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ABSTRACT

Feynman's path‘integral'representation of the_Boltzménn

operator, e , is used to express the rate constant of a

recently formulated quantum mechanical version of .transition

state theory. . By evaluating the path integral in two séparate'

stages, one is'ablebto interpret the result as a'generalization

of a model suggested several years ago by Johnston and Rapp

for handling the non-separable aspect of tunneling in transi-
tion state theory. A Fourier series expansion of the path'
integral is also developed, and this approach has'promise for

direct numerical evaluation of the quantum rate expression.



I.  INTRODUCTION

- This paper is a continuation of recent work on quantum mechanical

transition state-theory.l—3’4

The basic idea motivating this
development is the thesis that the "fundamental assumpt:lon"5 of
transition state theory-—namely, that all flux,through a par-
ticular surface in coordinate space can be identified as reactive
fiux——is a good approximation for describing the threshold
behavior of a chemical reaction with activationvenergy.
It.is_reasoned that the shortcomings6 of conventional transition
stete'theory7 stem from additional assumptions--ench as sepérability
of the potential energy surface about its saddle point, vibration-~
ally adiabatic motion along'a reaction coordinate, etc.--which are
not necessarily valid in the threshold region. The goal, then,
has been to'impLement this "fundamental assumotion" of transition
state theory quantum mechanically (since quantum effects are very
important in the threshold region) without incorpotating any form
of these additional separability approximations.

Earlier work has given a formal solutionlvto the problem and
derived itsisemiclassicai 1imit,2 Numerical apolication3 to the

“collinear H + H, reaction shows that the semiélaSsical approximation

2
'_ to quantum transition state theory gives. a good description of the

2’3'involves

threshold behavior.' The semiclassical approximation
~the classical path approximétion_to_the Boltzmann operator; but
does not introduce any asénmptions of separability.

The present paper, however, develops a different approach to

evaluating the quantum rate expression in Referenoe 1, namely use -



of a path integral representation8 of the Boltzmann operator, e B .

This patn integral formulation has'a_two—fold utility. First, the
'"oath integral version of the quantum mechanical expression has an
intuitive ohysical structure that can perhaps lead to new useful
models and approximations; this has certainly been the case re-
gardlng the path lntegral representation of the quantum propagator,
e_th/h, and.its use in scattering'theory.g’iov Second, unlike
tne situation with the quantum propagator, the "integrand“ of the
.path integral'for e_sH is not an oscillatory'function, and it
thus appears that the path integral approach may actually be an
efficient way of carrying out the quantum mechanical calculation
for the.rate constant., .

The‘path integral representatlon of‘the Boltznann’operator"
is-introduced ln Section 1I, and the rate constant nritten in
terns of»it; By evaluating thevpath lntegral in two distinct =
stages;'an interesting interpretation of the result‘emerges, namely"
an exact versiOn of a model.oostnlated seVeral.years ago‘by.Johnston
andvRapP11 for dealing with non-separable aspects of tunneling in'br
transition state theory; A particularly,conyenient way of carrylng_ -
out the‘path integral—fa FOurier series'expansion of the patn~-ls:
developed in Section IlI, and SeCtion lV shows how anvexactly'u
"solvable "reference potential" can be used to accelerate the'rate
of convergence or the path integral Section V gives the final express1ons
for the rate constant which result from ‘the path integral expans1on of
e-BH; thls expression for the rate constant has the form of conventional
transition state theory but with a generalized "tunnellng factorv 

which includes_corrections due to non—seoarability as well as .



‘tunneling. For completeness, the path integral representation
of the microcanonical density operator, 6(E-H), is given in the

Appendix.



II. GENERAL FORMULATION

The quantum transition state rate expression derived

previouslyl.is

ko tr(e f)/Q , o : » (2.1
where e_andvb denote reaétant end product arrangemencs;
respectively, Q is the partition function per unit volume

for separated reactants, H is the total Hamlltonian, and f is

a ‘special one-dimensional flux operator. To keep the notation . -

simple all expressions will pertain to a collinear A + BC + AB + C o

reection; in most cases it should Be obvious vhet the more general'
,equations are. | | |

If.the "dividing surface" of'ﬁransition state theory is a
straight line and s tne coordinate ﬁhatkneesnres distance.from-'
the dividing_surface (see Figure 1 of Reference>l), then the‘flnx

operator f is given in transition stete theory by1
| é . Pg : - o R S

£ = .v(s) 7;13h(p8) e - o (2.2)
wherevps is the momentum operacor'conjugate to s and h-is the' 
step-function:

h(x) = 1, x >;0"

o, x <0 .

