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High Temporal-Resolution Dynamic PET Image Reconstruction 
Using a New Spatiotemporal Kernel Method

Guobao Wang
Department of Radiology, School of Medicine, University of California at Davis, Sacramento, CA 
95817, USA. gbwang@ucdavis.edu

Abstract

Current clinical dynamic PET has an effective temporal resolution of 5–10 seconds, which can be 

adequate for traditional compartmental modeling but is inadequate for exploiting the benefit of 

more advanced tracer kinetic modeling for characterization of diseases (e.g., cancer and heart 

disease). There is a need to improve dynamic PET to allow fine temporal sampling of 1–2 seconds. 

However, reconstruction of these short-time frames from tomographic data is extremely 

challenging as the count level of each frame is very low and high noise presents in both spatial and 

temporal domains. Previously the kernel framework has been developed and demonstrated as a 

statistically efficient approach to utilizing image prior for low-count PET image reconstruction. 

Nevertheless, the existing kernel methods mainly explore spatial correlations in the data and only 

have a limited ability in suppressing temporal noise. In this paper, we propose a new kernel 

method which extends the previous spatial kernel method to the general spatiotemporal domain. 

The new kernelized model encodes both spatial and temporal correlations obtained from image 

prior information and is incorporated into the PET forward projection model to improve the 

maximum likelihood (ML) image reconstruction. Computer simulations and an application to real 

patient scan have shown that the proposed approach can achieve effective noise reduction in both 

spatial and temporal domains and outperform the spatial kernel method and conventional ML 

reconstruction method for improving high temporal-resolution dynamic PET imaging.

Keywords

High temporal resolution (HTR); dynamic PET; image reconstruction; maximum likelihood; 
image prior; kernel method; spatiotemporal correlation

I. Introduction

Dynamic positron emission tomography (PET) can monitor spatiotemporal distribution of a 

radiotracer in human body. With tracer kinetic modeling [1]–[3], dynamic PET is capable of 

quantifying physiologically or biochemically important parameters in regions of interest or 

voxelwise and can be used to detect and characterize many diseases such as cancer or heart 

diseases. Traditionally compartmental models are used for kinetic analysis of dynamic PET 

data [1], [2]. Other advanced tracer kinetic models such as the distributed-parameter model 

[4] and the adiabatic approximations [5] are considered closer to the physiological process 

than compartmental models. However, those models have not been well explored in dynamic 

PET because the effective temporal resolution of clinical dynamic PET has been limited to 

HHS Public Access
Author manuscript
IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 March 01.

Published in final edited form as:
IEEE Trans Med Imaging. 2019 March ; 38(3): 664–674. doi:10.1109/TMI.2018.2869868.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5–10 seconds (see [6] for an example). This poor temporal resolution is insufficient to justify 

the use of advanced kinetic modeling in dynamic PET [4].

We aim to improve the effective temporal resolution of clinical dynamic PET imaging to 1–2 

seconds. To achieve the high temporal resolution (HTR), short scan duration must be used, 

which results in very low counting statistics in the dynamic frames. Image reconstruction 

from the low-count projection data is extremely challenging because the tomography 

reconstruction is ill-posed and high noise exists in tomographic measurement of short time 

frames.

In PET, incorporation of image prior information into image reconstruction has become a 

popular means to improve the quality of reconstructed images [9], [10]. Prior information 

can be either local smoothness of neighboring pixels or obtained from a co-registered 

anatomical MRI image (e.g., [11]–[15]) or CT image (e.g., [16], [17]). Most of existing PET 

image reconstruction methods employ an explicit regularization form (e.g., the Bowshwer’s 

approach [18]) to incorporate image priors and can be complex for practical implementation. 

Regularization-based methods also commonly require a convergent solution to achieve 

optimal performance, which is computationally costly and can be inefficient for dynamic 

PET in which many frames need to be reconstructed. Direct reconstruction is another 

framework which incorporates kinetic modeling into the reconstruction formula [10], [19]–

[21]. The method is statistically efficient when the kinetic model type is well known and all 

voxels in the field of view can be well described using the same kinetic model. However, this 

assumption is challenging to meet especially for new radiotracers and new clinical 

applications where the underlying kinetic model can be different from existing models. Any 

mismatch of the kinetic model can induce significant bias propagation in the kinetic images 

[22].

