0, then clearly r = 1. It is also easy to see 

that r = 1 in the classical, high temperature limit, hS ~ o. 

Following the discussion at the end of Sections III and IV, one 

can see how Eq. (5.4) could be evaluated by MOnte Carlo: One 

would change from the 2N + 2 integration variables {z } , {y }, 
n n 

n = O,l, ••• N, to 2N + 2 w-like variables defined in Eqs. (3.11)-

(3.12). 
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VI. CONCLUDING REMARKS 

The path integral representation of the Boltzmann operator 

thus leads to a very useful formulation of quantum mechanical 

transition state theory. It is particularly illuminating to view 

it as a generalization of the Johnston-Rapp model for taking into 

account the effects of non-separability in the tunneling correction 

to transition state theory. 

The Fourier series representation of the path integral seems 

to have many desirable features to suggest it as a possible compu­

tational procedure, but this, of course, can only be verified by 

actual numerical calculation~ Furthermore, since the Boltzmann 

operator arises in many applications other than transition state 

theory, the methodology developed in Sections III and IV has 

relevance to a much wider class of problems thanjust the present 

one. 

I 
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APPENDIX. PATH INTEGRAL REPRESENTATION OF THE MICROCANONICAL 

DENSITY MATRIX. 

In some cases it may be desirable to calculate the average--

of the flux operator f [Eq. (2.3)] with a microcanonical density 

operator first before Boltzmann averaging it. One thus observes 

that the transition state theory rate constant of Eq. (2.1), 

= tr(e-SHf) 

can be written in the form 

= (A.l) 

where N(E) is defined by 

N(E) = 2nh tr(o(E-H)f] (A. 2) 

This is often a useful way to express the rate constant since many 

other kinds of approaches give a result in this form. The exact 

rate constant obtained from quantum scattering theory, for example, 

is given by Eq. (A.l) with 

N(E) = I S (E) 1
2 

n. n o' a 

where S (E) is the reactive S-matrix connecting reactant 
~,na 

(A.3) 

quantum state na to product quantum state ~· With Eq. (2.3) the 

quantum transition state approximation to N(E), Eq. (A.2), becomes 
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N(E) -1> a I I (s aB <u,s <S(E-H) '!l,,...s> (A.4) 

so that it is necessary to consider matrix elements of the micro-

canonical density operator c(E-H). 

For simplicity of notation consider a one-dimensional system 

and the matrix elements 

. BH 
A formal identity gives c(E-H) in terms of e- , 

c(E-H) = BE -BH e e 

so that the matrix elements in Eq. (A.5) are given by 

1 1 s = Re- d in · · 
0 

By using theFourier path integral expansion for matrix 

elements of the Boltzmann operator, Eqs. (3.6)-(3.8), this 

becomes 

00 

<x2 j6 (E-H) I x1> = ·1d3 Re 

:;co 

. 8(E-V) x e 

(A.5) 

(A.6) 

(A. 7) 

(A. Sa) 

. ' 

.. ! 
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0 0 

where 

b.x 

v 

' I v 

• ]dE, V(x(E,)) 

0 

and where the path x(~) is 

8 
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' 

x(~) = 
Ji_ N z 

x1 + (x -x )~ + --'?:. :E _.!!. sin(n1T~) 
2 1 1T n=l n 

[The integration variables {z } in Eq. (A.8) have been scaled 
n 

differently from those in Eqs. (3.6)-(3.8) in order to remove 

the 8-dependence from x(~) and thus from V.] The integral over 

B in Eq. (A.S) can now be evaluated, and one obtains 

00 

<x Jo(E-H)Ix >=2m 12 
2 1 h 2 21T 

" 

N-1 
(E-V) l 4 

41T2(b.x2 + z2) 

(A. 8b) 

2 2 - ) -(b.x + ~ ) (E-V) h(E-V) (A. 9) 

where J is the regular Bessel function and h the step-function. 

Use of a two-dimensional version of Eq. (A.9) in Eq. (A.4) 

thus gives a path integral representation for N(E). 

The path integral representation of the microcanonical 

density matrix, Eq. (A.9), is considerably more complicated than 

its canonical counterpart, Eqs. (3.6)-(3.8). This greate.r complexity 

in the path integral representation of the microcanonical density 

operator has been noted before20 in other contexts: 
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