As discussed in Reference 1 one actually wants the version of

operator f given by the Weyl correspondence rule,12 the coordinate_



0O U430322%6

‘matrix elements of the Weyl version of f are given by

v , | ‘ :
<S'|f|s>=__-fl_ S(s + s ) . . o (2.3)
mm 12 _ : -
o (s -s") .
If the trace in Eq. (2.1) is evaluated in a:é§0rdinate

' representation, thefefore, one has -
kb+é Qa = fds'fdsfdu <u,s|eTBH|u;s'> §s'|f|s> , (2.4)

where u is the‘othér §00rdinate in the coliiﬁeaf A + BC
éystem,.the.dne which measures distance parallgl to.the
dividing surface; in conventional language s is the
'"reaction'codrdinate" and u is the symmetric stretch
‘coordinate of the "activated comblex". ‘Substifution of

Eq. (2.3) into (2.4) and an integration by parts gives
. - B %] [ 1 ‘ 3 ' BH
o kb¥a Q = 7m .l}hx :iks (- ;) s <u,s|e " |u,-s> .(2.5)

Feynman's path integral representatibn8 is now introduced

for matrix elements of the Boltzmann operator:

: u s .
“=BHy v 0 )

<u,sle 8 lu »8 > = , Du ‘f'Dg

u s

- hg '
1 -1 .ds(T),2 1
_ exP{- h j(;d'f 5 m(T)"‘ + 5

where V(s,u) is theipotential energy surface, and the integral

. notation

du(t) 2 ‘ ' '
wW=3—") + V(s(1), u(t)l}, (2.6)



.f‘Du' '
L} :
u
denotes Feynman s "sum" over all paths u(T) which satisfy the
boundary conditions u(O) = u and u(hB) = u; the. integral
.f.Ds'
'y
S .
_denotes a similar path integral over all paths s(T) for which
s(0) = s and sthB) = s. T is-a~time-like parameter that varies
from 0 to hB, 1t is the same parameter which is the imaginary
time in the" semiclassical limit2 of quantum transition state
theory. Section III undertakes an explicit evaluation of the
path integral, but for now it &111 be left at this rather
symbolic level.
With- this path integral representation for the Boltzmann

operator, Eq. (2.4) thus becomes

kb*a Qal=.fdsr[dsfduv<s |f1s>u.£bu.£PS- p : _(2f7) f,[“i
-1 he 1. .
eXP{ g f dat . [" (T) + ry mu (’[‘) + V(S(T), u('l'))]}, E
o 0 . | _

. and since the - flux operator f involves only the s degree- of freedom
it is convenient to perform the s(1) path 1ntegra1 first. Thus'_

nEq; (2.7) is equivalent to .




© y ‘ hR -,
-k—h.ll __!;du {Du P[u] exp{—i]; Jo.dT [% mu (‘l:)2 + Vo(u(T))]},. (2.8)

kb*-a Qa

where the P is a functional of the path u(1):

P‘.[u] =-211‘_h8 f&s' fds '<‘s'|fls> f' Dé'

.Sv

g

Cewie L Par a0 + v w(e) - ; .
exp -;Jo'dr [ ms (D + V(s(r), u(D) - Vou(n)]}.(2.9)

. The raté constant is formally independent of the reference

potential Vo(u) which is introduced purely for convenience.

i

Similarly, the factor kT (ZnhB)_l is introduced by Eq. (2.8)

h
and iﬁ the definition of P for interpretatiomal reasons.