The recent kernel method [23], [28], [30] encodes image prior information in the forward 

model of PET image reconstruction and requires no explicit regularization. The kernel 

method is easier to implement and has been demonstrated to be more efficient and to better 

improve PET image reconstruction than regularization-based methods [23], [28]. Existing 

kernel methods mainly explore spatial correlations of image pixels to improve image quality 

in the spatial domain [23], [27], [28]. It has been applied to dynamic PET imaging [23], 

[27], MRI-guided static PET image reconstruction [28], [29], MRI-guided direct PET 

parametric image reconstruction [30], [31], and optical tomography [32]. These spatial 

kernels, however, have a limited ability for suppressing noise in the temporal domain. In 

HTR dynamic PET imaging, noise variation in the temporal domain can be very severe 

because many short-time frames are used. It is therefore desirable to include temporal prior 

knowledge in the kernel method to suppress temporal noise.

In this paper, we extend the spatial kernel method to a spatiotemporal kernel method that 

allows both spatial and temporal correlations to be encoded in the kernel matrix. We propose 

a separable spatiotemporal kernel to make the method more computationally tractable and 

easier to use. The new spatiotemporal kernel method is expected to achieve substantial noise 

reduction in the temporal domain in addition to the enhancement on image quality by 

existing spatial kernels. Note that this new method is different from other ongoing 
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developments that combine the spatial kernel method with direct reconstruction for well-

known kinetic models such as the spectral model [30] or the Patlak graphical model [31]. 

Our focus here is on the reconstruction of HTR time activity curves, allowing new, unknown 

kinetic modeling to be explored in clinical translation of dynamic PET.

Part of this work was previously presented in the 2017 International Meeting on Fully 3D 

Image Reconstruction in Radiology and Nuclear Medicine [33]. This work has been 

substantially extended by an extensive simulation study and an evaluation using real patient 

data. The rest of this paper is organized as follows. We introduce the generalized theory of 

spatiotemporal kernel method for dynamic PET reconstruction and describe specific kernels 

in Section II. We then present a computer simulation study in Section III to validate the 

improvement of the kernel method over existing methods. The application of new method to 

real patient data of HTR dynamic PET imaging is presented in Section IV. We further 

discuss the method and results in Section V. Finally conclusions are drawn in Section VI.

II. Theory

A. Dynamic PET Image Reconstruction

For a time frame m, we denote the PET image intensity value at pixel j by xj,m and the 

measurement in detector pair i by yi,m. The expectation of the dynamic projection data 

y = yi, m  is related to the unknown dynamic image x = {xj,m} through

y = Px + r

(1)

where P is the detection probability matrix for dynamic PET and includes normalization 

factors for scanner sensitivity, scan duration, deadtime correction and attenuation correction. 

r is the expectation of dynamic random and scattered events [9].

Dynamic PET projection measurement y = {yi,m} can be well modeled as independent 

Poisson random variables with the log-likelihood function [9],

L(y | x) = ∑
i = 1

Ni
∑

m = 1

M
yi, mlogyi, m − yi, m − logyi, m!,

(2)

where Ni is the total number of detector pairs and M is the total number of time frames. The 

maximum likelihood (ML) estimate of the dynamic image x is found by maximizing the 

Poisson log-likelihood,
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x = arg max
x ≥ 0

L(y | x) .

(3)

The expectation-maximization (EM) algorithm [34] with the following iterative update

xn + 1 = xn

PT1N
⋅ (PT y

Pxn + r
),

(4)

is often the choice to find the solution, where 1N is a vector of length N = Ni × M with all 

elements being 1, n denotes iteration number and the superscript “T” denotes matrix 

transpose. The vector multiplication and division are element-wise operations.

B. The Spatiotemporal Kernel Method

The kernel method for tomographic image reconstruction [23] was inspired by the kernel 

methods for classification and regression in machine learning. Unlike the kernel methods in 

machine learning [24], the kernel method for image reconstruction has unknown “label” 

values and the available data for kernel coefficient estimation is the tomographic projection 

data. Previously the kernel method [23] was derived for frame-by-frame spatial image 

reconstruction, here we adapt the expressions for spatiotemporal reconstruction.

In machine learning terminology, the image intensity xj,m at pixel j in time frame m is the 

“label” value. For each spatiotemporal location, a set of features are identified to form the 

feature vector fj,m, which is also called a “data point” in machine learning. Conceptually we 

can use a mapping function ϕ(fj,m), which can be of finite or infinite dimension, to transform 

the data points {fj,m} into a feature space of very-high dimension {ϕ(fj,m)} [24]. By doing 

this, the “label” value xj,m can be better described as a linear function in the high-

dimensional feature space,

x j, m = wTϕ f j, m

(5)

where w is a weight vector which also sits in the transformed feature space:
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w = ∑
j′ = 1

N j
∑

m′ = 1

M
α j′, m′ϕ f j′, m′

(6)

with α being the coefficient vector. Nj is the number of pixels in image. By substituting (6) 

into (5), the kernel representation for the image intensity at pixel j and in time frame m is 

written as

x j, m = ∑
j′ = 1

N j
∑

m′ = 1

M
α j′, m′ϕ f j′, m′

Tϕ f j, m

(7)

= ∑
j′ = 1

N j
∑

m′ = 1

M
α j′, m′κ f j, m, f j′, m′ ,

(8)

where

κ f j, m, f j′, m′ ≜ ϕ f j, m
Tϕ f j′, m′

(9)

is a kernel defined by the kernel function κ(·,·) (e.g. radial Gaussian function). The mapping 

function ϕ is now implicitly defined by the kernel and is not required to be known with an 

explicit expression. For instance, the second-order polynomial kernel κ(f, f′) = (fTf′ + 1)2 

for a 2-dimensional input data space f = [f1, f2]T implies a mapping from f into a 6-

dimensional feature space ϕ( f ) = 1, 2 f 1, 2 f 2, f 1
2, f 2

2, 2 f 1 f 2
T

 (p 171,[25]). The Gaussian 

kernel κ(f, f′) = exp(−||f − f′||2) corresponds to transforming f into a feature space of infinite 

dimension, ϕ( f ) = ϕk k = 0
∞  [26]. For example, a simple case is ϕk = 2k /k!exp − f 2 ( f )k
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when f is a one-dimensional vector f = [f]T. While ϕ may be not or less computationally 

tractable, the kernel is commonly easy to compute [24].

The image intensity xj,m at pixel j in time frame m is thus described as a linear function in 

the kernel space but is nonlinear in the original space of the data points {fj,m}. With x 
denoting the dynamic image and K the spatiotemporal kernel matrix, the equivalent matrix-

vector form of (8) is

x = Kα,

(10)

where α ≜ α j, m  denotes the kernel coefficient vector. The dimension of K is Nκ × Nκ with 

Nκ = Nj × M. The matrix is square because of its nature defined by the number of “data 

points”.

Substituting the kernelized image model (10) into the standard PET forward projection 

model (1), we obtain the following kernelized forward projection model for dynamic PET 

image reconstruction:

y = PKα + r .

(11)

The advantage of using this kernelized model (11) is that image prior knowledge can be 

incorporated in the forward projection to improve the reconstruction of low-count scans.

A kernelized EM algorithm can be easily derived [23]. The EM update of α at iteration (n 
+ 1) is

αn + 1 = αn

KTPT1N
⋅ (KTPT y

PKαn + r
) .

(12)

Once the coefficient image α is estimated, the reconstructed dynamic PET image is 

calculated by
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x = Kα .

(13)

Note that the EM solution converges to the ML estimate when n is large, which however can 

result in noisy reconstruction. In practice, early stopping with a reduced number of iterations 

is commonly used in EM reconstruction to control noise. This mechanism is also used in the 

kernel-based EM reconstruction.

C. Separable Spatiotemporal Kernel

The kernel matrix K encodes image prior information based on the feature vectors {fj,m}. 

For each pixel j in time frame m, we identify a set of features to form fj,m,

f j, m = [( f j
s)T, ( f m

t )T]
T

,

(14)

where the vector consists of two components. f j
s is the vector for exploring spatial 

correlations between pixels and fm
t  is for exploring temporal correlations between frames.

We further define the spatiotemporal kernel function κ(fj,m, fj′,m′) to be spatially and 

temporally separable, i.e.

κ( f j, m, f j′, m′) = κs( f j
s, f j′

s )κt( f m
t , f m′

t )

(15)

where κs(·,·) denotes the kernel function for calculating spatial correlations and κt(·,·) is for 

calculating temporal correlations.