Egs. (2.8)_and (2.9) have a simple and physically intuitive
interpretation. Thevfunctionai Plu] is the one-dimensional
tunneling.pfobability for the s dggree of freedom with the u
coordinate following the. fixed path u(f); since u(t) is

‘a fixed function, P{u] is the probability for tunneling in the

s—degree of freedom through the one-dimensional "time"-dependent

potential barrier v(s,f),
V(S,T) = V(S’U(T).) - VO(U(T)) .- - B | i } (2.10)

| Thg»path‘integral over u(T) paths in Eq.'(2.8)‘is simply Boltzmann

avérage over a11 u(t) paths; i.e., one notes that -



fau ﬁu exp{—hlfdr [% mu'(T)2+v0(u(r))]} @i

0.

is a path integral expression for the quantum mecnaniealvpaftition
'function‘for the u—degfee oi'freedom with potentiai function Vo(u).
Eqs. (2.8) and:(2.9) express the rate conetant, therefere, as %}
times'the.probebility of‘tunneling‘through the one-dimeneional time
dependent potential barrier in the s-direction—-the time dependencev
arising because the path u(T) is fixed--with a subsequent Boltzmann
average over.ailipaths u(T). A |

The description in the above paregfaph has much_of the eharaeter

of the ad hoc model suggeeted a number-of'yeafs ago by Johnston and ‘ '

Rap‘p]-'1 for treating the nen-separable aspect of tunneling in transition

state theory. The Johnston-Rapp model essentially corresponds to
Egs. (2.8)f(2.9)'with-the crudest possible epproximation to the u(t)

, patﬁ integral, namely the inclusion of only the constant path

wr = w o : I (2.12)

‘including only this path in the "sum Qver'paths" gives (apart from=‘
multiplicatlve factors) |

=BV (w) | A
kb*-a a ’“‘fd“e R, (2

where here P(u). is simply a function of u,.nanely‘the l-dimensional
tunneling probability through the's4potential‘barrier V(s u) - V-(u),
-which‘depends'parametricelly on u. Eqs. (2.8)- (2 9) are thus an exact

_formulation of Johnston and Rapp s important qualitatlve idea.



The reader will recognize that the developmeht leading to
Egqs. (2.8) and (2.9) is an example of Feynman's discussion of the

"path integral as functional".13

Thisfis_aISO'the same methodology |
used in describing electronié transitions in atom-atom and atom-
molécule collisions;_l["15 here one imagiﬁes pérforming the path
integral over electronic degrees of freedom for a fixed nuclear
path, with a subsequent seﬁiélassical approximation for the patﬁ
integral over nuclear degfees of freedom.

Eqs. (2.8) and (2.9) may be a ﬁsefullstarging point for
exploring oﬁher'approaches to quaﬁtum mechanical traﬁsition ététe
' theory. One can'inQestigaté vafioué approximhtions, fOr eXample;
forvdeterminipg_the one—dimensional'tunnéling probability thfough ;.
é time-dependent potential barrier. To whétéver level of éccuracy
‘this one-dimensional time-dependent problem is solved, the final
step is simply a Boltzmann average over all paﬁhs for the remaining
v degree df_fféedom, the symmetric stretch»u-motibn. The case with . =
more thaﬁ two degrees of freedom is an 6bvioﬁs.géneraiization of
 Eqs. (2.8) and (2;9): P isvsfiil_thg probability‘éf tunneling
through a one-dimensional time-dependent poteﬁtial baérier for the
's—degree of freedom, bgt’there_aré ﬁore degrees of freedom of the
u—type; so that Eq. (2.8) would. involve a multiple path integral '

over paths of the remaining degrees of freedom.
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III. PATH INTEGRALS BY FOURIER SERIES

This Section develops a procedure for evaluating Boltzmann
path integrals which has a number of desirable features. The
idea itself is suggested by Feynman.16

For simplicity of notation, consider a one-dimensional

Boltzmann path integral,

. X . .
. y) _ hg . ' -
<xy|e x> = [ Dx expl- £ f‘r B m' (@ + v} . (.1
1

One way of representing "all paths" x(T) that satiéfy'x(O) =X
x(thp) = Xy is by é Fourier serieg

P N

Lx(T) = x

1 n=1

The first two terms in Eq. (3.2) are the "straight line"'pafh
.connecting xi and Xys and the rémaining terms are harmonic .
perturbations about it. Summing over "all paths" that cohnect-'

x; and x, is7equivalent.td,integratihg over all possible values

of the Foufier coefficients {cn}: i.e.,

X @ @ - o R o

.~ where the limit N > © must be taken. Eq, (3,3) cannot be written
as an equality, hqwever; since there is a yet:undertérmined"Jacdbian.:

_.factor relating the '"change of variables" from Dx to dcidcz.f.ch.