Thus the overall spatiotemporal kernel matrix K is decoupled into a spatial kernel matrix 

Ks ∈ ℝ
N j × N j and a temporal kernel matrix Kt ∈ ℝM × M,
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K = Kt ⊗ Ks,

(16)

where ⊗ represents the Kronecker product.

Derivation of the spatial kernel matrix Ks has been developed in our previous work [23]. Ks 

is often formed as a sparse matrix based on image prior data { f j
s} using the method of k-

nearest neighbors (kNN):

κs f j
s, f j′

s = exp −
f j

s − f j′
s 2

2σs
2 , f j′

s ∈ kNN of f j
s

0, otherwise.

(17)

where σs is the Gaussian kernel parameter. In dynamic PET, an effective and efficient means 

for obtaining { f j
s} is to use composite frames [23]. For example, a one-hour dynamic FDG-

PET scan can be first rebinned into three composite frames, each of 20 minutes. From the 

reconstructed composite images, three time activity points are obtained at each pixel j and 

used as the feature vector f j
s to construct the spatial kernel matrix. Readers are referred to 

[23] for more details.

The spatial kernel method [23] is a special example of the spatiotemporal kernel method 

with the temporal kernel matrix set to the identity matrix,

Kt = IM .

(18)

In this paper, we explore the role of new Kt in the context of HTR dynamic PET imaging.

D. Choice of Temporal Kernels

The (m, m′)th element of Kt is obtained by comparing the feature vectors of the frames m 
and m′:
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κt f m
t , f m′

t = exp −
f m

t − f m′
t 2

2σt
2 , |m − m′| < dt /2,

0, otherwise.

(19)

where dt is the width of the time window for neighborhood construction between frame m 
and frame m′. σt is a parameter to adjust the weight calculation.

The simplest form of the temporal feature fm
t  is probably

f m
t ≜ m

(20)

by which Kt becomes a shift-invariant Gaussian smoothing kernel. The parameter σt can be 

determined by setting the window size as twice the full width at half maximum of the 

Gaussian function,

σt =
dt

4 2log2 .

(21)

This type of kernel can smooth out noise but may also over-smooth sharp signals in the 

temporal domain.

To make the temporal kernel more adaptive to time varying data, we propose to use the 

whole sinogram of each frame as the feature vector to capture temporal correlations between 

frames, i.e.

f m
t ≜ ym

(22)
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where ym denotes a smoothed version of the raw sinogram ym of frame m. Using the 

standard deviation of all the elements dm, m′ m = 1, m′ = 1
M, M ,

dm, m′ ≜ ym − ym′ ,

(23)

the parameter σt can be set to:

σt = 1
M2 ∑

m, m′
dm, m′ − d 2,

(24)

where d is the mean of {dm,m′}.

As both Ks and Kt are very sparse, inclusion of the kernel matrix K in the projection model 

does not add a significant computational cost in the reconstruction.

III. Validation Using Computer Simulation

A. Simulation Setup

Dynamic 18F-FDG PET scans were simulated for a GE DST whole-body PET scanner in 

two-dimensional mode using a Zubal head phantom [Figure 1(a)]. The phantom contains 

several brain regions including brain background, blood region, gray matter, white matter 

and a tumor (15 mm in diameter). An attenuation map was simulated with a constant linear 

attenuation coefficient assigned in the whole brain. The scanning schedule consisted of 63 

time frames over 20 minutes: 30×2 s, 12×5 s, 6×30 s, 15×60 s.

The blood input function was extracted from a real patient 18F-FDG PET scan and fitted 

using an analytic form to reduce noise [Figure 1(b)]. Regional time activity curves (TACs) 

[Figure 1(c-d)] were assigned to different brain regions to generate noise-free dynamic 

activity images. The early phase of these TACs has fast temporal dynamics and is 

challenging to reconstruct. The resulting noise-free activity images were first forward 

projected to generate noise-free sinograms. A 20% uniform background was included to 

simulate random and scattered events. Poisson noise was then generated with 20 million 

expected events over 20 minutes.

A total of 20 realizations were simulated and each was reconstructed independently for 

statistical comparison. As the main goal is to compare the reconstruction methods for HTR 

dynamic PET imaging, the study focused on the comparisons for the first one minute (thirty 

2-second frames) of the dynamic scan.
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B. Illustration of Temporal Kernels

One way of understanding the temporal kernel matrix Kt is that each column of Kt represents 

a temporal basis function. For example, the mth column of a kernel matrix Kt represents the 

temporal basis function centered at the mth time frame. Thus, a time activity curve is a linear 

combination of these temporal basis functions.

For illustration, a temporal window size of 15 time frames was used to construct temporal 

kernels. This fixed number of frames used for defining the temporal window leads to varying 

time windows across the dynamic sequence. The time window size was 30 seconds for early 

time frames and 15 minutes for late time frames. For calculating the data-driven temporal 

kernel matrix, the sinogram of each frame was smoothed using Gaussian smoothing with a 

window size of 7×7 before it was used.

Fig. 2 shows the comparison of temporal basis functions of two types of kernels - Gaussian 

temporal smoothing kernel (Eq. 20) and data-driven temporal kernel (Eq. 22). These 

temporal bases correspond to the 5th frame (t=8–10s), 15th frame (t=28–30s) and 55th 

frame (t=11–12 minute), respectively. For early time frames where fast activity changes 

occur, the data-driven kernel provides sharper temporal basis functions than the Gaussian 

smoothing kernel, while the two kernels are similar for late-time frames due to the slower 

activity change. Thus we expect the data-driven kernel to improve image reconstruction 

mainly for early-time frames when compared with the Gaussian temporal kernel.

Note that the previously used spatial kernel method has a special temporal kernel matrix - 

the identity matrix IM, of which the temporal bases correspond to unit impulse functions for 

all frames. Because there are no temporal correlations included in this impulse kernel, 

temporal noise will substantially remain in the reconstruction.

C. Reconstruction Methods to Compare

Noisy sinograms were reconstructed independently by four different image reconstruction 

methods: the traditional MLEM method, spatial kernelized EM (KEM-S), and new 

spatiotemporal kernel method with the Gaussian smoothing temporal kernel (KEM-ST-G) 

and the spatiotemporal kernel method with the data-driven temporal kernel (KEM-ST-D). 

Each reconstruction was run for 200 iterations to allow for the investigation of the effect of 

iteration number.

The spatial kernel matrix Ks was constructed using the same approach as described in [23]. 

The global kNN search with k = 48 was performed over all image pixels. Four composite 

images (4×5-minute) were obtained by recombining the full 20-minute dynamic data and 

used for the spatial kernel matrix construction. The temporal kernels were constructed using 

a window size of 15 frames unless specified otherwise. Different window sizes, ranging 

from 7 to 33 frames, were also investigated to evaluate the effect of temporal window size on 

reconstruction quality.
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D. Comparison for Overall Image Quality

Image quality of different reconstruction methods were first assessed using the image mean 

squared error (MSE) which is defined by

MSE xm = 10 log10
xm − xm

true 2

xm
true 2 (dB),

(25)

where xm is an image estimate of frame m obtained with one of the reconstruction methods 

and xm
true denotes the ground truth image of the frame.

Figure 3 shows the true activity image and reconstructed images by the four different 

methods with 100 iterations for the 5th frame (t=8–10s), 15th frame (t=28–30s) and 55th 

frame (t=11–12 minute), respectively. As expected, the KEM-S method achieved a 

significant MSE decrease as compared with the MLEM method. By incorporating temporal 

correlations, the KEM-ST-G and KEM-ST-D methods further improved the image quality 

and achieved lower MSE values than KEM-S. The KEM-ST-D method had lower MSE than 

the KEM-ST-G method for the early-time frames 5 and 15. The two methods had similar 

MSE for the late-time frame 55.

Figure 4 shows image MSE as a function of iteration number for the three different frames 

(5th, 15th and 55th). The two spatiotemporal kernel methods KEM-ST-G and KEM-STD 

had slower convergence rate than the spatial kernel method KEM-S, requiring more 

iterations to achieve the lowest MSE. This is because of the additional temporal correlation 

included in the spatiotemporal kernel methods. Note that the MSE curves of the 15th frame 

(t = 30 s) behaved slightly different from that of the 5th and 55th frames and achieved the 

lowest MSE earlier. This is because the 15th frame had lower activity and count level than 

the other two frames [see Fig. 1 (c-d) for a comparison].