+ (xz"?‘i) (M) + Y ?n'S_if!(n"'f/h.B) . (3?2,5 -
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With the Fourier series expansion for x(1) given by Eq. 3.2),
the "kinetic energy" part of the exponent in Eq. (3.1) can be
evaluated explicitly:

. _ ' N -
L fdr I'(m? = B [xxp?+E T @m? 2.0
271 2 n
8 _ n=1
For reasons.that will be clear below it is convehient to rescale

the Fourier coefficients {cn} by defining the new integration

' variables {zn} :

1/2
Z = c_n mg ) I ,
n S
and one notes that
de.dc,....dc,. = (constant) b4 dzldzz...d?N .

1772 TN
With_this.changeQOf vériables, and with Eq. (3.4),‘Eq;'(3.l)
becomes ‘
<xé|éf8H|xl> =.J exp[ (x2 xl) ]
. 2ﬁ B

’fr(22+22+. .otz 2

) o
_{ jdz fdz e 172 Nepls far vxen],
| [-6 Jat _

(3.5)

where J.isfthe-undetermined constant Jacobian factOr; E =

T/hB, and the path x(§) is
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1/2 N z_

x(E) = xp + GoyxpE + (F B)

The Jacobian factor J is determined by realizing that it
is a property only of fuhction space itself and must thus be
independent of the particular potential function V(x). - For the

case V(x) = 0, i.e., a free particle, one knows that

- -BH : 1/2

P - ' 2 .

v<x2‘e |x1> = ( m2 ) exp [- _EE_ (xz—xl) ] . 3.7
. 2mhg . 2h7B '
. 2 '
where HO = p /2m, and since
i o - -n(z2+z2+; 4z2)
az, [dz ~/’z e 2 N
1 2 N . ’

Finally, then, one has

P
BH -NZ - BV
xple x> = <xyle Olz >

B

5‘\.,8

‘v where the first factor is the "unperturbed" Boltzmann matrix

element, given by Eq. (3.7), and

N : :
S R sin(@ug) . (3.6)
n=1 ° _ ‘

dz "2 Y gl
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0 [oo] @ - o]
'/:15 = dzl d22 fdzN
w00 -C0 «-=00 : s

2 2 2

4 = zl + 22 + ... + _zN

_ 1
V- fevaen

. 0 : v

'with'k(i) given by Eq. (3.6).

Since the iﬁtegrand in Eq. (3.8) is posifive'for all {zn}, .
one can imagine evalﬁating this multi-dimensional integral by |
bbbnte Carlo methods. To do this it is.conveniént ;o change
variablgs;of integration from {Zn} to integ;atiqnivariables which v

. go from 0 to 1. Thus let the integration variables {wn} be

" defined by
n v 2 : . ‘
Jea e e RRCRON
so that
dql‘e ' = dwn H

. isvclear that w. =0~+1 as z =-® >+, Eq. (3.8) then

becomes
. S - 1 : : ,
«x_ |e~PH -BH, -BV | - |
<ayle e = <xle ol fow ST (3.100
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1 11 1 - N
= fdw1 fdw2 /dwN S Gaom)

o o 0 - o0

~~
L E
I

: 1

<
(]

0

‘with the path x(£) given by

@ 6)1/2 L 26y

vn=l

x(®) = %+ Gy x)E + B

- The fonction Z(w) which appeérs in EQS. (3.10d):is-detefmined

iﬁplicitly by the relation

and closed form rational approximations are readily available for

it' for example, for %-5 w S1,

oz = (2m) 1/2 _[t 1 +g t +1b2t2 ] - s | o (3'12)

where .