Figure 5 shows the plots of image MSE of all time frames for different methods. The MSE 

of each frame is minimized over the number of iteration in each method. The error bars 

indicate the standard deviation of the MSE over 20 realizations. The three kernel methods 

outperformed the MLEM reconstruction for all frames. Compared with the spatial kernel 

method KEM-S, the spatiotemporal kernel method KEM-ST-G improved late-time frames. 

This is because the TACs of these late-time frames have small temporal changes than early-

time frames. Incorporation of temporal correlations thus became beneficial and achieved 

noise reduction. KEM-ST-D and KEM-ST-G had similar performance especially in the late-

time frames. In the early-time frames where activity change is rapid, use of the time 

invariant temporal kernel in the KEM-ST-G method over-smoothed the temporal signals. 

Thus KEM-ST-G had even higher MSE than KEM-S. In contrast, KEM-ST-D had a data-

adaptive temporal kernel and achieved better results.
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E. Comparison for Time Activity Curves

Figure 6(a) and 6(b) respectively show the TACs of a pixel in the blood region and a pixel in 

the tumor region reconstructed by different methods. The TACs of the first 60 seconds are 

further shown in Figure 6(c) and 6(d). The reconstructions by MLEM were extremely noisy, 

especially in the early-time frames because these frames are of only 2-s scan duration. While 

it achieved a significant noise reduction in the spatial domain, the KEM-S method still 

resulted in substantial noise in the temporal domain, particularly in the tumor where the 

tracer uptake is relatively low. The KEMST-G method reduced temporal noise in late-time 

frames but over-smoothed the early-time peak activities, causing bias in early-time frames. 

In comparison, the KEM-ST-D reconstruction overcame the limitation of KEM-ST-G and 

achieved a substantial noise reduction in the temporal domain for both early-time and late-

time frames.

To compare different methods quantitatively, we calculated the bias and standard deviation 

(SD) of the mean uptake in the tumor region by

Bias = 1
ctrue c − ctrue ,

(26)

SD = 1
ctrue

1
Nr

∑
i = 1

Nr
ci − c 2,

(27)

where ctrue is the noise-free regional TAC and c = 1
Nr

∑i = 1
Nr ci denotes the mean of Nr 

realizations. Nr = 20 in this study.

Figure 7 shows the trade-off between the bias and SD of different methods in the tumor ROI 

for two single time points (frame 5 and frame 15) and for the whole TAC of the first 60 

seconds. The curves were obtained by varying the iteration number from 10 to 200 iterations 

with an interval of 10 iterations. Compared with the MLEM and KEM-S methods, the two 

spatiotemporal kernel methods (KEM-ST-G and KEM-ST-D) had lower noise SD due to the 

temporal kernels. Being more adaptive to the data, the KEM-ST-D method achieved lower 

bias than the KEM-ST-G method at any level of noise.
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F. Effect of Temporal Window Size

Figure 8 shows the MSE of regional TAC of the blood region and tumor region as a function 

of temporal window size. With the window size equal to 1, the spatiotemporal kernel 

methods KEM-ST-G and KEM-ST-D become the same as the spatial kernel method KEM-

ST.

Because the blood region has a high count level (due to high activity), no temporal 

smoothing was needed. With increasing temporal window size, the Gaussian kernel ST-G 

reduced the TAC quality due to over-smoothing. The data-driven kernel ST-D was less 

influenced by the window size and was more stable to reconstruct the blood TAC. In the 

tumor region, the performance of the ST-G kernel changed sharply, indicating it can be 

difficult to choose a proper window size. In contrast, the performance of the ST-D kernel 

was stable for a range of window sizes from 10 to 30 frames. The minimum MSE achieved 

by the ST-D kernel was also lower than that by the ST-G kernel.

These results indicate that the ST-D kernel is more adaptive to the data and more stable than 

the ST-G kernel.

IV. Application to Real Patient Scan

A. Patient Data Acquisition

A cardiac patient scan was performed on the GE Discovery ST PET/CT scanner at the UC 

Davis Medical Center in two-dimensional mode. The patient received approximately 20 mCi 
18F-FDG with a bolus injection. Data acquisition commenced right after the FDG injection. 

A low-dose transmission CT scan was then performed at the end of PET scan to provide the 

CT image for PET attenuation correction. The raw data of the first 90 seconds were binned 

into a total of 45 dynamic frames with a 2-second duration. The data correction sinograms of 

each frame, including normalization, attenuation correction, scattered correction and 

randoms correction, were extracted using the vendor software used in the reconstruction 

process.

The patient data were reconstructed independently by the traditional MLEM method and 

three kernel methods: spatial kernel method KEM-S, new spatiotemporal kernel methods 

KEM-ST-G (Gaussian smoothing temporal kernel) and KEM-ST-D (data-driven temporal 

kernel) with 100 iterations. The spatial kernel matrix Ks was constructed using five 

composite frames (3×10 s, 2×30 s). The temporal kernels were constructed using the same 

parameters as used in the simulation study.

B. Results

Figure 9 shows the comparison of a 10-s low temporal-resolution time frame by standard 

MLEM with its corresponding 2-s high temporal-resolution time frames reconstructed using 

the data-driven spatiotemporal kernel method KEM-ST-D. While the 10-s image by MLEM 

already suffered from noise and showed similar FDG uptakes in the left ventricle and right 

ventricle, the HTR images demonstrated time uptakes in the two ventricular regions with 

good image quality even though they have a short 2-second duration. The right ventricle had 
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decreasing activities and the left ventricle had increasing activities during the same 10 

seconds period.

Figure 10 shows the comparison of different image reconstruction methods for 

reconstructing HTR time frames at t=8–10s, t=28–30s and t=88–90s. The traditional MLEM 

reconstructions were extremely noisy. The spatial kernel method KEM-S achieved 

substantial noise reduction. Compared with KEM-S, KEM-ST-G underestimated the FDG 

uptake in the left and right ventricles due to the Gaussian temporal smoothing. Given that 

KEM-ST-D is more adaptive to the data than KEM-ST-G, it preserved the improvement by 

KEM-S in the early frames at t=8–10s and t=18–20s and further reduced the noise in the late 

frame at t=88–90s.

Figure 11 shows the HTR time activity curves for the pixels in the right ventricle, left 

ventricle, aorta, and myocardium. The time activity curves of standard temporal resolution 

by MLEM are also included for comparison. With the standard MLEM reconstruction, the 

increase of temporal resolution suffered from high noise, thus contaminating any benefit 

brought by HTR. The kernel-based reconstruction by KEM-S demonstrated low noise for 

the high-activity time points. However, high noise remained in the low-activity time points. 

KEM-ST-G smoothed out the noise in late frames but over-smoothed early frames where 

activity changes fast. In comparison, the KEM-ST-D method achieved satisfactory noise 

suppression for both early-time and late-time points on the time activity curves.

The results from this patient study have further demonstrated the improvement of the 

spatiotemporal kernel method for HTR image reconstruction.

V. Discussion

PET scanning is dynamic by its nature and can have an infinitesimal temporal sampling by 

list-mode data acquisition. The quality of reconstructed images, however, is very much 

affected by noise and is so far inadequate to support the use of very high temporal 

resolution, especially for voxel-wise kinetic modeling. To suppress noise, temporal 

regularization or more generally spatiotemporal regularization may be used by adding a 

penalty term in the dynamic PET image reconstruction formula, see [7], [8] for examples. 

This regularization-based method has the disadvantages of being complex and with high 

computational cost given that there are many time frames (or basis coefficient images) to 

reconstruct in HTR imaging.

This work continues the development of the kernel method for dynamic PET image 

reconstruction with the aim to improve HTR imaging. Existing kernel methods mainly 

exploit spatial correlations and can substantially improve image quality in the spatial 

domain, as demonstrated in previous works (e.g., [23]) and in this paper (Fig. 3 and Fig. 10). 

To reduce noise in the temporal domain, the kernel method is generalized in this paper to a 

spatiotemporal kernel method. The improvement of the new method over the spatial kernel 

method has been demonstrated using simulation data (Fig. 6) and patient data (Fig. 11).

The comparison studies in this work have been done with dynamic 2D scans for 

demonstrating the proof of concept. This can be partly justified by the fact that the 
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Discovery ST scanner is normally performed in 2D mode for cardiac imaging at our 

institution. The implementation of the method for dynamic fully-3D scans (i.e., fully 4D) is 

straightforward in principle. Additional attention should be given to handling the increased 

data size and memory requirement due to the 3D acquisition and large number of time 

frames in HTR dynamic imaging, which may present some challenges for efficient 

implementation of the fully 4D spatiotemporal reconstruction.

The data-driven temporal kernel in its current format is derived from global sinogram data. 