t = _[-lz’z‘n (1-':w)]1/2: s

'de‘-V(‘x(E))'_f - (310c)

—2 sin(ang) . "(3.11o_d_)"

|
|
i
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aud_where the-coefficients'{éi}; {bi} ere:tebulated,l7 For the

'.range 0s w < ;, one can use the symmetry relation
Z(w) = - Z(-w)

.in conjunction with Eq. (3 12)
A Dbnte Carlo evaluation of Eq. (3. 10) is now stralght
forward: The variables {w }, n =‘1,...N'are chosen as random
numbers in ©o,1), V calculated for the corresponding path
x(E), and this is repeated M times, say. Then
' . o 1 ' _ - N
ldw | 1dw aw. e BV . 1 ZM: _ka’ . G "13)
1 2 N . & B _ .
0 0 _ 0 . . | . _ :

v.where Vk is the value of v for the k selectlon of the random'
variables {wn}. _One‘particularly attrective feature of this
approech is that one nee& not be too concerned'about the‘choice
of N the number of Fourier terms kept in the expansion of the
path [Eq. (3 lOd), so long as: enough terms are included; 1i. e.,

it is,in the_nature of the Monte Carlo integration process_that

there is no wasted effort if many extra terms are included.
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IV. HARMONIC REFERENCE POTENTIAL

This Section is a gontinuation of fhe previousvpne but
iﬁvblves a érocedure which‘is of pafticglar'utility,‘ Any
quantﬁm'mechahical éxpansion metﬁod can bé madevﬁbrévefficiént.

,if the potential_v(x);-for a one—diménsionalrsysteﬁ, for exaﬁpie--
can bé.divi&ed into a . zerdEE order part which.is_exactly_Soivable
plus a (hopefully small) remainder, Thisvéection sﬁows how this
-idea can be ¢arriedvoﬁt in the path 1htegra1 version of quaﬁ;um
mechanics. |

One thus writes
Ve = Y(m 4 V@ o 1)

wﬁére AV(xj = V(x) -IVO(X)’ and whe;e Vo(x) is an e#actly<solvéb1ev
ﬁotehtial'whiéh is chosen to makevAV(x) aé smallras-possible;i E
. Within the path integral version of quantum mechanics "exaétly
solvab1e§>eSSentiélly_méans "harmonic QSCillatdf"; and V, is thus
chosen as

v = Fwi .

N =
E
SO

.Eq;»(3;8) can then be written as

R 12
gl = (B0 enl B )

amhg Mg

~

2 g e
x’.-/:ivz'e"f»_e-__o eBAV Yy : : ' - (4.3)
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where
RARNYL: Vp(x(E)
o= fa e
0 X .

with x(C)'given by Eq.. (3.6). Since VO is a simple function of

DX, V0 can be calculated explicitly.

1
- , P’y 2
o - g’ fax®
_ o
I 1 2B 1/2 N 2 B g
= Enm de [x; + (x,-%; § —If‘- sin(ang) ]
2 z_2
_ 1 1 + 28 _n_
=3 3 & 2 +x1 2) “am 3;1 2
4 h2g.1/2 -.N 2 ; .
+ 2D X 5 -17x, 1} . (4.4)
, n=l n~ S

Substituting.this fesult into Eq. (4.3) giVes.
L , . 0 o ( f .
: . L m(x
<x e-SH l x1> = ( . m2 ) exp [_ 2 1 . Bmw” (xz

o
| - +x+xx)]
2 2mm?s’ mZ 6

2




-18;

oo - © oo y o o - 2 2
. , - uz
X‘/_dzlf.dzZ fd?N e BAV exp{ 21 (TIz | 1m2n
 2uz Bmwz 1/2 . S - |

where u th Sincé the variables {z }'appeAr in the exponent"
o of Eq. (4 5) quadratically, it is useful to complete the square

and make the appropriate change of integration variables; thus

let
. . }
o W2 vz B 2 1/2 x, - (D7 B
oz, = (Lt 55 ) [Z +u (/) ”2 >—1 (4.6)
' ’ n oo (nn) 4+ u : o
“and then
2 12
dz = (1 + 3 2) dzn s
nm
' ._so.‘th-va't‘E'q.‘ (4.5) becb'més :
o o - . 1/2 N T
21® 1% 2 - - 2 1y
27h "B n _ u
nw
m(x,-x,) 2 e
. exp[— ,,22 1 - Bn;u (Xi2-+ 2,'+.xx ) +
2h7g
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o0}

[o's] ) v 0
| 2 o |
Xﬁzl dz, .. fd zy TE BV 4.7)

00 . 00 =00

where the path x(§) is given in terms of the integration variables

{En} as
N =x - (—l)ﬁx”.