Being adaptive to the overall temporal behavior of radiotracer uptake, such a kernel can 

provide sharp temporal bases for early-time frames (where fast changes occur) and smooth 

temporal bases for late-time frames (where activity changes are commonly slow) (Fig. 2). 

Although it less likely happens in most dynamic PET studies, an atypical region may exist 

with a very different kinetic behavior, for example fast kinetics at a late time. Then the 

global temporal kernels would not be able to match well with the local temporal behavior in 

this atypical region and may result in oversmoothed reconstruction if the temporal window 

size is large. Hence the method parameters may need to be tailored for specific applications. 

Our future work will also develop spatially-varying temporal kernels to make the method 

even more adaptive to spatiotemporal locations.

VI. Conclusion

In this paper, we have developed a spatiotemporal kernel method to incorporate both spatial 

and temporal prior information into the kernel framework for dynamic PET image 

reconstruction. The spatiotemporal kernel is separable in the spatial and temporal domains 

and thus can be easily and efficiently implemented. We conducted a computer simulation to 

validate the method and tested the method using a patient PET scan. The results from both 

the simulation study and patient study have shown that the new spatiotemporal kernel 

method can outperform traditional MLEM and existing spatial kernel methods to achieve a 

high temporal-resolution of 2-s while maintaining noise at a low level. Future work will 

include further optimization of the method and a more comprehensive patient study to 

quantify the improvement.
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Fig. 1. 
The digital phantom and time activity curves used in the simulation study. (a) The Zubal 

brain phantom; (b) Blood input function; (c) Regional time activity curves of different brain 

regions; (d) Time activity curves of the first 60 seconds.
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Fig. 2. 
Temporal basis functions formed by the Gaussian kernel and data-driven kernel. (a) center 

located at 5th frame (t=8–10s); (b) centered at 15th frame (t=28–30s); (c) centered at 55th 

frame (t=11–12 minute).
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Fig. 3. 
True activity image and reconstructed images at iteration 100 by different reconstruction 

methods for the 5th frame (t =10 s, top row), 15th frame (t = 30 s, middle row) and 55th 

frame (t = 12 minutes, bottom row). (a) True images, (b) MLEM reconstructions, (c) 

reconstructions by the spatial kernel method (KEM-S), (c) by the spatiotemporal kernel 

method with the time-invariant Gaussian smooth kernel (KEM-ST-G), (e) by the 

spatiotemporal kernel method with a data-driven temporal kernel (KEM-ST-D).
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Fig. 4. 
Plots of image MSE as a function of iteration number for different reconstruction methods. 

(a) frame 5, (b) frame 15, (c) frame 55.
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Fig. 5. 
Plots of image MSE of all time frames reconstructed by different reconstruction methods.
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Fig. 6. 
Time activity curves reconstructed by different reconstruction methods. (a) Blood TAC, 0–

20 minutes, (b) tumor TAC, 0–20 minutes, (c) blood TAC, 0–60 seconds, (d) tumor TAC, 0–

60 seconds.
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Fig. 7. 
Standard deviation versus bias trade-off of tumor ROI quantification by varying iteration 

numbers from 10 to 200 iterations. (a) frame 5 (t = 8 − 10-s), (b) frame 15 (t = 28 − 30-s), 

(c) whole TAC of the first 60 seconds.
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Fig. 8. 
Effect of temporal window size on quantification of regional TACs in the simulation study. 

(a) Blood ROI, (b) Tumor ROI.
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Fig. 9. 
Comparison of a low-resolution time frame starting from 10 to 20s with its corresponding 2-

s HTR time frames by the spatiotemporal kernel method for the patient study. (a) 10-s frame 

at 10–20s by MLEM, (b-f) HTR time frames by KEM-ST-D: (b) 10–12s, (c) 12–14s, (d) 14–

16s, (e) 16–18s, (f) 18–20s.
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Fig. 10. 
Comparison of different methods for reconstructing HTR patient data at t = 8 − 10s (top 

row), t = 18 − 20s (middle row) and t = 88 − 90s (bottom row). (a) MLEM, (b) KEM-S, (c) 

KEM-ST-G, (d) KEM-ST-D.

Wang Page 28

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 11. 
Time activity curves reconstructed by different methods for the pixels in different regions. 

(a) right ventricle, (b) left ventricle, (c) aorta, (d) myocardium.
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