S v 2u \ 1 72 in(nmg)
*O) = oxtOpx)E -5 L Sy T T Ta
2,\1/2 N z_sin(ant) o

wm2g \1/2 | | |

. T . (4.8)
(-“‘T’)v P @? + u2mhHl2

"Eqs. (4.7) and (4.8) can be simplified a great deal by
making'use of certain summation and produtt _formulae.18 vThus

one finds that

m(x,~-x%,) 2 ' : N x +x 2( l) x
- 2 vl _ B (x 2 + x 2 + X, X ) +u Bmw 2: 1° . 172
6 1 2 27 2.2 2 2 2
2 : ‘ n=1l n T (@71 +u")
2h°8
. 2x.x
ST [("1'_*“"2)_Cch“"S‘inﬁu:]_’

and

o | 2 N x-(-D%. . . .
v S2u” _ 1 2 sin(@ng)
S e D 2L 373

- -
n=l n 1" +u
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..xl.sinh [u(1-8)] + x, sinh(uf)

sinh u

With these results Eqs. (4.7) and (4.8) take on a very simple

form

: o : S
S 2. = E '
<x2|e-BH|gl> = <x, l‘e'-Buol.xl> /df e-ﬁs e’_BAV y (4.9)

-0

where the "bar" has been removed from the integration variables.

{Zn}' and where

Zﬂh B
1 2 . " o _ :
sinh u. ] o ‘ . o L (4f10)'

the'qﬁantity in Eq.j(4,10) is:the mAtrix‘répresentation of the
o | | . o | S _ :
Boltzmann operator for a harmonic oscillator, i.e., for the

o L \12 - : '
BH .m . u 2 2 Co
<x2|e 0|x >-< N sinh u) exp,- — [(le. + 32 ) coth" u

'Aunbérturbed'Héﬁiltonian*

. 2 '
C - P_ 1l 22
H, - om -+ 5 mo X

2 o
Er + Vo(x) R

The path x(£), furthermore, is givén,by

. . 8)1/2 % 2z sin(amg)

.X(€)=x(€)+( 5 21/2‘

o (4.11a)
n=1 ,(n. +u"/m ) '
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. where

x, sinh [ﬁ(l-ﬁ)] +x, sinh (u&)

sinh u

il

xo(é) | ; © (4.11b)

xo(E) is the'classical'péth from x, to x, followed by a

1

particle which experiences only the harmonic potential

1 2

VO(X), i.e., it is the "unperturbed path" from x, to x,. .
Egqs. (4.9)-(4.11) thus have a simple intuitive structure; .

they may be thought of as the path integral version of the

. 19 . ' :
"distorted wave" ~ representation familiar in scattering theory. A matrix

BH

is the matrix element
, : —BHO L :
of the "unperturbed" Boltzmann operator e multiplied by

element of the Boltzmann operator e

a correction factor involving the perturbation AV; the correction

BAV

factor is'an average of e over all Fourier deviations of the
path x(&) about the_unperturbed path xo(E). |

" One can also imagine a Monte Carlolevaluatipn of the integrals
in Eq. (4.9) along the same lines discussed at the end of the
p;evious séction. -One‘wouid change integration variables from
{zn}.fo {wn} in exactly the same manner. To the extent that AV’

BAV

is small, the integrand e is a slowly varying function, so
that Monte Carlo evaluation of the integral would be expected to

be efficient.
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V. FINAL RATE EXPRESSION

'With'rhe Fourier eipansions of rhevoethﬁintegral.oevelopedr
in Sections‘III and‘IVQ.one can now rerurn‘toutheiquanrumbmechanical
exoression for tne transirion state theory rare constant, Eq. (2 5)
For the s(E) path it is convenient to use the Fourier series representa—
‘tion w1th no reference potential [Eqs. (3.6)~- (3 8)], and for the u(E)
path to use the Fourier series representation with a harmonic reference

potential [Eqs;,(4.9)-(4.11)]. ‘This gives

. ‘v __BV' v » ’ . oo oo
g ke P neg  \YEoLoooraa
v kb<—a a _h 4 - \sinh (hwB) u s s’ 0s

o oo

g

R

exp [_ 2ms” MW yoop <£u_)§_)(u - ] az f[ay &TEHD BV

hB
(5.1)

. where w is the'frequency for'rhe reference potenrial for the u-degree“'

of freedomv(i.e;, tne symmetric stretch frequency);_and
T _' ‘ . o

./;l'zv = dz.l.' _dzz .o :dzN

' ﬁl : =_ ) dyl dyZ e dyN

- AV(s,u) = V(s,u) }'-'Vsp -

8
8
8

AV = ﬁ& V(s (E), u(E)) s
. 07" :



s

0 ij {r ;j 903 203

Ui
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and the paths are
s (&) .- 4h B 12 ZN: in‘l sin (aTE)
fi=1 S
| u(gj . 4 4 Sioh (RWBE) + sinh (hgﬁ(; £)]

Y9 sinh hwB)

/2 N v, sin(nmg) '
4h™R ,
(“‘")1 n}fl [n? +<h‘*’3)2 vz

where u, is the equilibrium value of the u-coordinate.

‘Vsp'= V(O,uo)'is the saddle point of the potgnﬁiél surface
and'isvinserted.purely for convenience, (i.e., it cancels
out ideﬁtically.in Eq. (5.1)).

The derivative with respect to‘s in Eq. (5.1) can be

carried out, and the result is simplified if one then changes

the integration variables s and u to z

Z‘ ) 2m 1/281.
0 hZBﬂ

1/2
E%? tanh él—ﬁ)] u

0 and yO,_defined by

Yo

Eq. (5.1) then takes the'familiar_form of conventional transition

state theory

Qf,  -ev._ |
kT “vib sp :
= I = e s (5.2)
kb+a h Qa : | -
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where Qiib is the harmonic oscillator partition function for
the u-degree of freedom,

t 1 -
vQVib "2 sinﬁfé%gb. ’

(5-3)
and T is a géneralized non-separable tunneling~correction:

b Rl b

' 2
-n(z0 +z1 +...+z +y0 +yl +o.tyy )

X e
e 2,3 1/2 | o | ,
x e BT L Jar @ - D av s®), vENT L 6.0)

0

where

3 AV(s,u) _ 3 V(s,u)

ERCRORE

- and where the.pathsus(i) and u(E)'are,giveﬁ in terms'of thé;'

integration variables by

C 2 1/2 . v : 2 1/2 | _
- S(g) = ( B) ;(5'-v%930 + mn 2;& ry sin(nﬂg) (5.5a) -

u(g).’ = u, +y | T 1’!2 smh (thE) + sinh’ [hwe,(l g)]

o 0 0 mw tanh’ (h - sinh(th) ' :

. 1/2 N oy sin(nné) |

’+ (,mn g Sl (th 2.1/2



—25-

Eq. (5.2), with T given by Eqs. (5.4)-(5.5), is the final
vresult. " If AV = 0, then clearly I' = 1. It is also easy to see
that I' = 1 in the classical, high temperature limit, hg - O.

'Following the diséussion at the end of Sections IIT and IV, one
can see how Eq. (5.4) could be evaluated by Monte Carlo: One
would change frém the 2N + 2 integration variables {zn} s {yn},
n=0,1,...N, to 2N + 2 w-like variébles defined in Eqs. (3.11)-

(3.12).
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VI. CONCLUDING REMARKS

The-ﬁath integral representationudf,thé Béltzmann'opefator
thus leads ﬁo a very usefﬁl,formulation of quantum mechanicél |
.;ransitiOn stété theory. It is‘particulafly illuﬁinatiﬂgbto vieﬁl
igjas a géneralization of the Johnston-Rapp model for takihg»into-

account fhe‘effects ofvﬁbn-separability iﬁ ﬁhé tﬁnneling correctién
to transition state‘theory; |

» .The fourier series representation of the path integral seems‘
to havg.many deéirable féatufes.to_suggest it Aéva bossiblé cOmpﬁ—
tational pfocedure, but this, ofvcourse, éan only be>Vérified by
:,acﬁual numerical calculation. Furthermoré, since the Boltzmann
boperator:arises in many applications other than'tranéitioﬂ state
'thebry;the methodologyvdeveloped in Secfions IIiyand IV has
relevance to é much wider class of problems than just the éresent

one.
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APPENDIX. PATH INTEGRAL REPRESENTATION OF THE MICROCANONICAL

DENSITY MATRIX.

In some cases it may be desirable -to calculate the average-
of the flux operator f [Eq. (2.3)] with a microcanonical density
operator first before Boltzmann averaging it. One thus observes

that the transition state theory rate comnstant of Eq. (2.1),

kb+a Qa = tr(e-BHf)

can be written in the form

k@ = w7, | (A.1)

where N(E) is defined by
N(E) = 2mh tr[S(E-W)f] - . o @.2)

This is often a useful way to express the rate cohstanf since many
other kinds of approaches give a result in this form. The exact
rate constant obtained from quantum scattering theory, for example,
is given by.Eq. (A.1) with
NE) = Z |s n(_E)IZ' s | V(A.'3):'_

’

na,nb a

where S n (E) is the reactive S-matrix connecting reactant
1 . .
a .
quantum state n_ to product quantum state n, . With Eq. (2.3) the

“quantum transition state approximation to N(E), Eq. (A.2), becomes
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N(E) = 5= Z (——) <u,slG(E—H)|n;:~s> o, | (A;z;) -

B-1s) thla,t.v it is necessary to éqnsider matrix elem_enté of the micro- -
canonical density operator §(E-H).
"For simplicity of notation consider a one-dimensional system

and the matrix elements

<x, |6 (B-H) |x> . | 8 j - (A.5)
A formal identity.gives §(E-H) in terms of e‘Bg,
GI(E—H) = Re :—[l; dg _eBE e-BH . ' ' o (A.6)

so that the matrix elements in Eq. (A.5) are given by

<x IG(E—H)Ix >=Re — | dB eBE

1
im
By using the Fourier path integral expansion for matrix

elements of the Boltzmann operator, Egs. (3 6)-(3. 8), this v

becomes

o . 1 oo m -m(Axez?y
- <x, |6(E-H) [x.> = ﬁz_ Re — dB( ) exp [-—--————"'— ]
.2 | 1 J ~ im . : Zﬂﬁ'ZB"_ : Zh B -

x SEV - . (a.8a)

A<x2|e_:BH|‘xi> o .7
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where

Ax = xz-xlv

: 1
7 ‘fds V(x(E)
4]

and where the .path x(&) is

N z
; 2 o5
x(€) = x, + (xz-xl)g + ggi - sin(nﬂE) - (A.8b)
[The integration variables {zn} in Eq. (A.8) have been scaled
differently from those in Eqs. (3.6)-(3.8) in order to remove

the fB-dependence from x(£) and thus from V.j The integral over

B in Eq. (A.8) can now be evaluated, and one obtains

| * !
_ v h™ 2™ S ”’ he 4mt(Ax” + z%)
X JN I(Jz—‘; (Ax2 + 22) (E-V) )h'(E-V) . (A.9) :
it 3 h ~ . .
2 . ) . |

wherefJ is the régular Bessel function and h thé stép—funqtioﬁ.
1Use of a two-dimensional version of Eq. (A.9) in Eq. (A.4)
thus gives a path integral représentation for N(E).
Ihe‘path integral represen;ation of the microcanonical
density ﬁatrix, Eq. (A.9), is considerably'more complicated than
its canonical éounterpért, Eqs. (3.6)-(3.8). This greater complexity
in the path integral representation of the microcanonical aensity

-

operator has been noted before20 in other coﬁtexts.
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